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A B S T R A C T

In this paper, the problem of power efficiency evaluation for 𝑛-ports physical systems is
investigated. The efficiency analysis that we perform highlights the necessary and sufficient
conditions for the system to be passive, and outlines the guidelines for the efficiency maps
computation. After addressing the problem from a formal point of view, the analysis is deepened
for the case of two-ports linear and nonlinear physical systems, and for the cases of three and
four-ports linear systems. The efficiency analysis and the computation of the efficiency maps
are addressed as a function of the power variables characterizing all the energetic ports of
the considered systems. Furthermore, the salient properties of the efficiency are highlighted
and discussed. The theoretical analysis which is developed is then applied to some physical
systems of interest for industries and engineers working in the electromechanical, hydraulic and
automotive fields: a DC electric motor driving an hydraulic pump for the two-ports systems
class, a single-stage planetary gear set for the three-ports systems class, and a Ravigneaux
planetary gear set for the four-ports systems class.

1. Introduction

The word efficiency is largely employed in the literature to describe several concepts, which allow to evaluate the performances
of a physical system. A first possible use of this word is related to the world of series machines in production lines. In this case, the
concept of efficiency aims at capturing the impact that downtimes, caused by a failure for example, have on the throughput of the
series machines system. This subject is discussed in [1], where the authors focus on the estimation of the efficiency of series machines
in production lines. Since the awareness of global warming has been largely increasing in recent years, another important use of the
word efficiency is related to the concept of energy or power efficiency. The potential reduction in the energy consumption brings
several advantages, both from the point of view of the environmental sustainability and from the point of view of the economic
return.

In general, a complex physical system can be defined as the combination of several physical subsystems, interacting with each
other and with the external world through energetic ports, also called power sections. This interaction can either take place within
the same energetic domain or between two different energetic domains [2]. The performance evaluation of a complex physical
system from the energetic point of view includes both its transient behavior, which depends on the dynamic elements and affects
the trajectories movement in the system state–space, and the power efficiency evaluation in different operating points, affected
by the dissipative terms within the system. The first evaluation is addressed in [3], where a new control algorithm is proposed
to compensate speed fluctuation in the constant velocity motor present in a hybrid machine system. In this paper, the focus is on
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the second aspect, that is the power efficiency evaluation of different types of physical systems, so as to be able to build their
efficiency map. This is a first necessary step to derive the overall efficiency map of a complex physical system. With reference to
the global warming problem, an example of air pollution source is represented by transportation systems, including road transport.
In such application, a lot of investigation has been carried out in the last years on Hybrid Electric Vehicles (HEVs), representing a
promising solution. The term HEVs identifies those vehicles whose propulsion system contains more than one power source, typically
endothermic and electric. In the context of hybrid machines definition given in [4], the considered HEVs for road transportation
fall within the category of hybrid actuation systems, since more than one type of motors are present to accomplish the task. The
subject of power efficiency has been largely treated in the literature in the last decades. For example, a theory of the mechanical
efficiency for kinematic heat engines is presented in [5,6]. The efficiency optimization of an induction machine is addressed in [7],
by minimizing the power losses defining the optimal rotor flux, whereas the efficiency maximization of wind turbines in the presence
of electrical faults is addressed in [8]. The efficiency analysis of a dual active bridge bidirectional DC–DC converter using dual phase
shift control is instead performed in [9], in order to derive the system efficiency maps in different operating conditions and to analyze
the efficiency of a series hybrid electric vehicle including the considered converter. Electric traction motors and the associated drives
are analyzed in [10], where the employment of the efficiency maps as a function of the speed/torque operating point to describe
the efficiency of traction motors for HEVs is described. A similar usage of efficiency maps in the context of hybrid transmission
systems is also made in [11], in order to represent the traction motor and generator efficiencies operating points as a function of
the speed/torque operating point. Efficiency maps do represent a powerful tool in the automotive field for HEVs especially from
a control point of view: once the most suitable architecture has been identified, see [12–15], an effective solution for the power
management problem must be found. For this purpose, Model Predictive Control (MPC) is used in [16] using static and dynamic
HEV models. Specifically, a quasi-static model of the electric machine is employed, which is based on the electric machine efficiency
map in the different operating modes. The solution in [17] aims to make the electric machines present in the considered electric
propulsion system work in the high-efficiency regions exploiting the Instantaneous Power Minimization (IPM) process. Such tools
as efficiency maps are also used in [18], in order to establish an energy management strategy for a type of electric vehicles, with
the aim of minimizing the motors and transmission consumed power. A rule-based energy management strategy for series–parallel
hybrid bus is proposed in [19], where the efficiency map is employed to show the efficiency of the electric machines involved in
the considered hybrid architecture.

Many other application examples can be found in the literature. In [20], the authors focus on the efficiency improvement of an
lectrically activated rotation-flow suction unit. The efficiency map creation of an hydraulic-actuator control system is presented
n [21], which is used as a tool for understanding the performance characteristics of the considered system in different operating
onditions. The problem of systems efficiency evaluation is instead addressed in [22], and a metric allowing to perform the
valuation of the energy system efficiency is provided. An energy efficiency evaluation system is then shown in [23], whereas
wo types of electric machines are taken into account so as to compare their efficiency maps in [24]. Efficiency maps establish a
irst qualitative and quantitative information about the considered system efficiency in all its operating conditions. Furthermore,
hey allow to evince the dependence of the system efficiency as a function of the power variables in the considered system energetic
ort, as it is done in [25] for hydraulic orbit motors for example. Other instances of systems efficiency evaluation can be found
n [26,27].

The different practical examples described so far highlight how largely employed the concept of efficiency is in many industrial
pplications. In this paper, we approach the physical systems power efficiency evaluation using a unified approach, exploiting the
ystem physical modeling as a backbone for the power efficiency analysis and for outlining the procedure to build the system
fficiency maps. The system modeling can be made with an energetic approach using different modeling techniques, including
ond Graphs [28,29], Energetic Macroscopic Representation [28–30], and Power-Oriented Graphs [2,31]. The main characteristics
f these techniques are compared in [32]. In this paper, the Power-Oriented Graphs (POG) technique is employed, for which some
pplication examples can be found in [15,33–35].

When dealing with Power-Split HEVs, see [12–15,36], an interest arises in the class of 𝑛-ports physical systems, since Power-
plit HEVs are a category of HEVs equipped with an 𝑛-ports device, typically a planetary gear set [33,34,37–40]. A schematic
epresentation of a Power-Split HEV equipped with an 𝑛-ports planetary gear set is shown in Fig. 1. From the figure, it is possible to
ee how the different power sources and the load are connected to the different energetic ports of the planetary gear set. In the case
tudy of Fig. 1, the ICE (Internal Combustion Engine) is connected to the first energetic port of the planetary gear set, whereas 𝑛−2

EMs (Electric Motors) are connected from the second to the (𝑛−1)-th energetic ports. The Vehicle Transmission System, representing
the load of the architecture, is connected to the 𝑛-th energetic port of the planetary gear set. The objective of the planetary gear
set device is to split the ICE power into different parallel power paths driving the Vehicle Transmission System, thus enabling the
optimization of the ICE operating point in order to minimize the fuel consumption. Different approaches for modeling planetary gear
sets are present in the literature for different purposes. One of the most widespread approaches is the Lever Analogy, introduced by
Benford and Leising [37], which is very suitable for system analysis. As an example, this approach is used in [36] to analyze the
operating modes of the considered hybrid electric vehicle. The kinematic structure and synthesis of gear trains involving planetary
gear sets is addressed in [38–40] using a graph notation. In [33,34], a new approach which allows for the systematic modeling of
planetary gear sets was introduced, which is suitable for simulation and control purposes thanks to the proposed general dynamic
model for any planetary gear set. The present paper focuses on the step of evaluating the physical systems power efficiency, once the
modeling is performed, by building the system efficiency maps. Thanks to the proposed analysis, the efficiency map can be computed
on different operating planes defined by the power variables composing each energetic port of the system. The resulting efficiency
284
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Fig. 1. Schematic representation of a Power-Split Hybrid Electric Vehicle.

pon which the power efficiency evaluation of the physical system to be dealt with can be based. In Power-Split HEVs, the power
ources are typically connected to the energetic ports of the planetary gear set, as shown in Fig. 1. Therefore, the efficiency map
f the planetary gear set can be represented and studied on the energetic port of each power source. This is important in order
o account not only for the ICE and EMs efficiency when developing the energy management strategy of the vehicle, but for the
lanetary gear set efficiency as well.

The remainder of this paper is organized as follows. Section 2.1 summarizes the contributions of this paper with respect to our
revious work, whereas Section 2.2 discusses the contributions of this work with respect to the literature and highlights the practical
pplications of the proposed approach. In Section 3, the definition of efficiency and its properties for the most generic case of 𝑛-ports

physical systems are addressed. The subcases of two, three and four-ports physical systems are then addressed in Sections 4, 5 and
6, respectively. As far as two-ports systems are concerned, the efficiency map computation and analysis as a function of the power
variables (𝑦2, 𝑢2) of the second energetic port and as a function of the power variables (𝑦1, 𝑢1) of the first energetic port are carried
out in Section 4.1 and in Section 4.2, respectively. Section 4.3 highlights the presence of a design parameter 𝑞 characterizing all
two-ports linear systems. The importance of this parameter is then described, as it gives the maximum value of the system efficiency
in forward mode, that is when the power flow is oriented from the first to the second energetic port, and in reverse mode, that
is when the power flow is oriented from the second to the first energetic port. The efficiency analysis of a new case study is then
presented in Section 4.4, that is a DC motor driving an hydraulic pump both in the linear case, see Section 4.4.1, and in the nonlinear
case, see Section 4.4.2. The three-ports system case study addressed in Section 5 is a single-stage planetary gear set, whereas the
four-ports system case study addressed in Section 6 is a Ravigneaux planetary gear set. For the planetary gear set case studies in
Sections 5 and 6, the computation of the system efficiency map on the power variables of all the system energetic ports is addressed,
by also showing the different characteristics and properties that the efficiency maps exhibit. Section 7 presents the conclusions of
this work, whereas the proofs of the properties are reported in the Appendix part.

2. Contributions of this paper

2.1. Contributions with respect to the previous work

The power efficiency analysis of two-ports systems has been addressed in [41,42]. In this paper, we provide the following new
contributions:

(a) the extension of the efficiency analysis from the case of two-ports physical systems to the case of 𝑛-ports physical systems;
(b) the extension of the two-ports systems efficiency analysis as follows: (b.1) mathematical proofs are set out in greater detail,

see Sections 4, 4.1 and 4.2; (b.2) a new property distinguishing between necessary/necessary and sufficient conditions for the
physical system to be passive as a function of the system parameters is given (see Property 2); (b.3) the meaning and usage of
the design parameter 𝑞 giving the maximum efficiency value for the considered physical system is deepened (see Section 4.3);
(b.4) a new case study is presented (see Section 4.4), consisting in a DC motor driving an hydraulic pump. We show that the
latter behaves as a two-ports system affected by nonlinearities with physical elements in three different energetic domains;

(c) the efficiency analysis of a three-ports planetary gear set typically employed in HEVs is addressed in Section 5;
(d) the efficiency analysis of a four-ports planetary gear set, called Ravigneaux planetary gear set, typically employed in HEVs

is addressed in Section 6.

For the considered planetary gear sets in Sections 5 and 6, the inherent characteristics and properties they exhibit are presented
285
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2.2. Contributions and significance with respect to the literature

The literature review performed in Section 1 led us to the following considerations: (1) the concept of power efficiency is largely
mployed in the industrial and academic worlds to evaluate the dissipations of physical systems; (2) the most widespread way of
xpressing the physical systems power efficiency is through efficiency maps computed as a function of the system power variables;
3) to the best of our knowledge, the evaluation of systems power efficiency to build the efficiency maps does not refer to any
nified theoretical formulation of the problem, and is rather based on evaluations made on each individual physical system under
onsideration.

Based on these considerations, in this paper, we share our analysis approaching the efficiency map derivation for physical systems
ased on a unified formulation of the problem, applicable to different physical systems in different energetic domains. Our intent is therefore
o outline the guidelines to compute the efficiency maps as a function of the systems parameters for different categories of physical
ystems in different energetic domains, and to show some useful properties intrinsic of physical systems and of their efficiency
aps. Our approach for automatically finding the physical systems efficiency maps starts from unifying the approach for modeling
hysical systems. Since the computation of the physical systems efficiency maps is still mostly done case-by-case nowadays, we
elieve that our approach can provide important insights on the proper way of modeling the considered physical systems in order
o automatically be able to compute their efficiency maps. The use of a unified approach for finding the systems efficiency maps can
ot only help researchers and industrials to make their work more accessible to the entire community, but can also help them to
erify the results they achieve by verifying that the obtained efficiency maps satisfy the common properties which we have found.
n this paper, the main problem that we aimed to solve has therefore been the proposal of a unified efficiency analysis for the most
eneral case of 𝑛-port physical systems, with the final objective of building the system efficiency maps as a function of the system
arameters and to highlight some common properties that all efficiency maps share.

We then focus on two-ports linear systems first, to emphasize the presence of a common design parameter, and to show the approach
or computing the efficiency map. Several two-ports physical systems case studies were analyzed in our previous work [41,42], and a
ew case study is addressed in this paper, namely a DC motor driving an hydraulic pump.

Next, the generalization to the 𝑛-ports systems case study we addressed in this paper has allowed us to analyze two new important
ase studies in the automotive field: the single-stage planetary gear set for the three-ports systems category, and the Ravigneaux
lanetary gear set for the four-ports systems category. For the latter physical systems, the presence of some inherent characteristics
nd properties is claimed and justified, and a procedure for deriving the efficiency map on different energetic ports is given, providing an
mportant degree of freedom for the designer.

The generality of the proposed approach makes it applicable to different physical systems in different energetic domains which are
f interest for researchers and industries working in many different engineering fields. Electromechanical devices such as DC electric
otors, Permanent Magnet Synchronous Motors and electrical circuitry were addressed in our previous work [41,42], whereas

mportant hydraulic and mechanical devices such as hydraulic pumps and different types of planetary gear sets, which are the key
lements of Power-Split Hybrid Electric Vehicles, have been addressed in this paper. Furthermore, since the theoretical foundation
as been established with reference to the most generic case of 𝑛-ports physical systems in this paper, the reader has all the tools
or applying the proposed efficiency analysis to any physical system of their interest, and finally find the system efficiency maps.

. Efficiency of linear physical systems

Let us consider a linear physical system 𝐇(𝑠) characterized by 𝑛 energetic ports, or power sections, whose schematic representa-
ion is given in Fig. 2. The pairs (𝑦1, 𝑢1), (𝑦2, 𝑢2), … , (𝑦𝑛, 𝑢𝑛) denote the power variables of energetic ports 1, 2, … , 𝑛, respectively. The
rrows located in correspondence of each energetic port define the positive orientation of the power flows: power 𝑃ℎ = 𝑢ℎ 𝑦ℎ > 0,
ℎ = 1, 2, … , 𝑛, if it is entering the system. Let 𝑃𝐼 denote the following set:

𝑃𝐼 =
{

𝑖 ∶ 𝑃𝑖 > 0,∀𝑖 = 1, 2, … , 𝑛
}

, (1)

f all the subscripts 𝑖 of the powers 𝑃𝑖 > 0 entering the system. Let 𝑃𝑂 denote the following set:

𝑃𝑂 =
{

𝑗 ∶ 𝑃𝑗 < 0,∀𝑗 = 1, 2, … , 𝑛
}

, (2)

f all the subscripts 𝑗 of the powers 𝑃𝑗 < 0 exiting the system. The state–space equations of the considered system 𝐇(𝑠) are:
{

𝐋�̇� = 𝐀𝐱 + 𝐁𝐮
𝐲 = 𝐂𝐱 + 𝐃𝐮

𝐮 =
[

𝑢1 𝑢2 ⋯ 𝑢𝑛
]T ,

𝐲 =
[

𝑦1 𝑦2 ⋯ 𝑦𝑛
]T ,

(3)

here 𝐮 and 𝐲 are the input and output vectors. The state–space representation in (3) is preferred over the classical state–space
epresentation used in control system theory for linear time-invariant systems because a physical meaning can be assigned to the
ystem matrices [2]. The energy matrix 𝐋 carries the information about the energy instantaneously stored in the system, whereas
he power matrix 𝐀 carries the information about the power instantaneously dissipated in the system [2]. The input–output transfer
atrix 𝐇(𝑠) of system (3) is given by 𝐇(𝑠) = 𝐂(𝐋 𝑠 − 𝐀)−1𝐁 + 𝐃. The system is supposed to be operating in steady-state conditions,

in order to be able to build the efficiency map providing the system efficiency in each operating point. The static transfer matrix
𝐇0 = 𝐇(𝑠)|𝑠=0 relates the input vector 𝐮 and the output vector 𝐲 as follows:

𝐲 = 𝐇 𝐮, 𝐇 = −𝐂𝐀−1𝐁 + 𝐃. (4)
286
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Fig. 2. A linear system 𝐇(𝑠) characterized by 𝑛 energetic ports.

he total power flowing through the system is given by:

𝑃𝑇 =
∑

𝑖∈𝑃𝐼

𝑃𝑖 +
∑

𝑗∈𝑃𝑂

𝑃𝑗 =
𝑛
∑

𝑖=1
𝑢𝑖𝑦𝑖 = 𝐮T𝐲. (5)

efinition 1. System 𝐇0 is passive if 𝑃𝑇 = 𝐮T𝐲 > 0, ∀𝐮 ≠ 0, that is if the total power ∑

𝑖∈𝑃𝐼 𝑃𝑖 entering the system is always larger
han the total power ∑

𝑗∈𝑃𝑂 𝑃𝑗 exiting the system any time 𝐮 ≠ 0.

roperty 1. Given an 𝑛-ports linear physical system, a necessary and sufficient condition for it to be passive is that the symmetric part of
atrix 𝐇0 in (4) is positive definite:

𝐇0𝑠 =
𝐇0 +𝐇T

0
2

> 0. (6)

roof. Using (4), the total power flow 𝑃𝑇= 𝐮T𝐲 in (5) becomes:

𝑃𝑇 = 𝐮T 𝐇0 𝐮> 0. (7)

he total power flow 𝑃𝑇 in (7) is a quadratic function of matrix 𝐇0. It is well known that 𝑃𝑇 = 𝐮T𝐲 > 0 is positive definite iff the
ymmetric part of the steady-state transfer matrix 𝐇0 is positive definite, that is if relation (6) holds. □

efinition 2. In steady-state condition, the efficiency 𝐸(𝑡) of an n-ports passive system having the structure shown in Fig. 2 is
efined as follows:

𝐸(𝑡) =
−
(

∑

𝑗∈𝑃𝑂 𝑃𝑗

)

∑

𝑖∈𝑃𝐼 𝑃𝑖
, (8)

where sets 𝑃𝐼 and 𝑃𝑂 are defined in (1) and (2).

Note: the efficiency 𝐸(𝑡) in (8) is not defined when ∑

𝑖∈𝑃𝐼 𝑃𝑖 = 0, as in this case the entering power is zero, which cannot happen
since the system is supposed to be passive.

4. Two-ports linear system

This section is focused on the study of the two-ports linear systems class. Reference is made to the general case in Fig. 2 when
the number of ports is 𝑛 = 2. The steady-state description of the system given in (4) can be expanded as:

[

𝑦1
𝑦2

]

⏟⏟⏟
𝐲

=
[

𝑎 𝑏
−𝑐 𝑑

]

⏟⏞⏞⏟⏞⏞⏟
𝐇0

[

𝑢1
𝑢2

]

⏟⏟⏟
𝐮

, (9)

where 𝑎, 𝑏, 𝑐 and 𝑑 are the coefficients within matrix 𝐇0. The necessary and sufficient condition for the two-ports linear system (9)
to be passive is given by inequality (6). Using the Sylvester’s criterion, one can easily prove that matrix 𝐇0𝑠 is positive definite iff
the following inequalities hold:

(𝑎 > 0) ∧ (𝑑 > 0) ∧
(

𝑎𝑑 >
(𝑏 − 𝑐)2

)

. (10)
287
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Property 2. If linear system 𝐇(𝑠) is characterized by 𝑏 = −𝑐, then (𝑎 > 0)∧(𝑑 > 0)∧
(

det(𝐇0) = 𝑎𝑑 + 𝑏𝑐 > 0
)

is a necessary and suff icient
ondition for the system to be passive. If linear system 𝐇(𝑠) is characterized by 𝑏 ≠ −𝑐, then (𝑎 > 0) ∧ (𝑑 > 0) ∧

(

det(𝐇0) = 𝑎𝑑 + 𝑏𝑐 > 0
)

is
necessary but not suff icient condition for the system to be passive.

roof. The proof is given in Appendix A.

Note: for the two-ports linear systems case, it is more intuitive to perform the study of the system efficiency by assuming that
ower 𝑃2= 𝑢2 𝑦2 is positive when exiting the system, thus ascribing to the sign notation which is adopted by the authors in [41,42].
his can be achieved by changing the sign of one of the two power variables characterizing power 𝑃2 = 𝑢2 𝑦2, see [2]. By changing
he sign of power variable 𝑦2, the description in (9) turns into:

[

𝑦1
−𝑦2

]

⏟⏟⏟
𝐲

=
[

𝑎 𝑏
−𝑐 𝑑

]

⏟⏞⏞⏟⏞⏞⏟
𝐇0

[

𝑢1
𝑢2

]

⏟⏟⏟
𝐮

⇔

[

𝑦1
𝑦2

]

⏟⏟⏟
𝐲

=
[

𝑎 𝑏
𝑐 −𝑑

]

⏟⏞⏞⏟⏞⏞⏟
𝐇0

[

𝑢1
𝑢2

]

⏟⏟⏟
𝐮

. (11)

Since the two expressions in (11) are equivalent, reference will be made to (11) on the right. Let us refer to a real physical system
ase study allowing a bidirectional power flow, such as a PMSM (Permanent Magnet Synchronous Motor), see [41]-Section IV-C.
he meaning of the new sign notation in (11) on the right is the following: the case (𝑃1 > 0) ∧ (𝑃2 > 0) denotes the operation of the
MSM in forward operating mode, that is when the power is flowing from the electrical part (power 𝑃1 = 𝑢1 𝑦1) to the mechanical
art (power 𝑃2 = 𝑢2 𝑦2) and the PMSM is working as a motor driving a certain load. Conversely, the case (𝑃1 < 0) ∧ (𝑃2 < 0) denotes
he operation of the PMSM in reverse operating mode, that is when the power is flowing from the mechanical part (power 𝑃2 = 𝑢2 𝑦2)
o the electrical part (power 𝑃1 = 𝑢1 𝑦1) and the PMSM is working as a generator driven by some other source to generate electrical
ower.

efinition 3. In steady-state condition and by adopting the sign notation in (11) on the right, the efficiency 𝐸(𝑡) of a two-ports
assive linear system is defined as follows:

𝐸(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢2 𝑦2
𝑢1 𝑦1

= 𝐸𝑓 (𝑡) if
(

𝑃1 > 0
)

∧
(

𝑃2 > 0
)

,

𝑢1 𝑦1
𝑢2 𝑦2

= 1
𝐸𝑓 (𝑡)

if
(

𝑃1 < 0
)

∧
(

𝑃2 < 0
)

,

0 if
(

𝑃1 > 0
)

∧
(

𝑃2 < 0
)

.

(12)

unction 𝐸𝑓 (𝑡) represents the system efficiency in forward operating mode, whereas function 𝐸𝑟(𝑡) = 1∕𝐸𝑓 (𝑡) in (12) represents the
ystem efficiency in reverse operating mode. The third case in (12) foresees both power flows entering the system and being fully
issipated inside it (i.e. no output power is present). The case of both powers exiting the system can never happen since the physical
ystem is supposed to be passive, i.e. the parameters of matrix 𝐇0 must obey conditions (10).

The efficiency of a two-ports linear system can be studied both using the power variables (𝑦2, 𝑢2) of the second system energetic
ort and using the power variables (𝑦1, 𝑢1) of the first system energetic port. The two analyses are performed in Section 4.1 and in
ection 4.2, respectively. One can verify that the static input–output description of the two-ports linear system in (11) can also be
xpressed as follows:

[

𝑢1
𝑦1

]

=

[ 𝑑
𝑐

1
𝑐

𝑎 𝑑+𝑏 𝑐
𝑐

𝑎
𝑐

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐓21

[

𝑢2
𝑦2

]

,
[

𝑢2
𝑦2

]

=

[

− 𝑎
𝑏

1
𝑏

𝑎 𝑑+𝑏 𝑐
𝑏 − 𝑑

𝑏

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐓12

[

𝑢1
𝑦1

]

. (13)

y replacing (13) in the expression of 𝐸𝑓 (𝑡) in (12), one obtains the following two equivalent representations of the system forward
fficiency on planes (𝑦2, 𝑢2) and (𝑦1, 𝑢1):

𝐸𝑓 (𝑦2, 𝑢2) =
𝑐2 𝑢2 𝑦2

(𝑑 𝑢2 + 𝑦2) [(𝑎 𝑑 + 𝑏 𝑐) 𝑢2 + 𝑎 𝑦2]
, (14)

𝐸𝑓 (𝑦1, 𝑢1) =
(−𝑎 𝑢1 + 𝑦1) [(𝑎 𝑑 + 𝑏 𝑐) 𝑢1 − 𝑑 𝑦1]

𝑏2 𝑢1 𝑦1
. (15)

4.1. Analysis on plane (𝑦2, 𝑢2)

Property 3. Two-ports linear systems exhibit a constant efficiency 𝐸(𝑡) along straight lines exiting from the origin of plane (𝑦2, 𝑢2):

𝑢2 = 𝛾 𝑦2, 𝛾 ∈ [−∞, ∞]. (16)

he efficiency 𝐸(𝑡) reaches its maximum value 𝐸∗ in forward operating mode for 𝛾 = 𝛾∗:

𝐸∗ =
𝑐(
√

𝑎𝑑 + 𝑏𝑐 −
√

𝑎𝑑)
√ √

, 𝛾∗ =
√

𝑎 , (17)
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Fig. 3. Full system efficiency 𝐸(𝛾) as a function of parameter 𝛾.

Fig. 4. Efficiency map 𝐸 shown on plane (𝑦2 , 𝑢2).

nd its maximum value �̃�∗ in reverse operating mode for 𝛾 = −𝛾∗:

�̃�∗ =
𝑏(
√

𝑎𝑑 + 𝑏𝑐 −
√

𝑎𝑑)

𝑐(
√

𝑎𝑑 + 𝑏𝑐 +
√

𝑎𝑑)
, −𝛾∗ = −

√

𝑎
𝑑 (𝑎 𝑑 + 𝑐 𝑏)

. (18)

Proof. The proof is given in Appendix B.

The system efficiency 𝐸(𝛾) vs. 𝛾 shown in Fig. 3 has been obtained using the following parameters:

𝑎 = 0.05, 𝑏 = 0.9, 𝑐 = 0.95, 𝑑 = 0.08, 𝑃𝑚𝑎𝑥 = 100W. (19)

Its equivalent representation 𝐸(𝑦2, 𝑢2), see (12) and (14), is shown in Fig. 4. The latter figure shows that the efficiency is indeed
constant along straight lines exiting from the origin of plane (𝑦2, 𝑢2), in agreement with Property 3. Furthermore, the maximum
forward and reverse efficiencies 𝐸∗ and �̃�∗ do not coincide, i.e. the corresponding blue dashed lines 𝛾 = 𝛾∗ and 𝛾 = −𝛾∗ in Fig. 4
all within two contour regions having different color shades. This well agrees with what is stated in [42]-Property 2, since the
ystem parameters do not satisfy |𝑏| = |𝑐|, see (19).

.2. Analysis on plane (𝑦1, 𝑢1)

roperty 4. Two-ports linear systems exhibit a constant efficiency 𝐸(𝑡) along straight lines exiting from the origin of plane (𝑦1, 𝑢1):
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𝑢1 = 𝛼 𝑦1, 𝛼 ∈ [−∞, ∞]. (20)
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Fig. 5. Efficiency map 𝐸 shown on plane (𝑦1 , 𝑢1).

he efficiency 𝐸(𝑡) reaches its maximum value 𝐸∗ in forward operating mode for 𝛼 = 𝛼∗:

𝐸∗ =
𝑐(
√

𝑎𝑑 + 𝑏𝑐 −
√

𝑎𝑑)

𝑏(
√

𝑎𝑑 + 𝑏𝑐 +
√

𝑎𝑑)
, 𝛼∗ =

√

𝑑
𝑎(𝑎 𝑑 + 𝑏 𝑐)

,

nd its maximum value �̃�∗ in reverse operating mode for 𝛼 = −𝛼∗:

�̃�∗ =
𝑏(
√

𝑎𝑑 + 𝑏𝑐 −
√

𝑎𝑑)

𝑐(
√

𝑎𝑑 + 𝑏𝑐 +
√

𝑎𝑑)
, −𝛼∗ = −

√

𝑑
𝑎(𝑎 𝑑 + 𝑏 𝑐)

.

Proof. The proof is given in Appendix C.

The efficiency map 𝐸(𝑦1, 𝑢1) for a system characterized by the parameters in (19) is shown in Fig. 5. For the latter, the same
considerations as those made for the efficiency map 𝐸(𝑦2, 𝑢2) in Fig. 4 hold, since the two representations are interchangeable
through (13) and provide the same efficiency information shown on the two operating planes (𝑦1, 𝑢1) and (𝑦2, 𝑢2) given by the
power variables of the first and second system energetic ports, respectively.

4.3. Design parameter for two-ports linear systems

Let us consider a two-ports linear system 𝐇(𝑠) satisfying the condition |𝑏| = |𝑐|. According to [42]-Property 2, the considered
system is going to exhibit the same maximum forward and reverse efficiency 𝐸∗ = �̃�∗, which can be written as:

𝐸∗(𝑞) = |

√

1+𝑞−1|
√

1+𝑞+1
=

{

𝐸∗
+(𝑞) if 𝑞 > 0 (𝑏 = 𝑐),

𝐸∗
−(𝑞) if −1 ≤ 𝑞 ≤ 0 (𝑏 = −𝑐),

(21)

where:

𝐸∗
+(𝑞) =

√

1 + 𝑞 − 1
√

1 + 𝑞 + 1
, 𝐸∗

−(𝑞) = −

√

1 + 𝑞 − 1
√

1 + 𝑞 + 1
,

nd parameter 𝑞 is defined as follows:

. (22)
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Fig. 6. Parameter 𝑞 as a function of the maximum efficiency 𝐸∗(𝑞).

Fig. 7. A DC motor driving an hydraulic pump.

he global behavior of function 𝐸∗(𝑞) for 𝑞 ∈ [−1, +∞) is shown in [42]-Fig. 12. One can easily prove that function 𝐸∗(𝑞) in (21)
an be inverted as follows:

𝑞(𝐸∗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝐸∗ + 1
1 − 𝐸∗

)2
− 1 for 𝑞 > 0,

(

−𝐸∗ + 1
1 + 𝐸∗

)2
− 1 for −1 ≤ 𝑞 ≤ 0.

(23)

The global behavior of function 𝑞(𝐸∗) for 𝐸∗ ∈ [0, 1] is shown in Fig. 6. From [42]-Fig. 12 and Fig. 6, it results that parameter 𝑞 in
(22) can be exploited as a design parameter for two-ports linear systems. The designer may need to evaluate the maximum efficiency
of the considered system; to do that, matrix 𝐇0 in (11) must be computed. Once the designer has discriminated whether condition
𝑏 = −𝑐 (i.e. −1 ≤ 𝑞 ≤ 0) or 𝑏 = 𝑐 (i.e. 𝑞 > 0) holds, reference can be made to the left-hand side or to the right hand-side of the
plot in [42]-Fig. 12, showing the maximum efficiency 𝐸∗ of the system (in both forward and reverse operating mode) as a function
of parameter 𝑞 in (22). Alternatively, the designer may be given a certain specification in terms of maximum efficiency 𝐸∗ of the
considered system. In this case, once the designer has computed matrix 𝐇0 in (11) and discriminated whether condition 𝑏 = −𝑐
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(i.e. −1 ≤ 𝑞 ≤ 0) or 𝑏 = 𝑐 (i.e. 𝑞 > 0) holds, reference can be made to the lower part or to the upper part of the plot in Fig. 6, in
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order to determine the value of parameter 𝑞 that the system must exhibit so as to satisfy the specification in terms of maximum
efficiency 𝐸∗.

4.4. Two-ports systems: case study

The considered case study is a DC electric motor driving an hydraulic pump, whose schematic representation is shown in Fig. 7.

.4.1. Linear case
In the linear case, this system has been modeled in [35], whereas its efficiency analysis is addressed in this section for the first

ime. The state space model of the system is:

⎡

⎢

⎢

⎣

𝐿𝑎 0 0
0 𝐽𝑚 0
0 0 𝐶0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐋

⎡

⎢

⎢

⎣

�̇�𝑎
�̇�𝑚
�̇�0

⎤

⎥

⎥

⎦

⏟⏟⏟
�̇�

=
⎡

⎢

⎢

⎣

−𝑅𝑎 −𝐾𝑚 0
𝐾𝑚 −𝑏𝑚 −𝐾𝑝
0 𝐾𝑝 −𝛼𝑝

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀

⎡

⎢

⎢

⎣

𝐼𝑎
𝜔𝑚
𝑃0

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐱

+
⎡

⎢

⎢

⎣

1 0
0 0
0 −1

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐁

[

𝑉𝑎
𝑄0

]

⏟⏟⏟
𝐮

,

𝐲=
[

1 0 0
0 0 1

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐂

𝐱.

he reader is referred to [35] for details about the system parameters and variables. The elements of matrix 𝐇0 are:

𝑎 =
𝐾2

𝑝 + 𝛼𝑝𝑏𝑚
𝛼𝑝𝐾2

𝑚 + 𝑅𝑎𝐾2
𝑝 + 𝑅𝑎𝛼𝑝𝑏𝑚

, 𝑑 =
𝐾2

𝑚 + 𝑅𝑎𝑏𝑚
𝛼𝑝𝐾2

𝑚 + 𝑅𝑎𝐾2
𝑝 + 𝑅𝑎𝛼𝑝𝑏𝑚

,

𝑏 =
−𝐾𝑚 𝐾𝑝

𝛼𝑝 𝐾2
𝑚 + 𝑅𝑎 𝐾2

𝑝 + 𝑅𝑎 𝛼𝑝 𝑏𝑚
= −𝑐.

(24)

he considered system satisfies |𝑏| = |𝑐|, see [42]-Property 2, meaning that the maximum efficiency in forward and reverse operating
odes coincide and are given by 𝐸∗ = �̃�∗ = 𝐸∗(𝑞) = 𝐸∗

−(𝑞) in (21) when −1 ≤ 𝑞 ≤ 0 (as 𝑏 and 𝑐 have opposite sign), see the left-hand
side of the plot in [42]-Fig. 12. The design parameter 𝑞 can be computed by replacing (24) in (22), see the expression of 𝑞 in (25).
Furthermore, the expression of the slope 𝛾∗ in (17) can be elaborated so as to express 𝛾∗ as a function of parameter 𝑞, see the
expression of 𝛾∗ in (25).

𝑞 = −
𝐾2

𝑚 𝐾2
𝑞

(𝐾2
𝑚 + 𝑅𝑎 𝑏𝑚) (𝐾2

𝑝 + 𝛼𝑝 𝑏𝑚)
< 0, 𝛾∗ =

( 1
𝑑

)

√

1
1 + 𝑞

. (25)

From (25), the designer can evince that the modulus of parameter 𝑞 increases if the dissipative terms 𝑅𝑎, 𝑏𝑚 and 𝛼𝑝 decrease.

4.4.2. Nonlinear case
By adding some nonlinearities which are present in the actual system, the considered system falls in the category of linear

systems 𝐇(𝑠) with additional nonlinear friction terms, see [42]-Fig. 13. In the present case, the nonlinearities added on planes
(𝑦1, �̃�1) = (𝐼𝑎, 𝑉𝑎) and (𝑦2, �̃�2) = (𝑃0, �̃�0) are the following:

�̃�1 = 𝑉𝑎 = 𝑓1(𝑦1) = 𝑓1(𝐼𝑎) = 𝑅𝑠𝑞 𝐼𝑎 |𝐼𝑎|,

�̃�2 = �̃�0 = 𝑓2(𝑦2) = 𝑓2(𝑃0) = 𝛼0
√

𝑃0 sgn(𝑃0),
(26)

which are symmetric with respect to the origin. The first equation in (26) describes the Joule losses affecting the DC motor,
whereas the second equation in (26) describes a nonlinear resistance affecting the hydraulic accumulator 𝐶0. Assuming that the
system parameters values are: 𝐾𝑚 = 5

[

Nm/A
]

, 𝑅𝑎 = 0.05 [Ω], 𝑏𝑚 = 2 ⋅ 10−4
[

(Nm s)/rad
]

, 𝑅𝑠𝑞 = 4 ⋅ 10−3
[

V∕A2
]

, 𝐾𝑝 = 9
[

Nm/Pa
]

,

𝛼𝑝 = 1 ⋅ 10−4
[

m3∕(s Pa)
]

, 𝛼0 = 0.01
[

m3∕(s
√

Pa)
]

, Fig. 8 shows the resulting efficiency map on plane (𝑦2, 𝑢2) = (𝑃0, 𝑄0). The latter is

given in the half-plane (𝑃0, 𝑄0 > 0) as it is symmetric with respect to the origin, see [42]-Property 3, since the two nonlinearities
1(𝑦1) = 𝑓1(𝐼𝑎) and 𝑓2(𝑦2) = 𝑓2(𝑃0) affecting the system are symmetric with respect to the origin of the corresponding planes
𝑦1, �̃�1) = (𝐼𝑎, 𝑉𝑎) and (𝑦2, �̃�2) = (𝑃0, �̃�0).

. Three-ports linear system

This section is focused on the study of the three-ports linear system shown in Fig. 9, namely a single-stage planetary gear set.
ccording to the notation adopted in Fig. 2 for a generic 𝑛-ports linear system, the power flows 𝑃𝑟 = 𝑇𝑟 𝜔𝑟, 𝑃𝑠 = 𝑇𝑠 𝜔𝑠 and 𝑃𝑐 = 𝑇𝑐 𝜔𝑐

are positive if entering the ring, sun and carrier energetic ports, respectively. The rigid reduced-order state–space model of the
single-stage planetary gear set can be derived by applying the systematic methodology described by the authors in [33]:

{

𝐋 �̇� = 𝐀𝐱 + 𝐁𝐮
𝐲 = 𝐁T 𝐱 , 𝐮 =

⎡

⎢

⎢

⎣

𝑇𝑐
𝑇𝑠
𝑇𝑟

⎤

⎥

⎥

⎦

, 𝐲 =
⎡

⎢

⎢

⎣

𝜔𝑐
𝜔𝑠
𝜔𝑟

⎤

⎥

⎥

⎦

, 𝐱 =
[

𝜔𝑐
𝜔𝑟

]

,

𝐋 =
[

𝐽11 𝐽12
]

, 𝐀 =
[

𝑎11 𝑎12
]

, 𝐁 =
[

1 𝑏12 0
]

,

(27)
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Fig. 8. Efficiency map 𝐸(𝑦2 , 𝑢2) = 𝐸(𝑃0 , 𝑄0) of the DC motor with hydraulic pump.

Fig. 9. Single-stage planetary gear set: structure and model.

here 𝑏12 = 2𝑟𝑐∕𝑟𝑠1, 𝑏21 = −𝑟𝑟∕𝑟𝑠1 and the elements of 𝐋 and 𝐀 can be computed using [33]-(7). The static input–output relation
= 𝐇0 𝐮 of system (27), see (4), is characterized by matrix 𝐇0 ∈ (3×3) having rank equal to 2:

𝐇0 = −𝐁T𝐀−1𝐁 = −
⎡

⎢

⎢

⎣

1 0
𝑏12 𝑏21
0 1

⎤

⎥

⎥

⎦

[

𝑎11 𝑎12
𝑎12 𝑎22

]−1[1 𝑏12 0
0 𝑏21 1

]

. (28)

Property 5. In steady-state condition, the single-stage planetary gear set behaves as a degenerate three-ports system, since the components
𝜔𝑐 , 𝜔𝑠, 𝜔𝑟 of the output vector 𝐲 and the components 𝑇𝑐 , 𝑇𝑠, 𝑇𝑟 of the minimum norm input vector 𝐮 are constrained as follows:

𝜔𝑠 = 𝑏12 𝜔𝑐 + 𝑏21 𝜔𝑟, 𝑇𝑠 = 𝑏12𝑇𝑐 + 𝑏21𝑇𝑟. (29)

Proof. The proof of the algebraic relations (29) is given in Appendix D, see (D.1) and (D.4).

Using 𝐲 = 𝐇0𝐮, (28) and (29), one can easily verify that the static relation 𝐲𝑟 = 𝐇0𝑟𝐮𝑟 between the reduced vectors 𝐲𝑟 and 𝐮𝑟 can be
obtained:

[

𝜔𝑐
𝜔𝑟

]

⏟⏟⏟

= 𝐇0𝑟

[

𝑇𝑐
𝑇𝑟

]

⏟⏟⏟

, where 𝐇0𝑟 = −𝐀−1𝐁𝐁T (30)
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Fig. 10. Efficiency map 𝐸 of the single-stage planetary gear set shown on plane (𝜔𝑟 , 𝑇𝑟).

Table 1
Parameters of the single-stage planetary gear set in Fig. 9.
𝑟𝑐 = 0.228 [m] 𝑟𝑝 = 0.1 [m] 𝑟𝑠 = 0.128 [m] 𝑟𝑟 = 0.328 [m]
𝑏𝑐 = 0.0764

[Nm s
rad

]

𝑏𝑝 = 305.58
[Nm s

rad
]

𝑏𝑠 = 0.002 𝑏𝑐 𝑏𝑟 = 0.002 𝑏𝑐

is a second order full rank matrix. Relation (30) can then be inverted as described in Section 4, see (13), in order to express the
power variables of the carrier port as a function of the power variables of the ring port:

[

𝑇𝑐
𝜔𝑐

]

= 𝐓𝑟𝑐

[

𝑇𝑟
𝜔𝑟

]

. (31)

Using (29) and (31), in steady-state condition one can express the power variables 𝑇𝑠, 𝜔𝑠, 𝑇𝑐 and 𝜔𝑐 of the sun and carrier ports as
a function of the power variables 𝑇𝑟, 𝜔𝑟 of the ring port. By applying the definition of efficiency in (8), one can finally build the
single-stage planetary gear efficiency map 𝐸(𝜔𝑟, 𝑇𝑟) on the ring energetic port (𝜔𝑟, 𝑇𝑟). With a similar procedure, one can equivalently
derive the efficiency maps 𝐸(𝜔𝑐 , 𝑇𝑐 ) and 𝐸(𝜔𝑠, 𝑇𝑠) on the carrier and sun energetic ports. The efficiency map 𝐸(𝜔𝑟, 𝑇𝑟) of the single-
stage planetary gear set when the system parameters take on the values reported in Table 1 is reported in Fig. 10. This figure
shows that the system efficiency is constant along straight lines exiting from the origin of plane (𝜔𝑟, 𝑇𝑟), as the system is linear.
Furthermore, in Fig. 10, a traffic light notation has been added to the efficiency map to describe the orientation and the magnitude
of powers 𝑃𝑐 , 𝑃𝑠 and 𝑃𝑟 flowing through the three system power sections. The circles within each traffic light are associated, from
left to right, to the carrier, sun and ring system ports. If the considered circle is painted red, the corresponding power flow is negative,
thus exiting the system. If the considered circle is painted green, the corresponding power flow is positive, thus entering the system.
Furthermore, the lighter is the color shade of the considered circle, the higher is the magnitude of the corresponding power flow,
and viceversa.

Remarks: (1) In the right-half plane (𝜔𝑟 > 0, 𝑇𝑟) of the efficiency map 𝐸(𝜔𝑟, 𝑇𝑟) in Fig. 10, i.e. when power flow 𝑃𝑟 = 𝑇𝑟 𝜔𝑟 > 0 is
entering the system, the carrier power flow 𝑃𝑐 = 𝑇𝑐 𝜔𝑐 > 0 is entering the system and the sun power flow 𝑃𝑠 = 𝑇𝑠 𝜔𝑠 < 0 is exiting
the system. (2) In the left-half plane (𝜔𝑟 < 0, 𝑇𝑟) of the efficiency map 𝐸(𝜔𝑟, 𝑇𝑟), i.e. when power flow 𝑃𝑟 = 𝜔𝑟 𝑇𝑟 < 0 is exiting the
system, the carrier and sun power flows 𝑃𝑐 and 𝑃𝑠 are exiting and entering the system, respectively.

6. Four-ports linear system

This section is focused on the study of the four-ports linear system shown in Fig. 11, namely a Ravigneaux planetary gear set [34].
According to the notation adopted in Fig. 2 for a generic 𝑛-ports linear system, the power flows 𝑃𝑡 = 𝑇𝑡 𝜔𝑡, 𝑃𝑠 = 𝑇𝑠 𝜔𝑠, 𝑃𝑐 = 𝑇𝑐 𝜔𝑐 and
𝑃𝑟 = 𝑇𝑟 𝜔𝑟 are positive if entering the large sun, small sun, carrier and ring energetic ports, respectively. The rigid reduced-order
state–space model of the Ravigneaux planetary gear set can be derived by applying the systematic methodology described by the
294
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Fig. 11. Ravigneaux planetary gear set: structure and model.

authors in [34]:

{

𝐋 �̇� = 𝐀𝐱 + 𝐁𝐮
𝐲 = 𝐁T 𝐱 , 𝐮 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑐
𝑇𝑡
𝑇𝑠
𝑇𝑟

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐲 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜔𝑐
𝜔𝑡
𝜔𝑠
𝜔𝑟

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐱 =
[

𝜔𝑐
𝜔𝑟

]

,

𝐋 =
[

𝐽11 𝐽12
𝐽12 𝐽22

]

, 𝐀 =
[

𝑎11 𝑎12
𝑎12 𝑎22

]

, 𝐁 =
[

1 𝑏12 𝑏13 0
0 𝑏21 𝑏23 1

]

,

(32)

where 𝑏12 = 2 𝑟𝑐2∕𝑟𝑡, 𝑏13 = 2 (𝑟𝑐1 − 𝑟𝑐2)∕𝑟𝑠, 𝑏21 = −𝑟𝑟∕𝑟𝑡 and 𝑏23 = 𝑟𝑟∕𝑟𝑠. The elements of 𝐋 and 𝐀 can be computed using [34]-(23).
he static input–output relation 𝐲 = 𝐇0 𝐮 of system (32), see (4), is characterized by the following matrix 𝐇0 ∈ (4×4) having rank
qual to 2:

𝐇0 = −𝐁T𝐀−1𝐁 = −

⎡

⎢

⎢

⎢

⎢

⎣

1 0
𝑏12 𝑏21
𝑏13 𝑏23
0 1

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑎11 𝑎12
𝑎12 𝑎22

]−1[ 1 𝑏12 𝑏13 0
0 𝑏21 𝑏23 1

]

. (33)

Property 6. In steady-state condition, the Ravigneaux planetary gear set behaves as a degenerate three-ports system, since the components
𝜔𝑐 , 𝜔𝑡, 𝜔𝑠, 𝜔𝑟 of the output vector 𝐲 and the components 𝑇𝑐 , 𝑇𝑡, 𝑇𝑠, 𝑇𝑟 of the minimum norm input vector 𝐮 are constrained as follows:

[

𝜔𝑡
𝜔𝑠

]

=
[

𝑏12 𝑏21
𝑏13 𝑏23

] [

𝜔𝑠
𝜔𝑟

]

⏟⏟⏟
𝐲𝑟

,
[

𝑇𝑡
𝑇𝑠

]

=
[

𝑏12 𝑏21
𝑏13 𝑏23

] [

𝑇𝑠
𝑇𝑟

]

⏟⏟⏟
𝐮𝑟

. (34)

Proof. The proof of the algebraic relations (34) is given in Appendix E, see (E.1) and (E.2).

Using 𝐲 = 𝐇0𝐮, (33) and (34), one can easily verify that the static relation 𝐲𝑟 = 𝐇0𝑟𝐮𝑟 between the reduced vectors 𝐲𝑟 and 𝐮𝑟 can be
obtained:

[

𝜔𝑐
𝜔𝑟

]

⏟⏟⏟
𝐲𝑟

= 𝐇0𝑟

[

𝑇𝑐
𝑇𝑟

]

⏟⏟⏟
𝐮𝑟

,
(35)

where 𝐇0𝑟 = −𝐀−1𝐁𝐁T is a second order full rank matrix. Relation (35) can then be inverted as described in Section 4, see (13), in
rder to express the power variables of the carrier port as a function of the power variables of the ring port:

[

𝑇𝑐
𝜔𝑐

]

= 𝐓𝑟𝑐

[

𝑇𝑟
𝜔𝑟

]

. (36)

Using (34) and (36), in steady-state condition one can express the power variables 𝑇𝑡, 𝜔𝑡, 𝑇𝑠, 𝜔𝑠, 𝑇𝑐 and 𝜔𝑐 of the large sun, small
295

sun and carrier ports as a function of the power variables 𝑇𝑟, 𝜔𝑟 of the ring port. By applying the definition of efficiency in (8),
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Fig. 12. Efficiency map 𝐸 of the Ravigneaux planetary gear set shown on plane (𝜔𝑟 , 𝑇𝑟).

Table 2
Parameters of the Ravigneaux planetary gear set in Fig. 11.
𝑟𝑐1 = 0.0875 [m], 𝑟𝑐2 = 0.1575 [m] 𝑟𝑝 = 0.0525 [m] 𝑟𝑞 = 0.0175 [m]
𝑟𝑡 = 0.1050 [m] 𝑟𝑠 = 0.07 [m] 𝑟𝑟 = 0.21 [m]
𝑏𝑐 = 𝑏𝑝 = 𝑏𝑞 = 𝑏𝑡 = 𝑏𝑠 = 𝑏𝑟 = 0.0955

[Nm s
rad

]

, 𝑏𝑠𝑡 = 𝑏𝑐𝑟 = 𝑏𝑐𝑞 = 𝑏𝑐𝑝 = 9.5493
[Nm s

rad
]

one can finally build the efficiency map of the Ravigneaux planetary gear set 𝐸(𝜔𝑟, 𝑇𝑟) on the ring energetic port (𝜔𝑟, 𝑇𝑟). With a
similar procedure, one can equivalently derive the efficiency maps 𝐸(𝜔𝑡, 𝑇𝑡), 𝐸(𝜔𝑠, 𝑇𝑠) and 𝐸(𝜔𝑐 , 𝑇𝑐 ) on the large sun, small sun
and carrier energetic ports. The efficiency map 𝐸(𝜔𝑟, 𝑇𝑟) of the Ravigneaux planetary gear set when the system parameters take on
the values reported in Table 2 is reported in Fig. 12. In Fig. 12, a traffic light notation has been added to the efficiency map to
describe the orientation and the magnitude of powers 𝑃𝑐 , 𝑃𝑡, 𝑃𝑠 and 𝑃𝑟 flowing through the four system power sections. The circles
within each traffic light are associated, from left to right, to the carrier, large sun, small sun and ring system ports. If the considered
circle is painted red, the corresponding power flow is negative, thus exiting the system. If the considered circle is painted green, the
corresponding power flow is positive, thus entering the system. Furthermore, the lighter is the color shade of the considered circle,
the higher is the magnitude of the corresponding power flow, and viceversa.

Remarks: (1) In the right-half plane (𝜔𝑟 > 0, 𝑇𝑟) of the efficiency map 𝐸(𝜔𝑟, 𝑇𝑟) in Fig. 12, i.e. when power flow 𝑃𝑟 = 𝑇𝑟 𝜔𝑟 > 0 is
entering the system, the small sun power flow 𝑃𝑠 = 𝑇𝑠 𝜔𝑠 > 0 is entering the system. (2) In the left-half plane (𝜔𝑟 < 0, 𝑇𝑟) of the
efficiency map 𝐸(𝜔𝑟, 𝑇𝑟), i.e. when power flow 𝑃𝑟 = 𝜔𝑟 𝑇𝑟 < 0 is exiting the system, the carrier and the large sun power flows 𝑃𝑐
and 𝑃𝑡 are entering the system, whereas the small sun power flow 𝑃𝑠 is exiting the system.

7. Conclusion

In this paper, the formulation of the concepts of power efficiency and efficiency map for 𝑛-ports physical systems is addressed.
The analysis is deepened for two-ports linear systems with mathematical proofs of the properties and showing the presence of a
design parameter describing the system maximum efficiency. Three case studies are presented: a DC motor driving an hydraulic
pump for the class of two-ports systems affected by nonlinearities, a single-stage planetary gear set for the class of three-ports linear
systems, and a Ravigneaux planetary gear set for the class of four-ports linear systems. An important degree of freedom is given by
the fact that the designer can choose the most suitable energetic port upon which the efficiency map is to be computed. This degree
of freedom can be used by the designer to obtain the overall efficiency map of a complex system on the basis of the efficiency maps of
its composing subsystems. The efficiency analysis presented in this paper has been performed with reference to the most generic case
of 𝑛-ports physical systems, with the specific objective of providing the reader with all the tools for applying the proposed efficiency
analysis to any physical system of their interest, in order to directly find the system efficiency maps. The proposed approach can
therefore be useful for industries and engineers working with physical systems in different energetic domains, since the energy
efficiency evaluation is becoming a more and more important topic nowadays.
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ppendix A

From (10), the following inequality holds:

det𝐇0 = 𝑎𝑑 + 𝑏𝑐 >
(𝑏 − 𝑐)2

4
+ 𝑏𝑐 =

(𝑏 + 𝑐)2

4
≥ 0. (A.1)

The following two cases are considered.

(a) 𝑏 = −𝑐. In this case, from (A.1) it follows that:

det𝐇0 = 𝑎𝑑 + 𝑏𝑐 ≥ 0,

namely (𝑎 > 0) ∧ (𝑑 > 0) ∧ (𝑎𝑑 + 𝑏𝑐 > 0) is a necessary and sufficient condition for the system to be passive.
(b) 𝑏 ≠ −𝑐. In this case, from (A.1) it follows that:

det𝐇0 = 𝑎𝑑 + 𝑏𝑐 > 𝑘 =
(𝑏 + 𝑐)2

4
> 0,

namely (𝑎 > 0) ∧ (𝑑 > 0) ∧ (𝑎𝑑 + 𝑏𝑐 > 0) is a necessary but not sufficient condition for the system to be passive.

Appendix B

Substituting (16) in (14), the two-dimensional forward efficiency 𝐸𝑓 (𝑦2, 𝑢2) turns into a one-dimensional representation:

𝐸𝑓 (𝛾) =
𝑐2𝛾

(𝑑 𝛾 + 1) [(𝑎 𝑑 + 𝑏 𝑐) 𝛾 + 𝑎]
. (B.1)

Efficiency 𝐸𝑓 (𝛾) in (B.1) can also be written as:

𝐸𝑓 (𝛾) =
𝑐2𝛾

𝑎 + 𝛽 𝛾 + 𝛿 𝛾2
where

{

𝛽 = 2 𝑎 𝑑 + 𝑐 𝑏
𝛿 = 𝑑 (𝑎 𝑑 + 𝑐 𝑏)

. (B.2)

The global behavior of efficiency 𝐸𝑓 (𝛾) in (B.2) as a function of parameter 𝛾 is shown in [42]-Fig. 3. According to Property 2,
condition 𝑎𝑑 + 𝑏𝑐 > 0 is a necessary condition for the system to be passive, from which one can evince that parameters 𝛽 and 𝛿
in (B.2) are both strictly greater than zero. Since 𝑎 > 0 is another necessary condition for the system to be passive, according to
the Routh’s criterion it is possible to state that the two zeros 𝛾 = 𝛾1 and 𝛾 = 𝛾2 of the denominator of function 𝐸(𝛾) in (B.2) have
egative real part. Additionally, since the discriminant 𝛥 = 𝛽2 −4𝑎𝛿 = 𝑏2𝑐2 of equation 𝑎+ 𝛽 𝛾 + 𝛿 𝛾2 = 0 is strictly greater than zero,
he two solutions are real:

𝛾1 = − 𝑎
(𝑎 𝑑 + 𝑐 𝑏)

, 𝛾2 = − 1
𝑑
. (B.3)

The two zeros 𝛾 = 𝛾1 and 𝛾 = 𝛾2 represent the position of the two asymptotes of the function 𝐸𝑓 (𝛾), see [42]-Fig. 3. Deriving 𝐸𝑓 (𝛾)
ith respect to 𝛾, one obtains:

𝜕𝐸𝑓 (𝛾)
𝜕𝛾

=
𝑐2(𝑎 − 𝛿 𝛾2)

(𝑎 + 𝛽 𝛾 + 𝛿 𝛾2)2
.

By solving 𝜕𝐸𝑓 (𝛾)
𝜕𝛾 = 0, one obtains the two solutions 𝛾∗ and −𝛾∗ in (17) and (18) on the right. By computing 𝜕2𝐸𝑓 (𝛾)

𝜕𝛾2
and evaluating

it for 𝛾 = ±𝛾∗, one obtains:
𝜕2𝐸𝑓 (𝛾)

𝜕𝛾2
=

−2𝑐2(𝑎𝛽 + 3𝑎𝛿𝛾 − 𝛿2𝛾3)
(𝑎 + 𝛽 𝛾 + 𝛿 𝛾2)3

,

𝜕2𝐸𝑓 (𝛾)

𝜕𝛾2
|𝛾=𝛾∗ < 0, and

𝜕2𝐸𝑓 (𝛾)

𝜕𝛾2
|𝛾=−𝛾∗ > 0,

rom which it follows that 𝐸𝑓 (𝛾∗) = 𝐸∗
𝑓 is a local maximum of function 𝐸𝑓 (𝛾), whereas 𝐸𝑓 (−𝛾∗) = �̄�∗

𝑓 is a local minimum of function
𝐸𝑓 (𝛾), see [42]-Fig. 3. Replacing 𝛾 = 𝛾∗ and 𝛾 = −𝛾∗ in function 𝐸𝑓 (𝛾) in (B.2), one obtains the expressions of the local maximum
and minimum 𝐸∗

𝑓 and �̄�∗
𝑓 :

𝐸∗
𝑓 =

𝑐(
√

𝑎𝑑 + 𝑏𝑐 −
√

𝑎𝑑)
√ √

, �̄�∗
𝑓 =

𝑐(
√

𝑎𝑑 + 𝑏𝑐 +
√

𝑎𝑑)
√ √

. (B.4)
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According to the definition given in (12), function 𝐸𝑓 (𝛾) captures the one-dimensional representation of the two-ports system
efficiency only when the power flow is oriented from the first system energetic port (𝑦1, 𝑢1) to the second system energetic port
(𝑦2, 𝑢2), i.e. in forward operating mode. In fact, for 𝛾2 < 𝛾 < 𝛾1, function 𝐸𝑓 (𝛾) in (B.2) becomes greater than one (see [42]-Fig. 3),
meaning that the power flow is actually reversed, i.e. oriented from the second system energetic port (𝑦2, 𝑢2) to the first system
energetic port (𝑦1, 𝑢1), and the system is in reverse operating mode. For 𝛾 ∈

(

−∞, 𝛾2
)

∪
(

𝛾1, 0
)

, function 𝐸𝑓 (𝛾) in (B.2) becomes
ower than zero (see [42]-Fig. 3), meaning that both power flows in the first and second system energetic ports (𝑦1, 𝑢1) and (𝑦2, 𝑢2)
re entering the system, therefore the system efficiency is equal to zero according to the last condition in (12). From (12), it is
vident that the system efficiency 𝐸(𝑡) = 𝐸(𝛾) can be expressed as a function of slope 𝛾 relating the two power variables of plane
𝑦2, 𝑢2), see Fig. 3. The local maximum 𝐸∗

𝑓 in (B.4) of the forward efficiency function 𝐸𝑓 (𝛾) becomes the absolute maximum 𝐸∗ of
he full efficiency function 𝐸(𝛾) when the system is in forward operating mode, i.e. for 𝛾 > 0 (see Fig. 3). Similarly, the inverse of
he local minimum �̄�∗

𝑓 in (B.4) of the forward efficiency function 𝐸𝑓 (𝛾) when 𝛾 = −𝛾∗ becomes the absolute maximum �̃�∗ = 1∕�̄�∗
𝑓

of the full efficiency function 𝐸(𝛾) when the system is in reverse operating mode, i.e. for 𝛾2 < 𝛾 < 𝛾1 (see Fig. 3).

Appendix C

Substituting (20) in (15), the two-dimensional forward efficiency 𝐸𝑓 (𝑦1, 𝑢1) turns into a one-dimensional representation:

𝐸𝑓 (𝛼) =
−𝑑 + 𝛽 𝛼 − 𝜂 𝛼2

𝑏2𝛼
where

{

𝛽 = 2 𝑎 𝑑 + 𝑐 𝑏
𝜂 = 𝑎(𝑎 𝑑 + 𝑏 𝑐)

. (C.1)

The global behavior of 𝐸𝑓 (𝛼) in (C.1) as a function of 𝛼 is shown in [42]-Fig. 6. Following a procedure similar to that of Appendix B, it
is possible to show that the two zeros of the numerator of function 𝐸(𝛼) in (C.1) are real and positive: 𝛼1 = 𝑑∕(𝑎 𝑑+𝑐 𝑏) and 𝛼2 = 1∕𝑎.
By solving 𝜕𝐸(𝛼)

𝜕𝛼 = 0, one obtains the two solutions 𝛼∗ and −𝛼∗ given in Property 4. It can be shown that 𝐸𝑓 (𝛼∗) = 𝐸∗
𝑓 is a local

aximum of function 𝐸𝑓 (𝛼), whereas 𝐸𝑓 (−𝛼∗) = �̄�∗
𝑓 is a local minimum of function 𝐸𝑓 (𝛼). By computing the respective expressions,

ne can verify that they coincide with those reported in (B.4), as expected. According to (12), function 𝐸𝑓 (𝛼) captures the one-
imensional representation of the system efficiency in forward operating mode. By making similar considerations to those made in
ppendix B for the analysis on plane (𝑦2, 𝑢2), the global behavior of the efficiency function 𝐸(𝛼) can be determined, see [42]-Fig. 10.
he local maximum 𝐸∗

𝑓 in (B.4) of the forward efficiency function 𝐸𝑓 (𝛼) becomes the absolute maximum 𝐸∗ of the full efficiency
unction 𝐸(𝛼) when the system is in forward operating mode, i.e. for 𝛼1 < 𝛼 < 𝛼2 (see [42]-Fig. 10). Similarly, the inverse of the
ocal minimum �̄�∗

𝑓 in (B.4) of the forward efficiency function 𝐸𝑓 (𝛼) becomes the absolute maximum �̃�∗ = 1∕�̄�∗
𝑓 of the full efficiency

unction 𝐸(𝛼) when the system is in reverse operating mode, i.e. for 𝛼 < 0 (see [42]-Fig. 10).

ppendix D

The algebraic constraint among the components of the output vector 𝐲, i.e. the angular speeds 𝜔𝑐 , 𝜔𝑠 and 𝜔𝑟, is given by the
econd equation 𝐲 = 𝐁T𝐱 = 𝐁T𝐲𝑟 of system (27):

⎡

⎢

⎢

⎣

𝜔𝑐
𝜔𝑠
𝜔𝑟

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐲

=
⎡

⎢

⎢

⎣

1 0
𝑏12 𝑏21
0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝐁T

[

𝜔𝑐
𝜔𝑟

]

⏟⏟⏟
𝐱=𝐲𝑟

⇒ 𝜔𝑠 = 𝑏12 𝜔𝑐 + 𝑏21 𝜔𝑟. (D.1)

n steady-state condition, i.e. when �̇� = 0, the static input–output relation of system (27) is 𝐲 = 𝐇0𝐮 where 𝐇0 = −𝐁T𝐀−1𝐁 ∈ (3×3),
ee (28). Since the rank of matrix 𝐇0 is 2, relation 𝐲 = 𝐇0𝐮 has solutions only if 𝐲 ∈ Im(𝐁T). The set �̃� of all the solutions 𝐮 of
elation 𝐲 = 𝐇0𝐮 when 𝐲 ∈ Im(𝐁T) can be expressed as follows:

�̃� = 𝐮0 + ker(𝐁), (D.2)

here 𝐮0 is a particular solution and ker(𝐁) is the kernel of matrix 𝐁. The minimum norm solution 𝐮 of set �̃� in (D.2) is the one
rthogonal to ker(𝐁):

𝐮 ∈ ker(𝐁)⟂ ⇔ 𝐮 ∈ Im(𝐁T). (D.3)

rom (D.3), it follows that the minimum norm solution 𝐮 can be expressed as follows as a function of the reduced vector 𝐮𝑟:

⎡

⎢

⎢

⎣

𝑇𝑐
𝑇𝑠
𝑇𝑟

⎤

⎥

⎥

⎦

⏟⏟⏟
𝐮

=
⎡

⎢

⎢

⎣

1 0
𝑏12 𝑏21
0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝐁T

[

𝑇𝑐
𝑇𝑟

]

⏟⏟⏟
𝐮𝑟

⇒ 𝑇𝑠 = 𝑏12 𝑇𝑐 + 𝑏21 𝑇𝑟. (D.4)
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Relation (D.4) is an algebraic constraint between the components 𝑇𝑐 , 𝑇𝑠 and 𝑇𝑟 of the input vector 𝐮.
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Appendix E

The algebraic constraint among the components of the output vector 𝐲, i.e. the angular speeds 𝜔𝑐 , 𝜔𝑡, 𝜔𝑠 and 𝜔𝑟, is given by the
second equation 𝐲 = 𝐁T𝐱 = 𝐁T𝐲𝑟 of system (32):

⎡

⎢

⎢

⎢

⎢

⎣

𝜔𝑐
𝜔𝑡
𝜔𝑠
𝜔𝑟

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐲

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0
𝑏21 𝑏22
𝑏31 𝑏32
0 1

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝐁T

[

𝜔𝑐
𝜔𝑟

]

⏟⏟⏟
𝐱=𝐲𝑟

⇒

[

𝜔𝑡
𝜔𝑠

]

=
[

𝑏21 𝑏22
𝑏31 𝑏32

] [

𝜔𝑐
𝜔𝑟

]

. (E.1)

In steady-state condition, the static input–output relation of system (32) is 𝐲 = 𝐇0𝐮 where 𝐇0 = −𝐁T𝐀−1𝐁 ∈ (4×4) is a matrix of
rank 2, see (33). When 𝐲 ∈ Im(𝐁T), the set �̃� of all the solutions 𝐮 of relation 𝐲 = 𝐇0𝐮 is �̃� = 𝐮0 + ker(𝐁) where 𝐮0 is a particular
olution. The minimum norm solution 𝐮 of set �̃� satisfies the conditions given in (D.3): 𝐮 ∈ ker(𝐁)⟂ = Im(𝐁T). From (D.3), it follows

that the minimum norm solution 𝐮 can be expressed as follows:

⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑐
𝑇𝑡
𝑇𝑠
𝑇𝑟

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐮

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0
𝑏21 𝑏22
𝑏31 𝑏32
0 1

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟⏞⏞⏟
𝐁T

[

𝑇𝑐
𝑇𝑟

]

⏟⏟⏟
𝐮𝑟

⇒

[

𝑇𝑡
𝑇𝑠

]

=
[

𝑏21 𝑏22
𝑏31 𝑏32

] [

𝑇𝑐
𝑇𝑟

]

. (E.2)

Relation (E.2) is an algebraic constraint between the components 𝑇𝑐 , 𝑇𝑡, 𝑇𝑠 and 𝑇𝑟 of the input vector 𝐮.
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