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Introduction

Lung cancer continues to be the leading cause of cancer-related 
mortality in men and women, whereby the rates recently 
showed a significant decline in women after continuously 
increasing since the 1930s (1). For stage I non-small-cell lung 
cancer (NSCLC), surgery alone results typically in a 5-year 
overall survival (OS) of 60-70% (2).

For patients with stage I NSCLC who cannot undergo 
radical resection e.g., for medical reasons, definitive radiation 
therapy is the appropriate alternative to surgery. For these 
patients standard fractionated radiotherapy alone can lead to 
a 5-year OS of 8-15% and a cancer specific survival rate in 
the range of 30-55% (due to competing risks of death) (3,4). 
Recent publications also support the strategy of treating only 
the primary tumor and PET positive lymph nodes (involved 
node radiotherapy; INRT) instead of treating the elective nodal 
regions (elective nodal irradiation; ENI) to reduce the volume 
of irradiated healthy tissue especially keeping the volume of 
lung that receives more than 20 Gray (Gy) below 35% (using 
conventional fractionation) (5-8). However, local tumor control 
after a conventional treatment with 55 to 70 Gy delivered 
over 4 to 7 weeks is as shown above suboptimal. Available data 
suggest that conventionally fractionated doses of >70 Gy might 

be necessary to control >90% of tumors locally (9-11).
Already in 1995, Blomgren et al. showed improved local 

control rates for patients with lung cancer treated with 
stereotactic hypofractionated radiotherapy compared with 
conventionally fractionated radiation (9). After a phase of careful 
dose escalation, single dose treatments at doses of 30 Gy (12) 
and fractionated treatments with 5×10-12 Gy or 3 times 20 Gy are 
currently applied on various institutional protocols and seem to 
be reasonably safe, with increase of the tumor control (SBRT 
prescription of 60 Gy in 3 fractions equates to as much as 150 Gy 
delivered in conventional fractions) (10,11,13).

The aim of this review is to summarize the updates of the 
radiobiology, technical aspects and clinical outcomes of SBRT.

SABR/SBRT

Stereotactic body radiation therapy (SBRT) or SABR 
(stereotactic ablative radiotherapy) is a relatively novel concept 
in which high doses of radiation are directed focally onto 
malignant lesions in organ sites other than the brain, including 
lung, liver, and spine tumors. The idea of SBRT is derived from 
the experience in treating metastatic lesions in the brain by SRS 
(stereotactic radiosurgery). In SRS very high radiation doses are 
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delivered to small brain lesions in a single session, with the intent 
to ablate all malignant tumor cells in one setting. The success 
rates of this treatment approach, with local tumor control rates 
as high as 93.3%, have made SRS a standard of care for limited 
metastatic disease to the brain (14-16).

SBRT as discussed here will largely adhere to the accepted 
definition in the United States as the delivery of high-dose focused 
radiation in one to five fractions onto small malignant lesions. 
High-dose delivery is most often understood as single fraction 
doses exceeding 5 Gy. Small lesions are most often defined as 
being less than 5 cm in maximum diameter. Focal radiation 
delivery refers to narrow planning target volume (PTV) margins 
added to a target volume delineated in consecutive slices of a CT, 
MRI or PET radiation planning dataset. Additionally, SBRT is a 
radiation therapy modality for which a target has to be directly or 
indirectly localized before the radiation dose is delivered.

Steep dose gradients between the lung lesions and 
surrounding normal tissue are a hallmark of SBRT dose 
distributions, and achieve excellent normal tissue sparing. This 
is accomplished by using multiple radiation beams which are 
shaped according to the tumor outline, and are all centered 
upon the lesion. While each of the radiation beams delivers a 
small fraction of the cumulative radiation dose, the dose at the 
target, where all radiation beams intersect, is summing up to 
high tumoricidal dose levels. Similar dose concentration can be 
achieved using arc delivery techniques during which a multi-
leaf collimator, a radiation beam shaping device, continually 
adjusts the radiation port to the shape of the target from 
a given beam’s eye view. SBRT radiation plans use 7 to 11 
individual radiation beams arranged coplanar or non-coplanar 
around the target lesion, with little incremental plan quality 
gained when the number of radiation ports exceeds 9 (17-21).

Extracranial stereotactic radiotherapy poses several 
challenges for patient immobilization and tumor localization. 
Framed and frameless systems have been developed for this 
purpose. In 1995, Blomgren et al. described a technique 
of SBRT using a custom-made body cast and stereotactic 
coordinates (22). Lohr et al. introduced in 1999 a body cast 
and head mask system with a stereotactic body frame for 
patients with paraspinal tumors in the thoracic and lumbar 
spine, the same group treated also liver tumors with single 
dose stereotactic irradiation using a vacuum pillow and an 
abdominal compression. Both groups reported an acuracy  
of ≤5 mm (23,24). For the lung, Uematsu et al. introduced 2001 
a frameless approach using the FOCAL unit, a combination 
of linac, kV simulation and a CT-scanner. Breathing with an 
oxygen mask and an abdominal compression belt allowed the 
intrafractional tumor motion to be less than 5 mm (25).

The growing interest in SBRT has been driven by advances 
in the radiotherapy planning imaging techniques and delivering 

techniques, which allow increasing treatment precision (26). 
A matter of concern by the use of SBRT technique in the 
treatment of lung tumors is their potential susceptibility to 
breathing-induced target movements, which might lead to 
dosimetric uncertainty and discrepancies between planned and 
delivered doses. This problem is a major concern for all tumor 
sites in the thorax (27). In 50% of lung tumors, a movement of 
0.5 to 1 cm is observed, in 10% of more than 1 cm (28). While 
a broad spectrum of movement patterns is observed, by far the 
predominant direction of movements is longitudinally in the 
cranio- caudal direction (29). One solution of the breathing 
motion problem is the use of four-dimensional computed 
tomography (4D-CT) scans that correlate CT images with 
respiratory phases, allowing the visualization of the tumor 
motion (30). The concept of gating uses this information, and 
will enable radiation beam delivery only when the lung, and thus 
the target, are in a defined proportion of the breathing cycle (31).

Real-time target tracking (continuous adapting of the 
radiation beam to the tumor position) or positioning with a 
fully robotic patient positioning system with six degrees of 
freedom are methods used to reduce the treatment margins but 
are not widely clinically implemented (32-34).

Another approach is the use of the breath-hold and 
respiration-synchronized gating. A breath-hold technique using 
ABC© (Active Breathing Control, Elekta, Crawley, UK) has 
been shown to be an accurate and clinically useful tool. It has 
the advantage of reducing the target motion such that the gross 
tumor volume (GTV) resembles a primarily static tumor on the 
planning CT scan. Intra- and interfractional reproducibility of 
this system is 1.7 and 3.7 mm (35-37).

Clinical experience and toxicity

One of the first SBRT trials for patients with medically 
inoperable NSCLC was the trial of the University of Indiana. 
The group recently updated the results of the phase II study. A 
total of 70 medically inoperable patients were included in the 
study. The SBRT treatment dose of 60-66 Gy was prescribed 
to the 80% isodose volume in three fractions. Median follow-
up was 50.2 months and the local control at 3 years was 88.1%. 
Median survival was 32.4 months, the 3-year overall survival 
was 42.7% and the cancer-specific survival at 3 years was 
81.7%. There was no difference in local control or survival 
between the T1 and T2 tumors, by tumor volume or by 
peripheral or central location. Grade 3 to 5 toxicity occurred in 
5 of 48 patients with peripheral lung tumors (10.4%) and in 6 
of 22 patients (27.3%) with central tumors (38).

The Scandinavian group also updated their results from a 
phase II trial. They treated 57 patients with NSCLC with SBRT 
with 15 Gy times three with a dose prescription at the 67% 
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isodose of the planning target volume. Overall- and cancer-specific 
survival at 1, 2, and 3 years was 86%, 65%, 60%, and 93%, 88%, 
88%, respectively. There was no statistically significant difference 
in survival between patients with T1 or T2 tumors, but the 
estimated risk of all failure (local, regional, or distant metastases) 
was increased in patients with T2 (41%) compared with those 
with T1 (18%) tumors. Local control at 3 years was 92%, local 
relapse was observed in four patients (7%) (39).

In 2006, Timmerman et al. reported the results of 70 patients 
treated with SBRT with a dose of 60 to 66 Gy total in three 
fractions during 1 to 2 weeks. The 3-month major response rate 
was 60%, the local control at 2 years was 95%. Median overall 
survival was 32.6 months and 2-year overall survival was 54.7%. 
Grade 3 to 5 toxicity occurred in a total of 14 patients. Among 
patients experiencing toxicity, the median time to observation 
was 10.5 months. Patients treated for tumors in the peripheral 
lung had 2-year freedom from severe toxicity of 83% compared 
with only 54% for patients with central tumors (40).

A group from Japan, reported their results of another phase 
II trial. They performed SBRT for 31 stage I NSCLC patients. 
SBRT was administered as 45 Gy in 3 fractions, however, when 
the tumor was close to an organ at risk, 60 Gy in 8 fractions were 
used. The doses were prescribed at the center of the tumors. 
The 3-year local control rates of T1 and T2 tumors were 77.9% 

and 40.0%, respectively. The 3-year overall and cause-specific 
survival rates were 71.7% and 83.5%, respectively. Five patients 
developed acute pulmonary toxicity ≥ grade 2 (41).

Ricardi et al. published in 2010 the final results of the phase 
II trial, where they included 62 patients with stage I NSCLC 
and treated them with three fractions of 15 Gy each, given 
every other day during a 1 week time, up to a total dose of 45 Gy. 
The dose was prescribed to the 80%-isodose encompassing 
planning target volume. At 3 years, local control rate was 
87.8%, cancer-specific survival 72.5%, overall survival 57.1%, 
the majority of patients did not experience any toxicity; mild 
skin reactions, fatigue, dyspnea/cough or transient thoracic 
pain were recorded in approximately 10% of patients (42).

Recently, Timmerman et al. published the results of the 
RTOG 0236 trial. A total of 59 patients accrued, of which 55 
were evaluable (44 patients with T1 tumors and 11 patients 
with T2 tumors) with a median follow-up of 34.4 months. The 
3 year primary tumor control rate was 97.6%, the 3-year rate 
of disseminated failure was 22.1%. The rates for disease-free 
survival and overall survival at 3 years were 48.3% and 55.8%, 
respectively. The median overall survival was 48.1 months. 
Protocol-specified treatment-related grade 3 adverse events were 
reported in 7 patients, grade 4 adverse events were reported in  
2 patients. No grade 5 adverse events were reported (43). Table 1 

Table 1 Summary of the results of the prospective trials of SBRT for NSCLC

Author [Year] No. of patients Dose Median follow-up Outcomes 

Fakiris et al. [2009] 70 T1: 3x20 Gy 50.2 months 3-year LC : 88.1%

Phase II T2: 3x22 Gy 3-year OS 42.7%

  DP at 80%  3-year CSS: 81.7%

Baumann et al. [2009] 57 3x15 Gy 35 months 3-year LC: 92%

Phase II DP at 65% 1-, 2-, 3-year OS: 86%, 65%, 60%

1-, 2-, 3-year CSS: 93%, 88%, 88%

3-year PFS: 52%

Timmerman et al.  [2006] 70 3x20 Gy 17.5 months 2-year LC 95%

3x22Gy  2-year OS 54.7%

Koto et al. [2007] 31 3x15 Gy 32 months 3-year LC: 77.9% (T1)

Phase II 8x7.5 Gy 3-year LC: 40% (T2)

DP at 80% 3-year OS: 71.7%

    3-year CSS: 83.5%

Ricardi et al. [2010] 62 3x15 Gy 28 months 3-year LC: 87.8%

Phase II DP at 80% 3-year OS: 57.1%

    3-year CSS: 83.5%

Timmerman et al. [2010] 55 3x18 Gy 34.4 months 3-year LC: 97.6 %

Phase II  DP at 80%  3-year OS: 55.8%

Abbbreviations: LC, local control; OS, overall survival: CSS, cancer specific survival; DP, dose prescription.
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summarize the results of the prospective trials of the SBRT for 
patients with early stage NSCLC.

In a study, accomplished in our department, we included 
patients with 50 lung lesions who were treated with image-
guided breath-hold SBRT with a regimen of 60 Gy in five 
fractions (Figure 1). Breath hold was performed with Active 
Breathing Control (ABC®, Elekta). Two year overall survival 
rate was more than 40%. Two-year local control rate was more 
than 80% without significant toxicity (44).

As shown above, the local control rates are more than 90%, 
when total doses from 54 to 60 Gy in three fractions are used. 
Currently, the RTOG 0915 trial is comparing two different SBRT 
fractionation schedules: 34 Gy in 1 fraction vs. 48 Gy in 4 fractions 
for patients with peripheral stage I NSCLC. The fractionation that 
proves to be less toxic, will be compared to the SBRT treatment 
schedule recommended by the RTOG (54 Gy in 3 fractions) in a 
phase III RTOG trial. The Dutch trial ROSEL (Radiosurgery 
or Surgery for Early Lung cancer) will compare surgery and 
SBRT for patients with stage I NSCLC. Primary objectives of 
the trial will be the local and regional tumor control, quality 
of life and treatment costs of 2- and 5-years. A similar study 
is the STARS (Stereotactic Radiosugery vs. Surgery) trial, 
which is comparing surgery and radiosurgery with CyberKnife. 
Endpoint is the overall survival at 3 years.

High single doses radiation therapy of lung tumors is 
a special challenge because of diverse reasons such as the 
highly volume dependent radiosensitivity of the healthy lung 
tissue and surrounding organs at risk (oesophagus, heart), 
the breathing-induced motion of pulmonary targets and 
the dosimetrically difficult situation of a soft-tissue lesion 
surrounded by low-density lung tissue.

Besides the vital organs at risk heart and oesophagus, 
the lung itself is one of the most radiation-sensitive organs 
with two distinctive manifestations of radiation damage with 
different time frames. As a severe early (subacute) side effect of 
radiation therapy, pneumonitis occurs in 5-15% 4-6 weeks after 
conventionally fractionated large-volume thoracic irradiation. 
Symptoms include dyspnoe upon activity, cough and subfebrile 
temperatures. The incidence of radiation pneumonitis depends 
on the radiation dose and the irradiated volume of the normal 
lung tissue (45). As a late side effect and consequence of 
radiation pneumonitis, pulmonary fibrosis may arise, rendering 
the affected tissue without function.

Tumor location is a well known predicting factor, which 
predicts severe toxicities, when using SBRT (54-60 Gy in 3 
fractions) for patients with stage I NSCLC. Voroney et al. 
reported chest wall pain and rib fractures in patients with 
peripheral lung lesions (46). There is also a higher incidence 
of severe toxicities, when treating patients with 60 Gy in three 
fractions with central lung tumors, adjacent to mediastinal 
structures, defined as within 2 cm of the proximal bronchial tree, 
brachial plexus, or vertebral body. It seems, that in this cases, it is 
safer to apply the dose in more than 3 fractions (for example 12 
times 5 Gy, 8 times 7.5 or 60 Gy in 4-5 fractions) (40,47,48).

Biological rationale

Over the last decades new insight into biological effects of 
irradiation in tissue has led to a paradigm change. The single 
target cell theory and solely cell kill from DNA damage is not 
sufficient to explain the complex biological effects of radiation. 
Furthermore, and specifically in SABR, the linear quadratic 

Figure 1 Dose distribution and DVH for one patient, treated with 5×12 Gy SBRT for lung metastases.
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model-which is based on this rather simple theory and obtained 
from in vitro studies-may not be appropriate to assess in vivo 
data from SABR studies (49).

The importance of the tumor-microenvironment, the cross 
talk of malignant cells and host cells, the tumor bed effect, and 
the importance of other target cells than cancer cells are focus 
of intense ongoing research.

In addition, the radiobiology behind the effectiveness of 
high single doses or a small number of fractions of radiation 
may be very different from that underlying conventional 
fractionated non-ablative radiotherapy.

In this respect, endothelial cell apoptosis and micro-vascular 
dysfunction is observed only after high single doses of at least 
8-10 Gy contributing significantly to tumor cell lethality 
and tumor cure by SABR (50-53). Although, the underlying 
mechanism of successive tissue damage and conversion of sub-
lethal damage in tumor cells to lethal damage is not clear, it 
might involve leakage of circulating factors, a bystander effect 
of endothelial damage and ischemia induced complex cellular 
and molecular signalling.

In this respect, SABR might improve the elimination of 
potentially existent radio-resistant tumor stem cells which is 
a prerequisite for cancer cure. Tumor stem cells are thought 
to have better DNA repair mechanisms (54,55). In between 
fractions of conventional radiotherapy tumor (stem) cells try 
to repair sub-lethal damage, they can proliferate and transform 
into even more radio-resistant cells which possibly might 
facilitate tumor cell spread. After SABR and consequent micro-
vascular dysfunction less repair and even direct apoptosis of 
cancer stem cells is conceivable. Chang et al. observed stem cell 
apoptosis after single doses of 17 Gy and higher (56).

In summary, endothelial cells and cancer stem cells may 
require a threshold dose to be crossed before their death is 
triggered which only can be accomplished by SABR.

Another aspect refers to radiation induced inflammatory and 
immune response. Radiation-induced inflammatory cytokine 
production is generally considerably stronger at higher radiation 
doses. It seems likely that dose fractionation may minimize the 
damage that results from this source by allowance of tissue repair.

Although likely to generate more inflammation, high local 
doses may be superior at generating “danger” signalling and 
rapid cell death and promoting anti-tumor immunity (57,58). 
Radiation induced massive tumor cell death by SABR leads 
to release of HMGB1 proteins among others from dying 
cells. Next to other proteins HMGB1 acts as a danger signal, 
a so called endogenous damage-associated molecular pattern 
(DAMP). Dying cells are phagocytosed by immature dendritic 
cells (DCs). DAMP signal through toll like receptors (TLR4 
and TLR2) and are mandatory for host dendritic cells to 
mature (59). As a result antigen presenting cells (APCs) develop 

as targets for antigen specific CD8+ cells leading to a specific 
immune response.

As for apoptosis, it was shown that an immune response was 
optimal after doses of 8-10 Gy and higher.

Altogether, there are several biological aspects that might 
explain the excellent clinical tumor control rates after SABR.

Technical advancement

Accurate dose delivery to the patient is of utmost importance 
in external beam radiotherapy (EBRT) particularly if 
hypofractionated treatment techniques and/or dose escalation are 
used as in stereotactic body radiation therapy (SBRT). A precise 
dose calculation, delivery with steep dose gradients between tumor 
and healthy tissue and accurate tumor localization is essential.

In the last few years a lot of new methods and techniques 
were introduced in radiotherapy including intensity-modulated 
delivery (IMRT) with its steep dose gradients. IMRT offers the 
possibility to shape the dose distribution exactly around the 
target structures while organs at risk (OAR) are mostly spared. 
The full potential of IMRT can only be used when safety 
margins around the targets are reduced.

Image-guided radiotherapy (IGRT) offers the potential 
to reduce planning margins due to exact patient positioning 
and thus further helps to increase the therapeutic window 
(60-62). It has become clinical practice to re-position the 
patient according to 3D imaging data. To detect internal 
misalignment of organs relatively to the bony structures, it 
is preferable to use an image guidance system which is able 
to discriminate soft tissues. The common systems which can 
be used for online position correction are CT-on-rails (63), 
conebeam CT (CBCT) (Figure 2) (64-66), ultrasound (67,68) 
or electromagnetic signals (69). The positive effects of IGRT 
on the therapeutic dose distribution and the additional imaging 
dose have already been analysed (70-72).

An exact image guided (or stereotactic) positioning of the 
patient is rather easy to achieve in rigid structures such as the 
skull but is a major challenge for mobile organs. Tumors in the 
thorax and abdomen can move significantly with respiration. 
This has to be taken into account during the treatment planning 
process and treatment delivery (73). Several approaches use 
four-dimensional (4D) CT- or CBCT-datasets, that allow the 
determination of tumor position in different breathing phases 
(74-76). However, sometimes the increased time for processing 
the large amount of data and also the extended and more 
complex workflow limit the usability in clinical routine (62,74). 
In contrast to those approaches breathhold techniques (77) 
have been suggested to reduce the effect of breathing motions 
while maintaining tight PTV margins around the tumor. With 
inspiration-breathhold treatment techniques ITV and thus PTV 
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margins can potentially be reduced and doses can be escalated 
resulting in better tumor control rates. In addition, the total 
irradiated lung volume and, importantly, lung mass can be kept 
to a minimum (77-80).

Up to now long image acquisition times of ~60-120 s (kV-
CBCT) limit the number of patients who can undergo volume 
image guidance under breathhold to eliminate motion artefacts. 
Therefore a new approach was suggested to combine the kV 
and the MV source of the linac for a simultaneously acquired, 
fast (~15 s) and accurate kVMV-CBCT reconstruction for 
image guided patient positioning. kVMV-CBCT based on a 
standard linac is promising and can provide ultra-fast online 
volume image guidance with low imaging dose and sufficient 
image quality for fast and accurate patient positioning for 
patients with lung cancer under breathhold (81,82).

Conclusions

Highly conformal body-stereotactic treatment with only a 
few or even single fractions has been successfully applied to 
extracranial lesions such as lung tumors, achieving high local 

control rates of more than 90% (97-98% at 3 years). The 
recommended from the RTOG fractionation schedule of 3 
times 18 Gy, can be safely applied, whereby in patients with 
central tumors it is recommended to use more than 3 fractions 
(for example 5×12 Gy) to avoid severe toxicities. Additionally, 
despite comorbidities, SBRT is well tolerated even in patients 
with lower performance status, due to the less number of 
fractions (3 to 5). Breathhold techniques can help to reduce 
the effect of breathing motions while maintaining tight PTV 
margins around the tumor. During imaging they help to hold 
the tumor in a quasi stable position and thus reduces motion 
artefacts to a minimum. However, Long image acquisition 
times of currently ~60-120 s limit the number of patients who 
can be imaged with standard on board kV-CBCT for patient 
positioning at the linac during one breathhold phase. With 
the implementation combined kVMV-CBCT in the future, a 
shortening of the imaging time to ~15 s can be expected.
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Figure 2 Planning CT (purple) matched on the Cone Beam CT (green) of one patient treated with SBRT for single lung metastasis.
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