
09/03/2025 03:52

Multiscale simulation analysis of passive and active micro/nano-electrodes for CMOS-based in-vitro neural
sensing devices / Leva, Federico; Selmi, Luca; Palestri, Pierpaolo. - In: PHILOSOPHICAL TRANSACTIONS OF
THE ROYAL SOCIETY OF LONDON SERIES A: MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES. -
ISSN 1364-503X. - 380:2228(2022), pp. 1-23. [10.1098/rsta.2021.0013]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Bio-electronics, Modelling and

Simulation, Neuron activity sensors

Keywords:

Neuronal Recordings, TCAD,

Modelling, Bio-interfaces,

Hodgkin-Huxley model

Author for correspondence:

Federico Leva

e-mail: federico.leva@unimore.it

Multiscale simulation analysis
of passive and active
micro/nano-electrodes for
CMOS-based in-vitro neural
sensing devices
Federico Leva1, Pierpaolo Palestri2 and

Luca Selmi1

1 Dipartimento di ingegneria Enzo Ferrari,University of

Modena and Reggio Emilia, Modena, Italy.
2 Polytechnical Department of Engineering and

Architecture, University of Udine, Udine, Italy.

Neuron and neural network studies are remarkably
fostered by novel stimulation and recording systems,
which often make use of biochips fabricated with
advanced electronic technologies and, notably, micro-
and nanoscale CMOS. Models of the transduction
mechanisms involved in the sensor and recording of
the neuron activity are useful to optimize the sensing
device architecture and its coupling to the readout
circuits, as well as to interpret the measured data.

Starting with an overview of recently published
integrated active and passive micro/nano-electrode
sensing devices for in-vitro studies fabricated with
modern (CMOS based) micro-nano technology, this
paper presents a mixed-mode device-circuit numerical-
analytical multiscale and multiphysics simulation
methodology to describe the neuron-sensor coupling,
suitable to derive useful design guidelines. A few
representative structures and coupling conditions are
analyzed in more detail in terms of the most relevant
electrical figures of merit including signal-to-noise
ratio.

1. Introduction
In recent years powerful alternatives to the well
established patch clamps have emerged in the form of
passive or active microelectrodes respectively connected
to recording instrumentation or to custom integrated
circuits. These electrodes can match the size of individual
biological entities at the cellular, subcellular or even
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molecular level [1–4], yielding new solutions for neuron sensing (and stimulation).
Furthermore, they can be conveniently realized, in passive or active pixel form, as

densely packed arrays suited to monitor individual neurons and networks. Well established
complementary metal-oxide semiconductor (CMOS) technology, offers the opportunity to locally
multiplex and condition the signals on-chip, thus avoiding the interference and attenuation
induced by long interconnects [1,5–7]. Moreover, by adapting the back-end-of-line (BEOL) process
technology, the electrode stability and the biocompatibility in physiological environments can be
improved [1,2,7]. As a result, a neuron culture can be placed or grown onto the array, and the chip
can then simultaneously perform individual subcellular investigations of several neurons while
mapping an entire neural network [7]. For all these reasons, semiconductor technology-based
neural recording systems constitute today the backbone of many in-vitro [8–10] (and in-vivo [9–11])
neural activity sensors, although deformable sensor devices and those directly integrated by
means of electronic-mechanical assemblies with biological systems can be found as well [12–14].

Understanding how to achieve high-fidelity, high spatio-temporal resolution and reliable
neuron-to-chip coupling for sensing is of paramount importance in view of many applications [8,
15,16]. Also, revealing the multiple signal paths that eventually lead to the waveform generation
is also important to enable more accurate spike identification, sorting, fingerprinting, etc.

In this respect, modeling, simulation, and electronic design automation (EDA) tools play a
key role. However, they are not so developed for describing the electronics/electrolyte/neuron
coupling. At present, models of this coupling are almost exclusively defined as equivalent
circuits [17–19], and the unknown model parameters are estimated ex-post by fitting measured
data [20], or by examining the cell/sensor adhesion by means of few TEM/SEM images
that kill the cell cultures [21,22]. Modelling the physics and geometry of the bio-electronic
interface with suitable CAD tools, instead offers the opportunity to consider more realistic 3D
geometries and the complex physical phenomena involved [23]. Physical simulations can also
support the definition, validation and calibration of equivalent circuit. Lastly, physics-based CAD
accommodates descriptions of the physical, biological and electronic subdomains, enabling the
simultaneous optimization of the whole system.

In this paper, after a short overview of recent electronic sensor architectures for in-vitro neural
recording useful to motivate the following research, we describe an approach to model the
neuron/sensor interface and readout electronics on the same physics-based simulation platform
with a mixed-mode finite element/circuit appraoch. The new simulation framework bridges the
gap between hardware and wetware, enables the simultaneous optimization of the sensor device
and the readout, while taking into account the neuron environment.

The paper is structured as follows: Section 2 overviews the technological background of the
sensing systems and compares the performances of a few selected solutions. Section 3 details
our proposed methodology, combining lumped elements’ equivalent circuits and finite element
numerical models (FEM). Section 4 reports representative analysis of a few case studies in terms
of transient response to action potentials (APs), neuron-to-readout transfer functions, and signal-
to-noise ratio (SNR) estimation. Finally, conclusions are given in Section 5.

2. Background
In the following subsections we overview a few recently published neural sensing devices that
exploit micro-nanoelectronic fabrication, possibly integrated in a CMOS backbone. Their salient
features define the general architecture of a few template structures (shown in Fig. 1) which are
then considered for detailed analysis in Section 4.

(a) Overview of extracellular recording devices
Passive (i.e., without on-site amplification) micro-electrode arrays (MEAs) have been the
workhorse for extracellular signal electrophysiology [24,25]. They mostly consist of arrays of
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Figure 1. Schematic cross sectional representation of a few template devices for neuron sensing: planar electrode

(a), and planar electrode with vertical needle protrusion (b and c). The needle couples to the neuron via a thin cleft

(extracellular coupling, b) or penetrates the cell membrane (intracellular coupling, c). The membrane is partitioned in

the nano-junctional, (njm), junctional, (jm), and non-junctional, (nm), compartments. The nano-junctional and junctional

electrolytic clefts between the membrane and the electrodes are also shown, according to the notation introduced in [19].

planar electrodes (Fig. 1.a) with 5÷30 µm diameter [8]. MEAs record large scale extracellular field
potentials (FPs) for days and months without damaging the cells. However, neurons typically do
not stand closer than 70-100 nm to planar electrodes [26]. Consequently, the sensor weakly couples
to the neural signals and the sensed FP amplitudes are extremely small (10÷100 µV). Moreover,
the FPs reflect the attenuated, spatio-temporally filtered and overlapped action potentials (APs),
synaptic potentials, and slow glia potentials, of a large number of excitable cells [27]. As a result,
subcellular (e.g., ionic channel current) and subthreshold information are difficult to detect, and
intensive data post-processing is deployed to extract and sort out the recorded signals [27].

Limitations of passive MEAs can be partly overcome by acting on the signal transduction
chain and/or on the microelectrode morphology and coating. For instance, by connecting them
to a field-effect transistor, FET [28], it is possible to amplify the signals in-situ, thus driving
more effectively the wiring capacitance and resistance and eventually increasing the recorded
signal [27] (see also Section 4). Fromherz’s pioneering work successfully demonstrated planar
electrodes integrated on top of an FET where the electrolyte surrounding the neurons acts as a gate
that modulates the channel conductance [28–31] driven by the neurons’ spikes. The integration
of electrodes in the BEOL of CMOS chips delivers parallel recording platforms, as represented by
the CMOS-MEA5000 market solution [32], with its 4225 recording sites, and beyond (65536) in a
research demonstration [33] (#2 in Tab. 2).

Another way to improve the signal quality is to fabricate on top of planar electrodes small
and tall vertical protrusions which create fine scale neural interfaces (Fig. 1.b) where specific local
interactions occur [34].The nano-electrodes enable interrogations of the neuron largely decoupled
from the background signals of the surrounding cells. A good lateral sealing with a reduced
cleft thickness of less than 5 nm [21] also beneficially affects sensitivity by short circuiting the
electrical double layers (EDLs) at the cleft’s interfaces. Local and tight contact with the neuron
membrane has been demonstrated, e.g., with mushroom-shaped protrusions [27,35–37], or with
nanoneedles/nanowires [27,38,39].

Mushrooms-shaped microelectrodes are engulfed by the cells through an endocytotic-like
process [27] facilitated by the mushroom cap’s curvature [36], especially if the diameter does
not exceed 2-2.5 µm [35] (#1 in Tab. 2). To increase mushrooms’ coupling to neurons up to 100-
fold, a conductive polymer coating (e.g, PEDOT:PSS) can be used [37] (#7 in Tab. 2). A capacitance
increase from 5 to 500 µF/cm2 has been observed [40] compared to the double-layer capacitance
onto bare gold electrodes [41]. Experimental evidences suggest that also high aspect-ratio vertical
nanowires with diameter around 200 nm are engulfed by neurons without internalization [38].
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A disadvantage of the protrusion is the reduced contact area, that implies higher electrode
impedance, reduced coupling and increased noise. Mini-arrays of few 3D vertical nano-
protrusions on the same electrode allow to recover the low electrode impedance [10]. Also the
reliability, the amplitude of recordings and the SNR are improved compared to planar MEAs [8]
with one or no vertical protrusions. An alternative solution aims to improve sealing by reverting
the protrusions into a hollow in the microelectrode [39].

In all these cases the optimal protrusion/hollow morphology is still unknown and the ability
to predict the electrode impedance ahead of fabrication would support performance optimization.
Furthermore, the integration of protrusions with an amplification unit per sense/stimulation
site results in extracellular sensing platforms with unprecedented recording quality, as both the
coupling and the sealing are maximised. A notable example is the active 3D-shaped CMOS
nano-electrode array (CNEA) platform in [39,42] (#6 in Tab. 2).

Extracellular sensors are nevertheless inherently limited by a low signal, introduce distortions
of the recorded AP waveform, and do not carry the whole spectrum of information as their
intracellular counterparts (Fig. 1.c). In fact, the extracellular recorded signal also depends on the
neuron-electrode adherence and on the aggregation of ion channels at the interface [17,18]. To
overcome these limitations significant work has been devoted to intracellular sensors, also based
on semiconductor device fabrication processes, as discussed in the following Section.

(b) Overview of intracellular recording devices
The sensor size and geometry are crucial to attain stable access the intracellular medium; both
should be optimized for the purpose. Sharp protruding vertical nanowires/nanoneedles with
diameter≤100 nm can promote spontaneous cell penetration as the result of cell-sensor adhesion-
mediated forces and active cellular processes such as endocytosis [43], see for instance the high
aspect-ratio vertical nanoneedles’ array in [44] (#4 in Tab. 2). However, such a miniaturized sensor
suffers of small coupling capacitance essentially because of the reduced contact area. Passive
sensors become unfeasible with such tiny devices. Therefore, active sensing architectures are
preferred for deep sub-micron spatial resolution, as will be discussed in Sections 3 and 4.

Spontaneous penetration alone does not ensure reliable intracellular access. Penetration can be
improved via centrifugation forces to push the cell onto the nanoneedles [43], or chemical surface
modification with adhesion molecules [45]. However, non-spontaneous penetration damages the
membrane and leads to cell death, significantly reducing the duration of the recordings [8].

Alternatively, random-shaped miniaturized pores can be created in the lipid membrane
by voltage or current injection. This so called electroporation releases the constraints on the
sensor shape, because the nano-electrode does not need to pierce the membrane. However, it
perturbs the spontaneous cell activity [38] and causes blind recording periods [8]. Furthermore,
electroporation activates repair mechanisms that re-seal the nanopores [46]; only repeated
electrical pulses can maintain the poration needed to realize long-term recordings [8]. Along this
line of though, a novel, continued current-injection electroporation method has been proposed for
the CNEA platform (#6 in Tab. 2), delivering up to 19 minutes of intracellular signal recordings
[39].

As an alternative, optoporation at the tip of gold nanoneedles, excited by short laser pulses,
locally and precisely generates individual pores down to one nanometer size [38] (#3 in Tab. 2).
Optoporation obviates to the blind recording periods of electroporating electrodes. By shining a
single laser pulse onto an array of gold nanoneedles, a continuous intracellular recording up to
80 minutes has been demonstrated [38].

Lastly, electrode biochemical functionalization has been proposed [43,47], which reduces the
leakage of the cytoplasm toward the extracellular electrolyte, and improves intracellular
access repeatability, thus enabling long-term recordings [8]. Recently, Lieber et al. extended
previous works on cultured cardiomicyte cells [49–51], demonstrating arrays of 168 individually
addressable U-shaped nanowire FET probes for neural intracellular sensing [48] (#5 in Tab.
2). The U-FET brings the gated channel of a FET in intimate contact with the intracellular
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fluid, thus implementing active intracellular sensing. Voltage amplitudes comparable to those
of patch-clamps have been recorded [48].

Despite these remarkable successes, however, achieving a stable and durable contact with the
intracellular fluid, repeatable over time with the same culture, remains a persistent challenge [39].

(c) Specifications and benchmark of sensing solutions
For the purpose of setting the nomenclature, Fig. 1 sketches a few microelectronic neuron sensing
devices with some of the salient features encountered in the previous overview. The neuron
interacts either with planar electrodes (a) or with a protruding vertical electrode (b and c). Any of
these electrodes can be locally connected to an integrated active device (e.g., a FET) or to a passive
interconnect that propagates the electrical signal to the readout circuit.

Ideally, these neural sensing devices should be capable to monitor, with sampling times in
the sub-ms range, the dynamics of the transmembrane voltage including both excitatory and
inhibitory subthreshold synaptic potentials (e.g., non firing AP), as well as membrane oscillations
[27,52], as summarized in Tab. 1. Merging the requirements therein, an approximate 0.1 Hz-10
kHz measurement bandwidth is needed to embrace with some margin all the above mentioned
signals [39].

Membrane
Oscillation

Excitatory and Inhibitory
Subthreshold Potential

Intracellular
Action Potential

Amplitude [mV] ±5 ±0.5÷10 -80 ÷30
Duration [ms] n.a. <1(rise)/100-1000 (decay) 1-2 + *AHP
Spectrum [Hz] 1-50 100 500-1000

Table 1. Requirements for neural sensing devices adequate to capture the entire neurons’ bio-signalling repertoire. *AHP=

after-hyperpolarization phase which can be fast (2-5 ms), medium (5-100 ms), or slow (1-2 s) [52]

Since performance banchmarks in literature mostly focus on materials and fabrication
processes [10,19,27]. we compare in Tab. 2 in terms of electrical figures of merit a selection of
literature results referenced in the previous section and, among these, estimates of the sometimes
neglected but nevertheless important signal-to-noise ratio, SNR. We should stress that the aim
of this comparison is not to spot the best system, but rather to discuss the main trends related
to the combinations discussed previously, i.e,. active or passive sensor combined with intra- or
extracellular access.

We see that the largest signal amplitudes are measured when intracellular access is established
via spontaneous incorporation or electrical and optical poration methods. A large signal
amplitude does not always come with high SNR, tough. In fact, the SNR depends on many system
features, including those of the readout circuit. Active pixels are less sensitive to the interconnect
parasitics, making it easier to implement parallelization and to operate a large number of
recording sites. We also see that extracellular access allows for days/months recordings, although
the measured signal amplitude is much lower than with intracellular access.

In the following section we establish a simulation methodology amenable to investigate the
impact of electrode morphology and material on the expected electrical transduction performance
of the sensors

3. Methodology
The review in Section 2 suggests that comprehensive models of the neuron-sensor interface,
aimed at studying the transduction mechanisms of electrophysiological signals, should be
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# N.
sites

Pitch Access mean Type Rec.
time/DIV

Max
ampl.

SNR
Max

Ref. Pub.
Year

1 >1 8 µm extracellular
mushroom

passive >1min/>2 20mV 333* [35] 2015
[36]

2 65536 25.5 µm extracellular
planar

active 12s/n.a. 120 µV 70 [33] 2017

3 1-20 2-5 µm intracellular
optoporation

passive 80min/3 1.8mV 30* [38] 2017

4 64 4 µm intracellular
spontaneous

passive >3min/>2 99mV 1700 [44] 2017

5 168 2 µm intracellular
biochemical

active >3min/14 100mV 144 [48] 2019

6 4096 20 µm

intracellular
electroporation

active 19min/4
10mV 167*

[39] 2019
1nA 333*

extracellular
nanowire

active 20min/12
62 µV <10

[42] 2020
93pA >10

7 59 200µm extracellular
mushroom

passive >30min/35 550µV 31* [37] 2020

Table 2. Performance comparison of different recording systems. When not directly accessible from the papers, the SNR

has been calculated as Vout[V pp]/3Vn,out[Vrms], following [48] and marked with ∗ in the table. V out[V pp] is the peak-

to-peak value of the recorded AP, while Vn,out[Vrms] is the rms value of the output noise. The numbers in the first column

refer to: 1= Gold mushroom micro-electrode, 2= MEA, 3= Plasmomic nanowire, 4= High aspect-ratio nanowire, 5= U-

shaped FET, 6=CNEA, 7=PEDOT:PSS-coated gold mushroom micro-electrode. DIV refers here to consecutive Days of

In-Vitro experiments.

multiphysics, multiscale, and capable to treat electrical signal generation and propagation across
complex three dimensional structures, made of diverse materials, including active semiconductor
devices, passive interconnects, and electrodes in contact with electrolytes. A co-integration with
flexible probes is also possible but the extension of the proposed methodology to this type of
sensor falls outside the scope of this work. Therefore, having in mind the perspective of sensing
devices integrated in CMOS technology, a natural choice is to rely on Technology Computer
Aided Design tools (TCADs) (e.g., SDevice [53]) as an alternative to general multiphysics
simulation packages (e.g., COMSOL®). In this work we embrace the first choice. SDevice solves
self-consistently the semiconductor equations (Poisson, continuity and drift-diffusion equations)
in non-linear steady state and transient regimes using the Finite Element Method (FEM). It
also performs small signal AC and noise analysis. In addition, it can couple physical structures
described with the FEM to electrical circuits described by netlists thanks to a mixed-mode
device-circuit simulation capability [53].

The TCAD does not yet incorporate general electrolyte physics directly but, exploiting the
similarity of electrons and holes in semiconductors to anions and cations, and tailoring the
permittivity, mobility, bandgap, effective density of states and affinity of a generic-semiconductor,
the electrolyte medium can be modelled [54–56]. A physical model interface (PMI) [57] allows
users to add models for surface chemical reactions, whereas the formation of electrical double
layers at charged surfaces stems naturally from the drift-diffusion transport framework. The main
limitations of this approach, and possible workarounds, have been examined in [55] and will not
be repeated here. Section (a) of the Additional information provides the parameter values adopted
in our calculations.

At first order, pristine cellular membranes can be described as a lossless insulating layer [58]
with a relative permittivity and a capacitance equal to those of the biological neuronal membrane
(εr,memb ≈ 11, Cm ≈1 µF/cm2, respectively [59]). To model the electrogenic functions of the
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Figure 2. Schematic representation of mixed-mode approaches to introduce in the TCAD the action potential generation

mechanisms across the insulating layers representing at first order the cellular membranes: (a) Hodgkin-Huxley model

[61], (b) voltage source as external boundary condition, (c) ionic transmembrane current source. (b) and (c) are simpler

approximate versions of (a). In the TCAD FEM domain the membrane capacitance Cm is not a lumped element but it

results from the solution of Poisson’s equation in the insulating layer. The primed blocks (e.g., m’) represent the external

lumped elements to add to the TCAD; m blocks, instead, represent the combination of Cm and m’.

biological neuron, we proceed as follows. Firstly, we discretize the membrane in compartments
[18,60]. Then, we introduce small contacts on both sides of the compartments’ membrane and
connect between them appropriate lumped circuit components. To emulate the AP and related
transmembrane current, for each compartment we connect one of the primed blocks suggested
in Fig. 2. The Hodgkin-Huxley (HH) model (Fig. 2.a, [61]) accounts for the non-linear, voltage-
dependent and time-varying nature of the ion channels across the membrane. In this work we use
the time-invariant version of the HH [62–64] and adopt the ion concentrations for humans [65]
to compute the equilibrium voltage generators (EK , ENa, EL), although any signal generation
mechanism amenable to a lumped-element SPICE-like description could be used as well thanks
to the mixed-mode device-circuit simulation environment adopted in this work. The HH model
should be instantiated for each compartment (a single one is shown in Fig. 2.a). Alternatively
(see Fig. 2.b), an independent voltage generator can be used, imposing the same AP waveform
Vm(t) of the HH model (which accounts for the -70 mV physiological rest membrane potential)
as an external boundary condition between the compartment contacts. This simple approach is
adequate only when simulating intracellular sensing [58], as further discussed in the description of
Fig. 4. Yet another possibility, Fig. 2.c, is to use an independent transmembrane current generator,
Im, imposing the same total current flowing through the HH model’s membrane capacitance,Cm

in Fig. 2.a. In this case, the physiological rest membrane potential is imposed as initial condition
to the capacitor voltage and thus added to the AP waveform. This last solution, inspired by [19],
is best suited to describe extracellular sensing, since it grasps the distributed nature of the Im and,
in principle, can be scaled to an arbitrarily fine compartimentalization of the membrane.

In this work, simulations will consider three compartments per neuron, chosen consistently
with Fig. 1 and [19], in order to represent: 1) the average behavior of the nano-junctional
membrane area where intimate coupling between the neuron and the sensor is achieved
(subscript njm); 2) the junctional portion of the membrane in proximity of the njm compartment,
that can still couple some signal to the sensor device (subscript jm); 3) the non-junctional portions
of the membrane, far from the sensing device, which can affect the response by introducing
parasitic leakage paths (subscript nm). The lumped element values for each compartment must be
scaled proportionally to the respective estimated membrane area:Anjm/Am=4%,Ajm/Am=19%,
Anm/Am=77%, Am=220 µm2 in the following [19].

For intracellular contact of the sensor, the njm compartment is replaced by a single resistor,
because an electroporated membrane is reported to behave as a 400 MΩ to 18.8 GΩ resistance
with negligible capacitance nor HH blocks in parallel [39]. An intermediate Rnjm '2 GΩ has
been chosen in this work, consistent with [19]. Alternatively, poration can be described at the
physical level by introducing gaps in the membrane insulating layer in the FEM mesh.
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Figure 3. Schematic representation of the sensor system considered in this work and corresponding simulation setups.

(a) and (c) sketch full 3D TCAD domains connected to readout circuits. The neuron soma is represented as a circular

dome. The sensing elements are: (a) an active intracellular needle; (c) a passive extracellular mushroom shaped electrode

with cylindrical symmetry around the z-axis. (b) and (d) represent the mixed-mode 2D TCAD-circuits corresponding to the

full 3D TCAD domains. The intrinsic njm 2D domain inside the dashed box is still solved with FEM but the extrinsic part

of the domain and the readout are accounted for by lumped element circuits.

Fig. 3 schematically represents the simulation domains investigated for two reference case
studies developed in Section 4 (namely, an active intracellular sensor and a passive extracellular
sensor) treated at different abstraction levels: full 3D-TCAD domains, (a)(c), or as mixed-
mode combinations of 2D-TCAD and circuits, (b)(d). The readout is always represented as a
circuit. The neuron soma is sketched as a 3D dome; the needle sensor in (a)(b) retains the
rectangular symmetry of the underlying FET while the passive-extracellular mushroom-shaped
nanoelectrode, inspired by the work of [27,35], has cylindrical symmetry (c)(d).

Owing to symmetry, the 3D domain can be approximated to 2D (Figs. 3.b and 3.d) still retaining
the essence of the full 3D descriptions and provided the simulations are run in rectangular and
cylindrical coordinates, respectively. Among the many possible combinations, in the following
we describe the FET at the circuit level, which allows to use cylindrical coordinates for both
the needle and the mushroom protrusions. The extrinsic parts of the system, i.e., the ones that
are not directly part of the sensing elements and thus are not included in the FEM domain, are
modelled by an equivalent circuit. Our previous work [58] suggests that an RC (i.e., resistors and
capacitors) circuit representation with few lumped elements, neglecting the distributed nature of
these domains, is adequate if clefts are sufficiently conductive.

Fig. 4 shows the simplified lumped elements equivalent circuit representations of the TCAD
structures in Fig. 3, compartmentalized in three sections. The first row sketches two types of nano-
electrode/neuron interface with intra- (left) and extra- (right) cellular access. The njm’, jm’ and
nm’ rectangles represent one of the possible options in Fig. 2 to include the generation of the AP
and are treated as open circuits during frequency domain analysis, as discussed at the end of this
Section.

The dashed rectangles in the first row of Fig. 4 contain the circuits that represent the finite
element simulation domain in Fig. 3.b and d (i.e., Cnjm, Cnano , Rnano). The lumped elements values
are estimated with simple formulas for resistance and capacitance of cylindrical and rectangular
structures [18,58], and are consistent with [35,44], as reported in Tab. A1 of the Additional
information. The components of the extrinsic part of the domain (i.e., Rnjm, Rnjseal, Cjm, Cnm, Rjseal,
Cpad, Rstray, Cstray, gm, Rfeed, R2, R1) are common to both mixed-mode TCAD (Fig. 3) and full circuit
simulations (Fig. 4). Their values are reported in Tab. A1 of the Additional information as well.

The circuits in the second row of Fig. 4, instead, represent the essence of the readout for the
passive (left) and active (right) sensors. The former is a voltage-amplifier with low frequency
gain (1+R2/R1). The active sensing circuit, instead, embeds an OpAmp-based transimpedance-
amplifier to convert the FET drain current into an output voltage. The gain is set by Rfeed and is
chosen to ensure the same peak-to-peak signal amplitude of the passive sensing case under good
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Figure 4. Essential equivalent circuit representation of the TCAD models in Fig. 3 used to compute the AP transients,

the transfer function H(f) = Vout(f)/Vm(f), and the noise. The dashed rectangles enclose the equivalent circuit

representation of the 2D TCAD portions of Fig. 3. Both the intracellular needle contacts (α and β, top-left) and the

extracellular mushroom contacts (γ and δ, top-right) can be connected either to the passive (bottom-left) or to the active

(bottom-right) readout circuits. Rnjm is the resistance of the cytosol between the bulk of the intracellular electrolyte at

potential, Vm, and the tip of the nano-electrode; Cnjm, Cjm, and Cnm represent the series of diffusion-Stern-membrane-

Stern-diffusion capacitances of the neuron compartments in Fig. 1; Rnjseal and Rjseal are the nano-junctional and junctional

sealing resistances; Cnano is the series of the Stern and EDL capacitances of the cytosol/electrolyte on the surface of

the nano-electrode; Rnano is the nano-electrode resistance; Cpad is the insulator capacitance between the extracellular

electrolyte and the planar portion of the electrode; Rstray and Cstray account for the parasitic resistance and capacitance of

the connections to the readout; R2 and R1 set the passive readout gain; gm is the FET transconductance; Rfeed sets the

active readout gain; Ramp and Camp are the input resistance and capacitance of the operational amplifier employed in the

readout circuit. CGS is the FET Gate to Source capacitance.

.

sealing conditions, i.e., high nano-junctional sealing resistance (Rnjseal=900 MΩ). These Rfeed

values are then kept constant for the poor sealing conditions as well (Rnjseal=100 MΩ).
Different circuit blocks from Fig. 2 are inserted in the njm’, jm’ and nm’ rectangles according

to the required type of simulation. The default choice in this work has been to replace all of them
with the HH block (Fig. 2.a) when simulating the AP transient response. However, reasonably
accurate results have been obtained with simpler choices. In particular, for intracellular recording
(top left in Fig. 4) we placed a voltage source of the AP waveform Vm(t) inside the nm’ rectangle
(as in Fig. 2.b) and treat as open circuit the rectangle nj’. This is an adequate solution as long as the
intracellular neuron potential is essentially uniform over the volume directly sensed by the nano-
electrode. When simulating transients for extracellular recording, instead, a set of Im(t) current
sources as in Fig. 2.c has been introduced into the three rectangles: Injm(t) in njm’, Ijm(t) in jm’,
and Inm(t) in nm’. This is because the extracellular ionic currents and related potentials change
from one compartment to another depending, above all, on ion channel distributions and sealing
conditions. The Injm(t), Ijm(t) and Inm(t) waveforms replicate the currents flowing through the
Cnjm, Cjm, Cnm of a neuron described by the HH model (Fig. 2.a) once partitioned into these
three compartments in circuit simulations.

When performing linearized AC small signal analysis, for both intracellular and extracelluar
recording we place an AC voltage source between node Vm and ground, and open all the circuits
inside the rectangles (njm’, jm’, nm’) of Fig. 4. Thus, only the capacitances are retained within
the compartments, which is a good approximation when the AP has not started yet [19]. The
resulting circuits are used to extract the system transfer functionH(f) = Vout(f)/Vm(f), compute
the thermal noise of the sensor, and then the signal-to-noise ratio (SNR), as will be discussed in
Section 4.
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The composite model outlined above combines numerical FEM simulations with a set of
previously defined circuit models that rely on parameter values validated either by experiments,
or, in a few instances, by TCAD simulations. In particular, the time-invariant HH model with
compartmentalization has been used in [18,60], and in [19] in its transmembrane current-sources
version; the model for the neuron-electrode junction is consistent with [17,29]. Concerning the
value of the circuit components used in the models: Rnjm is taken from the experiments in [66],
later confirmed by [39]; Rnjseal has been taken from [19] that slightly modified the value from
the experiments in [66]; Rjseal is computed as the disk resistance given the cleft thickness, and
the hole and rim ring radii according to Eq. (11) in [18]; Cnjm, Cnm, Cm, are the capacitances
obtained by scaling the value Cm=2.2 pF [19] according to the relative area of the different
portions of the membrane based on the geometry of the system; Cnano is computed according
to the third expression in Tab. 2 of [58], where the area is given by Eq. (7) of [18] possibly adding
the contribution of the cap for mushroom shaped sensors; Rnano is computed according to Eq.
(8) in [18] with or without the mushroom cap, as appropriate; Cpad is computed according to
the fourth formula in Tab. 2 of [58]; Rstray and Cstray have been computed according to the last
two expressions in Tab. 2 of [58], employing the formulas for parallel plate capacitor and barrel
resistor using realistic values for the geometry of the interconnects; Ramp and Camp are the input
resistance and capacitance of a typical OpAmp (taken from [19]); the gm of the active sensor is
taken from [75] and refers to a realistic advanced 28nm CMOS node. Cnjm, Cnano, and Rnano

have been also verified by means of TCAD simulations (as we will see later in Section 4(b))
Our general purpose model can be adapted to a variety of sensor implementations by tuning

the parameter values on adequate experiments or TCAD simulations. In the following it will be
used to highlight trends of general validity which are modestly affected by the specific parameter
values, and to investigate the relation between sensor morphology, circuit elements, and expected
performance.

4. Results

(a) Physics-based TCAD simulations of action potential transients
The use of the TCAD enables to relate the geometrical/physical and material sensor parameters
to the shape of the recorded signal without need to rely upon equivalent circuits or analytical
formulas. Fig. 5 shows the expected impact of changes in these parameters for nano-electrodes
(e.g., the height, H, and diameter, D, of a nanowire; the mushroom’s cap diameter, D, and stalk
height, H, while keeping constant the cap’s height, 658 nm, and the stalk diameter, 554 nm),
and materials (Pt or doped Silicon), whose specific values are given in the caption. Note that the
output signals are plotted as variation with respect to the DC value, so all waveforms start from
and tend to zero volts.

Fig. 5 points out that active sensors (open symbols) are essentially insensitive to the size and
material of the nano-electrode, whereas the choice of relatively large nano-electrodes, possibly
made of metal conductors, is mandatory to increase the performance of passive sensors (filled
symbols). To compare the different solutions, in the following of this work we keep Platinum as
reference material for nano-electrodes, with default dimensions H2,D2 (see caption of Fig. 5 for
specific values).

(b) Physics-based TCAD vs equivalent circuit representations
To validate the equivalent circuit representation of the recording system in Fig. 4 and the chosen
lumped element values (Tab. A1 in the Additional) we compare the transient response computed
with the circuit to the one computed with mixed-mode TCAD simulations of the 2D physical
domains in Fig. 3.

Fig. 6 compares these simulations under the assumption of good sealing conditions
(Rnjseal=900 MΩ), and demonstrates a very good agreement in all cases. The sources of the AP
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Figure 5. Transient response to an AP recorded by active (filled symbols) or passive (open symbols) in TCAD for

the structures in Fig. 3, for different devices (intracellulr nanowire, left column; extracellular mushroom, right column),

materials (Platinum, lowly doped Silicon, 5·1016 cm-3 and highly doped Silicon, 5·1019 cm-3) and sizes (Nanowire’s

height and diameter: H1 = 1 µm, D1 = 250 nm / H2 = 3.8 µm, D2 = 554 nm / H3 = 5 µm, D3 = 1.5 µm; Mushroom’s stalk

height and cap diameter: H1 = 685 nm, D1 = 250 nm / H2 = 1.13 µm, D2 = 2 µm / H3 = 3 µm, D3 = 3 µm, with cap’s

height and stalk diameter fixed respectively at 658 nm and 554 nm). The reference material when analysing size effects

(top row) is Platinum; whereas the default dimensions when varying materials (bottom row) is H2,D2. The sources of the

AP waveform are implemented as a single voltage generator for intracellular contact, vs three current generators, one per

compartment, for extracellular contact, as described in Section 3. Vout is reported as variation with respect to the DC

value.

waveform (rectangles in Fig. 4) are implemented as described in Section 3 for both TCAD and
circuit simulations. Vout is reported as variation with respect to the DC value; again all waveforms
start from and tend to zero volts. This analysis validates theCnjm,Cnano,Rnano values estimated
from the TCAD and allows us to employ the circuit representation of Fig. 4 in the following.

(c) Transient response to action potentials and Transfer Functions
Fig. 7 shows the AP waveforms recorded at the output node of the passive and active sensor
circuits in Fig. 4 for different sealing conditions. Also in this case the sources of the AP are
implemented as described in Section 3. All the signals captured with intracellular contact have
a monophasic profile, resembling in many cases an attenuated replica (Vpp≈120 µV) of the
intracellular AP for both passive and active sensors with good neuron sealing (left column). The
reason why, in the passive case, the intracellular Vout differs from an attenuated replica of the
neuron AP will be explained later by means of the transfer function analysis. The signal reduces
to ≈ 20÷30 µVpp if sealing is less effective (right column), highlighting the importance of good
adhesion of the neuron to the sensor. On the other hand, the signals sensed with extracellular
contact have a biphasic shape, resembling the first time derivative of the intracellular AP. The
Vpp is much smaller than its intracellular counterpart, and therefore it is magnified in the figure.
Approximately, both passive and active sensors achieve≈ 6 µVpp with Rnjseal=900 MΩ, and≈ 1
µVpp or less withRnjseal=100 MΩ. While these numbers depend on the chosen parameter values
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Figure 6. Transient response to an AP computed according to the TCAD (Fig. 3) and the lumped element circuit (Fig. 4)

models for passive (top row) and active (bottom row) intracellular (left column) and extracellular (right column) recording

systems under good sealing conditions (Rnjseal=900 MΩ). The sources of the AP waveform (rectangles in Fig. 4) are

implemented as described in Section 3 for both TCAD and circuit simulations (single voltage generator for intracellular

vs three current generators, one per compartment, for extracellular). Vout is reported as variation with respect to the DC

value.

and can be improved to some extent by changing the sensor geometry and coupling to the neuron,
the observed trends are consistent with expectations because of the screening of the double layers
at the cleft’s interfaces in the intrinsic part of the device next to the protrusions and because of the
fact that Rjseal is directly connected to ground.

With the goal in mind to investigate the time and frequency responses of the four case-study
systems of Fig. 6 for various neuron-sensor coupling conditions, Fig. 8 shows the modulus of
the transfer functions (TFs) |H(f)|= |Vout(f)/Vm(f)| for the circuits in Fig. 4 and two Rnjseal

values over an extended frequency range suited to identify some relevant features. Qualitatively
speaking, the TFs confirm that in the frequency range of the AP spectra, a flat gain can be achieved
in intracellular sensing conditions, whereas for extracellular sensing the TFs are dominated by low
frequency zeros. This is the reason why for intracellular sensing the output waveform resembles
an undistorted and scaled copy of the AP, while for extracellular sensing it reflects the distorted
time derivative of the AP.

To further discuss these aspects, we write the transfer function in the rational form:

|H(f)|=Gin−band

(
f

f0

)k
(1 + jf/fz1)(1 + jf/fz2)(...)(1 + jf/fzn)

(1 + jf/fp1)(1 + jf/fp2)(...)(1 + jf/fpn)
, (4.1)

where Gin−band is the in-band gain, k is the number of zeros in the origin, and fz1, fz2, ..., fzn,
fp1, fp2, ..., fpn are the zero and pole frequencies, respectively. Following similar steps as in [58],
we used open and short circuit time constants analysis [67] to determine approximate analytical
formulas for the poles, zeros and in-band gain of theH(f) (see Tab. 3) as a function of the lumped
element parameter values reported in Tab. A1; the availability of free-distribution codes (e.g.,
SCAM [68]) could yield exact analytical expressions given the circuit topology. To this end, the
FET capacitances (CGS , etc.) have been neglected, since they are much smaller than the other
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Figure 7. Action potential waveforms recorded at the output node of the passive and active sensing circuits in Fig. 4

for different sealing conditions. The sources of the AP waveform (rectangles in Fig. 4) are implemented as described in

Section 3 (single voltage generator for intracellular vs three current generators, one per compartment, for extracellular).

Extracellular contact waveforms are magnified for improved visibility.

capacitances. Some poles and zeros lie outside the frequency range of AP spectrum of Fig. 8;
their expressions are reported in Tab. 3 as well. The order adopted in the table reflects increasing
frequency for chosen parameter values, i.e., Fz,i < fz,i+1 and Fp,i < fp,i+1

In the following, we provide a short description of the transfer function for each case.
(a) Intracellular-passive sensor: the TF has two zeros, one in the origin (k=1) and one in the

MHz regime (Eq. (4.3) in Tab. 3, thus not visible in Fig. 8), and four poles. The low frequency
fp1 and fp2 shape the bandwidth as depicted in the top-left graph of Fig. 8. The remaining poles
fall above the upper frequency limit of the figure (Eqs. (4.6) and (4.7) in Tab. 3). The in-band gain
is set by capacitive and resistive dividers according to Eq. (4.2) in Tab. 3. To maximise the gain
and reduce distortion (i.e., to widen the flat portion of the TFs by making fp1 small and fp2 high),
Ramp,Rnjseal andCnano should be large, andCstray andCamp small according to Eqs. (4.4) and
(4.5). In fact, a low fp2 (e.g., for large values of the sealing resistance) filters out the high-frequency
signal components, thus slowing the Vout transients and making it appear spread out over time
(black line in the top-right panel of Fig. 7). As a result, the recorded signal is not a pure scaled
replica of the intracellular signal. This lowpass effect is mitigated for low sealing resistance which
widens the bandwidth (top-right panel of Fig. 8) and makes the Vout follow the Vm profile more
closely (top-right panel of Fig. 7), although with lower amplitude because of the reduced in-band
gain.

(b) Extracellular-passive sensor: the TF has two zeros in the origin (k=2) and four poles. The
pole at fp2 sets the lower cut-off frequency of the bandwidth. The third and fourth poles lie
beyond the upper limit of Fig. 8 (Eqs. (4.12) and (4.13) in Tab. 3). The in-band gain is given by Eq.
(4.9) and increases if Cnjm and Cjm are large, and Cstray and Camp small. Because of the double
zero in the origin, conventional extracellular sensors record signals that resemble the first time-
derivative of the intracellular potential only if fp1 is small (thus compensanting one zero) and fp2
is large. If fp2 is low, the recorded signal is a sort of derivative of the AP but spread over time
due to the additional low-pass nature of the system. This lowpass effect can mitigated for small
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Passive Intracellular

Gin−band
(

Rnjseal +Rjseal

Rnjseal +Rjseal +Rnjm

)(
Cnano

Cnano + Cpad + Cstray + Camp

)(
1 +

R2

R1

)
(4.2)

fz1 1

2πCnjmRjseal(1 +Rnjm/Rnjseal)
(4.3)

fp1 1

2π(Cnano + Cpad + Cstray + Camp)Ramp
(4.4)

fp2 1

2π(Rnjseal//Rnjm +Rnano +Rstray)

(
1

Cnano
+

1

Camp + Cstray

)
(4.5)

fp3 1

2π

(
1

CnanoRnjseal//Rnjm
+

1

CpadRstray

)
(4.6)

fp4 1

2π

(
1

CjmRjseal
+

1

CnanoRnjseal//Rnjm

)
(4.7)

BW fp1 < f < fp2 (4.8)

Passive Extracellular

Gin−band Cnjm

Cstray + Camp
+

Cjm

Cstray + Camp

Rjseal

Rjseal +Rnjseal

(
1 +

R2

R1

)
(4.9)

fp1 1

2π(Cnano + Cpad + Cstray + Camp)Ramp
(4.10)

fp2 1

2π(Rnjseal +Rjseal +Rnano +Rstray)

(
1

Cnano
+

1

Camp + Cstray

)
(4.11)

fp3 1

2π(Cnjm + Cpad)Rstray
(4.12)

fp4 1

2πRnano

(
1

Cnjm
+

1

Cnano
+

1

Cpad

)
(4.13)

BW f > fp2 (4.14)

Active Intracellular

Gin−band
(

Rnjseal +Rjseal

Rnjseal +Rjseal +Rnjm

)
gmRfeed (4.15)

fz1 1

2πCnjmRjseal(1 +Rnjm/Rnjseal)
(4.16)

fp1 1

2πCjmRjseal
(>10 kHz in Fig. 8) (4.17)

fp2 Related to the OpAmp GBW (>10 kHz in Fig. 8) (4.18)

BW f < fp1 (4.19)

Active Extracellular

Gin−band gmRfeed (4.20)

fp1 1

2πCnjmRnjseal
(>1 kHz in Fig. 8) (4.21)

fp2 Related to the OpAmp GBW (>10 kHz in Fig. 8) (4.22)

BW fp1 < f < fp2 (4.23)

Table 3. Approximate expressions of the in-band gain, poles, and useful bandwidth of the system transfer functions,

H(f), represented in Fig. 8. Cnjm and Cjm are much lower than Cstray + Camp for our case study.
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Rnjseal paying the penalty of a slightly-reduced in-band gain. Furthermore, by looking at Eqs.
(4.10) and (4.11), we deduce that Ramp and Cnano should be large, and Cstrayans Camp small.
On the other hand, to faithfully record signals with undistorted intracellular-like waveforms,
constant gain and linear phase [67] should be achieved over the whole frequency range of the
AP, and not only at its upper edge as visible in the figure. The fp2 should approach fp1 (<0.1Hz),
e.g., by maximizing Rnjseal, consistently with the experimental evidence in [28] where GΩ of
sealing resistance are reported.

(c) Intracellular-active sensor: the TF features one zero (Eq. (4.16)) and two poles in the MHz
range (k=0), hence not visible in Fig. 8, that cut-off the useful frequency bandwidth. The fp1
depends on the Cjm Rjseal product (see Eq. (4.17)), while the large gain-bandwidth product of
the OpAmp, (GBW=5 MHz in our simulations) controls fp2. As a result, high frequency distortion
in the useful frequency spectrum disappears. Moreover, the bandwidth extends toward very low
frequencies (<1 mHz) which is an interesting feature to monitor slowly varying neuronal signals
such as subthreshold potentials and membrane oscillations (see Tab. 1). As a result, the recorded
signal represents a non-distorted scaled replica of the intracellular AP. However, if not otherwise
limited, such a large bandwidth collects excessive noise and reduces the SNR, as discussed in
more detail in the following section. Notice that, if the CGS of the FET is negligible, as in this
case, the capacitive divider Cnano/(Cnano + CGS)≈ 1; hence, it does not affect the in-band gain.
The Gin−band value is then set by the resistive divider as per Eq. (4.15) and can be maximized by
making Rnjseal, gm, and Rfeed large and Rnjm small.

(d) Extracellular-active sensor: the TF has one zero in the origin (k=1) and two poles which
shape the bandwidth according to Eqs. (4.21) and (4.22), respectively. The in-band gain is set
by the gm Rfeed product (see Eq. (4.20)) which should then be large. Conventional extracellular
sensors require large fp1 and fp2 to maintain the characteristic derivative behavior (i.e., the sloped
straight line in Fig. 8, bottom left panel, over most of the AP spectrum frequency range). Thus,
Rnjseal and Cnjm should be small and the OpAmp GBW should be large, although a reduced
gain with poor sealing may effectively prevent signal detection. Conversely, for intracellular-
like sensors fp1 should be small (<0.1 Hz); this requires a large Rnjseal yielding to the same
conclusions as for the extracellular passive sensor case.

All these observations elucidate how the actual neuron waveform transduced by the sensor
is subject to considerable uncertainty since the transfer function is sensitive to the actual quality
of the contact, the ratio between nano-junctional, junctional and non-junctional portions of the
membrane, and the sealing. The applicability limit of the TFs to the analysis of AP transient is
examined in Section (c) of the Additional information.

(d) Comparison with transfer functions from literature
It is instructive to compare our transfer function calculations in Tab. 3 to those reported (only
for extracellular passive planar MEA sensors) in [69,70]. Since our model has additional features
with respect to [69,70] (for instance: three compartments instead of the two, the inclusion of the
readout which is not accounted in [69]), a few assumptions and adaptations are necessary for
meaningful results: 1) our three-compartment model (which refers to a protruding-nano-electrode
and thus describes the nano-junctional interaction with the neuron) has been reduced to a two-
compartment model for planar electrode as in [69,70] by making Rnjseal negligible w.r.t. Rjseal;
2) the electrode is assumed ideally polarizable and free of Faradaic currents. Consequently we set
Re =∞ in the model of [69]. 3) A perfect overlap of the neuron onto the electrode is assumed and
thus we setC′′dl = 0 in the model of [70]. The full correspondence between the models’ parameters
is described in the caption of Tab. 4.

The result of the comparison is reported in Tab. 4 in terms of analytical transfer functions and
in Fig. 9 in terms of |H(f)|. The main differences between the three models are summarized as
follows: 1) all the models have the same fp2 (Eqs. (4.30)(4.31),(4.32)); 2) the model of this work
accounts for the interconnect parasitics and readout circuit (Cstray , Ramp and Camp) which
generate an additional low-frequency pole, fp1 (Eq. (4.27)), accounted for in [70] (Eq. (4.29)) but
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the graphs; their expressions are listed in Tab. 3 in the Additional information.
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Poles and in-band gains are specified inside the graphs; their expressions are listed in Tab. 4. The expression marked as

This work* was found eliminating the effect of Rnano, Rstray , Cstray , Camp, Ramp from the original circuit.

not in [69]; 3) only our model predicts the presence of an additional cut-off frequency, fp3 (Eqs.
(4.33)), due to the components such as Rstray , Cpad and the nano-junctional membrane, Cnjm,
which may pose additional limitations to the bandwidth depending on the parameter values; 4)
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Gin−band

[This work] Cnjm

Cstray + Camp
+

Cjm

Cstray + Camp

Rjseal

Rjseal +Rnjseal

(
1 +

R2

R1

)
(4.24)

[69] Chd

Chd + Ce
(4.25)

[70] C′jm
Clsh + Cain

+
Cm

Clsh + Cain

Rs

Rjseal +Rjseal

(
1 +

R2

R1

)
(4.26)

fp1

[This work] 1

2π(Cnano + Cpad + Cstray + Camp)Ramp
(4.27)

[69] absent (4.28)

[70] 1

2π(C′dl + Clsh + Cain)Rain
(4.29)

fp2

[This work] 1

2π(Rnjseal +Rjseal +Rnano +Rstray)

(
1

Cnano
+

1

Camp + Cstray

)
(4.30)

[69] Re +Rseal

2πReRseal(Chd + Ce)
(4.31)

[70] 1

2π(Rjseal +Rs)

(
1

C′dl
+

1

Cain + Clsh

)
(4.32)

fp3

[This work] 1

2π(Cnjm + Cpad)Rstray
(4.33)

[69] absent (4.34)

[70] absent (4.35)

Table 4. Comparison of the in-band gain and pole expressions of this work (first line in each row of the table) vs those

of [69] (second line) and [70] (third line) for extracellular-passive system transfer functions. For comparison purposes we

assumeRnjseal <<Rjseal and set the parameter in [69] as: Chd = (Cnjm + Cjm), Ce =Cnano, Csh =Cstray ,

Rmet =Rstray , Re =∞; and in [70] as: C′
dl =Cnano, C′′

dl = 0, C′
jm = (Cnjm + Cjm), Cain =Camp, Rain =

Ramp, Clsh =Cstray , Rs ≈ 0.

our expression for Gin−band (Eq. (4.24)) accounts for Cstray and Camp which are present in [70]
(Eq. (4.26)) but not in [69] (Eq. (4.25)). Therefore, Eq. (4.24) predicts a lower gain value than Eq.
(4.25). However, if we eliminate the effect of Rnano, Rstray , Cstray , Camp, Ramp, then the same
in-band gain of [69] is found, as confirmed by the overlay between the blue and red curves in Fig.
9.

(e) Estimation of the Signal-to-Noise Ratio
The SNR is here defined as the ratio of the peak-to-peak Vout signal amplitude to three times
the noise rms value: SNR=Vout[V pp]/(3Vn,out[V rms]), as in [48]. The output noise, Vn,out, is
computed with noise simulations of the circuits in Fig. 4 by integrating the noise spectrum from
0.1 Hz to 10 kHz. For this analysis, the readout gain has been chosen (by adjusting R1, R2, Rfeed

as reported in Tab. A2 in the Additional information) to achieve a peak-to-peak Vout[V pp] = 1
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V response to an AP, a reasonable value to match the dynamic input range of typical integrated
Analog to Digital Converters (ADC) in nowadays CMOS technologies [71].
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Figure 10. SNR evaluated as Vout[V pp]/3 · Vn,out[V rms] for the different sealing conditions, access types, and in

presence or absence of readout noise. The readout gain has been set to provide recorded signals with 1 Vpp amplitudes

by choosing the values of R2 and Rfeed as in Tab. A2.

The noise model accounts for the thermal noise of the resistive elements in Fig. 4, describing
the semiconductor, the electrolyte, the interconnect parasitics, the external resistances in the
readout amplifier, as well as the FET channel noise (equal to 4kTgm, where k is the Boltzmann
constant and T = 300K the temperature) [72], and the equivalent noise sources of a typical low
noise OpAmp (e.g., en=7.5 nV/Hz1/2, in=2 fA/Hz1/2) . The model neglects chemical [73] and
biological noise, and the 1/f noise of the (MOS)FET, which are present in the real system where
semiconductor devices are in contact with electrolytes [74]. Therefore, the computed SNR is a best
case estimate, nevertheless still useful to compare the sensor/readout combinations.

Fig. 10 shows the SNR for different sealing conditions and access types. A first calculation
(right portion of each graph) includes the readout noise, and provides more realistic estimate of
the system SNR. The second one (left portion of each graph) provides a fair comparison between
sensing devices alone, since the readout noise is excluded. Notice that Ramp is an equivalent
input resistance and does not produce noise per-sé. The input referred noise of the readout, when
included, is described by the equivalent noise sources of the OpAmp and the thermal noise of the
amplifier circuit resistors. Fig. 10 shows that when the readout noise is turned off, the intracellular
passive recording system yields the highest SNRs regardless of the sealing conditions. The lowest
SNRs (even <1 with the considered designs and parameter set) are found for the extracellular
passive sensor. A smaller than 1 SNR is useless and should be avoided. If we reduce Cstray

by three orders of magnitude (from 350 pF to 350 fF, top right plot in Fig. 10), the SNR of the
passive-extracellular increases from ≈0.71 to a mere ≈1.11, because the input capacitance of the
OpAmp, Camp=10 pF, is essentially in parallel to Cstray . We can then conclude that the choice
of the readout and the optimization of the interconnects are critical in passive recording systems.
An active pixel integrating the electrode with a low input capacitance readout next to it would
certainly yield benefits.
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For active sensing solutions the SNR is essentially unaffected by the readout noise (compare
left and right halves of each graph in the bottom row), which has an impact, instead, on passive
sensors. Poor sealing conditions degrade the SNR in all cases, and make it even smaller than one
for extracellular sensors. If the readout noise is negligible, the SNR of intracellular active sensors
is smaller than for the passive sensor. This may be due to the large bandwidth that, if not limited,
captures a large integrated noise.

We further investigated ways to improve the performance of active FET sensors with
intracellular coupling (a promising combination, insensitive to the readout noise in our test cases).
We found that when Rnjseal increases from 900 MΩ to 100 GΩ the SNR remains essentially
constant and, furthermore, insensitive to large variations of Cstray . SNR improvements are
obtained only when the Rnjm decreases from the 2 GΩ value assumed in all calculations to
400 MΩ [39]. This suggests that Rnjm is a major noise source for the intracellular active system,
and that either an intimate contact to the cytosol, or a way to locally increase the membrane
conductance, should be implemented [39] compared to the typical electroporation conditions (i.e.,
Rnjm ≈ 2 GΩ as mentioned in Section 3).

5. Conclusions
Micro-/nano-electrode arrays can interrogate neural signals ranging from short-term intracellular
access to long-term extracellular recording, with all the shades in between. In perspective, they
provide neuroscientists with a vast portfolio of advanced and scalable recording technologies. In
this context, we have overviewed a few recent in-vitro neuron activity sensor devices, with an
eye on semiconductor technology and integrated biochips, and with the perspective of enabling
the study of the transduction process from the neuron to the readout for different sensor device’s
shape, materials, readouts,.

To gain insight on how the neuronal signals propagate to the sensor output, a multiscale-
multiphysics modelling methodology based on TCAD tools has been developed and
implemented, employing mixed-mode numerical FEM and circuit descriptions suited to limit
the computational burden. The model is amenable to incorporate in the same simulation
framework the solid-state devices (sensors and readout amplifier), the biological entities and
their environment (neurons and sample electrolyte). The TCAD has been used to validate the
compartmental circuit models and to explore a few sensor designs featuring different geometry
and materials.

An extensive set of closed-form expressions for the transfer function between the intracellular
potential and the output of the readout have been reported for both intra- and etxracellular
recording. They provide new insights about the influence of the main circuit elements on
the recorded signal. In particular, the analysis points out that, consistently with the literature
overview, intracellular recording yields larger monophasic signals, which faithfully retain the
shape of the AP, while in the extracellular case the response can remarkably depart from the
expected time derivative of the AP depending on the coupling between the neuron and the
electrode or the distribution of ion channels along the cleft. The transfer functions provide useful
insights on which part of the system affects the response. However, although the key predictions
are consistent with the results in the time-domain analysis, the use of TFs is not accurate in
predicting the sensed waveform for extracellular recording, due to the distributed nature of the
membrane currents (see Section (c) in the Additional information).

The model was also used to estimate the thermal noise limited SNR and its dependence on the
main features of the sensing system. The large signals offered by intracellular recording are partly
spoiled by a wide equivalent noise bandwidth. Active recording makes the system insensitive to
the readout amplifier noise, but more subject to 1/f noise components from the FET, not included
yet in our analysis but increasingly important for nanoscale CMOS transistors. The detrimental
role of poor sealing and high intracellular contact resistance conditions has been highlighted.

The developed methodology and its implementation are well suited to investigate the
impact of various technology options, and it can support device engineering and optimization
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as also exemplified in this work. Furthermore, the model is amenable to extensions aimed
at incorporating more complex physical effects and noise sources, more realistic neuron
morphology, as derived for instance by real culture imaging, better discretizations of its
compartments, possibly derived by extensive physical characterizations, and last but not least
cross-talk effects among adjacent sensors.
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Additional information

Multiscale simulation analysis of passive and active
micro/nano-electrodes for CMOS-based in-vitro neural

sensing devices

Federico Leva, Pierpaolo Palestri and Luca Selmi

(a) Models and parameters used in TCAD
The TCAD simulations have been run with SDevice version N-2017.09 [53]. The electrolyte
(both intracellular and extracellular) has been modeled as a generic semiconductors material
[54–56] with null band-gap and equivalent conduction and valence band densities of states
NC=NV =7.83·1019 cm−3 corresponding to an effective ion concentration of 130 mM. The ion
mobility is 4·10−4 cm2/Vs for both anions and cations, the relative dielectric permittivity is 80, as
for water. The material affinity is set equal to 6.35 eV.

A thin (0.25 nm) interfacial insulator layer, with relative permittivity equal to≈16 is interposed
between the generic semiconductors (i.e., the electrolytes) and the metal electrodes to prevent DC
current flow and mimic ideally polarizable electrodes with the presence of the highly polarized
Stern layer.
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(b) Values of the equivalent circuit parameters

Intracellular Extracellular Passive Active
Rnjm=2 GΩ [19] Cnjm=94.3 fF Rstray=463 Ω [58] gm=117 µS [75]
Cnano=2.31 pF [58] Cnano=3.64 pF [18] Cstray=350 pF [58] Rfeed=4.38/25.4 Ω
Rnano=0.23 Ω [58] Rnano=350 Ω [18] R2=0 Ω GBW=5 MHz

Both R1=∞ Ω
Cjm=406 fF | Cnm=1.7 pF | Cpad=54 fF [58]
Rnjseal=100/900 MΩ [19] | Rjseal=21.8 kΩ [18]

Table A1. Lumped element values used in this work for transient and AC small signal circuit simulations, and computed

according to [18,58] or taken from [19,75].

Tab. A1 reports the value of the lumped element components in Fig. 4 used in transient
and AC small signal simulations. The relations to calculate the intrinsic and extrinsic lumped
element values, given the geometry and the physical properties of the device, are cited in the
main text (see end of Section 3) for a needle in intracellular contact to the neuron and for a
mushroom-shaped electrode in extracellular contact. Stern and diffusion capacitances form at
the electrode-electrolyte surface and are thus accounted for in our calculations. The component
values which cannot be determined from the device geometry and material properties, e.g., Rnjm
and Rnjseal (because they depend on the neuron/nano-electrode adherence), are taken from [19]
and are consistent with [39]. Notice that Rnjseal is set to 900 MΩ to represent a good sealing
condition, and to 100 MΩ for a poor sealing case. For passive readouts, the gain is set 1, i.e.,
R2=0 and R1=∞. For active readouts, the Rfeed is set to 4.38 Ω and 25.4 Ω to match the peak-to-
peak amplitude of the signal at the respective passive extracellular and intracellular counterparts
in good sealing conditions (Rnjseal=900 MΩ). These values are kept constant for bad sealing
conditions (Rnjseal=100 MΩ).

Rnjseal Intracellular Extracellular

900 MΩ
R2=820 kΩ R2=18.2 MΩ
Rfeed=208 k Ω Rfeed=796 k Ω

100 MΩ
R2=3.03 MΩ R2=124 MΩ
Rfeed=1.41 M Ω Rfeed=87.7 M Ω

Table A2. Rfeed and R2 lumped element values to obtain Vout=1 Vpp for noise circuit simulations and SNR estimation

in different sealing conditions. R1=100 Ω. All the other parameters are taken from Tab. A1

Tab. A2 specifically reports the values of Rfeed and R2 used in noise circuit simulation and
SNR estimation to obtain Vout=1 Vpp for each combination of the circuits in Fig. 4, and for every
sealing conditions (Rnjseal=900/100 MΩ).
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(c) Calculation of the AP response using the transfer functions
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Figure A1. Comparison of the AP transients computed with circuit simulations on the compartmental HH model of Fig. 4

and those predicted by using the transfer functions and Fourier analysis. Rnjseal=900 MΩ, i.e., good sealing conditions

are assumed

.

The AP transients computed with the lumped element circuit model of Fig. 4, using the HH
model of Fig. 2.a for each compartment represented by the small rectangles in Fig. 4, have been
compared to those obtained using the transfer functionH(f) and Fourier analysis. The MATLAB®

lsim command has been used for the purpose. It computes the time response of a dynamic
system described in terms of transfer function expressions, to an any arbitrary input signals
(Vm(t) in this case).

Fig. A1 shows the results of this procedure. We observe that when the internal neuron potential
is directly accessible (intracellular contact), the HH model and transfer function approach are
fully consistent. In fact in such a case, a unique path links Vm to Vout and the corresponding
transfer function sets the dynamics of the sensing system. Parasitic signal paths across the jm
and nm blocks exist, but they do not affect the signal transfer to the sensor. This confirms that
the approximation of a compartment by its capacitance during AC analysis (i.e., neglecting the
conductance of the ion channels) is accurate.

However, when access of the sensor to the internal neuron voltage is spoiled by parasitic
distributed phenomena, such as extracellular field potentials or distributed ionic transmembrane
currents causing appreciable voltage drops on the Rnjseal and Rjseal resistances, then the
transfer function method shows some limitations. In particular, the TF-based calculation allows
to qualitatively predict the shape of the signal waveform in case of an active sensor but with
significantly different peak-to-peak amplitudes; whereas only the biphasic nature of the AP signal
can be distinguished in the passive extracellular case. Indeed, approximating the compartments
with only capacitances entails non-negligible errors in the extracellular case, essentially because
the conductance values during the AP are not negligibly null as assumed by taking their rest point
values.
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