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Abstract

For discrete-time stochastic processes, there is a close connection between return (resp. wait-
ing) times and entropy (resp. relative entropy). Such a connection cannot be straightfor-
wardly extended to the continuous-time setting. Contrarily to the discrete-time case one
needs a reference measure on path space and so the natural object is relative entropy rather
than entropy. In this paper we elaborate on this in the case of continuous-time Markov
processes with finite state space. A reference measure of special interest is the one associated
to the time-reversed process. In that case relative entropy is interpreted as the entropy pro-
duction rate. The main results of this paper are: almost-sure convergence to relative entropy
of the logarithm of waiting-times ratios suitably normalized, and their fluctuation properties
(central limit theorem and large deviation principle)
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1 Introduction

Many limit theorems in the theory of stochastic processes have a version for discrete-time as
well as for continuous-time processes. The ergodic theory of Markov chains e.g. is more or less
identical in discrete and in continuous time. The same holds for the ergodic theorem, martingale
convergence theorems, central limit theorems and large deviations for additive functionals, etc.
Usually, one obtains the same results with some additional effort in the continuous-time setting,
where e.g. extra measurability issues can pop up.
For discrete-time ergodic processes, there is a famous theorem by Ornstein and Weiss connecting
return times and entropy (see (9), (14), (11)). In words, it states that the logarithm of the
first time the process repeats its first n symbols typically behaves like n times the entropy of
the process. This provides a way to estimate the entropy of a process by observing a single
trajectory. This result seems a natural candidate to transport to a continuous-time setting.
The relation between entropy and return times is sufficiently intuitive so that one would not
expect major obstacles on the road toward such a result for continuous-time ergodic processes.
There is however one serious problem. On the path space of continuous-time processes (on a
finite state space, say), there is no natural flat measure. In the discrete-time and finite state
space setting, one cannot distinguish between entropy of a process and relative entropy between
the process and the uniform measure on trajectories. These only differ by a constant (i.e., a
quantity not depending on the process but only on the cardinality of the state space of the
process). As we shall see below, the difference between relative entropy and entropy starts to
play an important role in turning to continuous-time processes. In fact, it turns out that there
is no naive continuous-time analogue of the relation between return times and entropy; the
logarithm of return times turns out to have no suitable way of being normalized, even for very
simple processes in continuous time such as Markov chains. To circumvent this drawback, we
propose here to consider the logarithm of waiting time ratios and relate them to relative entropy.
Of course, defining a return time is already a problem if we are working in continuous time:
a process never exactly reproduces a piece of trajectory. Our approach with respect to this
problem is to first discretize time, and show that the relation between waiting times and relative
entropy persists in the limit of vanishing discrete time-step. From the physical point of view,
this is a natural procedure, and the time-step of the discretization can be associated to the
acquisition frequency of the device one uses to sample the process. We can also think of numerical
simulations for which the discretization of time is unavoidable. Of course, the natural issue is to
verify if the results obtained with the discretized process give the correct ones for the original
process, after a suitable rescaling and by letting the time-step go to zero. This will be done in
the present context.
In this paper, we will restrict ourselves to continuous-time Markov chains with finite state space,
for the sake of simplicity and also because the aforementioned problem already appears in this
special, yet fundamental, setting. The main body of this paper is: a law of large numbers for the
logarithm of waiting times ratios and its connection to relative entropy, a large deviation result
and a central limit theorem for the same quantities. One possible application is the estimation of
the relative entropy density between the forward and the backward process which is physically
interpreted as the mean entropy production, and which is strictly positive if and only if the
process is reversible (i.e., in “detailed balance”, or in “equilibrium”).
Our paper is organized as follows. In Section 2, we show why the naive generalization of the
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Ornstein-Weiss theorem fails. Section 3 contains the main results about law of large numbers,
large deviations and central limit theorem for the logarithm of ratios of waiting times. In the
final section we consider the problem of “shadowing” a given continuous-time trajectory drawn
from an ergodic distribution on path space.

2 Naive approach

In this section we introduce some basic notation and start with an informal discussion motivating
the quantities which we will consider in the sequel. Let {Xt, t ≥ 0} be a continuous-time Markov
chain on a finite state space A, with stationary measure µ, and with generator

Lf(x) =
∑
y∈A

c(x)p(x, y)(f(y)− f(x))

where p(x, y) are the transition probabilities of a discrete-time irreducible Markov chain on A,
with p(x, x) = 0, and where the escape rates c(x) are strictly positive.
Given a time-step δ, we introduce the “δ-discretization” {Xiδ, i = 0, 1, 2, . . .}, which is then a
discrete-time irreducible Markov chain. Next we define the first time the δ-discretized process
repeats its first n symbols via the random variable

Rδ
n(X) := inf{k ≥ 1 : (X0, . . . , X(n−1)δ) = (Xkδ, . . . , X(k+n−1)δ)} . (2.1)

For x1, . . . , xn ∈ A we denote by xn
1 the set of those discrete-time trajectories ω ∈ AN such

that ω1 = x1, . . . , ωn = xn. We denote by Pδ the probability measure on AN given by the joint
distribution of {Xnδ : n ∈ N}, starting from the stationary measure µ, i.e., with X0 distributed
according to µ. By Pδ(Xn

1 ) we denote the probability of the random n-cylinder given by the first
n symbols of the discretized Markov chain, i.e.,

Pδ(Xn
1 ) = µ(X1)

n−1∏
i=1

pX
δ (Xi, Xi+1) (2.2)

The analogue of the Ornstein-Weiss theorem (see (9), (11)) for this continuous-time process
would be a limit theorem for a suitably normalized version of log Rδ

n for n →∞, δ → 0. However,
for δ > 0 fixed, the δ-discretization {X0, Xδ, X2δ, . . . , Xnδ, . . .} is a discrete-time ergodic Markov
chain for which we can apply the Ornstein-Weiss theorem. Moreover, in combination with
Shannon-McMillan-Breiman theorem we can write

lim
n→∞

1
n

log
[
Rδ

n(X)Pδ(Xn
1 )
]

= 0 a.s.

Using the fact that X is an ergodic Markov chain we obtain

− 1
n

log Rδ
n(X) =

1
n

log µ(X0) +
1
n

(
n−1∑
i=1

log pX
δ (Xi, Xi+1)

)
+ o(1)

= E
[
log pX

δ (X0, X1)
]
+ o(1) (2.3)

1051



where by o(1) we mean a random variable converging to zero almost surely as n →∞, where E
denotes expectation in the Markov chain started from its stationary distribution and where pX

δ

denotes the transition probability of the δ-discretized Markov chain {Xiδ, i = 0, 1, 2, . . .}, i.e.,

pX
δ (x, y) = P(Xδ = y|X0 = x) = (eδL)xy = 1Ixy(1− δc(x)) + δc(x)p(x, y) +O(δ2) .

Therefore,

− lim
n→∞

1
n

log Rδ
n(X) =∑

x∈A

µ(x)(1− δc(x)) log(1− δc(x)) +
∑

x,y∈A

µ(x)δc(x)p(x, y) log(δc(x)p(x, y)) +O(δ2) .

In the rhs, the first sum is of order δ whereas the second one is of order δ log δ. Therefore, this
expression does not seem to have a natural way to be normalized. This is a typical phenomenon
for continuous-time processes: we will need a suitable reference process in order to define “en-
tropy” as “relative entropy” with respect to this reference process. In the discrete-time context
this reference measure is obviously the uniform measure on trajectories. Instead of considering
return times, as we will see in the next sections, by considering differences of waiting times one
is able to cancel the δ log δ term and obtain expressions that do converge in the limit δ ↓ 0 to
relative entropy.

3 Main results: waiting times and relative entropy

We consider continuous-time Markov chains with a finite state-space A. We will always work
with irreducible Markov chains with a unique stationary distribution. The process is denoted
by {Xt : t ≥ 0}. The associated measure on path space starting from X0 = x is denoted by Px

and by P we denote the path space measure of the process started from its unique stationary
distribution. For t ≥ 0, Ft denotes the sigma-field generated by Xs, s ≤ t, and P[0,t] denotes the
measure P restricted to Ft.

3.1 Relative entropy: comparing two Markov chains

Consider two continuous-time Markov chains, one denoted by {Xt : t ≥ 0} with generator

Lf(x) =
∑
y∈A

c(x)p(x, y)(f(y)− f(x)) (3.1)

and the other denoted by {Yt : t ≥ 0} with generator

L̃f(x) =
∑
y∈A

c̃(x)p(x, y)(f(y)− f(x))

where p(x, y) is the Markov transition function of an irreducible discrete-time Markov chain.
We further assume that p(x, x) = 0, and c(x) > 0 for all x ∈ A. We suppose that X0, resp. Y0,
is distributed according to the unique stationary measure µ, resp. µ̃ so that both processes are
stationary and ergodic.
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Remark 1. The fact that the Markov transition function p(x, y) is the same for both processes
is only for the sake of simplicity. All our results can be reformulated in the case that the Markov
transition functions would be different.

We recall Girsanov’s formula (see Proposition 2.6, in Appendix 1 of (6) for a straightforward
approach, or section 19 of (7) for more background on exponential martingales in the context of
point processes).

dP[0,t]

dP̃[0,t]
(ω) =

µ(ω0)
µ̃(ω0)

exp
(∫ t

0
log

c(ωs)
c̃(ωs)

dNs(ω)−
∫ t

0
(c(ωs)− c̃(ωs)) ds

)
(3.3)

where Ns(ω) is the number of jumps of the path ω up to time s. The relative entropy of P w.r.t.
P̃ up to time t is defined as

st(P|P̃) =
∫

dP(ω) log
(

dP[0,t]

dP̃[0,t]
(ω)
)
· (3.4)

Using (3.3), stationarity, and the fact that

Mt := Nt −
∫ t

0
c(ωs) ds

is a (mean zero) martingale, we have that for every function ϕ : A → R

E
(∫ t

0
ϕ(ωs)dNs

)
= E

(∫ t

0
ϕ(ωs)c(ωs)ds

)
= t
∑

x

µ(x)ϕ(x)c(x)

Therefore, returning to (3.3) we obtain

st(P|P̃) = t

(∑
x∈A

µ(x)c(x) log
c(x)
c̃(x)

−
∑
x∈A

µ(x)(c(x)− c̃(x))

)
+ C(µ, µ̃) (3.5)

=: ts(P|P̃) + C(µ, µ̃)

where
C(µ, µ̃) =

∑
x∈A

µ(x) log
µ(x)
µ̃(x)

and where

s(P|P̃) =

(∑
x∈A

µ(x)c(x) log
c(x)
c̃(x)

−
∑
x∈A

µ(x)(c(x)− c̃(x))

)
(3.6)

is called the relative entropy per unit time (or relative entropy density) of P with respect to P̃.
Notice also that, by the assumed ergodicity of the Markov process X,

lim
t→∞

1
t

log
dP[0,t]

dP̃[0,t]
(ω) = s(P|P̃) P− a.s. .

In the case {Yt : t ≥ 0} is Markov chain with generator

L̃f(x) =
∑
y∈A

c̃(x)p̃(x, y)(f(y)− f(x))
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(3.5) would give

s(P|P̃) =
∑

x,y∈A

µ(x)c(x)p(x, y) log
c(x)p(x, y)
c̃(x)p̃(x, y)

−
∑
x∈A

µ(x)(c(x)− c̃(x)) (3.7)

Remark 2. An important particular case is met when {Yt : t ≥ 0} is the time-reversed process
of {Xt : t ≥ 0}, i.e.,

(Yt)0≤t≤T = (XT−t)0≤t≤T in distribution .

This is a Markov chain with transition rates

c̃(x, y) = c(x)p̃(x, y) (3.9)

where
p̃(x, y) =

c(y)µ(y)p(y, x)
c(x)µ(x)

(3.10)

which coincides with p(x, y) in the case where µ is a reversible measure for the Markov process
X, i.e., when

c(y)µ(y)p(y, x) = c(x)µ(x)

For the choice (3.9), the random variable

ST (ω) = log
dP̃[0,T ]

dP[0,T ]
(3.11)

has the interpretation of “entropy production”, and the relative entropy density s(P|P̃) has the
interpretation of “mean entropy production per unit time”; see e.g. (5; 8).

3.2 Law of large numbers

For δ > 0, we define the discrete-time Markov chain Xδ := {X0, Xδ, X2δ, . . .}. This Markov
chain has transition probabilities

pX
δ (x, y) = (eδL)xy

= 1Ixy(1− δc(x)) + δc(x)p(x, y) +O(δ2) (3.12)

where 1I is the identity matrix. Similarly, we define the Markov chain Y δ with transition prob-
abilities

pY
δ (x, y) = (eδL̃)xy

= 1Ixy(1− δc̃(x)) + δc̃(x)p(x, y) +O(δ2) . (3.13)

The path-space measure (on AN) of Xδ, resp. Y δ, starting from the stationary measure, is
denoted by Pδ, resp. P̃δ. As before, (see (2.2)) we will use the notation Pδ(Xn

1 ) for the probability
of the random n-cylinder Xn

1 in the discretized process.
We define waiting times, which are random variables defined on AN ×AN, by setting

W δ
n(X|Y ) = inf{k ≥ 1 : (Xδ

1 , . . . , Xδ
n) = (Y δ

k+1, . . . , Y
δ
k+n)} (3.14)
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where we make the convention inf ∅ = ∞. In words, this is the first time that in the process
Y δ, the first n symbols of the process Xδ are observed. Similarly, if X ′δ is an independent copy
of the process Xδ, we define

W δ
n(X|X ′) = inf{k ≥ 1 : (Xδ

1 , . . . , Xδ
n) = (X ′δ

k+1, . . . , X
′δ
k+n)} . (3.15)

In what follows, we will always choose the processes {Yt : t ≥ 0} and {Xt : t ≥ 0}, as well as
{Xt : t ≥ 0} and {X ′

t : t ≥ 0} to be independent. However, no independence of {Yt : t ≥ 0}
and {X ′

t : t ≥ 0} will be required. The joint distribution on path space of these three processes
(X, Y,X ′) will be denoted by P123. Correspondingly the joint law of the δ-discretization of
(X, Y,X ′) will be denoted by Pδ

123.
Our first result is a law of large numbers for the logarithm of the ratio of waiting times, in the
limit n →∞, δ ↓ 0.

Theorem 1. P123-almost surely:

lim
δ→0

lim
n→∞

1
nδ

log
W δ

n(X|Y )
W δ

n(X|X ′)
= s(P|P̃) . (3.17)

Before proving this theorem, we state a theorem from (1) about the exponential approximation
for the hitting-time law, which will be the crucial ingredient in the whole of this paper. For
an n-block xn

1 := x1, . . . , xn ∈ An and a continuous-time trajectory ω ∈ A[0,∞), we define the
hitting time of the δ-discretization by

T δ
xn
1
(ω) = inf{k ≥ 1 : ωkδ = x1, . . . , ω(k+n−1)δ = xn} . (3.18)

We then have the following result, see (1).

Theorem 2. For all δ > 0, there exist η1, η2, C, c, β, κ ∈]0,∞[ such that for all n ∈ N and for
all xn

1 ∈ An, there exists η = η(xn
1 ), with 0 < η1 ≤ η ≤ η2 < ∞ such that for all t > 0∣∣∣P(T δ

xn
1
(ω) >

t

Pδ(Xn
1 = xn

1 )

)
− e−ηt

∣∣∣ ≤ Ce−ct
(
Pδ(Xn

1 = xn
1 )
)κ

≤ Ce−cte−βn . (3.20)

The same theorem holds with P replaced by P̃.

The constants appearing in Theorem 2 (except C) depend on δ, and more precisely we have
β = β(δ) → 0, η1 = η1(δ) → 0 as δ → 0. We will come back to this later on.
From Theorem 2 we derive (see (2), theorem 2.4):

Proposition 1. For all δ > 0, there exist κ1, κ2 > 0 such that

−κ1 log n ≤ log
(
W δ

n(X|Y )P̃δ(Xn
1 )
)
≤ log(log nκ2) P⊗ P̃ eventually a.s.

and
−κ1 log n ≤ log

(
W δ

n(X|X ′)Pδ(Xn
1 )
)
≤ log(log nκ2) P⊗ P eventually a.s.
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With these ingredients we can now give the proof of Theorem 1.

Proof of Theorem 1. From Proposition 1 it follows that, for all δ > 0, P123 almost surely

lim
n→∞

1
n

(
log W δ

n(X|Y )− log W δ
n(X|X ′) +

n−1∑
i=0

log pY
δ (Xi, Xi+1)−

n−1∑
i=0

log pX
δ (Xi, Xi+1)

)
= 0 .

(3.22)
By ergodicity of the continuous-time Markov chain {Xt : t ≥ 0}, the discrete Markov chains
Xδ, Y δ are also ergodic and therefore we obtain

lim
n→∞

1
n

log W δ
n(X|Y )− log W δ

n(X|X ′) +
∑

x,y∈A

µ(x)pX
δ (x, y) log

(
pY

δ (x, y)
pX

δ (x, y)

) = 0 . (3.23)

Using (3.12), (3.13) and p(x, x) = 0, this gives

lim
n→∞

1
n

(
log W δ

n(X|Y )− log W δ
n(X|X ′)

)
= −

∑
x∈A

µ(x)(1− δc(x)) log(1− δc̃(x))−
∑

x,y∈A

µ(x)δc(x)p(x, y) log(δc̃(x)p(x, y))

+
∑
x∈A

µ(x)(1− δc(x)) log(1− δc(x)) +
∑

x,y∈A

µ(x)δc(x)p(x, y) log(δc(x)p(x, y)) +O(δ2)

= δ

 ∑
x,y∈A

µ(x)c(x)p(x, y) log
c(x)
c̃(x)

+
∑
x∈A

µ(x)(c̃(x)− c(x))

+O(δ2)

= δ s(P|P̃) +O(δ2) . (3.24)

where in the last line we used the expression (3.6) for the relative entropy. �

Let us now specify the dependence on δ of the various constants appearing in Theorem 2. For
the lower bound on the parameter we have (see (1), section 5)

η1(δ) ≥
1

C ′ + K
(3.25)

where C ′ is a positive number independent of δ and

K = 2
∞∑
l=1

α(l) +
n/2∑
k=1

sup
{x(n−k)

1 }
Pδ(X(n−k)

1 = x
(n−k)
1 ) .

Here α(l) denotes the classical α-mixing coefficient:

α(l) = sup
j≥1

sup
S1∈Fj−1

0 ,S2∈F∞
j+l

(
Pδ(S1 ∩ S2)− Pδ(S1)Pδ(S2)

)
where, for 0 ≤ m ≤ n < ∞, Fn

m denotes sigma-field of subsets of AN generated by Xi (m ≤ i ≤
n). By the assumption of ergodicity of the continuous Markov chain, the generator L (resp. L̃)
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has an eigenvalue 0, the maximum of the real part of the other eigenvalues is strictly negative
and denoted by −λ1 < 0. One then has

α(l) ≤ exp(−λ1δl) . (3.26)

Using (3.12) there exists λ2 > 0 such that

Pδ(X(n−k)
1 = x

(n−k)
1 ) ≤ exp(−λ2δn/2)

for k = 1, . . . , n/2. Therefore, there exists ĉ > 0 such that

η1(δ) > ĉδ . (3.27)

Similarly, from the proof of Theorem 2.1 in (2) one obtains easily the dependence on δ of the
constants appearing in the error term of (3.20).

c = c(δ) > γ1δ, β = β(δ) > γ2δ (3.28)

for some γ1, γ2 > 0.
In applications, e.g., in the estimation of the relative entropy from two given sample paths, one
would like to choose the word-length n and the discretization δ = δn together. This possibility is
precisely provided by the estimates (3.27) and (3.28), as the following analogue of Proposition
1 shows.

Proposition 2. Let δn → 0 as n →∞, then there exists κ1, κ2 > 0

− κ1
log n

δn
≤ log

(
W δn

n (X|Y )P̃δn(Xn
1 )
)
≤ log

(
κ2 log n

δn

)
P⊗ P̃ eventually a.s. (3.30)

and

−κ1
log n

δn
≤ log

(
W δn

n (X|X ′)Pδn(Xn
1 )
)
≤ log

(
κ2 log n

δn

)
P⊗ P eventually a.s. .

Proof. The proof is analogous to the proof of Theorem 2.4 in (2). For the sake of completeness, we
prove the upper bound of (3.30). We can assume that δn ≤ 1. By the exponential approximation
(3.20) we have, for all t > 0, n ≥ 1, the estimates

Pδ ⊗ P̃δ
(
log
(
W δ

n(X|Y )P̃δ(Xn
1 )
)
≥ log t

)
≤ e−η(δn)t + Ce−β(δn)ne−c(δn)t

≤ e−η1δnt + Ce−γ1δnne−γ2δnt . (3.31)

Choosing t = tn = κ2 log n
δn

, with κ2 > 0 large enough makes the rhs of (3.31) summable and
hence a Borel-Cantelli argument gives the upper bound.

The use of propositions 1, 2 lies in the fact that the logarithm of the waiting time can be well
approximated by the logarithm of the probability of an n-block under the measure Pδ, or P̃δ. By
the Markov property, the logarithm of this probability is an ergodic sum which is much easier
to deal with from the point of view of obtaining law of large numbers, large deviation theorem
and central limit behavior.
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Of course, whether proposition (2) is still useful, i.e., whether it still gives the law of large
numbers with δ = δn depends on the behavior of ergodic sums such as

n∑
i=1

f(Xi)

under the measure Pδn , i.e., the behavior of
n∑

i=1

f(Xiδn)

under P. This is made precise in the following theorem:

Theorem 3. Suppose that δn → 0 as n →∞ such that log n
nδ2

n
→ 0 then in P123 probability:

lim
n→∞

1
nδn

log
W δn

n (X|Y )
W δn

n (X|X ′)
= s(P|P̃) . (3.33)

Proof. By Proposition 2 we can write

log W δn
n (X|Y )− log W δn

n (X|X ′)

=
n∑

i=1

1IXi=Xi+1 log
1− δnc(Xi)
1− δnc̃(Xi)

+
n∑

i=1

1IXi 6=Xi+1
log

c(Xi)
c̃(Xi)

+O(log n/δn) . (3.34)

Both sums on the right hand side of (3.34) are of the form

n∑
i=1

Fδn(Xiδn , X(i+1)δn
) (3.35)

with
E(Fδn − E(Fδn))2 ≤ Cδn (3.36)

where C > 0 is some constant. Now, using ergodicity of the continuous-time Markov chain
{Xt, t ≥ 0}, we have the estimate

E
((

Fδn(Xiδn , X(i+1)δn
)− E(Fδn)

) (
Fδn(Xjδn , X(j+1)δn

)− E(Fδn)
))
≤ ‖Fδn‖2

2 e−δnλ1|i−j| (3.37)

with λ1 > 0 independent of n.
Combining these estimates gives

Var

(
n∑

i=1

Fδn(Xiδn , X(i+1)δn
)

)
≤ Cnδn +

n∑
i=1

∑
j∈{1,...,n}\{i}

δne−δnλ1|i−j| ≤ Cnδn +C ′δn
n

δn
(3.38)

where C ′ > 0 is some constant. Therefore,

1
n2δ2

n

Var

(
n∑

i=1

Fδn(Xiδn , X(i+1)δn
)

)
= O(1/nδ2

n) . (3.39)

Combining (3.34) and (3.39) with the assumption log n
nδ2

n
→ 0 concludes the proof.
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3.3 Large deviations

In this subsection, we study the large deviations of

1
n

log
(

W δ
n(X|Y )

W δ
n(X|X ′)

)
·

under the measure P123. More precisely, we compute the scaled-cumulant generating function
Fδ(p) in the limit δ → 0 and show that it coincides with the scaled-cumulant generating function
for the loarithm of the Radon-Nikodym derivative dP[0,t]/dP̃[0,t] in the range p ∈ (−1, 1). As in
the case of waiting times for discrete-time processes, see e.g. (3), the scaled-cumulant generating
function is only finite in the interval (−1, 1).
We introduce the function

E(p) = lim
t→∞

1
t

log EP

(
dP[0,t]

dP̃[0,t]

)p

=

lim
t→∞

1
t

log EP

(
exp

(
p

(∫ t

0
log

c(ωs)
c̃(ωs)

dNs(ω)−
∫ t

0
(c(ωs)− c̃(ωs)) ds

)))
. (3.40)

By standard large deviation theory for continuous-time Markov chains (see e.g. (12) p. 107-)
this function exists and is the scaled cumulant generating function for the large deviations of∫ t

0
log

c(ωs)
c̃(ωs)

dNs(ω)−
∫ t

0
(c(ωs)− c̃(ωs)) ds

as t →∞, i.e., the large deviations of this quantity are governed by the entropy function

I(x) = sup
p

(px− E(p))

We can now formulate our large deviation theorem.

Theorem 4. a) For all p ∈ R and δ > 0 the function

Fδ(p) := lim
n→∞

1
nδ

log EPδ
123

(
W δ

n(X|Y )
W δ

n(X|X ′)

)p

(3.42)

exists, is finite in p ∈ (−1, 1) whereas

Fδ(p) = ∞ for |p| ≥ 1 .

b) Moreover, as δ → 0, we have, for all p ∈ (−1, 1):

F(p) := lim
δ→0

Fδ(p) = E(p) .

The following notion of logarithmic equivalence will be convenient later on.

Definition 1. Two non-negative sequences an, bn are called logarithmically equivalent (notation
an ' bn) if

lim
n→∞

1
n

(log an − log bn) = 0 .
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Proof. To prove Theorem 4, we start with the following lemma.

Lemma 1. 1. For all δ > 0 and for |p| < 1,

EPδ
123

(
W δ

n(X|Y )
W δ

n(X|X ′)

)p

' EPδ exp

(
p

n−1∑
i=0

log
(

pX
δ (Xi, Xi+1)

pY
δ (Xi, Xi+1)

))
· (3.45)

2. For |p| > 1,

lim
n→∞

1
n

log EPδ
123

(
W δ

n(X|Y )
W δ

n(X|X ′)

)p

= ∞ . (3.46)

Proof. The proof is similar to that of Theorem 3 in (3).

EPδ
123

(
W δ

n(X|Y )
W δ

n(X|X ′)

)p

=
∑

x1,...,xn

Pδ(Xn
1 = xn

1 )

(
Pδ(X ′n

1 = xn
1 )

P̃δ(Y n
1 = xn

1 )

)p

EP̃δ⊗Pδ

(
Txn

1
(Y δ)P̃δ(Y n

1 = xn
1 )

Txn
1
(X ′δ)Pδ(X ′n

1 = xn
1 )

)p

=
∑

x1,...,xn

Pδ(Xn
1 = xn

1 )1+p P̃δ(Y n
1 = xn

1 )−p EP̃δ⊗Pδ

(
ξn

ζn

)p

where
ξn = Txn

1
(Y δ) P̃δ(Y n

1 = xn
1 )

and
ζn = Txn

1
(X ′δ) Pδ(X ′n

1 = xn
1 ) .

The random variables ξn, ζn have approximately an exponential distribution (in the sense of
Theorem 2). Using this fact, we can repeat the arguments of the proof of Theorem 3 in (3)
-which uses the exponential law with the error-bound given by Theorem 2- to prove that for
p ∈ (−1, 1)

0 < C1 ≤ EP̃δ⊗Pδ

(
ξn

ζn

)p

≤ C2 < ∞

where C1, C2 do not depend on n, whereas for |p| > 1,

EP̃δ⊗Pδ

(
ξn

ζn

)p

= ∞ . (3.47)

(Remark that up to corrections to the exponential law (details spelled out in proof of Theorem
3 in (3)) this simply comes from the fact that for γ > 0, the integral∫ ∞

0

1
xγ

e−x

is convergent if and only if γ < 1.) Therefore, with the notation of Definition 1, for |p| < 1

EPδ
123

(
W δ

n(X|Y )
W δ

n(X|X ′)

)p

'
∑

x1,...,xn

Pδ(X1 = x1, . . . , Xn = xn)1+p P̃δ(Y1 = x1, . . . , Yn = xn)−p

= EPδ exp

(
p

n∑
i=1

log
(

pX
δ (Xi, Xi+1)

pY
δ (Xi, Xi+1)

))
· (3.48)
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and for |p| > 1 we obtain (3.46) from (3.47).

This proves the existence of Fδ(p). Indeed, the limit

Fδ(p) = lim
n→∞

1
n

log EPδ exp

(
p

n∑
i=1

log
(

pX
δ (Xi, Xi+1)

pY
δ (Xi, Xi+1)

))
(3.49)

exists by standard large deviation theory of (discrete-time, finite state space) Markov chains
(since δ > 0 is fixed), see e.g. (4), section 3.1.1.
In order to deal with the limit δ → 0 of Fδ(p), we expand the expression in the rhs of (3.45),
up to order δ2. This gives

EPδ exp

(
p

n∑
i=1

log
(

pX
δ (Xi, Xi+1)

pY
δ (Xi, Xi+1)

))

= eO(nδ2)EPδ

(
exp

(
p

n∑
i=1

log
1IXi,Xi+1 + δc(Xi)p(Xi, Xi+1)− δc(Xi)
1IXi,Xi+1 + δc̃(Xi)p(Xi, Xi+1)− δc̃(Xi)

))

= eO(nδ2)EPδ

[
exp

(
p

n∑
i=1

δ1I(Xi = Xi+1) (c̃(Xi)− c(Xi))
)

+ p

n∑
i=1

1I(Xi 6= Xi+1) log
c(Xi)
c̃(Xi)

]

= eO(nδ2)EP

[
exp

(
p

n∑
i=1

δ1I(Xiδ = X(i+1)δ) (c̃(Xiδ)− c(Xiδ))
)

+ p

n∑
i=1

1I(Xiδ 6= X(i+1)δ) log
c(Xiδ)
c̃(Xiδ)

]
·

Next we prove that for all K ∈ R

log EPδ

exp
(
K
∑n

i=1

(
δ1I(Xiδ = X(i+1)δ)(c̃(Xiδ)− c(Xiδ)) + 1I(Xiδ 6= X(i+1)δ) log c(Xiδ)

c̃(Xiδ)

))
exp

(
K
∫ nδ

0
(c̃(Xs)− c(Xs))ds + K

∫ nδ

0
log c(Xs)

c̃(Xs) dNs

)
 (3.50)

= O(nδ2).

This will give the result of the theorem by an application of Hölder’s inequality, as is shown in
lemma 2 below. We first consider the difference

A(n, δ) :=
∣∣∣ n∑

i=1

1I(Xiδ 6= X(i+1)δ) log
c(Xiδ)
c̃(Xiδ)

−
∫ nδ

0
log

c(Xs)
c̃(Xs)

dNs

∣∣∣ .
If there does not exist an interval [iδ, (i + 1)δ[, i ∈ {0, . . . , n − 1} where at least two jumps of
the process {Nt, t ≥ 0} occur, then A(n, δ) = 0. Indeed, if there is no jump in [iδ, (i + 1)δ[,
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both 1I(Xiδ 6= X(i+1)δ) log c(Xiδ)
c̃(Xiδ) and

∫ (i+1)δ
iδ log c(Xs)

c̃(Xs)
dNs are zero and if there is precisely one

jump, then they are equal. Therefore, using the independent increment property of the Poisson
process, and the strict positivity of the rates, we have the bound

A(n, δ) ≤ C

n∑
i=1

1I(χi ≥ 2)

where the χi’s, i = 1, . . . , n, form a collection of independent Poisson random variables with
parameter δ, and C is some positive constant. This gives

EPδe2KA(n,δ) = (O(δ2)e2K +O(1))n = O(enδ2
) . (3.51)

Next, we tackle

B(n, δ) :=
∣∣∣ n∑

i=1

δ1I(Xiδ = X(i+1)δ)(c̃(Xiδ)− c(Xiδ))−
∫ nδ

0
(c̃(Xs)− c(Xs))ds

∣∣∣ . (3.52)

If there is no jump in any of the intervals [iδ, (i + 1)δ[, this term is zero. Otherwhise, the
contibution of the interval [iδ, (i + 1)δ[ is bounded by C ′δ. Therefore it is bounded by

B(n, δ) ≤ C ′δ

n∑
i=1

1I(χi ≥ 1)

where the χi’s, i = 1, . . . , n, form once more a collection of independent Poisson random variables
with parameter δ, and C ′ is some positive constant. This gives

EPe2KB(n,δ) ≤ (O(δeC′′δ) + 1− δ)n = O(enδ2
)

where C ′′ is some positive constant. Hence, (3.50) follows by combining (3.51) and (3.52) and
using Cauchy-Schwarz inequality.

The following lemma referred to before is easy and standard, but we state and prove it here for
the sake of completeness.

Lemma 2. Let Xn and Yn be two sequences of (real-valued) random variables such that

lim
n→∞

1
an

log Eet(Xn−Yn) = 0 (3.54)

for all t ∈ R, and for some sequence of positive numbers an ↑ ∞. Suppose that for all t ∈ R,

FX(t) = lim sup
n→∞

1
an

log EetXn (3.55)

and
FY (t) = lim sup

n→∞

1
an

log EetYn (3.56)

are finite. Then for all t ∈ R
FX(t) = FY (t) (3.57)
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Proof. Put
εn = Xn − Yn

then by Hölder’s inequality and the assumption (3.54) we have for all p > 1,

FX(t) = lim sup
n→∞

1
an

log E(etYnet(εn))

≤ lim sup
n→∞

1
pan

log E(eptYn) =
1
p
FY (tp)

So we obtain the inequalities

FX(t) ≤ 1
p
FY (tp) ≤ 1

pp′
FX(tpp′)

for all p, p′ > 1. Both functions FX and FY are convex and hence continuous. Therefore the
result of the lemma follows by taking the limits p, p′ → 1.

The following large deviation result for fixed δ > 0 is an application of Theorem 4 and (10).

Proposition 3. For all δ > 0, Fδ is real-analytic and convex, and the sequence {log W δ
n(X|Y )−

log W δ
n(X|X ′) : n ∈ N} satisfies the following large deviation principle: Define the open interval

(c−, c+), with

c± := lim
p→±1

dEδ

dp
< 0

Then, for every interval J such that J ∩ (c−, c+) 6= ∅

lim
n→∞

1
n

log Pδ
123

{
1
n

log
(

W δ
n(X|Y )

W δ
n(X|X ′)

)
∈ J

}
= − inf

q∈J∩(c−,c+)
Iδ(q)

where Iδ is the Legendre transform of Fδ.

Remark 3. In the case {Yt : t ≥ 0} is the time reversed process of {Xt : t ≥ 0}, the scaled-
cumulant generating function function E(p) satisfies the so-called fluctuation theorem symmetry

E(p) = E(−1− p) .

The large deviation result of Theorem 4 then gives that the entropy production estimated via
waiting times of a discretized version of the process has the same symmetry in its scaled-cumulant
generating function for p ∈ [0, 1].

3.4 Central limit theorem

Theorem 5. For all δ > 0,

1√
n

(
log
(

W δ
n(X|Y )

W δ
n(X|X ′)

)
− ns(P|P̃)

)
converges in distribution to a normal law N (0, σ2

δ ), where

σ2
δ = lim

n→∞

1
n

Var

(
log

(
Pδ(Xn

1 )
P̃δ(Xn

1 )

))
·
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Moreover
lim
δ→0

1
δ2

σ2
δ = θ2

where

θ2 = lim
t→∞

1
t
Var

(
log
(

dP[0,t]

dP̃[0,t]

))
·

Proof. First we claim that for all δ > 0

lim
n→∞

1
n

EPδ
123

(
log
(

W δ
n(X|Y )

W δ
n(X|X ′)

)
−

n∑
i=1

log
pX

δ (Xi, Xi+1)
pY

δ (Xi, Xi+1)

)2

= 0 . (3.61)

This follows from the exponential law, as is shown in (3), proof of Theorem 2.
Equation (3.61) implies that a CLT for

(
log W δ

n(X|Y )− log W δ
n(X|X ′)

)
is equivalent to a CLT

for
∑n

i=1 log pX
δ (Xi,Xi+1)

pY
δ (Xi,Xi+1)

and the variances of the asymptotic normals are equal. For δ fixed,∑n
i=1 log pX

δ (Xi,Xi+1)

pY
δ (Xi,Xi+1)

satisfies the CLT (for δ > 0 fixed, Xi is a discrete-time ergodic Markov

chain), so the only thing left is the claimed limiting behavior for the variance, as δ → 0.
As in the proof of the large deviation theorem, we first expand up to order δ:

n∑
i=1

log
pX

δ (Xi, Xi+1)
pY

δ (Xi, Xi+1)

=
n∑

i=1

1I(Xi = Xi+1)δ(c̃(Xi)− c(Xi)) +
n∑

i=1

1I(Xi 6= Xi+1) log
c(Xi)
c̃(Xi)

=:
n∑

i=1

(ξδ
i + ζδ

i ) .

It is then sufficient to verify that

lim
δ→0

lim
n→∞

1
nδ

n∑
i=1

E

(ξδ
i −

∫ (i+1)δ

iδ
(c̃(Xs)− c(Xs))ds

)2

+

(
ζδ
i −

∫ (i+1)δ

iδ
log

c(Xs)
c̃(Xs)

dNs

)2
 = 0

which is an analogous computation with Poisson random variables as the one used in the proof
of Theorem 4.

4 Shadowing a given trajectory

In the context of discrete-time processes, besides the study of return and waiting times, one is
also interested in the hitting time of a given pattern. It turns out that if the process satisfies
certain mixing conditions, then the exponential law for the hitting time of a pattern holds for
all patterns, with a parameter that depends on self-repetitive properties of the pattern, see e.g.,
(1). This exponential law for all patterns can then be used in the context of waiting times,
where one chooses a pattern “typical” for measure P and looks for the hitting time of it in a
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random sequence with distribution P, or for return times, where the pattern consists of the first
n symbols of the process.
In the same spirit, one can consider a fixed trajectory and ask for the limiting behavior of the
logarithm of the time that one has to wait before seeing this trajectory in a continuous time
process. As before, this question can only be asked properly by first discretizing, and then taking
the limit of zero discretization δ. Moreover, in the spirit of what preceded, one has to consider
differences of logarithms of hitting times in order to find a proper normalizable quantity in the
limit of discretization step δ ↓ 0.
In the previous sections we required the processes X, Y,X ′ to be Markov. To compare with the
other sections, in this section we require Y, X ′ to be Markov, while X will be replaced by a
fixed trajectory γ. We recover in particular the analogous (to Theorem 1) law of large numbers
(Theorem 6 below) if we require γ to be distributed according to a stationary ergodic (but now
not necessarily Markovian) process.
Let γ ∈ D([0,∞), X) be a given trajectory. The jump process associated to γ is defined by

Nt(γ) =
∑

0≤s≤t

1I(γs− 6= γs+) .

For a given δ > 0, define the “jump times” of the δ-discretization of γ:

Σδ
n(γ) = {i ∈ {1, . . . , n} : γ(i−1)δ 6= γiδ} .

For the Markov process {Xt, t ≥ 0} with generator

Lf(x) =
∑
y∈A

c(x)p(x, y)(f(y)− f(x))

define the hitting time

T δ
n(γ|X) = inf{k ≥ 0 : (Xkδ, . . . , X(k+n)δ) = (γ0, γδ, . . . , γnδ)} .

In words this is the first time after which the δ-discretization of the process imitates the δ-
discretization of the given trajectory γ during n + 1 time-steps. For fixed δ > 0, the process
{Xnδ;n ∈ N} is an ergodic discrete-time Markov chain for which we can apply the results of (1)
for hitting times. More precisely there exist 0 < Λ1 < Λ2 < ∞ and C, c, α > 0 such that for all
γ, n ∈ N, there exists Λ1 < λγ

n < Λ2 such that∣∣∣P(T δ
n(γ|X)P(Xiδ = γiδ ,∀i = 1, . . . , n + 1) > t

)
− e−λγ

nt
∣∣∣ ≤ Ce−cte−αn . (4.1)

As a consequence of (4.1) we have

Proposition 4. For all δ > 0, there exist κ1, κ2 > 0 such that for all γ ∈ D([0,∞), X), P ⊗ P̃
eventually almost surely

−κ1 log n ≤ log
(
T δ

n(γ|Y )P̃(Yδ = γδ, . . . , Ynδ = γnδ)
)
≤ log(log nκ2)

and
−κ1 log n ≤ log

(
T δ

n(γ|X)P(Xδ = γδ, . . . , Xnδ = γnδ)
)
≤ log(log nκ2) .
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Therefore, for δ > 0 fixed, we arrive at

log T δ
n(γ|X) = (4.3)∑

i∈Σδ
n(γ)

log(δc(γ(i−1)δ)p(γ(i−1)δ, γiδ)) +
∑

i∈{1,...,n}\Σδ
n(γ)

log(1− δc(γ(i−1)δ)) + o(n) .

The presence of the log(δ) term in the rhs of (4.3) causes the same problem as we have encoun-
tered in Section 2. Therefore, we have to subtract another quantity such that the log(δ) term is
canceled. In the spirit of what we did with the waiting times, we subtract log T δ

n(γ|Y ), where
{Yt : t ≥ 0} is another independent Markov process with generator

Lf(x) =
∑
y∈A

c̃(x)p̃(x, y)(f(y)− f(x)) .

We then arrive at

log
T δ

n(γ|X)
T δ

n(γ|X)
=

∑
i∈Σδ

n(γ)

log
c(γ(i−1)δ)p(γ(i−1)δ, γiδ)
c̃(γ(i−1)δ)p̃(γ(i−1)δ, γiδ)

+
∑

i∈{1,...,n}\Σδ
n(γ)

log
(1− δc(γ(i−1)δ))
(1− δc̃(γ(i−1)δ))

+ o(n)

(4.4)
We then have the following law of large numbers

Theorem 6. Let P (resp. P̃) denote the stationary path space measure of {Xt : t ≥ 0} (resp.
{Yt : t ≥ 0} and let γ ∈ D([0,∞), X) be a fixed trajectory. We then have P⊗ P̃-almost surely:

lim
δ→0

lim
n→∞

1
nδ

(
log

T δ
n(γ|Y )

T δ
n(γ|X)

−
∫ nδ

0
log

c(γs)p(γs− , γs+)
c̃(γs)p̃(γs− , γs+)

dNs(γ)−
∫ nδ

0
(c̃(γs)− c(γs))ds

)
= 0 . (4.6)

Moreover, if γ is chosen according to a stationary ergodic measure Q on path-space, then Q-
almost surely

lim
δ→0

lim
n→∞

1
nδ

(
log T δ

n(γ|Y )− log T δ
n(γ|X)

)
=
∑

x,y∈A

q(x, y) log
c(x)p(x, y)
c̃(x)p̃(x, y)

+
∑
x∈A

q(x)(c̃(x)− c(x))

(4.7)
where

q(x, y) = lim
t→∞

EQ

(
Nxy

t

t

)
q(x) = Q(γ0 = x)

and where Nxy
t (γ) denotes the number of jumps from x to y of the trajectory γ in the time-interval

[0, t].

Proof. Using proposition 4, we use the same proof as that of Theorem 1, and use that the sums
in the rhs of (4.4) is up to order δ2 equal to the integrals appearing in the lhs of (4.6). The
other assertions of the theorem follow from the ergodic theorem.
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Remark 4. If we choose γ according to the path space measure P, i.e., γ is a “typical” trajectory
of the process {Xt : t ≥ 0}, and choose p(x, y) = p̃(x, y), then we recover the limit of the law of
large numbers for waiting times (Theorem 1):

lim
δ→0

lim
n→∞

1
nδ

(
log T δ

n(γ|Y )− log T δ
n(γ|X)

)
=

∑
x

µ(x)c(x) log
c(x)
c̃(x)

+
∑

x

µ(x)(c̃(x)− c(x))

= s(P|P̃) .
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