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Abstract: Polycystic ovary syndrome (PCOS) is the most frequent endocrine-metabolic disorder
among women at reproductive age. The diagnosis is based on the presence of at least two out
of three criteria of the Rotterdam criteria (2003). In the last decades, the dysmetabolic aspect of
insulin resistance and compensatory hyperinsulinemia have been taken into account as the additional
key features in the etiopathology of PCOS, and they have been widely studied. Since PCOS is a
complex and multifactorial syndrome with different clinical manifestations, it is difficult to find the
gold standard treatment. Therefore, a great variety of integrative treatments have been reported to
counteract insulin resistance. PCOS patients need a tailored therapeutic strategy, according to the
patient’s BMI, the presence or absence of familiar predisposition to diabetes, and the patient’s desire
to achieve pregnancy or not. The present review analyzes and discloses the main clinical insight of
such complementary substances.

Keywords: PCOS; insulin resistance; inositols; carnitines; lipoic acid; antioxidants; L-arginine; N-
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1. Introduction

Polycystic ovary syndrome (PCOS) is the most common female endocrine-metabolic
disorder, affecting 5–21% of women at reproductive age [1].

The diagnosis of PCOS is based on the Rotterdam criteria (2003), which requires at least
two out of three criteria: chronic anovulation disorders (oligo- or amenorrhea), clinical or
biochemical signs of hyperandrogenism, and the morphology of the polycystic ovary (PCO)
at ultrasound (the presence of a follicle number per ovary of ≥20 and/or an ovarian volume
≥10 mL on either ovary using a ultrasound transducers with a frequency bandwidth that
includes 8 MHz) [2]. PCO is different from PCOS because it refers only to the morphological
aspect of ovaries, and it can be present in other endocrine disorders. A formal diagnosis of
PCOS requires that the conditions of thyroid dysfunction, hyperprolactinemia, acromegaly,
non-classical congenital adrenal hyperplasia, Cushing syndrome, and ovarian/adrenal
androgen-secreting neoplasms have been excluded.

Although there is no mention in these criteria, in the last decades the dysmetabolic
aspect of insulin resistance (IR) has been introduced and taken into account as a key feature
in the etiopathology of polycystic ovary syndrome. IR is defined as the pathological state
in which certain tissues have subnormal biological response to a given concentration of
insulin [3], and that leads to compensatory hyperinsulinemia in order to maintain glucose
blood concentrations in range.

IR and consequent compensatory hyperinsulinemia contribute to the endocrine dys-
regulation, leading not only to the risk of cardiometabolic diseases, like impaired glucose
tolerance, type 2 diabetes, dyslipidemia, hypertension, obesity, and metabolic syndrome,
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but also to the typical clinical signs of hyperandrogenemia, such as acne, alopecia, and
hirsutism [4–6].

The etiology of PCOS is complex and multifactorial, including genetic and environ-
mental factors, witnessed by the presence of familial aggregation of the disorder [7]. IR,
obesity, and familial predisposition to diabetes are the most influent among hereditary
factors. Indeed the presence of familial diabetes predispose to a defect of the post-receptor
signaling not only for insulin, but also for Follicle Stimulating Hormone (FSH) and Thyroid
Stimulating Hormone (TSH) [8,9].

Instead, the environmental factors include prenatal exposure to a hyperandrogenic
environment, reduced fetal growth (IUGR), or small for gestational age (SGA), as well as
exposure to gestational diabetes during pregnancy and inadequate lifestyle [10].

2. Endocrine Profile of PCOS

PCOS is characterized by higher concentrations of Luteinizing Hormone (LH), normal
or relatively low FSH levels with increased LH/FSH ratio (>2.5), and higher frequency of
LH pulsatile release from pituitary gland. Elevated levels of LH induce an excessive stimu-
lation of ovarian theca cells and consequently an overproduction of ovarian androgens that
causes an impaired follicular development [11]. Hyperandrogenism is such an important
feature of the syndrome that in the past it was considered necessary for the diagnosis of
PCOS (NIH criteria, 1990 as well as AE-PCOS) [12], but in reality, it is not present in all
PCOS patients. The excess of androgens arises mainly from ovarian secretion, of which
Androstenedione is the principal product, and in part from adrenal secretion, represented
by Dehydroepiandrosterone sulfate (DHEAS). Testosterone derives from peripheral con-
version from Androstenedione and from ovarian and adrenal production. Cytochrome
p450c17α is the major androgen-forming enzyme responsible for both adrenal and ovarian
production, and in PCOS it is typically overexpressed under the modulation of insulin [8].
Indeed, insulin amplifies the effect of LH within ovarian theca cells, resulting in an over
activation of p450c17α. In addition, the androgens’ synthesis in theca cells seems to be acti-
vated by insulin via multiple pathways, such as phosphoinositide-3kinase (PI3K) signaling
or the mitogen-activated protein kinase (MAPK) pathway [13].

Moreover hyperinsulinemia affects the production of insulin-like growth factor-1
binding protein (IGF-1BP) in the liver, leading to an increase of IGF-1 levels, which in turns
stimulate ovarian androgen synthesis [14].

Peripherally, testosterone is converted into the more active androgen, Dihydrotestos-
terone (DHT), by the enzyme 5αreductase, whose excessive activity is at the basis of
hirsutism [15].

Aromatase activity in PCOS women is impaired: the ovarian aromatization of andro-
gens in estrogens in granulosa cells is reduced, likely due to the effect of compensatory
hyperinsulinemia induced by peripheral insulin resistance [11].

Since the majority of androgens that circulate in blood are bound to Sex Hormone
Binding Globulin (SHBG), any condition that decreases the levels of circulating SHBG leads
to an excess of free circulating androgens, driving to the onset of clinical manifestations of
hyperandrogenism like acne, alopecia, and hirsutism. Liver synthesis of SHBG is reduced
not only by hyperinsulinemia, but also by hyperandrogenism [16].

While Estradiol levels are low or normal, plasma levels of Estrone, a weak estrogen,
are increased because of peripheral conversion of Androstenedione by aromatase activity,
mainly at the adipose tissue level, with the reversal of estrone/estradiol ratio. This hy-
perestrogenic state might predispose to endometrial proliferation and increased risk for
endometrial cancer [17].

Other endocrine features found in PCOS women are hyperleptinemia, reduced adiponectin,
decreased opioidergic tone, and excessive activity of kisspeptin-secreting neurons, thus inducing
an increase of Gonadotropin Releasing Hormone (GnRH) and LH release, which is pathog-
nomonic of the syndrome [18–20]. It has been demonstrated a positive correlation between
concentrations of Leptin and clinical-hormonal index of insulin resistance. In addition, Leptin is
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linked to Neuropeptide Y modulation on the reproductive axis; thus, it has been involved in
reproductive disturbance [21,22].

PCOS is the most common cause of anovulation and therefore of infertility. The higher
levels of LH, not balanced by FSH, whose activity is amplified by hyperinsulinemia, and
the excess of ovarian androgens levels lead to increasing levels of AMPc in granulosa
cells and to a disrupted follicle growth. Androgens inhibit follicular maturation with the
consequent accumulation of follicles in different growth phases or become atrophic, thus
not achieving the final maturation [23] (Figure 1).

Biomedicines 2022, 10, x FOR PEER REVIEW 3 of 27 
 

hyperestrogenic state might predispose to endometrial proliferation and increased risk 
for endometrial cancer [17]. 

Other endocrine features found in PCOS women are hyperleptinemia, reduced 
adiponectin, decreased opioidergic tone, and excessive activity of kisspeptin-secreting 
neurons, thus inducing an increase of Gonadotropin Releasing Hormone (GnRH) and LH 
release, which is pathognomonic of the syndrome [18–20]. It has been demonstrated a 
positive correlation between concentrations of Leptin and clinical-hormonal index of 
insulin resistance. In addition, Leptin is linked to Neuropeptide Y modulation on the 
reproductive axis; thus, it has been involved in reproductive disturbance [21,22]. 

PCOS is the most common cause of anovulation and therefore of infertility. The 
higher levels of LH, not balanced by FSH, whose activity is amplified by 
hyperinsulinemia, and the excess of ovarian androgens levels lead to increasing levels of 
AMPc in granulosa cells and to a disrupted follicle growth. Androgens inhibit follicular 
maturation with the consequent accumulation of follicles in different growth phases or 
become atrophic, thus not achieving the final maturation [23] (Figure 1). 

 
Figure 1. Schematic representation on the role of metabolism impairments in triggering the 
endocrine impairments of PCOS. An inappropriate lifestyle and/or the coupling with familial 
diabetes are the main triggers of the insulin resistance that activates the compensatory 
hyperinsulinemia. Various reduced enzymatic expressions occur in case of familial diabetes and are 
responsible of the insulin resistance due to peripheral reduced insulin sensitivity. 

Anti-Mullerian Hormone (AMH) serum levels are closely correlated with the number 
of early antral follicles. AMH is mostly produced by granulosa cells of follicles from 2 to 
9 mm in diameter. AMH levels are significantly higher in PCOS patients with 
hyperandrogenism than without it. This may reflect the severity of disruption of 
folliculogenesis in patients with hyperandrogenism. Moreover, serum AMH levels have 
been observed to be higher in women with insulin-resistant PCOS that in patients with 
normal insulin sensitivity [24,25]. In addition, AMH induces a lower aromatase 
expression/function, thus improving the hyperandrogenic state. 

3. Metabolic Profile in PCOS 
One of the most frequent features of PCOS patients is the presence of increased 

insulin plasma levels as a compensation of insulin resistance, present in approximately 
70–80% of women with PCOS and central obesity, as well as in 30–40% of lean women 
diagnosed with PCOS [26,27]. Overweight or obesity status might be present in 50–70% 
of women with PCOS [21,28] (Figure 1) 

The excess of androgens negatively modulates the function of insulin in the liver and 
at peripheral levels. It has been shown that testosterone affects the transmission of post 
binding insulin signal, reducing both the number and the efficiency of glucose 
transporters (GLUT-4), contributing to insulin resistance [29]. Additionally, obesity is 
associated with a decreased expression of GLUT-4 [30]. 

Figure 1. Schematic representation on the role of metabolism impairments in triggering the endocrine
impairments of PCOS. An inappropriate lifestyle and/or the coupling with familial diabetes are the
main triggers of the insulin resistance that activates the compensatory hyperinsulinemia. Various
reduced enzymatic expressions occur in case of familial diabetes and are responsible of the insulin
resistance due to peripheral reduced insulin sensitivity.

Anti-Mullerian Hormone (AMH) serum levels are closely correlated with the number
of early antral follicles. AMH is mostly produced by granulosa cells of follicles from 2 to
9 mm in diameter. AMH levels are significantly higher in PCOS patients with hyperan-
drogenism than without it. This may reflect the severity of disruption of folliculogenesis
in patients with hyperandrogenism. Moreover, serum AMH levels have been observed
to be higher in women with insulin-resistant PCOS that in patients with normal insulin
sensitivity [24,25]. In addition, AMH induces a lower aromatase expression/function, thus
improving the hyperandrogenic state.

3. Metabolic Profile in PCOS

One of the most frequent features of PCOS patients is the presence of increased insulin
plasma levels as a compensation of insulin resistance, present in approximately 70–80%
of women with PCOS and central obesity, as well as in 30–40% of lean women diagnosed
with PCOS [26,27]. Overweight or obesity status might be present in 50–70% of women
with PCOS [21,28] (Figure 1)

The excess of androgens negatively modulates the function of insulin in the liver and
at peripheral levels. It has been shown that testosterone affects the transmission of post
binding insulin signal, reducing both the number and the efficiency of glucose transporters
(GLUT-4), contributing to insulin resistance [29]. Additionally, obesity is associated with a
decreased expression of GLUT-4 [30].

The adipose tissue located at the abdominal level, typical of obese PCOS women,
compared to gynoid adipose tissue, is metabolically more active, more sensitive to cate-
cholamines and less to insulin, and releases higher amount of free fatty acids. Thus, it can
be considered as an index of cardiovascular risk. In fact, a Waist–Hip Ratio (WHR) greater
than 0.80 is a marker of android obesity. Moreover, the waist circumference, more than the
BMI, is directly correlated with the risk of developing Metabolic Syndrome (MS), with an
increased risk in case of waist circumference equal or greater than 102 cm in males and 80
cm in women [31].
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PCOS patients might develop impaired glucose tolerance and type 2 diabetes, and the
mean age of this diagnosis in PCOS patients is lower than in controls. For this reason, it is
suggested to perform a 2 h oral glucose tolerance test (OGTT) in every patient diagnosed
with PCOS, especially in those with BMI > 25 [32].

Impaired glucose tolerance is characterized by asymptomatic moderate increase of fast-
ing glucose levels (110–125 mg/dl), which may precede diabetes. Conversion of impaired
glucose tolerance to frank diabetes in women with PCOS is 5–10 times more frequent
compared with non-PCOS women. Additionally, a family history of diabetes and the
presence of obesity are important predictors for the development of type 2 diabetes [33].

Insulin resistance can be assessed with different methods, such as an insulin maximal
blood level above 50 µU/mL within 90 min after 75 g of glucose load (OGTT), insulin basal
plasma level above 12 µU/mL, or a glucose-to-insulin ratio <4.5 [34]. The principal index
of insulin resistance is the HOMA index, which can be computed as homeostasis model
assessment of insulin resistance (HOMA-IR) as (fasting insulin mU/l) × (fasting glucose
mmol/l)/22.5. A value above 2.5 in adult women is suggestive of insulin resistance [35].
Another evaluation of insulin resistance is estimated as the insulin area under the curve
(AUC) of 7000 µIU/mL or more in 120 min [36].

Alterations of lipid profile have been reported in PCOS women with significant in-
crease of low-density lipoprotein cholesterol (LDL-c), total cholesterol, triglycerides, and
free fatty acids, and a decrease of high-density lipoprotein cholesterol (HDL-c) [37]. There-
fore, it is suggested to evaluate fasting lipid and lipoprotein levels in every PCOS patient.
It has also been shown that PCOS women have an increased risk to develop hyperten-
sion [38]. Insulin resistance and hyperinsulinemia negatively interact with vascular factors
like endothelin and nitric oxide, leading to alterations of vasodilatation and predisposing
to hypertension [39].

All these disorders can be connected in the clinical condition of metabolic syndrome,
which includes a cluster of metabolic abnormalities such as elevated blood pressure levels
(greater than or equal to 130/85 mmHg), increased waist circumference (greater than or
equal to 88 cm), elevated fasting glucose levels (greater than or equal to 100 mg/dL),
reduced high-density lipoprotein cholesterol levels (less than or equal to 50 mg/dL), and
elevated triglyceride levels (greater than or equal to 150 mg/dL) [31]. This syndrome is
related to insulin resistance and hyperandrogenism; indeed, the prevalence of metabolic
syndrome is higher in hyperandrogenic subjects than non-hyperandrogenic anovulatory
women affected by PCOS [40,41].

Another important aspect recently investigated is the increased risk of Non-alcoholic
Fatty Liver Disease (NAFLD) in PCOS women. It consists in the hepatic fat accumulation in
individuals who do not drink excessive amounts of alcohol, as a consequence of obesity and
insulin resistance [42]. The hepatic insulin extraction (HIE) index reflects the balance of the
synthesis and clearance of insulin and C-peptide molecules, which derive from the cleavage
of the proinsulin released by β-pancreatic cells. While C-peptide has a negligible hepatic
extraction, it reflects the pancreatic production, and insulin is mainly cleared by the liver
before entering the systemic circulation. The HIE index is computed as the ratio between
the area under the curve (AUC) of insulin and the AUC of C-peptide (AUC Ins/AUC
C-Pept). Whereas the ideal ratio in the pancreatic vein might be 1, the plasmatic ratio
depends on clearance kinetics of the two peptides.

Genazzani et al. recently reported that PCOS patients with familial diabetes have
non-optimal liver function, as indicated by higher AST and ALT levels than PCOS patients
without familial diabetes. This aspect is frequently associated with high baseline insulin
levels and an insulin response to OGTT higher than 50 µU/mL within 90 min. These
features are recognized as predisposing factors not only to metabolic syndrome, but also to
NAFLD and liver steatosis. In these patients, there is not any HIE decrease at 30–60 min
after OGTT, because insulin clearance by the liver is reduced, leaving a higher amount of
insulin uncleared in the blood. These data suggest that the compensatory hyperinsulinemia
in overweight/obese PCOS is due not only to reduced peripheral insulin sensitivity, but
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also to reduced hepatic insulin clearance for an impaired expression/synthesis of the
insulin degrading enzyme (IDE) [43–45].

4. Pharmacological Therapies

Obesity and insulin resistance (IR) negatively impact the fertility of PCOS women,
since together, these factors decrease the number of spontaneous ovulatory cycles and
raise the percentage of spontaneous abortions. For this reason, the first line of treatment
for PCOS patients is a correct lifestyle through hypocaloric diet and physical exercise
(20–60 min of physical activity a day, from 3 to 5 times a week), in particular in women
with BMI > 25 kg/m2 [17].

In terms of weight loss, there is no clear evidence regarding the most effective compo-
sition of the diet; indeed, it seems that caloric restriction itself, rather than the composition
of the diet, is the key factor of the success [7].

Modest weight loss (5–10% of initial body weight) has been shown to lead a rise in
SHBG, a reduction of circulating androgens and clinical manifestations of hyperandro-
genism, an improvement in ovarian function, and a higher pregnancy rate [33,46].

If the patient is not attempting to conceive, the most effective therapy to treat hy-
perandrogenism is the administration of combined estro-progestinic pills. Hormonal
contraceptives suppress ovary androgen production, blocking the ovarian cycle and in-
creasing SHBG synthesis [47,48]. While the estrogenic compound has only an ovariostatic
activity, the progestational compound might have an antiandrogenic action, in particular
with Cyproterone Acetate, Dienogest, Drospirenone, and Chrlormadinone acetate [48].
The effect on the signs of hyperandrogenism depends on the skin cell renewal cycle and
becomes evident after at least 4 months. For this reason, the minimal duration of the
treatment is 4–5 months or more.

The association of antiandrogenic compounds such as Flutamide, Finasteride, or
Spironolattone, in combination with oral contraceptives, leads to better results on clinical
manifestations of hyperandrogenism [49,50]. However, estroprogestinic pills and antian-
drogenic compounds do not act on the metabolic impairments of PCOS patients. When
lifestyle measures prove to be unsuccessful, the use of insulin-sensitizing agents seems to
be indicated.

Metformin is an oral insulin-sensitizing agent, considered the first line treatment in
type 2 diabetes mellitus. It has been widely used to treat insulin resistance in PCOS patients.
It is a synthetic biguanide that reduces hepatic glucose production and intestinal glucose
uptake and increases glucose uptake at peripheral levels, in particular in skeletal muscle
and the liver.

Therapy should be initiated with a starting dose of 250 mg twice a day (15 min before
lunch and dinner), which can be increased up to 500–1000 mg after 15 days with a gradual
increase in dosage to avoid common gastrointestinal side effects [17].

Metformin has been shown to decrease ovarian and adrenal cytochrome p450c17α,
ameliorate hyperandrogenism, decrease the concentrations of androgenic metabolites
(androstenedione, testosterone, DHEAS), and restore ovulatory function [51–54]. Met-
formin has been proven to be effective on insulin resistance parameters, such as fasting
insulin levels, dyslipidemia, Body Mass Index (BMI), oxidative stress, and inflammatory
markers [6,55]. Metformin increases the ovulatory cycle and pregnancy rate compared
to placebo, reducing peripheric insulin resistance and consequently hyperinsulinemia, as
demonstrated by a recent Cochrane review that includes 42 trials [56].

Although Metformin ameliorates ovulation rate, it should not be considered the first
line treatment of chronic anovulation since there are specific ovulation inducers, such as
Clomiphene Citrate and Letrozole, which have better results in terms of ovulation rate,
number of pregnancies, and live births. On the other hand, the addition of Metformin to
Clomiphene Citrate should be considered for women with PCOS and significant insulin
resistance and obesity [56].
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The cost effectiveness of this pharmacological treatment with common side effects,
such as nausea, vomiting, abdominal pain, and diarrhea, may reduce subject compliance
and limit its use, especially when high doses are needed.

In anovulatory women with PCOS, attempting to conceive, the treatment of choice is
Clomphene Citrate (CC), a selective estrogen modulator. The starting dose is 50 mg a day
for five days (from the third to fourth to the seventh to eighth day of the menstrual cycle)
and it can be raised up to 150 mg a day. The maximum suggested period of administration
is six months [57]. Unfortunately, a resistance to Clomiphene occurs in 15–40% of women
with PCOS.

Letrozole, an aromatase inhibitor, is used as an alternative to Clomiphene, especially in
Clomiphene-resistant women. It is even more effective than Clomiphene but it is burdened
by important side effects, and in Italy it is used off-label [17].

When the former treatments fail, the second line treatment for CC-resistant PCOS
patients is the surgical laparoscopic ovarian drilling. This technique consists in a partial
destruction of ovarian cortex and the consequent drop of the production of androgens, that
leads to an increase of FHS and a decrease of LH, and the subsequent improvement of
ovary function [58].

Another second line treatment for CC-resistant PCOS patients is the ovulation induc-
tion with exogenous gonadotropins. These injective treatments stimulate follicular growth
and are usually used in association with in vitro fertilization (IVF) techniques as a third
line treatment. Women with PCOS are particularly at risk for ovarian hyperstimulation
syndrome (OHSS). Therefore, in order to avoid OHSS and multiple gestation, a close ul-
trasound monitoring to detect follicle growth is required. With the low-dose protocol, the
ovulation and monofollicular development rate is nearly 70%, while the pregnancy rate is
20% per cycle [57].

5. Complementary/Integrative Treatments

Recently, different therapeutic approaches have been developed using integrative
compounds in order to treat PCOS women, especially those for whom a pharmacologic
treatment is not yet advisable, but in whom lifestyle modifications were unsuccessful. The
majority of these treatments act at metabolic levels, reducing insulin resistance, which
is at the basis of the PCOS. We will discuss these different integrative treatments, which
up to date have shown better results in term of metabolic and reproductive function in
PCOS women.

5.1. Inositols

Inositols are a large family of nine stereoisomers, structurally similar to glucose,
belonging to the family of pseudo-vitamin B complex. Inositols are generally found in
many plants, legumes, cereals, nuts, and fruits, but they can also be synthetized in the
human body [21].

Among the nine isomers, Myo-inositol (MYO) and D-chiro-inositol (DCI) play the
most relevant metabolic role in our biology. Myo-inositol is the prevalent form in human
tissues, with a plasma MYO/DCI ratio of approximately 40:1, but every tissue has a specific
MYO/DCI ratio [59].

MYO endogenously can be synthesized from Glucose-6-phosphate, which is isomer-
ized and then dephosphorylated. D-chiro-inositol is synthetized through the activity of an
enzyme, Epimerase, that converts MYO into DCI. Epimerase is stimulated by insulin, and
each tissue has a typical conversion rate.

Once MYO enters the cell, it is converted into phosphatidyl-Myo-inositol, a precursor
of Inositol-3-phophate, which acts as intracellular second messenger for insulin and TSH
and FSH signaling pathways [60–62]. This aspect is important since inositol administration
can improve both the metabolic and the endocrine function in PCOS patients, taking part
in the transduction of the signal of insulin, but also of FSH.
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In insulin post-receptor signaling, inositols are implicated in two different pathways.
In the first, insulin binds its receptor and recruits insulin receptor substrates (IRS), acti-
vating phosphatidylinositol-3-kinase (PI3K), which generates phosphatidylinositol-(3,4,5)-
trisphosphate (PIP3). This molecule activates the enzyme PDK, which turns on the protein
kinase PKB-Akt. This pathway leads to the translocation of GLUT4 vesicles to the plasma
membranes in order to increase glucose transport into the cell, mainly in skeletal and
cardiac muscle and adipose tissue [63]. The second pathway is mediated by G-protein (Gp)
and through the hydrolysis of glycosylphosphatidylinositol (GPI), it is released an inositol
phosphoglycan containing D-chiro-inositol (INS2). INS2 acts at cytosol and mitochondrial
levels, but it is also released out of the membrane to amplify its action. Inside the cytosol
INS2 stimulates glycogen synthase (GS) directly and indirectly via PI3K/PDK/Akt/GSK3
pathway (Figure 2). The result of this via is the glycogen storage. Therefore, DCI reduces
the amount of cytosolic glucose creating a glucose gradient that enhances the uptake of
glucose through the mobilization of GLUT4 transporters. In the mitochondria, INS2 acti-
vates pyruvate dehydrogenase phosphatase (PDHP) and pyruvate dehydrogenase (PDH),
inducing glucose oxidative use, thus amplifying the glucose gradient inside the cytosol.
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Figure 2. Representation of the role of inositols and alpha lipoic acid in insulin post-receptor signaling,
modified from [17].

In this complicated transmission of insulin post-receptor signaling, it is involved
another important molecule, alpha lipoic acid (ALA), which we will discuss later.

Considering the relevant role of inositols in promoting glucose uptake, glucose ox-
idative use, and glycogen storage, their concentrations and functions are essential for the
maintenance of the glycemic homeostasis, acting like insulin sensitizers [17].

Interestingly, it has been demonstrated that urinary excretion of DCI is reduced,
while MYO urinary content is increased in humans and experimental animals affected by
type 2 diabetes [59,64]. Such imbalance in MYO conversion to DCI, expressed as MYO
to DCI ratio, was higher not only in type 1 or type 2 diabetic patients, but also in non-
diabetic relatives of diabetic patients. A lower concentration of plasmatic DCI with normal
levels of MYO was also found in PCOS patients [65]. Thereby the epimerase function was
suspected to be impaired in diabetic women and PCOS patients with diabetic relatives, with
a consequent decrease of MYO to DCI conversion in insulin-sensitive tissues such as kidney,
liver, and muscles [66]. These findings support the hypothesis that diabetes and familial
predisposition to diabetes induce an abnormal function/expression of epimerase activity,
thus contributing to the insulin resistance and compensatory hyperinsulinemia [67].

Taking into account the importance of DCI and MYO in the transduction of insulin
and FSH signal, over the past few years many studies have been done to evaluate inositols
as integrative treatment in PCOS patients. Genazzani et al. showed that the administration
of 500 mg of DCI to obese PCOS patients improved both metabolic and endocrine functions
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since LH, LH/FSH ratio, Estradiol, 17-OH-progesteron, and androstenedione were signif-
icantly reduced and insulin, the glucose/insulin ratio, and BMI were decreased. When
OGTT was evaluated, the hyperinsulinemic response to OGTT improved after the treatment
as well as the glucose/insulin ratio, the AUC of insulin, and the maximal insulin response
to glucose load. Subdividing patients according to the presence or absence of diabetic
first grade relatives, it was found that before treatment, obese PCOS patients with familiar
predisposition to diabetes had a greater hyperinsulinemic response to glucose load than
those of the other group. DCI administration in PCOS patient with familiar predisposition
to diabetes leads to a greater improvement of the insulin response to OGTT. These data
support the hypothesis that predisposition to diabetes probably affects epimerase function,
leading to a reduction of MYO conversion to DCI, and that DCI administration overcomes
this impairment [68].

DCI supplementation has been demonstrated to decrease AMH plasma levels, indicat-
ing the reduction of increased functional ovarian reserve typical of PCOS patients [69].

Many studies have evaluated the role of MYO administration on the reproductive func-
tion of PCOS patients. Chiu et al. demonstrated that in the ovary MYO concentrations in
follicular fluid (FF) has a positive correlation to oocyte quality. Indeed, follicles with higher
levels of MYO presented good quality oocyte and higher estradiol concentrations [70]. The
same group reported that adding MYO to the culture medium of mouse oocytes improved
meiotic progression on oocytes [71].

In another study the administration of MYO (2 g per day) in obese PCOS patients
showed endocrine improvements with a decrease of LH, LH/FSH ratio, androstenedione,
and BMI. Subdividing the patients according to baseline insulin plasma levels (below or
above the cut-off of 12 µU/mL), only patients with hyperinsulinemia (basal insulin level
above 12 µU/mL) showed a significant reduction of insulin plasma levels and the area
under the curve of insulin [34].

Artini et al. pre-treated PCOS patients undergoing IVF with 2 g of MYO/day and
demonstrated an improvement in not only metabolic and endocrine, but also in oocyte
quality, recruitment, fertility rate, and delivery rate [72]. An improvement of efficacy
in ovulation induction with Clomiphene Citrate, with higher rate of pregnancy and de-
livery, has been demonstrated by Kamenov et al. with the supplementation of 2 g per
day [73]. However, none of these studies considered the presence of familial diabetes in
their population.

The administration of MYO to support Assisted Reproduction Technology (ART) in
PCOS patients, typically suffering from infertility, has been studied: beneficial effects of
MYO have been demonstrated in oocyte maturation, embryo development, and pregnancy
rate [74–76]. Moreover, the treatment with MYO decreased the rFSH dose required in
patients undergoing IVF or ICSI, both in PCOS and in non-PCOS patients, suggesting the
use of this integrative compound in ART in order to improve reproductive outcomes and
the cost-effective reduction of gonadotropin use [77–79].

Unfer et al. reviewed 21 studies on clinical outcomes of MYO as a treatment for
PCOS patients. The common results were the improvement in hormonal parameters and
in metabolic index like insulinaemia, the HOMA index, BMI, and the glucose/insulin
ratio. In the lipid profile, total cholesterol concentrations decreased and high-density
lipoprotein concentrations increased. Moreover, menstrual function and fertility improved.
The supplementation with MYO increased the bioavailability of the inositol phosphoglycan
(IPG) second messenger involved in the insulin transduction, leading to a reduction of
insulinaemia and its detrimental role in PCOS syndrome. This review also demonstrated
that MYO rather than DCI improved oocyte and embryo quality in FIVET programs,
suggesting that ovaries have different metabolic-endocrine pathways than other tissues
with a specific MYO to DCI ratio [80].

Differently from other tissues, ovaries can maintain normal insulin sensitivity, despite
the presence of insulin resistance. In effect, ovaries never become insulin resistant, and for
this reason the hyperinsulinemia enhances ovarian epimerase activity, leading to an excess



Biomedicines 2022, 10, 1924 9 of 26

of conversion from MYO to DCI. This phenomenon is called “ovarian paradox” [81,82].
However, the increase of DCI concentrations seems to enhance androgens synthesis, while
MYO depletion worsens FSH signaling and oocyte quality [82,83]. Sacchi et al. in 2016
demonstrated that DCI regulates the gene expression of enzymes involved in steroidogene-
sis in human granulosa cells, reducing both the expression of aromatase and cytochrome
P450 side-chain cleavage (citp450scc) genes and also of IGF-1 receptor synthesys thus coun-
tereacting insulin action. Doing so DCI affects estrogen levels without completely blocking
their biosynthesis [84]. In contrast, it is assumed that MYO may stimulate aromatase func-
tion. Indeed, MYO takes part in FSH post-receptor signaling, which stimulates aromatase
synthesis with the conversion of androgens to estrogens and the follicular maturation. As a
matter of fact, PCOS is characterized by a relative reduction of FSH and the consequent
decrease in aromatase synthesis [85,86].

The ovary paradox may explain why supplementation with high doses of D-chiro-
inositol could not have positive effects on ovarian function in PCOS patients. Indeed, the
administration of 2400 mg/day of DCI for 6 weeks, on the one hand, improved insulin
sensitivity and metabolic parameters, but on the other hand, it leads to a non-significant
increase of testosterone [87], thus suggesting that only very high doses of DCI could not
affect androgen production. On the contrary, it has been demonstrated that low doses
of DCI treatment have a metabolic systemic effect on hyperinsulineamic patients, with a
reduction of insulin levels, leading to a reduction of epimerase activity and increased MYO
ovarian levels. The increase of MYO improves FSH sensitivity, restoring the ovulation
rate [77].

High DCI levels at the ovarian level have been thought to negatively impact the quality
of oocytes and blastocyst [81,88], but Sacchi et al. [84] clearly demonstrated the positive
relevant role of DCI on various functions at the ovarian level. However, none of these
studies considered the potential bias of the presence or absence of familial diabetes in
the population studied. Indeed, plasmatic MYO and DCI concentrations and the state of
insulin resistance/hyperinsulinemia represent the metabolic aspect of the great part of our
biology, mainly metabolically active organs like muscles, liver, and kidney, whereas ovarian
environment has a different metabolic setting with its own MYO-DCI concentrations and
epimerase activity [21].

Therefore, both MYO and DCI seem to be potentially effective in PCOS patients,
with specific different functions according to familiar predisposition to diabetes, and
consequent relative function of epimerase, whether the aim of the integration is focused on
the restoration of metabolic or reproductive function.

A putative balanced combination dose of MYO and DCI may modulate the hyperin-
sulinemic metabolism through the action of DCI, and the reproductive ovarian function
thanks to the MYO component. Many studies have been conducted on supplementations
with different MYO-DCI ratios on animals and PCOS humans. A recent review of MYO and
DCI integrative use, through the analysis of the literature available, demonstrated that the
40:1 combination of MYO and DCI produces the most significant improvements, support-
ing the restore of the physiological plasma concentrations [77,89–91]. It is obvious that such
combination might be optimal mainly for those PCOS patients without familial diabetes.

Inositols have the same chemical structure as glucose, thus inositols’ intestinal ab-
sorption is decreased in the presence of food, and consequently, MYO and DCI should
be administered away from meals. Furthermore, also the combination of MYO to DCI
generates a competition in the intestinal absorption between the two isomers. Therefore, in
a PCOS patient with familial diabetes, the combination of MYO and DCI in 40:1 ratio could
lead to an insufficient dose of absorbed DCI.

In conclusion, there are numerous studies on the efficacy of inositols in PCOS treat-
ment, both on metabolic restoration of insulin sensitivity, on endocrine modulation of
hyperandrogenemia, and on the improvement of reproductive outcomes. However, it is to
underline the importance of choice of the inositol tailored to the patient, according to the
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anamnestic investigation on diabetes predisposition, metabolic, and endocrine patterns
and the primary aim of the treatment.

5.2. Alpha Lipoic Acid

Alpha lipoic acid (ALA) is a biological compound provided with potent antioxidant
activity, present in vegetables like broccoli, spinach, and potato and mainly in red meat and
offal such as heart and liver. ALA is present in two different enantiomeric forms, R-lipoic
acid and S-lipoic acid, of which only the naturally occurring R isomers act as essential
cofactors in biological systems for mitochondrial enzyme [92].

Inside the mitochondria the redox balance is preserved by an antioxidant defense
network, consisting of stress-responsive enzymes such as Superoxide Dismutase (SOD),
Catalase, and Reduced Glutathione (GSH). This system is activated in response to excessive
production of reactive oxygen species (ROS) in the mitochondria, thereby neutralizing
the ROS before they can damage biological molecules. ROS are highly reactive chemical
molecules, formed as a natural byproduct of the normal aerobic metabolism of oxygen and
when ROS exceed the buffering capacity of the cells, oxidative stress occurs [93].

As lipoamide, ALA is also a cofactor in multienzyme complex that catalyzes the
oxidative decarboxylation of alpha-keto acids such pyruvate, alpha-ketoglutarate, and
branched chain alpha-keto acids [94].

In cells containing mitochondria, ALA is reduced to dihydrolipoic acid (DHLA), in an
NADH-dependent reaction, whereas in cells that lack mitochondria, ALA can instead be
reduced to DHLA (dihydrolipoic acid) via NADPH (nicotinamide adenine dinucleotide
phosphate) with glutathione (GSH) and thioredoxin reductases [95]. Unlike GSH, which
has antioxidant actions only in the reduced form, both the oxidized and reduced forms
of ALA are powerful antioxidants whose functions include quenching of reactive oxygen
species (ROS), regeneration of exogenous and endogenous antioxidants such as vitamins
C and E and GSH, chelation of metal ions, reparation of oxidized proteins, regulation of
gene transcription, and inhibition of the activation of NFkB. Moreover, it takes part in the
regulation of glucydic and lipid metabolism [17].

Endogenously, lipoic acid is synthesized from octanoic acid by the action of Lipoic Acid
Synthase (LASY). Padmalayam et al. demonstrated that LASY expression is downregulated
in animal models of type 2 diabetes and obesity, compared with age- and sex-matched
controls. This enzymatic defect leads to a reduction of acid lipoic levels in mitochondria,
with an alteration of the antioxidant defense system, and to an exacerbation of inflammation.
This LASY downregulation also results in decreased glucose cell uptake, increased insulin
resistance, and mitochondrial disfunction [93].

ALA has recently been proposed as an adjuvant therapy in diabetes and other en-
docrinopathies [96,97]. In human and animal models, it has been demonstrated that ALA
increases the glucose uptake in skeletal muscle through the activation of AMP-activated
protein kinase (AMPK). AMPK is activated in response to ATP depletion, which causes
a concomitant increase in the AMP-to-ATP ratio. Once activated, AMPK phosphorylates
downstream substrates, the overall effect of which is to switch off anabolic pathways that
consume ATP, such as fatty acid and cholesterol synthesis, and to switch on catabolic
pathways that generate ATP, like fatty acid oxidation and glycolysis [98]. The activation
of AMPK increases glucose uptake as it induces the translocation of GLUT 4 and GLUT1
to cytosolic membrane of adipocyte and muscle cells in a similar way as insulin, and it
increases the expression of GLUT4 genes [99].

The insulin sensitivity is increased also through the reduction of triglyceride storage
in skeletal muscles thanks to the inactivation of Acetyl-CoA Carbossilase (ACC) and
thus to the reduction of fatty acid synthesis and the rise of the fatty acid oxidation. The
accumulation of triglycerides in skeletal muscles contributes to insulin resistance in obesity
and type 2 diabetes [100,101].

Several clinical trials have also demonstrated the improvement of insulin sensitivity
in insulin-resistant and/or diabetic patients treated with the antioxidants vitamin C, ALA,
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vitamin E, and glutathione [102]. In patients with type 2 diabetes, both acute and chronic
administration of ALA have been demonstrated to reduce insulin resistance [101,103].

Recent studies showed that in PCOS women, oxidative stress is increased for the higher
free radical production and the decline of antioxidant agents’ levels and their enzymatic
activity. The increased oxidative status seems to worsen insulin resistance [104]. This
suggests that a reduction of alpha lipoic acid could determine insulin resistance, and that
a supplementation with ALA could in turn be useful in the treatment of metabolic and
reproductive disorders in PCOS patients.

On these assumptions, many studies have been conducted to evaluate the effects of
ALA administration on insulin resistance and on hormonal parameters in PCOS women.

Genazzani et al. treated obese PCOS women with 400 mg/day of ALA for 12 weeks
and observed in all patients a significant improvement of parameters such as: insulin,
glucose, GOT, BMI, the HOMA index, insulin response to glucose load (OGTT), insulin
maximal response (∆max), and AUC. Subdividing the patients in two groups according
to the presence or absence of diabetic relatives, it was identified that only the group with
diabetic relatives has a significant decrease also in GOT and triglycerides. These finding
suggest that ALA has specific efficacy in the liver, reducing the risk of developing a liver
impairment such as Non-Alcoholic Fatty Liver Disease (NAFLD) [105]. Moreover, the
amelioration of insulin sensitivity in PCOS with diabetic relatives under ALA treatment
demonstrates that ALA integration might overcome the possible defect of endogenous
synthesis of ALA due to the impairment of the enzyme LASY. It should be observed
that with ALA administration no changes in hormonal or reproductive parameters were
observed, indicating that ALA acts only on the metabolic side.

These data in PCOS obese women are in agreement with the findings of Yi Yang, in
one animal model of hyperinsulinemic mice, where the administration of ALA ameliorated
metabolic functions [106]. Patients with PCOS, in particular the ones with metabolic
syndrome, have higher levels of the hepatic steatosis index, characteristic of NAFLD. The
obesity, insulin resistance and type 2 diabetes are not only prominent metabolic features of
PCOS, but also the principal risk factors for NAFLD [105].

ALA administration in PCOS patients leads to an improvement of hepatic functional
index, suggesting its role in the amelioration of hepatic mitochondrial performance [107].
All these findings together, especially those on PCOS subjects, are clear demonstration of the
efficacy of ALA treatment, absolutely optimal to counteract the reduced insulin sensitivity.

Recently it has been studied also the association of ALA with inositols. The admin-
istration of ALA (400 mg/day) and MYO-inositol (1 g/day) to overweight/obese PCOS
patients proved to enhance insulin sensitivity through a decrease of insulin response to the
oral glucose tolerance test and HOMA index, and proved to be a hormonal asset with a re-
duction of LH and the LH/FSH ratio. Subdividing patients according to hyperinsulinemic
or normoinsulinemic response to oral glucose load (<50 µU/mL insulin levels within 90
min after glucose load), only hyperinsulinemic patients showed a significant reduction of
insulin release and the HOMA index. Subdividing according to the presence or absence of
familial diabetes, only women with diabetic relatives showed significantly reduced basal
insulin levels, similar to hyperinsulinemic PCOS [108].

In addition, in the study of De Cicco, the administration of higher dose of ALA
(800 mg/day) and MYO-inositol (2 g/day) for 6 months leads to a reduction of clinical
and biochemical hyperandrogenism, BMI, restoration of ovulation rates, and a rise in
SHBG [109].

The association of D-Chiro inositol with ALA was also evaluated. The administration
of DCI (500 mg/day) and ALA (300 mg/day) for 12 weeks in overweight/obese PCOS
patients showed a significantly change in LH, androstenedione, insulin, LDL plasma levels,
BMI, the HOMA index, maximal insulin, and C-peptide response after OGTT. Regarding
the presence or absence of familial diabetes, only the group with familial diabetes had a
significant reduction of triglycerides, total cholesterol, LDL, GOT, and GPT concentrations.
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These data are in line with other findings on the important role of ALA in preventing liver
damages and NAFLD [110].

Furthermore, Cianci et al. obtained an improvement of HOMA-IR, insulin levels, lipid
profile, BMI, and frequency of menstrual cycles with the association of DCI (1 g/day) and
ALA (600 mg/day) [111].

Considering all these data together, it comes out the optimal effects of ALA when
combined with MYO or DCI, according to the typology of PCOS patients. Such data sustain
the relevant role of ALA on IR and reveal how the coupling with inositols is optimal.
ALA results as a key element as integrative treatment for PCOS, especially when the
anamnestic investigation discloses not only the overweight/obesity, but also first grade
diabetic relatives, or familial predisposition to diabetes.

In fact, in these PCOS subjects, the concomitant reduced expression/function of
epimerase and LASY can be resolved only by the combination of ALA plus DCI as an
integrative treatment, as previously reported [17,21,24,108–112].

All these data sustain the relevance of the use of ALA alone for PCOS to counteract
IR. Though Laganà et al. [113] did not recognize efficacy in the use of ALA, its combi-
nation with inositols (MYO or DCI) represents an extremely efficient treatment. Clinical
data [17,21,24,108–112] support the use of combinations as putative strategy to avoid the
use of Metformin or to reduce the doses of Metformin if too high, thus reducing the side
effects. In fact, while ALA efficiently improves insulin sensitivity, its combination with
inositols (MYO or DCI) significantly acts on both reproductive functions and on insulin
sensitivity. Indeed, MYO is involved not only in the intracellular signaling of insulin, but it
also takes part in the post-receptor pathway of FSH.

Obviously, the choice of the most appropriate inositol is fundamental and based on a
well-conducted anamnestic investigation [21,112,114].

5.3. Carnitines

Carnitines are quaternary amines introduced by food or synthetized in the body [115].
They are vitamin-like substances, with two enantiomeric forms: L-carnitine, the leading
active form involved in cellular energy production; and D-carnitine, an inactive toxic
molecule. Furthermore, there are different carnitine esters such as Acetyl-L-carnitine (ALC)
or Propionyl L-carnitine [116]. L-carnitine is synthetized from the essential amino acids
Lysine and Methionine, largely in the liver, kidney, and brain [117].

Red meat, like beef or lamb, is the main source of L-carnitine, but lower concentrations
are present also in fish, pork, poultry, and dairy products. Considering plant-origin
products, only avocado and asparagus contain higher concentrations of carnitines [118].

L-carnitine is a cofactor of enzymes, such as Carnitine Palmitoyl Transferase 1 (CPT1),
Carnitine Acyltranslocase, and Carnitine Palmitoyl transferase2 (CPT2), involved in the
transport of fatty acids in the mitochondria, which leads to the production of a molecule
of Fatty Acyl-CoA that undergoes the beta oxidation, producing Acetyl-CoA. Acetyl-CoA
also derives from the oxidation of carbohydrates (glucose and lactate) through the action of
pyruvate dehydrogenase complex (PDH). Acetyl-CoA finally enters the tricarboxylic acid
(TCA) cycle and generates energy as ATP. The PDH complex is the key rate-limiting step in
carbohydrate oxidation, according to concentrations of substrates (pyruvate and CoA) and
products (Acetyl-CoA). PDH is inhibited by the increase of Acetyl-CoA/CoA ratio with a
reduction of the glucose oxidation rate. The Acetyl-CoA/CoA ratio depends on the rate
of removal of intramitochondrial Acetyl-CoA by the TCA cycle and the rate of fatty acid
beta-oxidation [119,120]. L-carnitine can also transport acetyl-CoA from the mitochondrial
matrix to the cytosol.

To sum up, carnitine plays an important role in both carbohydrate and lipid metabolism,
as it regulates the intramitochondrial Acetyl-CoA/CoA ratio by modulating the store of
Acetyl-CoA from both the PDH complex and beta-oxidation of fatty acids.

Furthermore, carnitine supplementation proved to decrease pro-inflammatory cy-
tokines, such as interferon-γ, tumor necrosis factor-α (TNF-α), interleukins-2 (IL-2), and
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IL-6, with an anti-inflammatory effect. It also prevents DNA damage caused by free radi-
cals [121]. In addition, L-carnitine takes part in the maintaining of the cell membrane stabil-
ity through its role in the acetylation of membrane phospholipids and its amphiphilic action.
Moreover, carnitines promotes cellular proliferation and decreases apoptosis through their
stimulating action on mitochondria [122].

The main gynecological application of carnitines is the treatment of functional hy-
pothalamic amenorrhea (FHA), where they can blunt the negative effect of stress-induced
beta-endorphin release, acting on the protein/hormonal functions in the Opioidergic path-
way, on Neuropeptide Y and on Pro-opiomelanocortin (POMC) [122]. Carnitines can also
interfere with ROS overproduction caused by excessive diet and physical exercise [122].

PCOS is known to be associated with an increased oxidative stress, with a reduction of
total antioxidant levels and an increase of free radicals and reactive oxygen species (ROS).
A significant reduction in oxidative stress was observed in type 2 diabetic women after the
supplementation of 2 g/day of L-carnitine for 3 months [123]. We should point out that
the combination of carnitines with antioxidants such as N-acetyl cysteine (NAC) and L-
arginine has been reported to greatly improve insulin sensitivity in PCOS patients all along
6 months of treatments [124]. In fact, such a combination has been reported to improve
insulin sensitivity acting both peripherally and on liver function since the hepatic insulin
extraction (HIE) decreased significantly. Such evidence suggests that a specific role of
antioxidants has been played on the expression/function of the insulin degrading enzyme
(IDE). The integrative administration of carnitines with NAC and L-Arg restored the liver
ability to degrade insulin as demonstrated by the significantly decreased insulinemia with
minimal changes in C-peptide plasma levels [124].

Frenkci’s et al. showed that non-obese PCOS women have lower total serum L-
carnitines levels, beyond higher androgen levels, compared to healthy women. These
data suggest that the reduced circulating and tissues carnitine levels, probably due to the
impairment in mitochondrial function, might be involved in the pathogenesis of insulin
resistance [125]. In line with these findings, Molfino et al. treated patients with impaired
fasting glucose or type 2 diabetes with L-carnitine (2 g twice a day) and hypocaloric diet,
obtaining an improvement in insulin sensitivity (HOMA-IR and plasma insulin levels) [126].

Since insulin resistance seems to be correlated to mitochondrial disfunction with a
possible reduction of fatty acid oxidation, L-carnitine supplementation has been supposed
to improve insulin sensitivity in PCOS patients thanks to its effect on beta oxidation of
fatty acids and carbohydrates metabolism. In fact inefficient oxidative phosphorylation
increases the oxidative stress and leads to the accumulation of triglyceride in skeletal
muscle, which takes part in the pathogenesis of insulin resistance [127,128]. Consistent
with this hypothesis, Samimi et al. found that the administration of L-carnitine reduces
body weight, BMI, waist and hip circumference, and glucose in PCOS patients [129].

As previously mentioned, when overweight/obese patients were supplemented with
a daily association of ALC (250 mg), L-carnitine (500 mg), L-arginine (500 mg), and N-
acetyl cysteine (50 mg) for 6 months, and a significant improvement of both insulin plasma
levels and of insulin response to OGTT were reported together with amelioration of total
cholesterol, HDL, triglyceride, plasma insulin, and HOMA index. Moreover, subdividing
according to the normo- or hyperinsulinemic response to glucose load (hyperinsulinemic
response is recognized when above 50 µU/mL), the hyperinsulinemic group, who had a
reduced insulin hepatic extraction (HIE) index at baseline condition, showed the highest
improvement in insulin sensitivity, and showed a significant reduction of AUC HIE [124].
Such data clearly support the efficacy of the integrative treatment with carnitines combined
to antioxidants, such as N-acetyl cysteine and L-arginine, that improved hepatic insulin
degradation and consequently peripheric insulin sensitivity.

5.4. N-acetylcysteine and L-arginine

N-acetyl-L-cysteine (NAC) is commonly used as a safe mucolytic drug and for ac-
etaminophen toxicity, but at higher doses it increases the cellular levels of reduced glu-
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tathione (GSH), and it scavenges free radicals, such as hydrogen peroxide and superox-
ide, acting like an antioxidant agent. It inhibits apoptosis induced by oxidative radical
stress [130]. Moreover, it has been shown to increase insulin sensitivity in vivo [131].

Fulghesu et al. demonstrated that the administration of 1.8 g/day of NAC to PCOS
women induced a significant fall in testosterone levels and in free androgen index values.
Considering patients according to their insulinemic response to OGTT, normoinsulinemic
subjects and placebo-treated patients did not show any modification of the above parame-
ters, whereas a significant improvement in insulin sensitivity with a reduction of circulating
insulin levels and secretion after OGTT was observed in hyperinsulinemic subjects, who
were compromised from a metabolic point of view [132].

PCOS is associated to insulin resistance and endothelial dysfunction, which can be
explained by a reduction of nitric oxide (NO) availability due to a reduced protein kinase
PKB-Akt activation [39,133]. Interestingly, there is also evidence from animal studies that
NO plays a role in oocyte maturation and ovulation. Furthermore, in patients with type 2
diabetes, another condition characterized by insulin resistance and endothelial dysfunction,
reduction in NO availability has been demonstrated, which could reflect the increased free
radical production connoting the hyperglycemic condition. Masha et al. demonstrated
that the administration of N-Acetyl Cysteine (1200 mg) and L-Arginine (1600 mg) for six
months determines an increase in the number of menstrual cycles and an improvement of
insulin sensitivity with a decreased HOMA index in patients with PCOS [134]. These data
support the hypothesis that NAC and ARG have an effect by increasing NO availability
and its ability to improve ovarian function.

In addition, a recent review conducted by Sandhu et al. demonstrated that, when
used in combination with clomiphene citrate or letrozole, NAC increases ovulation and
pregnancy rate in infertile females suffering from PCOS and positively affects the quality
of oocytes and number of follicles ≥18 mm [135].

Nitric oxide (NO) is synthesized by nitric oxide synthase (NOS) during the conversion
of L-Arginine to citrulline using oxygen and NADPH as the cofactors. Arginine is the
substrate for NOS during NO synthesis; thus, the bioavailability of this amino acid is
crucial to NOS action. As a semi-essential amino acid, L-arginine can be synthesized in
the human body from other amino acids or derives from foods such as peanuts, walnuts,
meats, seafood, and legumes such as soybean and chickpeas [136].

On this basis, Rad et al. suggested that L-arginine could have positive effects on
glycemic metabolism thanks to its promoting action on NO synthesis and inducing an
increase adiponectin secretion in the adipose tissue. Adiponectin might increase insulin
sensitivity by activating the AMP-activated protein kinase (AMPK) signaling pathway,
which can improve glucose uptake and utilization by the muscles [137].

As a result, the supplementation with L-arginine might have positive metabolic effects
in hyperinsulinemic PCOS patients, and the combination with NAC further improves
insulin sensitivity, as discussed previously. In fact, while L-arginine improves NO synthesis,
NAC acts positively on the synthesis of nytroso-glutathione, thus reactivating reduced
gluthahtione to further eliminate ROS [124].

5.5. Melatonin

Melatonin is an indoleamine hormone released by the pineal gland, whose production
and secretion are promoted at night in response to darkness, since light can suppress its
release. Melatonin has been identified to have different pharmacological properties such as
antioxidant, immunomodulatory, anti-angiogenic, and oncostatic effects [138].

Melatonin seems to be relevant for PCOS patients since it is a potent free radical
scavenger that exerts protective effects in female reproductive organs. There are data
that sustain that melatonin positively acts on follicular maturation and ovulation in PCOS
through the protection of follicles against oxidative stress and their rescue form atresia [139].

In PCOS patients, the melatonin level in serum has been found higher than in healthy
women while its concentrations in the follicular fluid resulted in reduced PCOS (FF). This
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fact has been demonstrated to be due to a decreased uptake of melatonin in ovarian follicles
in PCOS patients, thus resulting in lower follicular fluid melatonin levels when compared
to the healthy condition [140].

On this basis, melatonin administration has been proposed to compensate the re-
duction of this hormone in follicular fluid and can halt ovulation problems [141]. In fact,
Pacchiarotti et al. demonstrated that the oral administration of melatonin does increase the
content of melatonin in the FF and has a synergistic effect with Myo-inositol to promote
oocyte development and follicular discharge [142].

After six months of melatonin therapy in 40 normal-weight PCOS patients, menstrual
irregularities and hyperandrogenism were improved. The lack of significant alterations
in the secretion of insulin and insulin sensitivity suggests that melatonin may act on the
ovary through an independent mechanism [143,144].

Melatonin treatment in PCOS patients significantly affects body characteristics includ-
ing reduced body weight, body mass index, and intra-abdominal fat [145].

A recent review shows that melatonin administration plays a positive effect and leads
to better assisted reproductive outcomes by modulating the activity of some enzymes, such
as antioxidant enzymes and aromatase; regulating lipid metabolism; improving endocrine
hormone levels like raising FSH, lowering LH, and androgen levels; and relieving insulin
resistance, as well as reducing inflammatory states [146–148].

5.6. Berberine

Berberine (BBR), an isoquinoline alkaloid, present in nature in different herbal sub-
stances with a long tradition in Ayurvedic and Chinese medicinal systems. It is known to
have potent antimicrobial activity against bacteria, fungi, protozoans, viruses, helminths,
and chlamydia [149].

In recent years, berberine has received interest for its biological activities. Indeed, dif-
ferent studies demonstrated a wide spectrum of berberine pharmacological effects, such as
antihypertensive, antiarrhythmic, antihyperglycemic, anticancer, antidepressant, anxiolytic,
neuroprotective, antioxidant, anti-inflammatory, analgesic, hypolipidemic activity, and
other effects [150]. One of the major disadvantages of berberine is its poor oral bioavailabil-
ity, which is attributed to its low aqueous solubility and dissolution [151]. For this reason,
most of the berberine remains within the gastro-intestinal lumen. Moreover, the great part
of berberine is distributed in tissues and the plasmatic concentrations are very low [152].

Recent studies have demonstrated the utility of berberine in PCOS women, even if
the mechanism of this alkaloid in the treatment of PCOS is still unclear and more studies
are needed.

In PCOS women, berberine can modulate different metabolic aspects and can it
decrease insulin resistance, enhancing the phosphorylation of insulin receptor and insulin
receptor substrate-1 (IRS1) in adipocytes [153].

Besides, Lee et al. demonstrated, in an animal model, that berberine enhances AMPK
activity in adipocytes and myotubes, it reduces lipid accumulation in adipocytes cells,
and it leads to the GLUT4 translocation in muscle cells, thus contributing to glucose
lowering [154]. The effects of berberine on GLUT 4 expression has been evaluated also
by Zhang et al., who demonstrates that BBR in PCOS rat model is associated with an
increase in signal PI3K/AKT and an enhancement of GLUT4 expression [155]. In this way,
berberine not only reduces insulin resistance, but also reduces blood sugar levels, achieving
an important therapeutic effect in hyperinsulinemic PCOS.

BBR is also effective in the reduction of total serum androgens through the increase of
SHBG levels. It has been demonstrated by An et al. that the administration of berberine
for three months to PCOS women who are refractory to standard ovulation inductors or
who have co-existing infertility factors, led to a significant reduction in total testosterone
levels and free androgen index and an increase in SHBG levels [156]. Additionally, Wei et al.
obtained an important increase in SHBG with the administration of BBR in association with
cyproterone acetate in PCOS women [157].
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In addition, Li et al. demonstrated that the administration of 0.4 g of berberine three
times per day for four months to anovulatory Chinese women with PCOS leads to a
decrease in the SHBG levels in the whole group, and subdividing patients according to the
BMI, the reduction was in the normal weight group only [158].

PCOS women, as previously discussed, are characterized by metabolic dysregulation
and dyslipidemia. BBR seems to have positive effects by reducing synthesis of triglycerides
and ameliorating sensitivity to insulin [159]. Moreover, BBR acts by decreasing low-density
lipoprotein cholesterol, total cholesterol, and triglycerides as statins, and by increasing the
liver expression of low-density lipoprotein receptor, LDLR [160].

In conclusion, berberine has been shown to have several positive actions if used in
the integrative treatment of PCOS and is burdened with little side effects, such as diarrhea,
constipation, abdominal pain occurring, if overdosed [157]. It is important to remember
that BBR crosses the placenta and it is transferred into breast milk, for these reasons it is
recommended caution in its administration in pregnancy and breastfeeding [150]. More
studies are needed to understand the correct and effective dosage of berberine should be
administered in PCOS women.

6. New Perspectives in Integrative Treatments for PCOS Patients
6.1. Tocotrienols

Vitamin E is a group of eight compounds: α-, β-, γ-, and δ-tocopherol (TF) and α-,
β-, γ-, and δ-tocotrienols (T3), which are lipid-soluble compounds [161]. Tocotrienols (T3)
differ from tocopherols by the presence of three unsaturated bonds at the positions of 3, 7,
and 11 of the side chains (Figure 3). Tocotrienols can be found in palm and rice bran oil,
wheat germ, barley, oats, hazelnuts, maize, and in annatto oil [162].
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Many studies have established the role of T3 in protecting against metabolic, diabetic,
and cardiovascular pathologies [163]. T3s (especially γT3 and δT3) were demonstrated to
improve glycemic control in in vitro, in animals, and in the human population [164–166]. A
limited number of animal studies suggested that T3 reduces body weight or body fat [167].
Both Tocotrienols and Tocopherols could scavenge the free radicals directly by donat-
ing the phenolic hydrogen of the chromanol ring. T3 has better membrane antioxidant
activity as compared to TF [168]. T3 can suppress cholesterol synthesis by inhibiting 3-
hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) post-transcriptionally, the
rate-determining enzyme in the mevalonate pathway [169]. It has been shown to down-
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regulate peroxisome proliferator-activated receptor γ (PPARγ), which is the transcription
factor critical in adipocytes differentiation [170]. It can prevent the activation of nuclear
factor-κB (NF-κB), thereby halting tissue inflammation [171].

Recently, Meganathan reported that the supplementation of T3 in various population
groups triggered beneficial effects in cardiovascular health, cancer, immune modulation,
neuroprotection, and skin protection. One of the major limitations of Tocotrienols debated
in human trials was the lower bioavailability in plasma and the differences in their study
designs, populations, formulations, and dosing regimen. Some of these functions have
been confirmed in humans, while others are still under investigation [172].

In a recent study, the administration of 300 mg/day of Delta-tocotrienol for 12 weeks
in pre-diabetic subjects was found to have a significant effect in improving glycemic control
parameters [173]. In addition, Mahjabeen et al. demonstrated that δT3 supplementation
in addition to oral hypoglycemic agents in type 2 diabetes patients, improved glycemic
control, inflammation, oxidative stress, and miRNA expression without any adverse effect.
Thus, δT3 might be considered as an effective dietary supplement to prevent long-term
diabetic complications [174].

Moreover, Pervez et al. studied the supplementation with δ-tocotrienol (300 mg twice
a day for 24 weeks) in NAFDL patients, and they found out that δ-tocotrienol signifi-
cantly reduced the fatty liver index, HOMA-IR, high sensitivity-CRP, malondialdehyde (a
lipid peroxidation marker), ALT, and AST. δ-tocotrienol effectively improved biochemical
markers of hepatocellular injury and steatosis in patients with NAFLD [175].

Up to now there are no studies on the administration of Tocotrienols on PCOS patients,
but Tocotrienols have been demonstrated to have anti-hyperlipidemic, anti-hyperglycemic,
anti-inflammatory, and antioxidant effects; hence, T3 supplementation might be considered
as an integrative therapeutic option in the management of patients with PCOS, especially
in case of insulin resistance.

6.2. Decaffeinated Green Coffee

Experimental studies illustrate that coffee consumption shows antioxidant properties
through the modulation of gene expression of some inflammatory proteins. Additionally,
decaffeinated green coffee has not been studied in PCOS patients, but it has shown positive
effects, which can help also in dysmetabolic PCOS women. Vitaglione et al. showed that the
addition of decaffeinated coffee to a high fat diet (HFD) in rats determined a reduction in
hepatic fat accumulation, systemic and liver oxidative stress, and liver inflammation [176].
Moreover, coffee consumption is associated with higher insulin secretion, insulin sensitivity,
and β-cells function [177,178].

A randomized controlled trial demonstrated that six months of supplementation with
the combination of Berberis aristate (containing berberine), Elaeis guineensis (Tocotrienols),
and decaffeinated green coffee by Coffea canephora in patients with Non-Alcoholic Fatty
Liver Disease (NAFLD) induces an increase of insulin receptor levels, with the improvement
of insulin resistance and hepatic steatosis [179].

Another study was conducted to evaluate the effects of this combination of plant
extracts, composed by Berberis Aristata, Elaeis Guineensis, and decaffeinated green coffee
from Coffea Canephora, added to a high fat diet (HFD) in a mouse model of NAFLD. This
combination of plant extracts has been demonstrated to exert a protective action on obesity,
hepatic steatosis, insulin resistance, and dyslipidemia, with a positive effect on miR-122
and miR-34a expression in the liver and on the gut microbiota [180].

Decaffeinated green coffee bean extract (GCE) has been studied in the dose of 400 mg/day
in patients with Metabolic Syndrome for 8 weeks. GCE administration had an ameliorating
effect on some of the Metabolic Syndrome components such as high systolic blood pressure,
high fasting blood sugar levels, insulin resistance, and abdominal obesity [181].
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6.3. Gymnema Sylvestre

Gymnema Sylvestre is a plant, popularly known as “gurmar”, which grows in In-
dia, Africa, and Australia, used in ayurvedic and homeopathic systems of medicine as a
potent antidiabetic drug. It is also used in the treatment of asthma, eye complaints, and
inflammations. In addition, it possesses antimicrobial, anti-hypercholesterolemic, and
hepato-protective activities [182]. The effects of this plant are due to the presence, on its
leaves, of active ingredients referred to as gymnemic acids [183].

Bhansali et al. demonstrated that the administration of 50, 100, and 200 mg/kg of
deacyl gymnemic acid (DAGA), one of the most active constituents of Gymnema Sylvestre,
in rats with metabolic syndrome, reduces plasma glucose and insulin levels with a decrease
of HOMA-IR. Moreover, DAGA used in experimental animals, reduces systolic blood
pressure, and improves the lipid profile [184]. The reduction of glucose plasma levels seems
to be explained by the reduction of glucose absorption in the intestine since the gymnemic
acid molecules bind the sodium-dependent glucose transporter 1 in the external layers of
the gut, avoiding glucose intestinal absorption in rat models [185].

Whereas Zuniga et al. reported that the administration of Gymnema Sylvestre in
patients with metabolic syndrome decreases body weight, BMI, and low-density lipoprotein
cholesterol levels, with no modification on insulin sensitivity and insulin secretion [186].

The ability of G. sylvestre to lower blood glucose concentrations has been tested as
a hypoglycemic agent in combination with insulin in humans, with encouraging results.
A preliminary study shows that administration of 200 mg/day of G. sylvestre extract
decreased the required insulin dose by 50% and lowered HbA1c in both type 1 and type
2 diabetes. It also increased the number of beta cells in the pancreas and therefore the
internal production of insulin. When 400 mg/day of this extract is taken with conventional
hypoglycemic drugs, such as glyburide or tolbutamide, some patients were able to reduce
the dose of the drug or even discontinue its use [187].

Gymnema Sylvestre has shown its safety in different studies on its toxicity, but high
doses may lead to side effects, such as hypoglycemia, weakness, shakiness, excessive
sweating, and muscular dystrophy [188]. The studies currently present in the literature on
Gymnema Sylvestre are aimed to investigate its effects on the metabolic syndrome, which
is present in most women with PCOS.

7. Conclusions

PCOS is a multifactorial syndrome characterized by multiple metabolic and endocrine
impairments that need to be investigated through a good anamnesis focused on clinical and
family history, and a medical examination to evaluate not only the hormonal impairments
(i.e., hyperandrogenic signs), but also the dysmetabolic ones and the eventual presence of
hyperinsulinemic signs. It is of great relevance to establish the patient’s BMI, the presence
of familial predisposition to diabetes, and the patient’s desire to achieve pregnancy or not,
since the correct therapeutic strategy should be patient tailored.

First of all, it is necessary to start with changes in the lifestyle to promote overall health,
and in association to this, it can be administered integrative or pharmacological therapies.
As a matter of fact, obesity is one of the risk factors for insulin resistance; therefore, weight
reduction is one of the first strategies to get therapeutic results, possibly in association to
integrative treatment, which also improves insulin resistance reduction.

The presence of familial diabetes is essential to be investigated, in order to choose
the most suitable supplementary treatments, since predisposition to diabetes leads to
an impaired expression/function of specific components of insulin signaling or enzyme,
such as epimerase and LASY. In fact, among the inositols, DCI is the one with a greater
efficacy on PCOS women with diabetic relatives, while MYO should be chosen, if there is
no predisposition to diabetes. However, both inositols are relevant integrative approach
to treat infertility problems. Similarly, carnitines, especially if combined with NAC and
L-Arg, demonstrated great efficacy on insulin resistance, also having a positive impact on
liver function.
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In conclusion, a wide range of compounds are available as complementary substances
that can be used to overcome insulin resistance. It is clear that the use of complementary
treatments needs to be attentively evaluated according to the clinical conditions of the
PCOS patient following an adequate lifestyle.
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