L)

Check for
updates

An Entanglement-Aware Middleware for Digital Twins

PAOLO BELLAVISTA, Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

NICOLA BICOCCHI, Department of Sciences and Methods for Engineering, University of Modena and
Reggio Emilia, Modena, Italy

MATTIA FOGLI, Department of Engineering, University of Ferrara, Ferrara, Italy

CARLO GIANNELLI, Department of Mathematics and Computer Science, University of Ferrara, Ferrara,
Italy

MARCO MAMEI, Department of Sciences and Methods for Engineering, University of Modena and Reg-
gio Emilia, Modena, Italy

MARCO PICONE, Department of Sciences and Methods for Engineering, University of Modena and
Reggio Emilia, Modena, Italy

The development of the Digital Twin (DT) approach is tilting research from initial approaches that aim at pro-
moting early adoption to sophisticated attempts to develop, deploy, and maintain applications based on DTs.
In this context, we propose a highly dynamic and distributed ecosystem where containerized DTs co-evolve
with an orchestration middleware. DTs provide digitalized representations of the targeted physical systems,
while the orchestration middleware monitors and re-configures the deployed DTs in light of application con-
straints, available resources, and the quality of cyber-physical entanglement. First, we lay out the reference
scenario. Then, we discuss the limitations of current approaches and identify a set of requirements that shape
both DTs and the orchestration middleware. Subsequently, we describe a blueprint architecture that meets
those requirements. Finally, we report empirical evidence on both the feasibility and the effectiveness of a
proof-of-concept implementation of the proposed ecosystem.

CCS Concepts: « Networks — Cyber-physical networks; « Software and its engineering — Middle-
ware; « Applied computing — Industry and manufacturing;

Additional Key Words and Phrases: Cyber-physical systems, digital twins, entanglement, middleware

ACM Reference Format:

Paolo Bellavista, Nicola Bicocchi, Mattia Fogli, Carlo Giannelli, Marco Mamei, and Marco Picone. 2024. An
Entanglement-Aware Middleware for Digital Twins. ACM Trans. Internet Things 5, 4, Article 25 (Novem-
ber 2024), 25 pages. https://doi.org/10.1145/3699520

Authors’ Contact Information: Paolo Bellavista, Department of Computer Science and Engineering, University of Bologna,
Bologna, BO, Italy; e-mail: paolo.bellavista@unibo.it; Nicola Bicocchi, Department of Sciences and Methods for Engineer-
ing, University of Modena and Reggio Emilia, Modena, MO, Italy; e-mail: nicola.bicocchi@unimore.it; Mattia Fogli, Depart-
ment of Engineering, University of Ferrara, Ferrara, FE, Italy; e-mail: mattia.fogli@unife.it; Carlo Giannelli, Department of
Mathematics and Computer Science, University of Ferrara, Ferrara, FE, Italy; e-mail: carlo.giannelli@unife.it; Marco Mameti,
Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Modena, MO, Italy; e-mail:
marco.mamei@unimore.it; Marco Picone, Department of Sciences and Methods for Engineering, University of Modena and
Reggio Emilia, Modena, MO, Italy; e-mail: marco.picone@unimore.it.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2577-6207/2024/11-ART25
https://doi.org/10.1145/3699520

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.


HTTPS://ORCID.ORG/0000-0003-0992-7948
HTTPS://ORCID.ORG/0000-0003-4182-1887
HTTPS://ORCID.ORG/0000-0002-9875-4550
HTTPS://ORCID.ORG/0000-0002-2394-1191
HTTPS://ORCID.ORG/0000-0003-3918-2107
HTTPS://ORCID.ORG/0000-0001-8902-6909
https://doi.org/10.1145/3699520
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3699520
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3699520&domain=pdf&date_stamp=2024-11-12

25:2 P. Bellavista et al.

1 Introduction

Digital Twins (DTs) have recently emerged as software components acting as intermediaries be-
tween physical objects and applications. DTs can provide standard Application Programming
Interfaces (APIs) to interact with Physical Twins (PTs), i.e., their physical counterparts, thus
decoupling PTs from applications and, if needed, augmenting PT capabilities. With respect to the
recent scientific literature [9, 31, 36], a DT can be envisioned as a comprehensive software repre-
sentation of one or multiple PTs including the properties, conditions, relationships, and behavior(s)
of interest with respect to the target application context and the deployed environment through
models and data. Furthermore, a DT is in charge of representing and reflecting its physical coun-
terparts throughout their lifecycle, adapting to and tracking their evolutionary changes over time.
Furthermore, from a high-level viewpoint, a DT software instance should be characterized by two
primary communication channels: the Physical Interface and the Digital Interface. On the one hand,
these channels represent the entry points to the inner core of the DT, in charge of supporting the
DT model of the PT and of overseeing the DT lifecycle. On the other hand, they hide the inherent
complexity of supporting the interaction among physical and cyber domains. The design, imple-
mentation, and effective deployment of a DT software architecture and platform can vary signifi-
cantly among different approaches, by posing relevant issues related to the potential fragmentation
of this emerging ecosystem.

Although commercial platforms, e.g., Microsoft Azure, Amazon Web Services (AWS), and
Eclipse, represent DTs as passive, JavaScript Object Notation (JSON)-based entities, state-of-
the-art research is increasingly pushing the idea of DTs as orchestrated microservices [40]. The
rationale is to take advantage of well-established techniques in the field of microservices (e.g., mi-
gration, replication, composition, software update, and re-configuration) to address time-varying
application requirements (e.g., one application requiring more timely or precise data and thus a
more complex DT model), load imbalances, and network faults, among others. For example, a DT
under high load might be horizontally replicated or migrated to a different hosting node richer
in computational resources. Alternatively, a DT receiving jittery updates from its PT might be
migrated to a different hosting node physically closer to the PT or re-configured to use an alterna-
tive network protocol. Set aside the sharp increase in complexity required to implement this kind
of DTs when compared with centralized JSON-based solutions (the relationship between benefits
and added costs is largely unexplored yet in the related literature), one of the key aspects to be ad-
dressed concerns the identification of parameters that could be used for driving DT management
actions (e.g., migrations, replications, and re-configurations) on the ecosystem.

The inherent cyber-physical nature of DTs is what primarily distinguish DTs from traditional
software components. In this regard, Minerva et al. [31] introduced the concept of “entanglement”,
which has recently been made available in practical terms as Overall Digital Twin Entangle-
ment (ODTE)—a metric to objectively quantify cyber-physical entanglement [8]. Fundamentally,
entanglement denotes how well a DT mirrors its counterpart, and the extent to which the PT be-
havior aligns with the commands issued by the DT. For those DTs that do not issue commands, only
the first condition applies. However, the existing platforms do not take this aspect into considera-
tion. It is worth noting that this lack of entanglement awareness is a major drawback. In fact, one
cannot rely on a DT that is not entangled because this would mean that the virtual representation
is not in line with its physical counterpart anymore. Entanglement awareness is foundational for a
DT ecosystem, in the sense that it plays a primary role in DT orchestration. For example, a DT that
is running perfectly fine in terms of traditional service requirements (e.g., resource consumption)
could be notwithstanding migrated because disentangled (e.g., it does not receive updates from the
PT as fast as it should). To bridge this gap, we propose an entanglement-aware middleware for DT
orchestration, thus supporting a vision of DTs that revolves around the concept of entanglement.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:3

The proposed middleware drives the orchestration of cyber-physical applications’a comprehensive
construct describing digital representations (i.e., DTs) of the physical world (i.e., PTs)-based on the
quality of entanglement. The use of containerization not only provides first-class citizenship to the
entanglement concept but also paves the way for DTs capable of taking into consideration (i) the
mutual relationship between application constraints and available resources (i.e., a DT might be
migrated to a node physically closer to the PT for improving entanglement) and (ii) the mutual
impact that DTs might have on each other (e.g., a computationally hungry DT model might dis-
rupt the entanglement of another DT running on the same node, thus requiring a migration or a
re-configuration).

The remainder of the article is organized as follows. In Section 2, we map the general issues and
limitations of current DT solutions to the (challenging) requirements of Industry 4.0 deployments,
which constitute our practical and grounded reference scenario. In Section 3, we outline the key re-
quirements for ecosystems of containerized DTs, describe how these requirements shape both DTs
and the orchestration middleware, and discuss such requirements in light of the commercial plat-
forms currently available for DTs. In Section 4, we summarize the key features behind the ODTE
metric and describe a blueprint architecture for an entanglement-aware middleware for DTs. In
Section 5, we describe a proof-of-concept implementation of the proposed middleware and provide
empirical evidence about its effectiveness while enforcing the desired quality of entanglement of a
cyber-physical application deployed in an edge-to-cloud continuum infrastructure despite failures.

2 Reference Scenario: Industry 4.0

To facilitate a full understanding and grounding of the entanglement-aware middleware for DTs,
this section introduces the primary characteristics of modern industrial scenarios and how the
adoption of DTs can simplify their management.

The spread of Internet of Things (IoT) within industrial environments have recently allowed
to more easily monitor and control of industrial equipment from remote locations, e.g., via Rep-
resentational State Transfer (REST) or Open Platform Communications United Architec-
ture (OPC UA), thus fostering the advent of the 4th industrial revolution. Initial attempts to im-
plement the Industry 4.0 paradigm relied on unstructured ad hoc approaches, allowing technicians
and industrial applications to interact directly with machines through their APIs. This trend fos-
tered the integration of Operation Technology (OT), i.e., the part related to industrial machines
and automation, and Information Technology (IT), i.e., the part related to data management
and processing. In particular, the adoption of the so called ABCD technologies (i.e., Artificial Intel-
ligence, Blockchain, Cloud computing, and Data security) within OT environments provides a no-
table enhancement in terms of productivity and increased efficiency, together with the possibility
of introducing novel business opportunities. For instance, Artificial Intelligence (AI)/Machine
Learning (ML) can be used to model threat detection mechanisms of wireless systems embedded
in DTs [21], with training components that run on top of serverless frameworks to take advan-
tage of the edge-to-cloud continuum [27]. Moreover, the Blockchain technology can be adopted
to enable trust in machine servitization use-cases [6]. This would not only ensure data resiliency
and security in industrial environments [5], but it would also avoid data tampering and improve
transparency of manufacturing processes [24].

However, the IT/OT integration has raised several issues related to, among others, machine
heterogeneity and proper management. First, machines expose different APIs to each other, thus
requiring users to know machine-specific details. Second, commands and information are sent and
gathered directly, with the potential drawbacks of concurrently sending contradictory, if not even
inconsistent, commands and querying machines too frequently. These issues become more evident
when the actual organization of modern industrial environments (comprising the shop floor, plant,

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:4 P. Bellavista et al.

Internet ‘

Layer 5: Enterprise Network, Web
Servers, Email

Enterprise Zone
(IT) Layer 4: Enterprise Network, Web
Servers, Email

Manufacturing Zone [REVEEICHEERTNG) TS LA CRY el 15200
(IT/OT) Manufacturing Exec. System (MES)

Cell/Area Zone Layer 2: Area Supervision Control,
(IT/OT) Human-Machine Interface (HMI)

Layer 1: Basic Control,

Cell/Area Zone Programmable Logic Controller (PLC)

(OT) Layer 0: Process Industrial
Equipment

Fig. 1. The Purdue model.

and enterprise levels) is taken into account and properly modeled. The shop floor level is mainly
focused on industrial automation. The primary components of the shop floor are industrial ma-
chines, Programmable Logic Controllers (PLCs), Human-Machine Interfaces (HMIs), and
Industrial Internet of Things (IIoT) devices. The plant level regards the management of man-
ufacturing processes. The critical component is the Manufacturing Execution System (MES). In
particular, the MES receives instructions on how industrial machines should behave from opera-
tors, and then it transmits such instructions downwards, i.e., towards the shop floor. The enterprise
level is about making decisions about how to run business operations. Frequently, an Enterprise
Resource Planning (ERP) collects information from the underlying business assets, e.g., supply
chains, cash flows, customer orders, and production processes, to provide decision-makers with
an enterprise-wide picture.

The most common network implementation of such a logical structure is arguably the Purdue
model [41], which models the industrial network in three Zones and six Layers (see Figure 1). The
Cell/Area Zone is the bottom one, comprises Layers from 0 to 2, and concerns the OT. The shop
floor components crafting goods belong to Layers 0 and 1. Such Layers rely on a time-sensitive net-
work connecting industrial machines and PLCs, while devices that control crafting processes, e.g.,
HMIs, reside on Layer 2. The Manufacturing Zone resides in the middle. It contains Layer 3, which
embraces both OT and IT, including those components that manage the manufacturing process as
a whole, e.g., the MES. At the top, there is the Enterprise Zone, which comprises Layers 4 and 5.
Such Layers primarily provide IT-oriented functionalities and facilities, such as Web servers, email
servers, databases, and the ERP system, to name a few. Recently, industrial network implementa-
tions have evolved towards multi-domain architectures with some of the software components
deployed outside the factory environment in the so called edge-to-cloud continuum. For instance,
Multi-access Edge Computing (MEC) nodes could host DTs in the cellular operator domain not
too far from PTs, while delay-tolerant DTs could be remotely hosted on a public cloud infrastruc-
ture. Thus, nowadays the Enterprise Zone of the Purdue model embraces multiple heterogeneous
domains, from on-premises plant network to telco operator and cloud provider networks.

When Industry 4.0 started to emerge, the Reference Architecture Model Industrie 4.0
(RAMI 4.0) aimed to improve the Purdue model to better cope with new industrial environ-
ments [16]. Compared with other emerging standards that mainly focused on how smart appli-
ances (and related data) are managed, e.g., the Industrial Internet Reference Architecture

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:5

(IIRA) [25]), RAMI 4.0 was more suitable to model the wider smart value chain scenario, also
properly handling the whole life cycle development, deployment, and maintenance of smart ap-
pliances [10]. In particular, RAMI 4.0 provides per-component functional descriptions depicting
how (smart) product life cycle can interact in a cross-layer way with any other component of the
factory. This ranges from field and control devices to stations, work centers, and the enterprise as
a whole. In other words, RAMI 4.0 envisioned a more open architecture (in comparison with the
Purdue model) characterized by partial de-perimetration, i.e., even Manufacturing Zone borders
tend to be blurred, thus allowing industrial components and controllers to interact more freely. The
ultimate goal is to maximize the flexibility of the system by integrating the factory environment
with the external world.

The RAMI 4.0 model greatly fostered the discussion among academic and industrial researchers
about the proper architecture Industry 4.0 applications should be based on, with the notable pos-
itive effect of disseminating the broader concept of smart factory. However, its actual implemen-
tation is still far from being accomplished (if it ever will be), since this high-level model has not
always reflected actual requirements and capabilities of real-world industrial environments. In
particular, the envisioned cross-layer interactions among factory components have been demon-
strated very complex to be developed and managed. In fact, the heterogeneity of machines, together
with the concurrent interaction of multiple technicians and applications with the same machine,
called for the adoption of DTs acting as proxies decoupling machines and users/applications. For
instance, the adoption of the DT approach makes it clearer the separation between OT and IT. This
separation greatly simplifies the development and deployment of remote machine monitoring and
control solutions, thus accelerating the spread of Industry 4.0.

Notwithstanding the clear advantages of adopting a DT-based approach, it is worth noting that
DTs are currently managed and deployed in a static and isolated manner. For example, in Microsoft
Azure, ! DTs are conceptualized as centralized cloud entities integrated within a robust yet isolated
framework, lacking the capability for integration with other DTs or DT monitoring and orchestra-
tion solutions. With Eclipse Ditto,? DTs can be deployed both on the edge and in the cloud, but
they are depicted as passive entities, deferring the responsibility for implementing their behavioral
model and lacking active monitoring of their behavior and performance during execution and life-
cycle management. In NVIDIA Omniverse,” DTs primarily serve simulation purposes, featuring
centralized control, limited interoperability, and ecosystemic perspective, while lacking a direct,
observable link between the physical and digital realms. On the contrary, with White Label Dig-
ital Twin (WLDT) [33], there is the capability to model and implement DTs as active, modular,
and interoperable software components. However, WLDT does not provide a management layer
to support DT deployment and orchestration in a structured, observable, and integrated manner.

Furthermore, with respect to the industrial context, even if the same runtime environment may
concurrently host several DTs connecting multiple machines and applications, DTs are only seen
as a group of standalone and unspecific software components. In other words, DTs are deployed to
accomplish requests coming from machines and users/applications in a best-effort manner, without
any knowledge about the context. Although this approach simplifies the initial adoption of DTs,
its simplicity is not suitable for articulated scenarios emerging from the massive deployment of
DTs. For instance, a DT might dramatically increase the amount of used computational/memory
resources, jeopardizing other DTs co-hosted on the same node and starting to suffer for reduced
resource availability. In this case, additional resources might be granted to the DT, but also taking

!Microsoft Azure Digital Twins: https://azure.microsoft.com/en-us/products/digital-twins
2Eclipse Ditto: https://eclipse.dev/ditto/
SNVIDIA Omniverse: https://www.nvidia.com/en-us/omniverse/

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.


https://azure.microsoft.com/en-us/products/digital-twins
https://eclipse.dev/ditto/
https://www.nvidia.com/en-us/omniverse/

25:6 P. Bellavista et al.

into consideration that it is required to verify that other DTs still have enough resources. Even
in the (ideal) case that each DT runs in its own dedicated node, the DT might require more and
more resources, beyond the resource amount available on the node hosting the DT. In this case, it
might be useful to vertically scale up the node by providing additional resources (e.g., in the case
of virtual machines). Otherwise, the DT might be migrated to a resource-richer node. It is worth
mentioning that a DT might also face issues due to network degradation, e.g., a peak of latency
on the communication link connecting the DT to its physical counterpart. In this case, it might be
useful to migrate the DT on the edge, as close as possible to the PT.

3 Requirements and State-of-the-Art

DTs have recently found applications in a number of different domains [7], spanning from the
design of novel systems to the optimization of industrial processes and real-time control. In the
system design scenario, DTs can be used to conduct validation tests and to assess the practicability
of physical solutions. In the system configuration scenario, DTs can validate system performance
in a semi-physical simulation manner, e.g., by enabling the rapid reconfiguration of automated
manufacturing systems via an open architecture model. In the system operation scenario, DTs
can enable feedback and adjustments to/from IoT systems. Let us note that, in this work, we
specifically focus on the third scenario, characterized by DTs acting as intermediaries between
physical objects and applications.

To meet the need for cost-effective development and deployment, tech companies have started
to provide DT platforms for creating and operating DTs, e.g., Microsoft Azure, AWS, and Eclipse
Ditto. Despite being production-grade platforms [23], they intend DTs as passive entities accu-
mulating data into JSON files instead of an ecosystem of containerized entities running within
an orchestration environment. R3.3 Based on these considerations, we discuss a set of innovative
requirements enabling the next generation of DTs, engineered not only to act as bridges between
physical objects and applications, but also capable of exchanging contextual information with
their environment and enforcing actions to satisfy application-defined constraints. Furthermore,
we discuss how state-of-the-art DT platforms currently support these requirements (see Table 1
for an overall summary).

3.1 Edge-to-Cloud Mobility

3.1.1 Definition: A mobility-capable DT ecosystem supports mobility along the edge-to-cloud con-
tinuum and allows individual containerized DTS to be transparently migrated to the hosting domains
that best fit the application constraints.

Computing and communication resources can be owned by different providers and located in
different domains, such as edge on-premises (e.g., digital factories), MEC (e.g., telco networks), or in
the cloud (e.g., big tech companies). Each solution has benefits and drawbacks: public clouds offer
lower costs but poorly predictable performance. On the contrary, edge solutions provide full con-
trol and predictable performance in exchange for higher costs [3, 28, 29, 35]. These considerations
highlight the importance of enabling and supporting the transparent migration of containerized
DTs to the most adequate domains, as represented in the scenario in Figure 2.

3.1.2 Digital Twins: For enabling mobility and running reliably across different environ-
ments, DTs have to be containerized with all their dependencies. Once containerized, DTs
can be readily deployed on any hosting platform (thus supporting mobility) and easily scaled
to meet demand. This approach leads to conceive DTs as microservices, using specific APIs
to communicate with their peers, applications, physical objects, and orchestration services.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins

Table 1. A Comparison of Currently Available DT Platforms

According to Our Envisioned DT Requirements

25:7

Requirement  Microsoft Azure AWS Eclipse Ditto WLDT

Edge-to-cloud  NO - Cloud-only LOW - Cloud-only solution MEDIUM - LOW -

mobility solution for DTs, with  for DTs, with the IoT Microservices-oriented Microservices-oriented
IoT management that ~ management and Lambda  framework enabling library enabling
could be deployed at  function execution at the edge-to-cloud mobility, but edge-to-cloud mobility, but
the edge. edge. there is not a platform for there is not a platform for

deployment and deployment and
orchestration across the orchestration across the
edge-to-cloud continuum. edge-to-cloud continuum.

Variable load HIGH - Cloud native ~ HIGH - Cloud native NO - There is no native NO - There is no native

resilience support for scaling. support for scaling. support for scaling, which support for scaling, which

will depend on the platform  will depend on the platform
used for deployment and used for deployment and
orchestration. orchestration.

Entanglement ~ NO - There is no NO - There is no notion of ~ LOW - There is no notion of HIGH - Entanglement-aware

awareness notion of entanglement. Developers  entanglement. There is library that natively
entanglement. are responsible for however support for implements the ODTE metric.
Developers are supporting entanglement,  timestamps, which can then
responsible for from timestamp generation be used for measuring
supporting to metric calculation. timeliness—a factor of
entanglement, from entanglement.
timestamp generation
to metric calculation.

Life cycle NO - There is no NO - There is no notion of ~ NO - There is no notion of HIGH - Native support for
notion of life cycle life cycle that takes into life cycle that takes into cyber-physical life cycle.
that takes into account account the cyber-physical —account the cyber-physical
the cyber-physical nature of DTs. nature of DTs.
nature of DTs.

Declarative LOW - A construct for NO - A construct for NO - A construct for NO - A construct for

application modeling a modeling a cyber-physical ~ modeling a cyber-physical modeling a cyber-physical

description cyber-physical application is not available. application is not available. application is not available.
application is not
available. However,
there is separation of
concerns between DT
schemas and
instances.

Accountability HIGH - Cloud native ~ HIGH - Cloud native MEDIUM - Some metrics LOW - Some metrics and
support for support for accountability.  and logs being natively logs being natively exposed,
accountability. exposed, but there is not but limited to entanglement

integrated accountability
across DT components.

and life cycle.

Cloud Digitalization

G

=

Digital

Metrics
——
Digital Twin
Cyber-Physical Actions
Middleware :>
<D Deployment
gh

=¥

Digital Interactions
DT
Digital

Composition !\jt
=
@- cory——
MEC Digitalization o _

P,

Physical
Twin

Digital
Twin
Composed
Digital Twin

Digital
Application
P ; ;
« Distributed
) Resources

Application

Designer Admin

T
[ Distributed Digital Twin Driven Cyber-Physical System |

Fig. 2. An orchestrated ecosystem of DTs running along the edge-to-cloud continuum.

Containerization is also likely to facilitate the adoption of the technology, promoting automation,
and standardization [2, 18, 34, 38].

3.1.3 Middleware: The orchestration middleware migrates DT containers, optimizes the use
of resources, replicates containers under load (see Section 3.2), while maintaining containers

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:8 P. Bellavista et al.

monitored and healthy. The orchestration middleware must support: (i) DT mobility: if required,
a DT must be offloaded from the current location and moved to a new location; (ii) DT service con-
tinuity: if a DT moves to another location, the application associated with that DT must continue
to run properly; (iii) State mobility: data describing the PT state history must support mobility
along with the DT. Relocation procedures should minimize total migration time [12, 26, 37].

3.1.4  State-of-the-Art: Mobility is not fully supported by any available platform. More specifi-
cally, Azure and AWS model DTs as cloud-only entities capable of receiving data from PTs via a set
of connectors. As such, all DTs reside on cloud nodes and cannot be moved to different domains
or even change tenant. Only specific components such as the IoT manager or lambda functions
can be deployed at the edge. Instead, since Eclipse Ditto and WLDT are microservices-oriented
frameworks, they provide libraries for developing DTs potentially supporting mobility. However,
they do not provide a platform supporting deployment and orchestration across the edge-to-cloud
continuum.

3.2 Variable Load Resilience

3.2.1 Definition: A DT ecosystem resilient to variable loads supports DT replication and admission
control/resource allocation mechanisms for incoming tasks, i.e., an application requesting to observe
a physical object.

Applications might impose variable loads, thus possibly requiring a variable amount of resources
over time. Two key factors drive the overall load on a distributed system such as an ecosystem
of DTs: (i) the amount of requests to be accomplished, and (ii) the complexity of those requests.
To cope with peaks in the number of requests, replicas of a DT can be spawned, limiting their
number according to the available resources (admission control). Concerning requests complexity,
a DT model may require non-negligible resources. For instance, a deployment domain without
a sufficient number of GPUs or CPUs may negatively impact the responsiveness of a DT model
or even totally prevent it from working. Because of this, mechanisms for allocating the needed
resources must be supported (resource allocation).

3.2.2 Digital Twins: Handling variable loads implies DT horizontal replication. Replicas of the
same DT, all associated with the same PT, must behave consistently, i.e., they have to represent
the same status and behavior of the PT. However, multiple replicas requiring independent syn-
chronization inevitably increase the load on the PT. To avoid this effect, replicas can be organized
in a hierarchical fashion. A primary DT directly synchronizes with the PT while it interacts a
secondary tier of DT [19, 31].

3.2.3 Middleware: It has been recently discussed a network of DTs can be equipped with admis-
sion control and resource allocation mechanisms [4]. The admission control system maintains the
DT network performance in front of high loads. When it is enabled, it sorts requests by priority,
giving preference to higher priority operations. In case of a positive decision from the admission
control, the resource allocation mechanism verifies and eventually adjusts the resources requested
(see Section 3.5) according to those which are available.

3.24 State-of-the-Art: Azure and AWS support horizontal scaling. Specifically, the data struc-
tures representing DTs are updated via serverless functions running on the cloud (natively sup-
porting replication). However, the actual concept of DT replicas, intended as active software com-
ponents, does not exist in those platforms. On the contrary, DTs implemented with either Eclipse
Ditto or WLDT could be potentially containerized and replicated even though there is no native
support for scaling, which will depend on the platform used for deployment and orchestration.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:9

3.3 Entanglement Awareness

3.3.1 Definition. An entanglement-aware DT ecosystem exposes the quality of its cyber-physical
entanglement and is capable of actions aimed at safeguarding quality constraints defined by applica-
tions.

Engineering a DT that exactly reflects the PT features (i.e., perfect entanglement) is difficult for
a number of reasons, such as: (i) the state of the DT model is normally obtained by synchronizing
with the PT, which often happens periodically at discrete time instants; and (ii) the state of the DT
model requires processing delays to be computed (details are provided in Section 4.1). Nevertheless,
applications are often designed and implemented in light of specific assumptions regarding DTs
(e.g., the DT replies in less than 100 ms) and PTs (e.g., the PT sends updates every 200 ms) [13].
Because of this, providing applications with a metric describing how well the DT is rendering its
PT w.r.t. the expected performance is key. Recent works [8, 39] propose approaches for measuring
cyber-physical entanglement by taking into account both the freshness of the data collected from
the PT and the ratio between the amount of collected and required data.

3.3.2 Digital Twins. DTs must be capable of computing and providing to external services and
applications their level of entanglement. Furthermore, the need for independent communications,
possibly using different protocols and timings, for (i) communicating with PTs, (ii) communicating
with applications, and (iii) exchanging commands/configurations and metrics with the orchestra-
tion middleware calls for a decoupled architecture. In this regard, we conceive DTs as modular
entities, supposed to be pluggable and re-configurable at run-time. Modularity can be achieved
with specific designs at the component level (e.g., micro-kernel, event-based modular monolith
etc.) and multiple containers associated with different scheduling priorities and resources at the
pod level [9].

3.3.3 Middleware. DTs providing well-defined communication interfaces enable the orchestra-
tion middleware to perceive the ecosystem and plan actions to reach the service levels required by
the applications. Thus, the middleware has to be aware of the communication interfaces provided
by DTs and use them to collect contextual data, analyze them w.r.t. application constraints, and
take actions accordingly. For example, the middleware might improve the cyber-physical entan-
glement of one DT by re-configuring its communication protocols, assigning to it more resources
for speeding up its internal model, spawning a replica, or migrating it closer to its PT.

3.3.4 State-of-the-Art. Azure and AWS do not embed any form of entanglement support. In
fact, they only provide connectors for receiving data from PTs and store them without providing
any further assistance. Developers might build entanglement-aware functionalities by enriching
PT data with timestamps, but without relying on any support from the platform. Eclipse Ditto,
despite not supporting entanglement, provides support for managing timestamps, which can be
used for measuring timeliness (a key factor for entanglement). Instead, WLDT is an entanglement-
aware library supporting the computation of the ODTE metric.

3.4 Life Cycle

3.4.1 Definition. A DT ecosystem has to be fully aware of the cyber-physical nature of its DTs
(compared to general purpose containerized software) and has to support their complete life cycle:
deployment, entanglement, updates (for model augmentation), and re-configuration (for enforcing
applications constraints).

Conceiving DTs as an orchestrated ecosystem acting as a medium for cyber-physical applica-
tions implies several changes w.r.t. plain microservices. Firstly, DTs have to support a runtime en-
vironment (i.e., expose contextual metrics, receive commands, etc.) and enforce adaptation. Indeed,

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:10 P. Bellavista et al.

they have to support a synergic decision making process in which decisions at the orchestration
level are refined at the DT level and vice-versa. Secondly, the orchestration middleware must be
aware of the internal status of DTs (i.e., unbound, bound, entangled, disentangled, etc.) and sup-
port their life cycle [36]. Finally, due to the possibly large number of DTs under management, the
orchestration middleware has to minimize human interventions and promote the automation of
frequent operations, such as updates and re-configurations [42].

3.4.2 Digital Twins. Containerized DTs must be reliable and dependable components prevent-
ing catastrophic failures. As such, they have to adopt modular designs allowing internal modules
and communication interfaces to work independently. For example, separate interfaces can be
used for communicating with the physical, digital, and control (i.e. the middleware) layers inde-
pendently. Other modules can be used for managing the DT model, augmentation functions, the
storage of the PT history, and the cyber-physical entanglement. Furthermore, PTs and applications
might receive updates over time because of software/security issues or changing requirements. As
such, DTs must support updates (via the control interface) to reflect those changes (e.g., supporting
a new network protocol introduced in the PT). Finally, since DTs might be subjected to changing
operating conditions, they must support dynamic re-configurations (via the control interface).

3.4.3 Middleware. The orchestration middlweare cannot be a standard orchestration system
(i.e., Kubernetes) but, instead, it requires specific features accounting for this scenario. As such, it
has to receive data and send commands to/from the DT control interfaces, and be aware of the
network topology, resources, configurations, and application constraints. In this manner, it can
compare the status of the DT ecosystem with application requirements, possibly planning adaptive
actions accordingly.

3.4.4 State-of-the-Art. None of the available commercial platforms support these features. In
fact, Azure and AWS conceive DTs as centralized passive entities that do not send/receive data
and commands, and do not require re-configurations and updates. It could be possible to build
containerized DTs using either Eclipse Ditto or WLDT, but without any support from the library
itself.

3.5 Declarative Application Description

3.5.1 Definition. A DT ecosystem supporting application descriptions provides a declarative, Do-
main Specific Language (DSL) for describing applications, enabling a clear separation of concerns
between development and operations.

DSLs are alternatives to general purpose languages (i.e., Java, Python, etc.) for configuring appli-
cations. While the latter tend to be more complete, they can be time-consuming when performing
domain-specific actions. A DSL reduces these issues with a simpler grammar that lends itself to
the specific application domain. Developers can adopt a DSL to describe applications in terms of
DTs, PTs, resources, constraints, and so on. For example, defining an application which requires
5 DTs deployed on edge nodes and associated to specific PTs, supporting replication, requiring 1
GPU each, and constrained to provide updates every 150 ms. In addition, they can offload complex-
ity from the design and development of the application core by defining complex objects, such as
composite DTs or pipelines in a human-readable fashion. For example, for computing the average
power consumption of a set of industrial robots, instead of coding such a function within a DT (im-
plying additional coding, testing, and integration activities), a DSL configuration file could be used
to describe the need for deploying an additional DT dedicated to receiving values and computing
their average.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:11

3.5.2 Digital Twins. A cyber-physical application is a comprehensive construct that unifies DTs
and their PTs. Fundamentally, a cyber-physical application must contain at least one physical entity
and one digital entity. Each PT has a unique identifier and is associated with metadata portraying a
range of properties pertinent to the application. Likewise, each DT has its own unique identifier, a
source for deployment (e.g., the container image to be used), and a type indicating if it is simple or
composed. Each DT is associated with one or more physical entities, carries specific deployment
requirements, and provides details about its own deployment specifications.

Regarding composition, DTs have to provide APIs and communication schemes for managing
other DTs as if they were PTs in a hierarchical fashion. Each change in one DT that is part of a
composition scheme (i.e., an observed DT) is propagated toward the upper levels of the composi-
tion scheme. The communication scheme to be used is strictly tied to the quality of representation
expected by applications because keeping a composition of DTs highly entangled might require
significant networking resources, possibly disrupting other services. To save bandwidth in case the
composition of DTs is not observed (i.e., used) by applications, DTs might choose not to propagate
updates coming from PTs to the upper layers [17].

3.5.3 Middleware. The orchestration middleware has to be capable of parsing DSL descriptions
and enact the required actions during both deployment and operations. Firstly, during deploy-
ment, the orchestration middleware has to fetch DTs and deploy them according to the specified
resources (i.e., memory, disk, number of CPUs or GPUs, connectivity), and constraints (i.e., entan-
glement, mobility boundaries, etc.). Secondly, as described above in this section, during operations,
the orchestration middleware has to monitor DT metrics and plan actions aimed at safeguarding
application constraints.

3.5.4 State-of-the-Art: Azure provides users with the ability to define custom DTs in self-
defined terms. This capability is based on user-provided models and represented in the Digital
Twin Definition Language (DTDL) [32]. DTDL models have names and contain elements, such
as properties, telemetry, and relationships, that describe what this type of entity does. However,
given the passive nature of Azure DTs, DTDL can only be used for describing the DT model, while
our proposal goes into the direction of offering a construct to model a whole cyber-physical ap-
plication and its deployment. AWS, Elipse Ditto, and WLDT do not provide any construct for
describing applications in a declarative way.

3.6 Accountability

3.6.1 Definition. An accountable DT ecosystem gathers information, analyzes it, and takes appro-
priate measures based on actual data. It is also capable of producing audit trails that can be inspected
when problems occur.

A DT ecosystem integrates loosely coupled DTs into one cohesive system supporting applica-
tions expected to provide both functionally correct results and acceptable performance levels in
accordance with application constraints (e.g., entanglement constraints). However, identifying the
source of a failure in a DT system can be difficult: DTs can be complex, having many execution
branches and invoking services from other DTs, their PTs, or even the execution node/runtime
environment [20, 22].

3.6.2 Digital Twins. Key aspects of accountability at the DT level are: (i) tracing and monitoring:
DTs have to expose metrics and tracing information allowing the orchestration middleware to
monitor their status (including the status of their host node) and performance. In this context,
DTs are also required to maintain the status of their associated PTs, at least those associated with
relevant events/decisions/actions; (ii) logging and auditing: DTs have to log their decisions and

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:12 P. Bellavista et al.

actions (together with associated events and data). These logs should be stored in a trusted location
to enable further analytics.

3.6.3 Middleware. The orchestration middleware must periodically collect, aggregate, and an-
alyze DT logs, detect different types of faults, and support management algorithms for handling
them whenever possible. In practical terms, accountability can be reached by keeping track of the
ownership of DTs and PTs, monitoring their status and metrics, and using tracing techniques to
identify which DTs are involved in each event, decision, or action.

3.6.4 State-of-the-Art. Azure and AWS are cloud services and thus accountable by design
(trusted logging is supported at the platform level). However, there is a substantial difference w.r.t.
our proposal since AWS and Azure do not take decisions and do not enforce actions: their DTs are
designed to receive data from tailored connectors and store them. On the contrary, Eclipse Ditto
and WLDT provide a limited amount of metrics and logs without offering an integrated account-
ability system across the DT components.

4 Entanglement-Aware Ecosystem: A Blueprint Architecture

The overarching ambition behind the proposed middleware is not only to define the core modules
and functionalities supporting cyber-physical entanglement in DTs, but also to map the general
requirements above to well-defined clear specifications for both DTs and the middleware itself.
In this scenario, DTs not only behave as enhanced digital replicas of PTs but also participate in
the orchestration process by sending contextual data and receiving commands to/from the middle-
ware. The middleware is responsible for deploying, configuring, monitoring, and coordinating DTs
in light of cyber-physical application constraints, as well as for reacting to environmental shifts
leading to degraded performance/entanglement levels.

4.1 Overall Digital Twin Entanglement (ODTE)

As previously anticipated, the entanglement has a crucial role in ensuring the reflection property
between DTs and PTs. The ODTE metric [8] provides an effective measurement-based approach
that we can adopt and integrate in the architectural design of both DTs and the orchestration
middleware. The interactions between a DT and the associated PT can manifest in two main ways:
(a) when there is a state change in the PT that needs to be reflected in the DT, and (b) when an
external service, such as an IIoT application, sends a request to the DT, which then needs to be
communicated to the PT and followed by a confirmation of the state change sent back to both the
DT and the external service.

Based on these principles and concepts, the primary objective of the ODTE metric is to assess the
interactions between DTs and PTs in a concise yet meaningful manner. Similar to the concept of
Overall Equipment Effectiveness (OEE) [11], the ODTE metric is designed as a multiplication
of factors that yield a value ranging from 0 to 1. These factors, namely timeliness and completeness,
have been proposed by Fizza et al. [14] for measuring the Quality of Experience (QoE) of appli-
cations in situations where human feedback is unavailable. While timeliness (T) is represented as
a single factor, completeness consists of two sub-factors: reliability (R), which measures the ratio
of received state updates to expected updates, and availability (A), which represents the expected
up-time of the PT from the perspective of the DT. Accordingly, ODTE is defined as

ODTE =T XR X A. (1)

The left part of Figure 3 provides a schematic representation of the synchronization flow

necessary to maintain alignment between the states of the PT and DT, denoted as SIP T and SlDT,

SPT and SPT

respectively. Initially, at time ¢, are aligned at version 1. When a new physical event

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:13

OZPT—>DT
Act].on S tDT/ tiDT 2
Eoce>(or)sy | S1(oT]_cemuts — X(o1)s2
I [
tPT' | !
PT |S1 : S2
|

U L4
t2 to t1 t2 ts3

Unidrectional Entagiment Processing Bidirectional Entaglment Processing

Fig. 3. Unidirectional and bidirectional entanglement synchronization process between a DT and its associ-
ated PT.

occurs, such as a change in the environment, it triggers a variation in the physical state, resulting
in Sf7 and initiating a state update towards the DT. At this stage (t;), a misalignment arises
between the two counterparts as the physical variation has not been reflected in the DT yet. Only
when the DT receives the state update and computes its new state SP7, the two counterparts
become properly synchronized (t;). In this first scenario, the entanglement is unidirectional and
directly captures the time difference between the state of the PT and its DT. In this unidirectional
entanglement configuration, to quantify the timeliness, histograms track update rates and laten-
cies taking into account the following variables: (i) t°7 is the time at which the DT received the ith
update; (ii) th T is the time at which the PT had produced the ith update; and (iii) t7*¢¢ is the time
the DT took to change state as a result of the ith update and the resulting formula is defined as

o"nti = tPTj — ¢PTj 4 pexecy, (2)

The right portion of Figure 3 illustrates an interaction pattern in which an action performed on
a DT has to be propagated to the PT. It is worth noting that in this bidirectional flow an action
initiated on the DT, with the intention of modifying the state of the PT, should be considered
as another form of state synchronization. When the DT receives the action, it notifies the PT of
the request and waits for its state transition from SI'7 to Sf7. Once the state change in the PT
is confirmed, the state of the DT is also updated from SPT to S?T. In this second scenario, the
entanglement becomes even more significant as it requires a bidirectional information exchange.
In the case of bidirectional entanglement, instead, an observation o; may be modeled as follows
where: (i) tf " is the time at which the PT received the command from the DT; (ii) tl.D T is the time
at which the DT had issued the command.

_ ., pT DT’ uni
ot =t;7 =ty 40", (3)

The timeliness T is computed as a quantile over a time window expressed as T(¢, t, O) where:
(i) 0 < ¢ < 1 is the quantile; (ii) ¢ is a time window (e.g., last 5 minutes); and (iii) O is the set of
observations about the received updates. For instance, considering 7(0.99, now — 5m, O) = 0.100 it
means that the 99% of the observations had timeliness of at most 100 ms over the last 5 minutes.
For computing a normalized metric such as ODTE, it is useful to express the timeliness as a per-
centage instead of in seconds. Thus, it might be also defined as: T'(Ty, t, O) where T is the desired
timeliness. Following this definition, anyone (or anything) monitoring the DT can understand if
the timeliness respects the requirements without the need of any application-specific knowledge
or dedicated configuration.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:14 P. Bellavista et al.

Binding Error Re-Binding

Data Sync AND
Entangled Metric Ok

Dismiss

Entangled

Data Sync AND

o Data UnSync OR
Entangled Metric Ok

ntangled Metric Error

Binding Error

Disentangled

Binding Error
Fig. 4. Entanglement-aware DT life cycle.

However, timeliness alone does not address updates that are not received by the counterpart;
these are instead considered in the completeness factor. As previously mentioned, we divide the
completeness factor contribution into two sub-factors, denoted as R and A. Initially, R assesses
the reliability of an entity by quantifying the ratio of received state updates to the expected ones
within a designated time frame. Formally:

Umeasured(t, O)

R(t,0) =
uexpected(t)

(4)
With respect to the previous formula, Umeqsured(t, O) is the per-second average rate of the
received updates based on the set of observations O over the time window ¢ and uexpecred(t)
is the minimum per-second average rate of the expected updates over the time window ¢. If
Umeasured(t,O) > Uexpected(t), then R(t,0) = 1. For instance, R(now — 5m) = 0.5 refers to a
DT that received half of the expected updates within the last 5 minutes. Finally, A is in charge of
measuring the availability of the PT over a specified time frame. For example, A(now — 5m) = 0.5
means that the PT was active only half of the expected time over the last 5 minutes. At the end
of these description and definition and merging the three components together, the ODTE can be

defined as
ODTE = T'(Ty,t,0) X R(t, 0) X A(%). (5)

The ODTE is computed by the DT over a reference time window and, for example,
T(100ms, now — 5m, Obs) = 0.99 means that 99% of the observations had timeliness of 100 ms
(i.e., the desired timeliness) or less in the last 5 minutes. Instead, reliability compares received
and expected updates within a timeframe, where R(now — 5m, Obs) = 0.5 indicates half of the
expected updates were received by the DT. A measures PT availability over a time window (such
as A(now — 5m) = 0.5) indicating how long the PT was available over the period.

From an operational viewpoint, the DT is responsible for autonomously quantifying its own
ODTE to provide the orchestrating middleware (and also human operators or IIoT applications)
with a representation of the quality of entanglement. Note that, since the proposed solution is
completely decentralized (each DT computes its own ODTE in relation to the corresponding PT),
the ODTE computation complexity does not depend on the number of deployed DT-PT pairs, thus
without specific scalability issues.

4.2 Entanglement-Aware Digital Twins

4.2.1 Digital Twin Life Cycle. Each DT is in charge of monitoring the entanglement with its
physical counterpart and evaluating it according to its design principles, the context where it op-
erates, and the application requirements. Following this principle, we extend the concept of DT
life cycle (proposed in [36]). Its definition, represented in Figure 4 as a state diagram, is crucial
to model the behaviour of a DT-PT duality and to inform the environment about its evolution
trajectory.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:15

Upon its start, the DT is Unbound and ready to bind to the PT. Once the binding is completed
(a network channel with the PT is established and the DT is ready to initiate the digitization pro-
cess), the DT moves to the Bound state. If binding errors occur, the state reverts back to Unbound
and the DT tries to recover the channel. In the Entangled state, the cyber-physical entanglement
is measured. Networking or computational resource issues involving the DT-PT synchronization
and degrading the level of entanglement below a target threshold bring the DT into the Disen-
tangled state. In this state, the DT becomes unable to provide its intended functionality. From the
Disentangled state, the DT can transition to either the Unbound or Done state in case of an error
during the binding procedure or if it is explicitly stopped by the middleware. Upon successful error
recovery, the DT reverts back to the Entangled state. In the Done state, the DT remains accessible
to external applications as a software component detached from the PT, retaining its memory and
exposing collected historical data, events, and metrics together with the last DT state until it is
dismissed, by transitioning to the Stop state.

4.2.2  Digital Twin Internal Architecture. The life cycle above is supported by a blueprint archi-
tecture, depicted in Figure 5, built on top of state-of-the-art principles [9, 30, 36] and the require-
ments described in Section 3. DTs are designed to be independent and autonomous, aiming at
representing their physical counterparts by making use of the resources of their operating context.
From a technical standpoint, the Digital Twin Model is responsible for determining how and when
changes in the physical world should be mapped into the digital replica, as well as propagating
inputs and actions to the PT. The model closely works with the Digital Twin State component, stor-
ing attributes (e.g., physical properties), behaviors (e.g., actions that can be performed on the DT),
and relationships (e.g., modeling how PTs are linked in the physical space). The interaction with
the physical and digital layers builds upon the Physical and Digital Interfaces, each composed of
different Adapters (implementing protocols and data formats). The model receives inputs from the
physical layer. Such inputs are reflected in the digital representation either immediately or after
various transformations to align them with the DT model (e.g., resampling signals, changing met-
ric units). Given that modifying the functionalities of physical objects might be costly and complex,
a physical asset can be functionally expanded through its DT, using a collection of Augmentation
Modules introducing additional attributes, behaviors, or relationships. All internal DT modules are
supported by a Storage and Persistence component handling the memorization and retrieval of past
DT states and relevant events.

The DT also integrates an Entanglement Manager responsible for monitoring the cyber-physical
entanglement. This module plays a role in ensuring that the DT maintains an up-to-date represen-
tation of its PT, thereby enabling analysis, prediction, and decision-making. It also adjusts the DT
state and generates contextual metrics. As previously introduced, the traffic volume to maintain
the DT-PT duality can significantly vary across deployments and scenarios, ranging from real-
time interactions (high volume) to batch processing (low volume). For this reason, for measuring
entanglement, it is key to use a metric (such as ODTE, see Section 4.1) that is decoupled from the
specific use case in which the DT is used.

DTs also include a Monitoring and Management Interface (illustrated at the bottom of Figure 5) as
a tool that allows human operators and the middleware monitoring DTs and re-configuring them
to accommodate (time-varying) application requirements. Furthermore, the interface exposes DT
contextual metrics (e.g., cyber-physical entanglement and internal life cycle), providing insights
into the performance and effectiveness of the DT.

4.3 Entanglement-Aware Middleware

The first objective of the entanglement-aware middleware that we propose is to manage the
execution of DTs while ensuring compliance with cyber-physical application requirements. This

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:16 P. Bellavista et al.

®,

& &
= L1 Protocol 1 ] State
% _3 (Properties,Behaviours,Relationships)
+
3}
P s Il Model \
. [l <—— =
PT K 1 Protocol 2 5] ‘ Augmentation Modules ‘
N c
N v = Entanglement Manager
@ {i‘ / ‘5 ‘ ‘
= 3 ‘ Storage & Persistence ‘
2 e
PT \ o Digital Twin Core 1] r
ﬁl Protocol 2 E *é 9 ] Protocol C ﬁ
v _E r: Configurations ﬁ @ Metrics Py \

‘ M t & Monitoring Interface

‘ anag
Admin P@j E@%Orchestrator

Fig. 5. Schematic representation of the structure of a DT executed and orchestrated by the proposed mid-
dleware.

Monitoring, Analytics
& Reporting

e
etw :
DT p [& :

. Metri etr [ itori ol [‘_}[)[ﬁ_ :
Repository = N,'z:'e':;’;g;g J :
Infrastructure Data Storage MEC
Knowledge i n

o
3
S
=z
2
3 X
E Applicat Containers ion Platform s
g pplications ‘—/ > !7 : :
2 Repository LEZLLCIN Orchestration N \" ______ W :
E Middleware Conf (s) Interface ‘ :
Orchestrator | m
Middleware Behavior' I
| Containers ion Platform heosr :
e e 99 :
licati finiti — :
e :c::::r::e::;tlé Miadienare Hanagement Middleware Worker Nodes T 5
‘;.OI @ gh S o :
Application Admin T Physical
L Designer I 1 )
T
[ Middleware Core Node ] [ Middleware Distributed Worker Node(s) ]

Fig. 6. Structure of the blueprint architecture of the proposed entanglement-aware middleware.

includes selecting the most suitable configuration and deployment strategy based on the current
context. The middleware proactively monitors the quality of cyber-physical entanglement, facili-
tates optimal deployment execution, and plans countermeasures against performance degradation.
To achieve these objectives, the middleware is structured around two main components: the Core
Node and the Worker Nodes (on the left and right parts of Figure 6, respectively). The Core Node
acts as the control plane and manages the operations of the distributed DTs. Worker Nodes can
be deployed on different network layers, such as edge on-premises, MEC, and cloud, and execute
the DTs. They run dedicated agents facilitating the communication with the core and managing
the execution of deployed DTs.

The Core Node has a structured design with internal components and external interfaces, is ded-
icated to DT management, and its use is intended for stakeholders, application designers, and plat-
form administrators. It communicates with Worker Nodes via the Monitoring Interface (to collect
contextual data from DTs) and the Orchestration Interface (to control DTs). Additionally, through
the Management Interface, stakeholders can provide input, specify application requirements, en-
tanglement levels, and interact with the ecosystem. Finally, the Reporting Interface is to visualize

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:17

"digitalTwins": [
"physicalTwins": [ { "deployments": |
( " iH talTwinl®, {
"name": "PhysicalTwinl", //example.com/digitaltwinl", "type": "Kubernetes", “deployments": [
"metadata": { "affinity": "edge”, {
keyln: "valuel, 1Twini®], "configs": [ "type": "Kubernetes",
"key2": "value2" LS . “affinity": "cloud",
. ‘type": "ConfigMap", "configs": [
! 'requirements™: { “spect: "(.J" ¢
), "preferredAffinity": "edge”, }, “type™: "ConfigMap",
o, odte": 0.9 { “spect: "{..J"
t “type": "Deployment"| 3
"spec”: "{..}" {
h "type": "Deployment",
{ "spec”: "{...}"
"type": "Service", b
i ['requirements™: { "spec”: "{..}"
1 ® “preferredAffinity": “cloud", } "type": "Service",
"deployments": [... w "odte": 0.9 13 )"spec" RNy
) i
131
l Physical Twins Digital Twins Deployment Specifications ]
( Cyber-Physical Application Description ]

Fig. 7. An illustrative example of a cyber-physical application description.

and interact with the ecosystem. It allows the visualization of running applications with their DTs,
inspecting resource utilization, accessing logs, and monitoring the health of the system.

The Middleware Knowledge component stores configurations, events, and actions executed by
the middleware and consists of three sub-components: the DT Repository, which contains DT ar-
tifacts, the Infrastructure Knowledge, which stores specifications and configurations of the edge-
to-cloud continuum infrastructure, and the Application Repository, which stores cyber-physical
application descriptions (including deployment specifications). The Orchestrator component man-
ages DT orchestration strategies. Firstly, if not specified by the application, it identifies the most
suitable deployment configuration across the continuum. Secondly, it monitors contextual infor-
mation (reading data from the Data Storage component) and plans actions to keep cyber-physical
entanglement above the target. The Data Storage component represents a structured and multi-
functional persistency layer that stores metrics, logs, and events. This component ensures con-
sistent and up-to-date information for effective decision-making and provides historical records
of platform activities, thus enabling analysis and auditing. This component manages information
related to Network Metrics, Resource Metrics, DT Metrics, and the Event History, which collects all
orchestration-related events.

Figure 7 provides an illustrative example of the cyber-physical application description we pro-
pose. In contrast to traditional applications, cyber-physical ones encompass both physical and
digital layers. The physical facet of such applications consists of one or more PTs, identified by
a unique identifier and described by a set of metadata (in the form of key-value pairs) capturing
the relevant features of the physical object. It is worth noting that physical object metadata might
vary depending on what is relevant in the context of a cyber-physical application. The digital facet,
instead, consists of one or more DTs characterized by a unique identifier, a source (a reference to
the container image to be executed), a type (either simple or composed), what it twins, a set of
requirements (e.g., ODTE threshold), and a list of allowed deployment configurations (described
below). A DT is simple if it twins a single PT, while composed if it represents the status of other
DTs. For example, the DT representing a digital factory is likely to be the composition of several
underlying DTs, both simple (e.g., industrial machines) and composed (e.g., production lines).

DTs are deployed according to their preferred locations in the edge-to-cloud continuum as long
as the quality of cyber-physical entanglement is above the set threshold. The ODTE metric is used
to measure the quality of cyber-physical entanglement as a value between 0 and 1. As mentioned,
a requirement of a cyber-physical application is the ODTE threshold. When the ODTE value falls
below that threshold, the DT becomes Disentangled (see Figure 4) and alternative deployments are
provided as fallback strategies making the ODTE an immediate and responsive trigger to guide
orchestration logic of managed DTs. Deployments (see Figure 7, on the right) includes a type, an

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:18 P. Bellavista et al.

affinity, and a set of configuration files (needed to implement it). For example, if the type is “Kuber-
netes,” the configuration files are expected to be Kubernetes objects, such as Deployment, Service,
and ConfigMap. Another possibility would be to use Helm charts instead of raw Kubernetes objects.
In that case, the type would be “Helm.” The affinity specifies for which location the deployment is
targeted along the edge-to-cloud continuum.

5 Implementation Insights and Experimental Performance Results

This section describes (i) a proof-of-concept implementation of the proposed middleware (Sec-
tion 5.1), (ii) details the conducted experiments (Section 5.2), (iii) presents the related performance
results (Section 5.3), and (iv) discusses the implemented middleware with respect to the require-
ments laid out in Section 3 along with the key takeaways (Section 5.4). The objective of this section
is not only to provide fully reproducible experiments, but also to demonstrate the feasibility of
the proposed approach and its effectiveness in enforcing the desired quality of entanglement of a
cyber-physical application in spite of failures.

A repository hosting any relevant artifacts of this research is publicly available on GitHub* to
foster the reproducibility and understanding of our work. Specifically, such a repository provides:

— A formal specification for cyber-physical application descriptions;

— The Ansible playbooks to automatically configure the testbed;

— The source code of the IIoT device emulator, entanglement-aware DTs, and a proof-of-
concept implementation of the entanglement-aware middleware for DTs;

— The scripts, configuration files, and instructions to reproduce the experiments and the col-
lected performance results.

5.1 Proof-of-Concept Implementation

The scenario in which we tested our proof-of-concept implementation was designed to closely
resemble a modern industrial setting. The physical layer included two IIoT devices connected to
an industrial machine. The IIoT devices communicated through the MQTT [1] protocol, sending
telemetry data associated to three sub-resources (energy consumption, battery level, and temper-
ature). The IIoT devices sent a status update every second, with an average payload size for each
sensor information of 100 Bytes.

The implementation we propose leveraged open-source technologies only. We built
entanglement-aware DTs through the WLDT library, a modular Java stack based on a shared mul-
tithread engine to implement DT behavior and define its mirroring procedures, data processing,
and interaction with external applications [33]. The library was extended to support cyber-physical
entanglement and, more in general, the requirements described in Section 3 and the architectural
specifications of Section 4. A management interface was added to allow dynamic control and re-
configuration of a target DT, and existing metrics management systems were updated to expose
life cycle and entanglement core metrics, thus matching the interoperability requirements with
the middleware monitoring interface. We then created container images of the implemented DTs
and hosted them in a dedicated container registry (i.e., DT Repository).

We implemented the Orchestrator as a module written in Go, which is a programming language
that provides built-in support to concurrency through goroutines (i.e., lightweight threads of exe-
cution) and channels (the way goroutines exchange messages and synchronize their operations),
scalability, high performance, and efficiency. The primary objective of the Orchestrator is to keep
the quality of entanglement within the cyber-physical application constraints. The Management

*https://github.com/fglmtt/tiot-2023-artifacts

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.


https://github.com/fglmtt/tiot-2023-artifacts

An Entanglement-Aware Middleware for Digital Twins 25:19

Interface was implemented as a RESTful API that offers endpoints to create, update, and delete
cyber-physical applications. We used OpenAPI Generator to generate the web server stub automat-
ically. Cyber-physical application definitions were stored as JSON files in a dedicated key-value
store (i.e., Applications Repository) built on top of Etcd, a strongly consistent, distributed key-
value store that organizes data hierarchically into directories. Once deployed, DTs expose metrics
such as their life cycle state and the ODTE measure. We used Prometheus to collect such metrics
periodically, store them in a real-time time-series database (i.e., DT Metrics), and query the data-
base to extrapolate aggregated insights. We then used clients to make the Orchestrator interact
with Etcd, Prometheus, and Kubernetes (the de-facto standard for orchestration systems). Specif-
ically, our implementation relied on (i) Etcd to be notified whenever an application definition is
created, updated, or deleted, (ii) Prometheus to know whenever a DT becomes Disentangled, and
(iii) Kubernetes to enforce orchestration decisions (e.g., a new deployment when a cyber-physical
application is created or an alternative deployment when a DT becomes Disentangled). We also
adopted Istio, a service mesh, to keep management, observability, and security practical at scale.
Additionally, Istio can be easily integrated with tools for Monitoring, Analytics, and Reporting,
such as Prometheus, Grafana (a monitoring tool for visualizing time-series data in dashboards),
Kiali (a management console for the service mesh), and Jaeger (an end-to-end distributed tracing
system).

5.2 Description of Performed Experiments

We used 4 AWS Elastic Compute Cloud (EC2) nodes (each provided with 2 vCPU, 4 GB of RAM,
and Ubuntu 20.04 LTS) and Ansible to manage the configuration automatically. Specifically, we
built a Kubernetes cluster (CRI-O as container runtime and Flannel as network plugin) consisting of
one Control Plane and three Worker Nodes. On top of Kubernetes, we deployed Istio, Prometheus,
Grafana, Kiali, Jaeger, and Chaos Mesh—a cloud-native chaos engineering platform for Kubernetes
that allows injecting a broad spectrum of faults into a target. Chaos engineering techniques proved
to be effective for assessing DT resilience [15]. Lastly, we attached labels to Worker Nodes to
represent the key edge-to-cloud continuum zones (i.e., edge on-premises, MEC, and cloud). The
rationale behind labeling is to allow for advanced scheduling policies. In Kubernetes, scheduling
relies on labels (i.e., key-value pairs) to provide additional metadata to objects, such as Worker
Nodes, thus attracting containerized applications to Worker Nodes with matching labels.

The tested application comprised two DTs (digitalizing one PT each) and a Composed Digital
Twin (CDT). The CDT averaged the status of the other two DTs and exposed this representa-
tion to applications. All DTs received MQTT updates while maintaining their internal life cycle
status/entanglement and handling middleware commands. For each DT, we set the cloud as the
preferred deployment location and 0.9 as the ODTE threshold (being 1.0 perfect entanglement).
The two DTs expected one status update per second from their PTs, while the CDT expected two
status updates per second (as it aggregates two DTs). If an alternative deployment was needed, we
specified the edge for the two DTs and the MEC for the CDT.

We designed an experiment comprising three phases to demonstrate the effectiveness of the
proposed middleware in maintaining the desired quality of entanglement over time. The network
slowdown phase introduced a bottleneck between the physical broker (where PTs publish their sta-
tus updates) and the two DTs running in the cloud. We used Chaos Mesh to set 750 ms of latency,
an equivalent jitter, and a correlation of 25% between consecutive packets to simulate a real-world
event. The CDT reconfiguration phase simulated a re-configuration of the CDT replacing the in-
ternal model with an alternative one requiring more computational resources (we forced the DT
to calculate the first 100,000 prime numbers while performing state transitions). Lastly, the base-
line phase did not introduce any effect to undermine the quality of entanglement. The experiment,

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:20 P. Bellavista et al.

[ | | g |

MEC ""l Network & MEC
a “I's1owdown| A S Resource
|Limitations|

Initial Deployment MEC - Edge Deployment
to t; t, ts t, Time

Cloud - Edge Deployment

Fig. 8. Evolution of the cyber-physical application deployment over time as a result of the injected phases
to undermine the quality of cyber-physical entanglement.

~—— DT1T - DT2 —— CDT —— Received [KB/Sec] =~ —— Transmitted [KB/Sec]
1.0
EO'S
0.6
S04
0.2
0.0
300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
o5
o4 X 400
EERw=a .
22 \ =200
S1 = 0 A A
0 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
5%'2 600 T
€12 §,4oo
— 0.8 w200
é§0.4 A o N
00 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
Time [s] Time [s]

(a) (b)

Fig. 9. (a) ODTE values and life cycle states of the DTs deployed as part of the cyber-physical application
together with CPU and memory consumed by the DTs; (b) received and transmitted network traffic in the
Cloud, MEC, and Edge on-premises.

lasting 25 minutes overall, consisted of the previous phases executed sequentially, with the base-
line phase occurring before and after any of the other phases.

5.3 In-the-Field Performance Results

Figures 8 and 9 show the evolution of the DT ecosystem over time. More specifically, Figure 8
shows the deployment location, Figure 9 (a) the ODTE measure, the DT life cycle state, and CPU
consumption, and Figure 9 (b) the amount of network traffic generated within the edge-to-cloud
continuum (i.e., edge on-premises, MEC, and cloud).

All DTs were initially deployed in the cloud as specified in the application configuration. The
first 5 minutes represent the baseline phase. As Figure 9 (a) shows, both ODTE and life cycle state
values remained stable at 1.0 and 5 (meaning Entangled), respectively (see Figure 4 for more details
about the life cycle). The second five minutes represent the network slowdown phase. In this case,
the ODTE measure fell well below the 0.9 thresholds for each deployed DT, thus making the DTs
switch life cycle state to 4 (Disentangled). This, in turn, triggered the middleware, which enforced a
different deployment. Specifically, the middleware migrated the CDT to the MEC and the two DTs
to the edge, succeeding in making them Entangled again. Note that this would not be possible with-
out the successful implementation of edge-to-cloud mobility, entanglement awareness, life cycle,

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:21

Entanglement Recovery Management

250 250 250 250

g 200 200 200 200
£
Fal
(D
3

9150 150 150 150
-4
€
d)
§

=100 100 100 100
g
€
w

50 50 50 50

0 0 0 0
DT1 DT 2 CDT Application

Fig. 10. The Entanglement Recovery Time over multiple experiment runs computed as the time required by
the middleware to detect a degradation in terms of ODTE and DT life cycle variation and to recover to a
stable configuration.

and declarative application description (see Section 3). In fact, the DTs accurately quantified the
quality of cyber-physical entanglement over time. Because the network slowdown phase caused a
violation of the cyber-physical application requirements (i.e., ODTE fell below the 0.9 thresholds),
a state transition occurred—from Entangled to Disentangled. This was promptly recognized by
the middleware, which migrated the DTs along the edge-to-cloud continuum, physically closer to
their PTs. The container migration required minimal networking resources as shown in Figure 9
(b). The third five minutes represent the baseline phase again. Since no effects were injected, the
quality of entanglement remained stable at 1.0 for all DTs. The fourth five minute represent the
CDT reconfiguration phase in which we simulated an update of the CDT model to a version more
CPU-hungry, thus forcing the migration of the CDT from the MEC to the cloud, which is usually
richer in resources. As shown in Figure 9 (a), the CDT reconfiguration phase caused a peak in CPU
consumption, saturating the resources available for the CDT which, in turn, impacted the time
needed for updating the DT state, thus causing a drop in the ODTE measure. As soon as the DT life
cycle state moved to 4 (Disentangled, see the second gray area in Figure 9 (a)), the container was
migrated back to the cloud where the CDT could find enough resources to run a CPU-intensive
model. In this case, having a variable load resilience ecosystem (see Section 3) revealed to be
fundamental. Finally, another baseline phase occurred. As Figure 9 (a) shows, the entanglement
remained unchanged, leading to no changes in the deployment strategies until the end of the
experiment.

Lastly, Figure 10 elaborates on Entanglement Recovery Time—a measure of the time required
by the middleware to restore the desired cyber-physical entanglement—over ten experiment runs.
It is worth noting that the Entanglement Recovery Time depends on several configuration factors,
such as how frequently Kubernetes monitors the cluster, how frequently Prometheus scrapes met-
rics, how frequently the Orchestrator queries Prometheus to get the current DT states, and so on.
Depending on the use case, these factors may be fine-tuned to make the middleware (and the over-
all system in general) more, or less, responsive. The Entanglement Recovery Time is noticeably
longer for the CDT due to its complex structure comprising two underlying DTs. In fact, when one
of the two DT gets Disentangled, the CDT follows, and the CDT becomes Entangled again if and
only if both the underlying DTs gets Entangled.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



25:22 P. Bellavista et al.

5.4 Discussion and Key Takeaways

The conducted experiments demonstrated that our middleware implementation fully meets edge-
to-cloud mobility, entanglement awareness, and life cycle requirements, while it satisfactorily meets
variable load resilience, declarative application description, and accountability requirements (see
Section 3 for more details on these requirements). Specifically:

— Edge-to-cloud mobility: Our Orchestrator can migrate the deployed DTs across different do-
mains in the edge-to-cloud continuum based on the application requirements in place.

— Entanglement awareness: The orchestration decision-making process takes into account the
quality of entanglement. This requires that the deployed DTs expose information about their
perceived quality of entanglement as a metric (e.g., the ODTE metric, which is natively sup-
ported by WLDT—the library used for implementing the deployed DTs). Additionally, there
is the need to provide a component to scrape that metric and make the information available
to the Orchestrator (e.g., Prometheus).

— Life cycle: As mentioned in Table 1, the WLDT library natively provides mechanisms to deal
with DT life cycle, which, because of the cyber-physical nature of DTs, is different from
traditional software components.

— Variable load resilience: Our middleware implementation enforces its orchestration decisions
through Kubernetes. Therefore, how the overall middleware scales as the load varies over
time is tightly coupled to the scalability performance of Kubernetes.

— Declarative application description: The Management Interface offers a RESTful API to man-
age cyber-physical applications, as described in Figure 7. However, further steps would be
needed for a comprehensive and integrated specification of the cyber-physical application
construct. For example, the Management Interface could be implemented as a set of Custom
Resource Definitions (CRDs), thus directly extending the Kubernetes APIs. Moreover, the
specification itself could be further investigated to integrate the additional aspects that char-
acterize the cyber-physical nature of this kind of applications.

— Accountability: Although the implemented middleware already integrates some monitoring
plugins, its capabilities in terms of accountability are not as advanced as those offered by
cloud providers. The Reporting Interface would not only need to be as feature-rich as those
typically available in cloud environments, but also to be properly extended to cover charac-
teristics specific to cyber-physical applications (e.g., a DT being migrated from the cloud to
the edge because of insufficient entanglement).

To sum up, our microservices-oriented approach for building DTs demonstrated to be effective,
but potential scalability issues might arise with massive demands. In this regard, a function-driven
approach, such as serverless, might be a promising direction of solution. Note that it would also
be possible to have a hybrid implementation, i.e., a microservice that offloads only some functions
to the cloud, where such functions are executed by a serverless framework.

Additionally, we found that an application metric to measure entanglement (e.g., ODTE) and
a structured DT life cycle are essential for making effective orchestration decisions in a cyber-
physical context. This information is fundamental for an entanglement-aware middleware, which
can provide various orchestration algorithms based on different policies, thus abstracting physical-
and implementation-specific details.

Lastly, despite the proposed solution adopts cloud-native technologies for DT deployment and
monitoring (i.e., Kubernetes and Prometheus), achieving the highest level of accountability is at-
tainable only at the enterprise level. Our vision is that major vendors should also adopt a structured,
measurable, and distributed approach to DT engineering, thus enabling the full achievement of all
the identified DT requirements.

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



An Entanglement-Aware Middleware for Digital Twins 25:23

6 Conclusive Remarks

In this work, we proposed an entanglement-aware middleware for DTs. In contrast to DTs as pas-
sive entities simply storing information about PTs, the proposed approach envisions DTs as active,
containerized entities orchestrated by the middleware to compose an ecosystem for cyber-physical
applications, i.e., constructs unifying DTs and PTs. Entanglement-aware DTs enable the construc-
tion of more articulated and flexible cyber-physical applications, if compared with passive data
repositories. In fact, such DTs can be updated, re-configured, and migrated based on contextual
data, such as the cyber-physical entanglement, thus potentially addressing a plethora of applica-
tion needs. In this regard, not only we designed a blueprint architecture for an entanglement-aware
ecosystem, but we also implemented a middleware solution on top of widely adopted open source
projects. The source code is freely available to foster research in the field and promote experi-
ment reproducibility. Achieved performance results demonstrated the effectiveness of the proof-
of-concept implementation and its effectiveness in enforcing the desired quality of entanglement
of a cyber-physical application in spite of failures.

References

[1] 2014. MQTT Version 3.1.1. Retrieved from http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

[2] Ramy Al-Sehrawy and Bimal Kumar. 2020. Digital twins in architecture, engineering, construction and operations. A
brief review and analysis. In International Conference on Computing in Civil and Building Engineering. Springer.

[3] Kazi Masudul Alam and Abdulmotaleb El Saddik. 2017. C2PS: A digital twin architecture reference model for the
cloud-based cyber-physical systems. IEEE Access 5 (2017), 2050—-2062.

[4] Paul Almasan, Miquel Ferriol-Galmés, Jordi Paillisse, José Suarez-Varela, Diego Perino, Diego Lopez, Antonio Agustin
Pastor Perales, Paul Harvey, Laurent Ciavaglia, Leon Wong, Vishnu Ram, Shihan Xiao, Xiang Shi, Xiangle Cheng,
Albert Cabellos-Aparicio, and Pere Barlet-Ros. 2022. Network digital twin: Context, enabling technologies, and op-
portunities. IEEE Communications Magazine 60, 11 (2022), 22-27.

[5] Eugenio Balistri, Francesco Casellato, Salvatore Collura, Carlo Giannelli, Giulio Riberto, and Cesare Stefanelli. 2022.
Design guidelines and a prototype implementation for cyber-resiliency in IT/OT scenarios based on blockchain and
edge computing. IEEE Internet of Things Journal 9,7 (2022), 4816—4832. DOI : https://doi.org/10.1109/JI0T.2021.3104624

[6] Eugenio Balistri, Francesco Casellato, Carlo Giannelli, Roberto Lazzarini, Cedric Franck Ngatcha Keyi, and Cesare
Stefanelli. 2020. Servitization in the era of blockchain: The ice cream supply chain business case. In 2020 International
Conference on Technology and Entrepreneurship (ICTE). 1-8. DOI : https://doi.org/10.1109/ICTE47868.2020.9215539

[7] Barbara Rita Barricelli, Elena Casiraghi, and Daniela Fogli. 2019. A survey on digital twin: Definitions, characteristics,
applications, and design implications. IEEE Access 7 (2019), 167653-167671.

[8] Paolo Bellavista, Nicola Bicocchi, Mattia Fogli, Carlo Giannelli, Marco Mamei, and Marco Picone. 2023. Measuring dig-
ital twin entanglement in industrial internet of things. In ICC 2023 - IEEE International Conference on Communications.
5897-5903. DOI : https://doi.org/10.1109/ICC45041.2023.10278787

[9] Paolo Bellavista, Nicola Bicocchi, Mattia Fogli, Carlo Giannelli, Marco Mamei, and Marco Picone. 2023. Requirements
and design patterns for adaptive, autonomous, and context-aware digital twins in industry 4.0 digital factories. Com-
puters in Industry 149 (2023), 103918.

[10] Antonio Corradi, Luca Foschini, Carlo Giannelli, Roberto Lazzarini, Cesare Stefanelli, Mauro Tortonesi, and Giovanni
Virgilli. 2019. Smart Appliances and RAMI 4.0: Management and servitization of ice cream machines. IEEE Transactions
on Industrial Informatics 15, 2 (2019), 1007-1016. DOI : https://doi.org/10.1109/TIL2018.2867643

[11] B.Dal, P. Tugwell, and R. Greatbanks. 2000. Overall equipment effectiveness as a measure of operational improvement
- A practical analysis. International Journal of Operations & Production Management 20, 12 (2000), 1488-1502.

[12] Tan Do-Duy, Dang Van Huynh, Octavia A. Dobre, Berk Canberk, and Trung Q Duong. 2022. Digital twin-aided in-
telligent offloading with edge selection in mobile edge computing. IEEE Wireless Communications Letters 11, 4 (2022),
806-810.

[13] Yilin Fang, Chao Peng, Ping Lou, Zude Zhou, Jianmin Hu, and Junwei Yan. 2019. Digital-twin-based job shop sched-
uling toward smart manufacturing. IEEE Transactions on Industrial Informatics 15, 12 (2019), 6425-6435.

[14] Kaneez Fizza, Abhik Banerjee, Karan Mitra, Prem Prakash Jayaraman, Rajiv Ranjan, Pankesh Patel, and Dimitrios
Georgakopoulos. 2021. QoE in IoT: A vision, survey and future directions. Discover Internet of Things 1,1 (2021), 1-14.

[15] M. Fogli, C. Giannelli, F. Poltronieri, C. Stefanelli, and M. Tortonesi. 2023. Chaos engineering for resilience assessment
of digital twins. In IEEE Transactions on Industrial Informatics 20, 2 (2023), 1134-1143. DOI : 10.1109/T11.2023.3264101

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.


http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://doi.org/10.1109/JIOT.2021.3104624
https://doi.org/10.1109/ICTE47868.2020.9215539
https://doi.org/10.1109/ICC45041.2023.10278787
https://doi.org/10.1109/TII.2018.2867643
https://doi.org/10.1109/TII.2023.3264101

25:24 P. Bellavista et al.

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

Martin Hankel and Bosch Rexroth. 2015. The reference architectural model industrie 4.0 (rami 4.0). Zvei 2, 2 (2015),
4-9.

L. Hui, M. Wang, L. Zhang, L. Lu, and Y. Cui. 2022. Digital twin for networking: A data-driven performance modeling
perspective. In IEEE Network 37, 3 (2022), 202-209. DOI:10.1109/MNET.119.2200080

Min-Hsiung Hung, Yu-Chuan Lin, Hung-Chang Hsiao, Chao-Chun Chen, Kuan-Chou Lai, Yu-Ming Hsieh, Hao Tieng,
Tsung-Han Tsai, Hsien-Cheng Huang, Haw-Ching Yang, and Fan-Tien Cheng. 2022. A novel implementation frame-
work of digital twins for intelligent manufacturing based on container technology and cloud manufacturing services.
IEEE Transactions on Automation Science and Engineering 19, 3 (2022), 1614-1630.

Anna Hyre, Gregory Harris, John Osho, Minas Pantelidakis, Konstantinos Mykoniatis, and Jia Liu. 2022. Digital twins:
Representation, replication, reality, and relational (4Rs). Manufacturing Letters 31 (2022), 20-23.

Alper Kanak, Niyazi Ugur, and Salih Ergun. 2019. A visionary model on blockchain-based accountability for secure
and collaborative digital twin environments. In 2019 IEEE International Conference on Systems, Man and Cybernetics
(SMC). IEEE, 3512-3517.

Randhir Kumar, Ahamed Aljuhani, Danish Javeed, Prabhat Kumar, Shareeful Islam, and A.K.M. Najmul Islam. 2024.
Digital Twins-enabled Zero Touch Network: A smart contract and explainable Al integrated cybersecurity framework.
Future Generation Computer Systems 156 (2024), 191-205. DOI : https://doi.org/10.1016/j.future.2024.02.015

Dongmin Lee, Sang Hyun Lee, Neda Masoud, MS Krishnan, and Victor C. Li. 2021. Integrated digital twin and
blockchain framework to support accountable information sharing in construction projects. Automation in Construc-
tion 127 (2021), 103688.

Daniel Lehner, Jérome Pfeiffer, Erik-Felix Tinsel, Matthias Milan Strljic, Sabine Sint, Michael Vierhauser, Andreas
Wortmann, and Manuel Wimmer. 2021. Digital twin platforms: Requirements, capabilities, and future prospects. IEEE
Software 39, 2 (2021), 53-61.

Jiewu Leng, Xiaofeng Zhu, Zhigiang Huang, Kailin Xu, Zhihong Liu, Qiang Liu, and Xin Chen. 2023. ManuChain II:
Blockchained smart contract system as the digital twin of decentralized autonomous manufacturing toward resilience
in industry 5.0. [EEE Transactions on Systems, Man, and Cybernetics: Systems 53, 8 (2023), 4715-4728. DOI : https://doi.
org/10.1109/TSMC.2023.3257172

Shi-Wan Lin, Bradford Miller, Jacques Durand, Rajive Joshi, Paul Didier, Amine Chigani, Reinier Torenbeek, David
Duggal, Robert Martin, and Graham Bleakley. 2015. Industrial internet reference architecture. Industrial Internet Con-
sortium (IIC), Tech. Rep (2015).

Tong Liu, Lun Tang, Weili Wang, Qianbin Chen, and Xiaoping Zeng. 2021. Digital-twin-assisted task offloading based
on edge collaboration in the digital twin edge network. IEEE Internet of Things Journal 9, 2 (2021), 1427-1444.
Davide Loconte, Saverio leva, Agnese Pinto, Giuseppe Loseto, Floriano Scioscia, and Michele Ruta. 2024. Expand-
ing the cloud-to-edge continuum to the IoT in serverless federated learning. Future Generation Computer Systems
155 (2024), 447-462. DOI : https://doi.org/10.1016/j.future.2024.02.024 Cited by: 0; All Open Access, Hybrid Gold Open
Access.

Dumitrel Loghin, Lavanya Ramapantulu, and Yong Meng Teo. 2019. Towards analyzing the performance of hybrid
edge-cloud processing. In 2019 IEEE International Conference on Edge Computing (EDGE). IEEE, 87-94.

Yunlong Lu, Xiaohong Huang, Ke Zhang, Sabita Maharjan, and Yan Zhang. 2020. Communication-efficient federated
learning and permissioned blockchain for digital twin edge networks. IEEE Internet of Things Journal 8, 4 (2020),
2276-2288.

Roberto Minerva and Noél Crespi. 2021. Digital Twins: Properties, Software Frameworks, and Application Scenarios.
IT Professional 23, 1 (2021), 51-55. DOI : https://doi.org/10.1109/MITP.2020.2982896

Roberto Minerva, Gyu Myoung Lee, and Noel Crespi. 2020. Digital twin in the IoT context: A survey on technical
features, scenarios, and architectural models. Proc. IEEE 108, 10 (2020), 1785-1824.

Jérome Pfeiffer, Daniel Lehner, Andreas Wortmann, and Manuel Wimmer. 2023. Towards a product line architecture
for digital twins. In 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C). IEEE, 187-
190.

M. Picone, M. Mamei, and F. Zambonelli. 2021. WLDT: A general purpose library to build IoT digital twins. SoftwareX
13 (2021).

Marco Picone, Marco Mamei, and Franco Zambonelli. 2023. A flexible and modular architecture for edge digital twin:
Implementation and evaluation. ACM Trans. Internet Things 4, 1, Article 8 (feb 2023), 32 pages. DOI : https://doi.org/10.
1145/3573206

Marco Picone, Stefano Mariani, Marco Mamei, Franco Zambonelli, and Mirko Berlier. 2021. WIP: Preliminary evalua-
tion of digital twins on MEC software architecture. In 2021 IEEE 22nd International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM). 256—-259. DOI : https://doi.org/10.1109/WoWMoM51794.2021.00047
Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and Marco Picone. 2022. Web of Digital Twins.
ACM Trans. Internet Technol. 22, 4, Article 101 (nov 2022), 30 pages. DOI : https://doi.org/10.1145/3507909

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.


https://doi.org/10.1109/MNET.119.2200080
https://doi.org/10.1016/j.future.2024.02.015
https://doi.org/10.1109/TSMC.2023.3257172
https://doi.org/10.1016/j.future.2024.02.024
https://doi.org/10.1109/MITP.2020.2982896
https://doi.org/10.1145/3573206
https://doi.org/10.1109/WoWMoM51794.2021.00047
https://doi.org/10.1145/3507909

An Entanglement-Aware Middleware for Digital Twins 25:25

[37] Xiaoyi Tao, Kaoru Ota, Mianxiong Dong, Heng Qi, and Keqiu Li. 2017. Performance guaranteed computation offload-
ing for mobile-edge cloud computing. IEEE Wireless Communications Letters 6, 6 (2017), 774-777.

[38] Bedir Tekinerdogan and Cor Verdouw. 2020. Systems architecture design pattern catalog for developing digital twins.
Sensors 20, 18 (2020), 5103.

[39] Mehrad Vaezi, Kiana Noroozi, Terence D. Todd, Dongmei Zhao, George Karakostas, Huaqing Wu, and Xuemin Shen.
2022. Digital twins from a networking perspective. IEEE Internet of Things Journal 9, 23 (2022), 23525-23544.

[40] Ziran Wang, Rohit Gupta, Kyungtae Han, Haoxin Wang, Akila Ganlath, Nejib Ammar, and Prashant Tiwari. 2022.
Mobility digital twin: Concept, architecture, case study, and future challenges. IEEE Internet of Things Journal 9, 18
(2022), 17452-17467.

[41] Theodore J. Williams. 1994. The Purdue enterprise reference architecture. Computers in Industry 24, 2-3 (1994),
141-158.

[42] He Zhang, Qinglin Qi, Wei Ji, and Fei Tao. 2023. An update method for digital twin multi-dimension models. Robotics
and Computer-Integrated Manufacturing 80 (2023), 102481.

Received 10 October 2023; revised 19 June 2024; accepted 25 September 2024

ACM Trans. Internet Things, Vol. 5, No. 4, Article 25. Publication date: November 2024.



