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Abstract in lingua italiana

In questa Tesi, schemi high-throughput (HT) e teoria delle perturbazioni a molti
corpi (many-body perturbation theory, MBPT) sono combinati al fine di studiare
le proprietà di stato eccitato di sistemi a bassa dimensionalità. In particolare,
adottiamo l’approssimazione GW per studiare le strutture a bande elettroniche e
l’equazione di Bethe-Salpeter (BSE) per calcolare gli spettri ottici.

La prima parte del lavoro è stata dedicata allo sviluppo di una serie di work-
flow per eseguire in maniera automatizzata simulazioni MBPT. Questo passaggio
è stato essenziale nello sforzo di unire MBPT e schemi HT. I workflow sopra
menzionati sono stati utilizzati in tutte le simulazioni mostrate in questo lavoro.

Il dataset GW100 è composto da 100 molecole ed é utilizzato per confrontare
l’accuratezza dei principali codici MBPT, in termini di approssimazione G0W0.
Per tutte le molecole abbiamo calcolato potenziale di ionizzazione e affinità elet-
tronica, al fine di studiare l’accuratezza dell’approssimazione di plasmon-pole di
Godby-Needs (GN-PPA) implementata in Yambo. I risultati di questo studio ci
hanno permesso di concludere che la GN-PPA é più accurata di altre approssi-
mazioni usate come il modello PPA di Hybertsen-Louie, e risulta in un accordo
molto buono con implementazioni GW più sofisticate.

Il monolayer C3N è un semiconduttore 2D a gap indiretto con interessanti
proprietà meccaniche, termiche ed elettroniche. In questa tesi abbiamo eseguito
una descrizione completa delle proprietà elettroniche e dielettriche del C3N, con-
centrandoci sulla struttura a bande eccitoniche. Come per altri materiali 2D,
troviamo una dispersione eccitonica lineare, che mostra tuttavia una convessità
negativa, legata alla natura indiretta del band gap.

I workflow vengono quindi utilizzati per studiare le proprietà dielettriche di
diverse configurazioni di grafene altamente idrogenato, corroborando i risultati
ottenuti da due gruppi sperimentali, tra cui quello della Prof. Maria Grazia Betti
e del Prof. Carlo Mariani dell’Università La Sapienza di Roma, e quello del Prof.
Roberto Biagi e Prof. Valentina De Renzi all’interno del nostro Dipartimento di
Fisica dell’Università di Modena e Reggio Emilia.

La parte finale di questa tesi è dedicata allo studio delle proprietà elettroniche
ed ottiche di un gruppo di sistemi 2D recentemente scoperti, al fine di identificare
eventuali materiali candidati che possano realizzare la fase di isolante eccitonico
(EI), a lungo ricercata. La fase EI è una fase correlata della materia, proposta più
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di 50 anni fa da L. Keldysh, W. Kohn, in cui lo stato fondamentale di un sistema, al
di sotto di una temperatura critica, è formato da un condensato di Bose di eccitoni.
Per fare previsioni sulle possibili instabilità eccitoniche nello stato fondamentale,
sono indispensabili una stima molto accurata del band gap elettronico e delle
energie di legame eccitoniche. Workflow in grado di eseguire calcoli automatici
basati su MBPT costituiscono uno strumento estremamente efficace per questa
ricerca. Un protocollo di screening é stato sviluppato e applicato con successo. In
questa tesi verranno mostrati risultati preliminari molto promettenti.
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Abstract

In this Thesis, high-throughput (HT) schemes and many-body perturbation the-
ory (MBPT) are combined to study the excited state properties of low-dimensional
systems. A set of workflows to automate MBPT calculations are developed and
used for all the simulations contained in this work.

The GW100 dataset is composed of 100 molecules and used to benchmark the
main MBPT codes by means of G0W0 approximation. For all the molecules we
computed converged ionization potential and electron affinity, in order to study
the accuracy of the Godby-Needs plasmon-pole approximation (GN-PPA) imple-
mented in the Yambo code. The outcomes of this study allowed us to conclude
that the GN-PPA scheme outperforms other commonly used approximations such
as the Hybertsen-Louie plasmon pole model, and results in a reasonable agreement
with more sophisticated GW implementation.

Monolayer C3N is an emerging 2D indirect gap semiconductor with interesting
mechanical, thermal, and electronic properties. In this Thesis we have performed
a complete description of C3N electronic and dielectric properties, focusing on the
momentum-resolved excitonic band structure.

The workflows then are used to study electronic and optical properties a several
highly hydrogenated graphene configurations, corroborating experimental results
obtained by two experimental groups, including Prof. Maria Grazia Betti and
Prof. Carlo Mariani at the Sapienza University in Roma, and Prof. Roberto Biagi
and Prof. Valentina De Renzi within our Physics Department at the University
of Modena and Reggio Emilia.

The final part of this Thesis is dedicated to the investigation of the electronic
and optical properties of a subset of recently discovered 2D systems, in order to
possibly identify candidate materials that can realize the long sought excitonic
insulator (EI) phase. The EI phase is a correlated phase of matter, proposed
more than 50 years ago by L. Keldysh, W. Kohn, in which the ground state of a
system, below a critical temperature, is formed by a Bose condensate of excitons.
Very accurate estimation of the electronic band gap and excitonic binding ener-
gies are crucial. Workflows capable of making automatic calculations based on
MBPT constitute an extremely effective tool for this research. An ad-hoc screen-
ing protocol is developed and successfully applied: promising preliminary results
are shown.
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Introduction

In this Thesis I combine the power of high-throughput (HT) calculations with
the accuracy of Many-Body Perturbation Theory (MBPT) to study the elec-
tronic and optical properties of low-dimensional systems. The work is focused
on two-dimensional (2D) materials, where the electronic screening is reduced and
the electronic and excitonic effects are strongly enhanced with respect to three-
dimensional systems. Therefore I have adopted MBPT methods, including the
GW approximation [1, 2, 3], to study the quasiparticle band structures, and the
Bethe-Salpeter Equation (BSE) [4] to compute optical spectra. MBPT methods
applied to 2D materials represent a computational challenge per se, typically in-
volving several computationally expensive simulations. Concerning the simulation
software, this challenge required a number of technical developments that I have
addressed and accomplished during this Thesis work.

Since the rise of graphene [5, 6], two-dimensional (2D) materials attract ever
increasing attention in materials science. The reduced dimensionality and high
surface-volume ratio affect all the properties of these systems leading to unique
features. For example, graphene is well known for its superior mechanical stabil-
ity [7] and electron mobility [8], relevant for applications in optoelectronics, sens-
ing, mechanical and energy storage technologies [9, 10, 11]. However, graphene is
a zero band-gap semimetal, which limits its real application in digital electronic
devices that usually require a semiconducting character. Hence we have assisted
to a the great effort, from both theoretical and experimental communities, to find
post-graphene layered materials with a finite band gap appropriate for selected
applications. The list of candidates is very large [12, 13, 14] and includes, among
others, transition metal dichalcogenides [15], phosphorene [16], and hexagonal
boron nitride [17].

The HT computational screening of predicted properties is nowadays a funda-
mental resource in materials discovery [18, 19, 20], as a complementary and accel-
erating tool with respect to experimental approaches. In the last decades, several
HT works were performed in various condensed matter and materials science re-
search fields, e.g. for the discovery of novel 2D materials [21, 22, 12, 23, 13, 14, 24],
the identification of optimal new lithium-ion battery anodes [25, 26], thermo-
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electric [27, 28], photocatalysts [29] and photovoltaic light harvesting [30, 31]
materials. The vast majority of the HT works performed up to now are based
on Density Functional Theory (DFT), which allows very accurate predictions of
total energies, optimized geometries and other ground state properties of mate-
rials. The success of these studies relies on the effort from the materials science
community in the development of automated and robust workflows able to han-
dle several calculations at the same time, by managing the input generation,
submission and analysis of output data with the least possible human interven-
tion [32, 33, 34, 35, 36, 37, 38, 39, 40].

The situation is different for the accurate prediction of excited-state properties
of materials, such as quasiparticle band gaps and absorption spectra, which result
from the interaction of matter with an external electromagnetic radiation, and
are fundamental in order to determine the potential applications of materials in
modern technologies, like light-emitting diodes (LEDs), photoelectrochemical [41]
(PEC), photodetector [42, 43], laser diode [44](LD) and scintillator devices [45]. In
this context, MBPT and Green’s function methods represent the state-of-the-art
to describe excited state properties of materials. In particular, charged (electronic
quasi-particle levels) and neutral excitations (optical properties, EEL spectra) can
be obtained by means of the GW approximation and BSE, respectively. Within
DFT, basic simulations can be performed easily by non-experts of the field us-
ing different software and implementations [46], accuracy is guaranteed thanks to
dedicated efforts oriented to encode years of experience of specialists into auto-
mated workflows enfording rigorous computational protocols [46, 47]. Conversely,
GW-BSE calculations still require strong knowledge of both the theoretical and
the computational sides in order to obtain accurate and reliable results.

From the methodological point of view, several flavours of the theory are pro-
posed in many codes [48], concerning for example different approaches to treat
the frequency dependence of the involved quantities [49, 50, 51, 52, 53, 54]. Con-
vergence of GW-BSE calculations requires the control over a larger number of
parameters with respect the DFT counterpart as for instance the dimension of
the dielectric matrix in both GW and BSE, summation over empty bands in
the polarizability and self-energy expression 1, frequency integrals, active valence-
conduction space in BSE and k-point grid integrations. Moreover, some of the
parameters to be converged turn out to be interdependent among each other. Of-
ten, model functions have to be considered to predict infinite basis extrapolations
and converged parameters [60]. Moreover, in non self-consistent calculations, ad-
ditional uncertainty comes from the well known problem of the starting point
dependence (LDA, GGA, hybrid functionals) of the final results. [61, 62].

From the computational point of view, a typical GW-BSE flow is composed
of several simulations, including for example the DFT preliminary part, several

1We note here that some GW implementations can avoid summation over empty states [55,
56, 57, 58, 59]
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convergence steps and final production calculations. Memory requirements are
much heavier than in standard DFT simulations, thus requiring, even for moderate
system size, massive use of parallel computing resources. Calculations often fail
due to memory overflow and have to be restarted with careful choice of parameters.
All of these problems make MBPT not easy to automate within robust algorithms
and workflows.

The first development described in this Thesis concerns the design and im-
plementation of a set of algorithms and workflows for the automation of all the
simulations, i.e. with no need of human supervision. These workflows take care
of several procedures, from error detection/handling to convergence evaluation of
many-body quantities like, e.g., quasiparticle energy levels. I have implemented
such procedures in the Yambo plugin for the AiiDA platform [35, 39] and they
have been validated on a few representative semiconductor and metallic systems.
These workflows are used to run all the simulations performed throughout this
Thesis, and are the subject of a paper that is currently in preparation [63].

Other technical developments are related to the implementation of memory
optimization procedures in GW simulations, all oriented towards a massive use
of GPU-enabled HPC machines, and critical for the treatment of low-dimensional
systems studied in this Thesis. All these GPU-oriented developments are included
in the Yambo code, a large-scale open-source community software implementing
GW and BSE [64, 65]. Throughout this work, I have greatly benefited from
the insight and collaboration of the Yambo developer team which has a strong
component in Modena. Combining the GPU-oriented developments with the im-
plementation of the above mentioned workflows, we provided the benchmark of
the Yambo code against the GW100 dataset of molecules [66] for what concerns
the quasiparticle evaluation the vertical ionization potential (IP) and the vertical
electron affinity (EA). This enlarges the different numerical implementations of
the GW-codes that run the GW100 set, as we adopt the Godby-Needs plasmon
pole approximation (GNPPA) [53] for the first time.

For what concerns the systems studied, I have applied the above methodology
to a GW+BSE study of C3N, a graphene-like 2D system synthesized for the
first time in 2016 [67] with interesting mechanical [68, 69] and thermal [70, 71]
properties. I focused the study on the so-called momentum-resolved exciton band
structure. Excitation energies and oscillator strengths are computed in order
to characterize bright and dark states, and discussed also with respect to the
crystal symmetry. This work has been the subject of a dedicated publication [72],
providing insights into finite-momentum excitonic features in 2D systems.

Next, I have studied a class of highly hydrogenated free-standing graphene-
based systems, where unprecedented level of hydrogenation was achieved by two
experimental groups including Prof. Maria Grazia Betti and Prof. Carlo Mariani
at the Sapienza University in Roma, and Prof. Roberto Biagi and Prof. Valentina
De Renzi within our Physics Department at the University of Modena and Reggio
Emilia. GW and BSE calculations for the quasiparticle energy bands, the density
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of states and the absorption spectra were used to characterize the candidate struc-
tures, the band gap opening associated with hydrogenation as well as excitonic
effects. This collaboration resulted in a publication [73] and another paper is in
preparation [74].

Finally, I focused on a subset of the recently generated Material Cloud 2D
materials database (MC2D) [13], developed by the THEOS-MARVEL group at
EPFL (Lausanne, CH) [12]. Here, I specifically designed and applied an ad-
hoc screening protocol, in order to identify possible candidate materials that can
realize the long sought excitonic insulator (EI) phase [75, 76], a macroscopic quan-
tum coherent state made of excitons which spontaneously form and condense at
thermodynamic equilibrium. In this phase, excitons are expected to collectively
enforce a many-body gap by sharing the same wave function, akin to Cooper
pairs in the superconductor [77, 78]. The excitonic insulator phase might thus
display new, intriguing forms of macroscopic quantum coherence [79, 80, 81, 82].
The work is performed in strict collaboration with the THEOS-MARVEL group,
where I spent a fruitful visiting period of three months under the supervision of
Prof. Nicola Marzari and Dr. Giovanni Pizzi. The work is still in progress: in
this Thesis I only show preliminary, but very promising, results.

The Thesis is organized as follows. In the first part, the theoretical methodolo-
gies used in this work are briefly summarized, namely Density Functional Theory
in Chapter 1 and Many-Body Perturbation Theory in Chapter 2. Then, in the
second part, the technical developments are presented. Chapter 3 describes the
development and implementation of the automated MBPT workflows; then in
Chapter 4 additional GPU-oriented optimizations of the Yambo code are shown
and validated by means of the GW100 dataset benchmark.

The final part of the Thesis is devoted to the results obtained using the tools
developed in the previous chapters to study different set of systems, in collabora-
tion with several other members of the team in Modena (at the University and at
Nanoscience Institute of CNR). The electronic and optical properties of C3N are
shown in Chapter 5, and the results on highly hydrogenated graphene in Chap-
ter 6. Eventually, Chapter 7 concerns the preliminary outcomes of the search for
novel 2D excitonic insulators among the ones belonging to the MC2D.
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Atoms, molecules, clusters, solids are constituted by mutually interacting ions
and electrons. Interaction is driven by the Coulomb potential between charged
particles. The dynamics of these particles, in general, cannot be considered sep-
arately (they interact) and is described by an Hamiltonian of the following type:

H =
N∑
i

p2
i

2m
+

N ′∑
I

P2
I

2M
−

N∑
i

N ′∑
I

ZIe
2

|ri −RI |
+

1

2

N∑
i 6=j

e2

|ri − rj|

+
1

2

N ′∑
I 6=J

ZIZJe
2

|RI −RJ |

=Te + TI + VI−e + Ve−e + VI−I

(1)

this is the total non-relativistic Hamiltonian of a system of N electrons of coor-
dinates ri, momenta pi, charge -e, and N′ ions of coordinates Ri, momenta Pi,
charge ZIe. Respectively, Te, TI , VI−e, Ve−e and VI−I are the electronic, nuclei
kinetic energies and the nuclei-electron, electron-electron and nuclei-nuclei inter-
acting terms. Despite the simple structure of Eq. 1, the problem becomes easily
prohibitive to be solved as the number of particles increases, and becomes impos-
sible to be treated exactly for solids: approximations have to be applied. The
first simplification of the problem is given by the Born-Oppenheimer approxima-
tion [83]: it is possible to separate the dynamics of electrons and nuclei. Indeed,
nuclei are much heavier than electrons (about three order of magnitude): the nu-
clei can be then considered frozen and their positions enters in Eq. 1 only in a
parametric way, and so the ionic kinetic term TI can be neglected. In this way,
we can study separately the electronic problem, the one which we are interested
in during this work. The many-body Hamiltonian for n interacting electrons then
becomes:

He = Te + VI−e + Ve−e (2)

where we have further neglected the contribution from the ion-ion interactions,
as, for fixed ionic configurations, it is just a constant 2. Equation 2 embodies the
electronic structure problem, where the only system-dependent term is VI−e, the
other two being in principle universal for all problems. The many-body problem
then reads:

HeΨ0(r1σ1, r2σ2, ..., rNσN) = EΨ0(r1σ1, r2σ2, ..., rNσN) (3)

where E is the total energy of the electronic system and Ψ0(r1σ1, r2σ2, ..., rNσN) is
the many-body N-electron ground-state (GS) wavefunction. The main difficulty

2Anyway, the term has to be considered if we want to compute total energies of the systems
or its cohesive energies.
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of the problem is the calculation of this wavefunction, which does not factorize ex-
actly in the product of single-particle orbitals due to electron-electron interactions
Ve−e.

The problem can be reformulated in a variational scheme: one searches for
the minimum of a certain quantity (typically the total energy) optimizing the GS
wavefunction. The pioneering approach to solve Eq.3 is the Hartree theory[84],
where the Ψ0 is represented by the best simple product of n one electron spin-
orbitals. The next major improvement, that correctly embodies the Pauli ex-
clusion principle for identical fermions, is the Hartree-Fock theory[85], where the
wavefunction is represented by the best antisymmetrized product of n one-electron
spin-orbitals (a single Slater determinant). Multi-reference Hartree–Fock is a gen-
eralization to a sum of a few Slater determinants (or configurations) that are
especially important.

In Density Functional Theory (DFT) instead, the emphasis shifts from the GS
wavefunction to the much more manageable GS one-body electronic density n(r).
DFT shows that the GS energy of a many-particle system can be expressed as a
functional of the one-body density; the minimization of this functional allows in
principle the determination of the actual GS density and all the other GS prop-
erties. The success of the theory stands on its rigorous formulation and on the
concomitant possibility to provide reasonably simple and accurate approximation
of the functional to be minimized. The peculiarity of the density functional ap-
proach to the many-body theory is to attain a one-electron Schrödinger equation
with a local effective potential for the study of the GS electronic density of the
many-electron system.

Anyway, when one wants to go beyond and study excited states properties, it is
necessary to rely on more advanced theories that approach one- and two- particle
excitations in a proper way. These methods belong to Many-Body Perturbation
Theory.



Chapter 1

Density Functional Theory

Mean Field theories approach the many-body problem by considering an effective
one-body interaction that is, in principle, an average over all the possible interac-
tions that can happen in a material or, more generally, in a physical system. For
example, in Density Functional Theory (DFT) [86, 87] the interacting system is
mapped into a non-interacting one responding to an effective external potential
by virtue of the Hohenberg-Kohn (HK) theorems [88].

1.1 Hohenberg-Kohn theorems

Consider a system of N electrons, described by the many-electron Hamiltonian
Eq. 3. For simplicity, we can suppose that the Ground-State (GS) of the system
Ψ0 is non-degenerate (but anyway this condition can be relaxed [89, 90, 91]).
DFT is based on the HK theorems, relating the GS of a system and its electronic
density 1. The first Hohenberg-Kohn theorem states that there is a one-to-one
correspondence between the GS density of an N-electron system and the external
potential vext acting on it ; in this sense, the GS electron density becomes the
variable of interest. Here, vext is given by the electrons-ions interactions (VI−e in
Eq. 1), and its knowledge allows (in principle) to solve the associated Schrödinger
equation and compute the exact eigenfunctions and eigenvalues of the electronic
problem; then, the GS electronic density n(r) can be obtained:

vext(r) =⇒ Ψ0[vext] =⇒ n(r) (1.1)

In practice, there exists a functional F that links n(r) and vext, and we can write:

n(r) = F [vext] (1.2)

The real novelty of the first HK theorem is the possibility to revert Eq. 1.2:

vext = G[n(r)] (1.3)

1Their proof can be found in several books [87, 92].
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meaning that from the knowledge of n(r) we can determine uniquely vext, the
Hamiltonian and in principle any other property of the system. Thus, due to the
first HK theorem, we have that the GS energy E0 is a functional of the GS density
n(r). A most important consequence is the second HK theorem, a reformulation
of a variational principle concerning the GS density of a system. We can construct
the functional:

EHK [n(r), vext(r)] = 〈Ψ[n]|Te + Ve−e + vext |Ψ[n]〉

= T [n(r)] + Ve−e[n(r)] +

∫
vext(r)n(r)dr

(1.4)

the absolute minimum of this energy functional occurs when Ψ[n] is the GS oper-
ator of the corresponding Hamiltonian Ψ0[n], i.e. when n(r) is the exact electron
density of the system. Moreover, the functional F [n] = T [n(r)] + Ve−e[n(r)] is
universal, i.e. it does not depend on vext: it is the same for all electron systems.
However, in general F [n] is not known and must be approximated in some way.

1.2 Kohn-Sham equations

The Kohn-Sham (KS) equations [93] represent a simple and effective method to
overcome the problem of the knowledge of the functional F [n] of the interacting
electron system. The solution proposed by Kohn and Sham is based on the as-
sumption that, for each non-uniform GS density n(r) of an interacting electron
system, there exist a non-interacting electron system with the same non-uniform
GS density, i.e. with the same external potential vext, by virtue of HK theorems.
The existence of this auxiliary KS non-interacting system allows to decompose
exactly the n(r) of the interacting electron system into the sum of n independent
orbital contribution of the form:

n(r) =
∑
i

φ∗i (r)φi(r) (1.5)

where φi(r) are orthonormal orbitals. It is possible to rewrite the HK functional
of Eq.1.4 as:

EHK [n(r), vext(r)] = T [n(r)] + VH [n(r)] + Exc[n(r)] +

∫
vext(r)n(r)dr (1.6)

where we separated Ve−e into the contribution coming from the Hartree energy
functional

VH [n(r)] =
1

2

∫
n(r)

e2

|r− r′|
n(r′)dr′ (1.7)

and the exchange-correlation functional Exc[n(r)], defined as:

Exc[n(r)] = F [n(r)]− T [n(r)]− VH [n(r)]n(r)dr (1.8)
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it includes all the exchange (effects due to the fermionic nature of the electrons)
and correlation effects, and is not known a priori. Performing a variational calcu-
lation of the functional Eq. 1.6 leads to the Kohn-Sham equations:[

− ~2

2m
∇2 + vext(r) + VH(r) + Vxc(r)

]
φi(r) = εiφi(r) (1.9)

Where Vxc ≡ δExc/δn(r) is the functional derivative of the exchange-correlation
functional with respect to the density. These KS equations are non-linear differ-
ential equations with a local effective potential Veff (r) = vext(r) +VH(r) +Vxc(r).
They have to be solved self-consistently since the potential is a functional of the
density: starting with a general approximation of the solution {n0, φ0

i }, the KS
effecttive potential is computed, then KS equations are solved the new output
solution {n1, φ1

i } is constructed. The cycle is repeated until the convergence of
the total energy (or the density) of the system is achieved.

1.3 Practical DFT

KS-DFT is an in-principle-exact method for the calculation of the ground-state
density and energy. Of course, for practical calculations some approximations and
choices have to be done, for example in the determination of the XC functional,
the KS-wavefunctions basis-set expansion, and the description of the valence-core
interaction. These lead to different implementations of the theory, i.e. different
numerical procedures and software that can be used to study the same properties.

1.3.1 Approximated Exchange-Correlation functionals

The only difficulty in solving Eqs. 1.9 is confined in a reasonable guess of Exc. The
most popular one was introduced in the original work by Kohn and Sham [93] and
is the local density approximation (LDA), which is particularly justified for sys-
tems with slowly varying spatial density (for example, the homogeneous electron
gas). Within LDA, the exchange correlation functional is approximated in the
form:

ELDA
xc [n(r)] =

∫
εHEGxc (n(r))n(r)dr (1.10)

where εxc(n(r))) is the many-body exchange-correlation energy per electron of a
uniform gas of interacting electrons of density n(r) and its correlation part can
be approximated in different ways, for example by Perdew and Zunger [94] was
parameterized using Quantum Monte Carlo results [95]. Its exchange part is just
the analytic function of the density [96]:

εHEGc (n(r)) = −3

4

[
3n

π

]1/3

. (1.11)
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The LDA assumes that the density is the same everywhere. Because of this, the
LDA has a tendency to underestimate the exchange energy and over-estimate the
correlation energy [97]. The errors due to the exchange and correlation parts tend
to compensate each other to a certain degree. To correct for this tendency, it is
common to expand in terms of the gradient of the density in order to account for
the non-homogeneity of the true electron density. This allows corrections based on
the changes in density away from the coordinates. These expansions are referred
to as generalized gradient approximations (GGA) [98] and have the following form:

EGGA
xc [n(r)] =

∫
εxc(n(r),∇n(r))n(r)dr (1.12)

The reason KS-DFT is so successful is that even very simple approximate func-
tionals can be remarkably accurate for ground-state properties of many systems.
In this work, we used both GGA and LDA approximations for the description of
Exc of the system studied.

1.3.2 The pseudopotential approach

The many-electron Schrödinger equation can be very much simplified if electrons
are divided in two groups: valence and core electrons. The electrons in the inner
shells are strongly bound to the nucleus and so do not participate significantly
in the chemical binding of atoms, forming with the nucleus an (almost) inert
core. Binding properties are fundamentally addressed to valence electrons. This
separation suggests that core electrons can be safely neglected in a large number
of cases, thereby simplifying the atom to an ionic core that interacts with the
valence electrons. The use of an effective interaction, a pseudopotential, that
approximates the potential felt by the valence electrons, was first proposed by
Fermi in 1934 [99], and then used extensively since the works of Phillips and
Kleinman [100, 101]. Consider the exact solution of the Schrödinger equation
for core and valence electrons, respectively (Ec, |ψc〉 and (Ev, |ψv〉). Following
Ref. 102, valence orbitals can be written as the sum of a smooth function (called
the pseudo-wavefunction), |φv〉, with an oscillating function that results from the
orthogonalization of the valence to the inner core orbitals

|ψv〉 = |φv〉+
∑
c

αcv |ψc〉 (1.13)

where αcv = −〈ψc|φv〉. The Schrödinger equation for the smooth orbital |φv〉
leads to

Ĥ |ψv〉 = Ev |φv〉+
∑
c

(Ec − Ev) |ψc〉 〈ψc|φv〉 (1.14)
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Then the pseudo-wavefunctions satisfy a Schrödinger equation with an pseudo-
Hamiltonian:

ĤPK(E) = Ĥ −
∑
c

(Ec − E) |ψc〉 〈ψc| . (1.15)

It is possible to define the pseudopotential v̂PK as:

v̂PK = v̂ −
∑
c

(Ec − E) |ψc〉 〈ψc| (1.16)

where v̂ is the true potential, as the effective potential in which valence electrons
move. This pseudopotential is non-local and depends on the eigenenergies of the
electronic states. At a certain distance from the ionic core v̂PK becomes v̂ due to
the decay of the core orbitals. In the region near the core, the orthogonalization of
the valence orbitals to the strongly oscillating core orbitals forces valence electrons
to have a high kinetic energy (The kinetic energy density is essentially a measure
of the curvature of the wavefunction). The valence electrons feel an effective
potential which is the result of the screening of the nuclear potential by the core
electrons, the Pauli repulsion and xc effects between the valence and core electrons.
The second term of Eq. 1.16 represents then a repulsive potential, making the
pseudopotential much weaker than the true potential in the vicinity of the core.
All this implies that the pseudo-wavefunctions will be smooth and will not oscillate
in the core region, as desired. A consequence of the cancellation between the two
terms of Eq. 1.16 is the surprisingly good description of the electronic structure of
solids given by the nearly-free electron approximation. The fact that many metal
and semiconductor band structures are a small distortion of the free electron gas
band structure suggests that the valence electrons do indeed feel a weak potential.

Ab-initio Norm-Conserving pseudopotential

Empirical pseudopotentials, fitted from experimental data, were proposed in the
60’s [103, 104, 105]. The main application of these model potentials was the
theory of metallic cohesion [106]. A crucial step toward realistic pseudopotentials
was given by Topp and Hopfield [107], who suggested that the pseudopotential
should be adjusted such that they describe the valence charge density accurately.
Based on that idea, modern pseudo-potentials are obtained inverting the free
atom Schrödinger equation for a given reference electronic configuration [108], and
forcing the pseudo-wavefunctions to coincide with the true valence wavefunctions
beyond a certain distance rl. The pseudo-wavefunctions are also forced to have
the same norm as the true valence wavefunctions. These conditions can be written
as

RPP
l (r) = RAE

nl (r) if r > rl∫ rl

0

dr|RPP
l (r)|2r2 =

∫ rl

0

dr|RAE
nl (r)|2r2 if r < rl

(1.17)
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where Rl(r) is the radial part of the wavefunction with angular momentum l, and
PP and AE denote, respectively, the pseudo-wavefunction and the true all-electron
wave-function. The index n in the true wave-functions denotes the valence level.
The distance beyond which the true and the pseudo-wavefunctions are equal, xl,
is also l-dependent. Besides Eq. 1.17, there are still two other conditions im-
posed on the pseudopotential: the pseudo-wavefunctions should not have nodal
surfaces and the pseudo energy-eigenvalues should match the true valence eigen-
values: εPPl = εEAnl . The potentials thus constructed are called norm-conserving
pseudopotentials, and are semi-local potentials that depend on the energies of
the reference electronic levels, εEAl . In summary, to obtain pseudopotentials, the
procedure is:

1. Solve the free atom KS radial equations with an AE calculation;

2. determination of the pseudo-wavefunctions using norm-conservation;

3. compute the pseudopotential by inverting the KS equation for the pseudo-
wavefunctions and the valence electron density.

One of the most used parameterization for the pseudo-wavefunction is the one
proposed in 1979 by Hamann, Schlüter and Chiang [109]. The method proposed
consists of using an intermediate pseudopotential:

V̄ (r)+VH [nPP ](r)+Vxc[n
PP ](r) = V AE

KS [nAE](r)

[
1− f

(
r

rl

)]
+clf

(
r

rl

)
(1.18)

where f(x) = e−r
λ
, λ=4.0 in Ref. 109. The parameters cl are adjusted by imposing

the equality between the logarithmic derivatives:

d

dr
ln[rRAE

nl (r)]|r=r̃l =
d

dr
ln[rR̄nl(r)]|r=r̃l (1.19)

To impose norm-conservation, the final pseudo wavefunctions, RPP (r) are defined
as a correction to the intermediate wave-functions

RPP
l (r) = γl[R̄l(r) + δlgl(r)] (1.20)

where γl is the ratio RAE(r)/R̄l(r) in the region where r > r̃l and gl(r) =
rl+1f(r/rl). The constants δl are adjusted to conserve the norm. Fig. 1.1 shows
the Hamann pseudopotential for Al, with r0 = 1.24, r1 = 1.54 and r2 = 1.40 bohr.
Note that the true and the pseudo wavefunctions do not coincide at rl – this only
happens at r > r̃l. In this work, we used optimized norm-conserving pseudopo-
tentials [110], in particular the SG15 [111] and the Pseudo-Dojo [112] families (the
latter only for the study of ZnO). The latter one also implements the non-linear
core corrections, described in the next section.



1.3. PRACTICAL DFT 25

Figure 1.1: Hamann pseudopotential for Al, with r0 = 1.24, r1 = 1.54 and r2

= 1.40 bohr: pseudo wave-functions vs. true wave-functions (left) and pseudo-
potentials (right). Figure adapted from Ref. 102.

Non-linear core corrections

A fundamental but implicit approximation that we made up to now is the fact
that we are considering all the quantities in Eqs. 1.9 without the contribution
of the core charge density nc. This means that we consider all the quantities
linearly dependent on the total charge density, factoring out the nc contribution
very straightforwardly. However, the xc term is not linearly dependent on the
charge density:

Vxc[n
AE](r) ≡ Vxc[n

core + nPP ](r) 6= Vxc[n
core](r) + Vxc[n

PP ](r) (1.21)

The problem is that, due to the non linearity of the Vxc, the ionic resulting
pseudopotential is dependent on the valence configuration, as the real valence
contribution is not exactly factored out. These corrections are more important for
the alkali metals and other elements with few valence electrons and core orbitals
extending into the tail of the valence density (e.g., Zn and Cd). A new method for
generating and using ab-initio pseudopotentials treating explicitly the nonlinear
xc interaction between the core and the valence electrons was first proposed by
Louie, Froyen and Cohen in 1982 [113], leading to significant improvement in the
transferability of the potential. In particular, the spin-polarized configurations
are well described with a single potential.

1.3.3 DFT in plane-waves basis set

Electronic properties of solids, by solving the KS equations, can be obtained
once an appropriate basis set is given to expand the Kohn-Sham wave-functions.
Common choice is the usage of plane-wave (PW) basis sets, as easily accounting
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for the periodicity of the crystal by means of the Bloch theorem [92, 114]. This
means that a Bloch-like electronic wavefunction for the n-th bands and wavevector
k can be expanded in this basis as:

φnk(r) =
1√
Ω
eik·r

∑
G

Cnk(G)eiG·r = eik·runk(r) (1.22)

where k is restricted to the First Brillouin Zone (BZ) and G is a reciprocal lattice
vector. The function unk(r) expresses the periodicity of the crystal lattice. Ω is
the volume of the unit cell describing the system. Moreover, the translational
invariance of the potential allows us to express the KS Hamiltonian as:

hGG′ =
1

2
|k+G|2δGG′+v(k+G,k+G′)+vH [n](G−G′)+vxc[n](G−G′) (1.23)

where the kinetic term is diagonal, and the Hartree term is analytical (just consider
the Poisson’s equation ∇2V (r) = 4πn(r) in reciprocal space):

vH [n](G) = 4π
n(G)

G2
. (1.24)

The KS equations now read:∑
G′

ĥGG′(k)cnk(G′) = εnkcnk(G) (1.25)

In principle, the plane-wave basis is a complete set, and so the expansion of
whatever quantity should be exact. In practice, we have to choose a cutoff up to
we stop the expansion, to perform real calculations. This parameter is chosen to
be the cutoff in energy to which corresponds the kinetic energy for an electron of
momentum |k + G|:

1

2
|k + G|2 ≤ Ecutoff (1.26)

The number of plane waves involved in the calculation scales as Ωcell × E3/2
cutoff ,

where Ωcell is the volume of the unit cell. Fast convergence in PW basis calcula-
tions can be obtained using smooth pseudopotentials. Localized Gaussian basis
sets, on the contrary, do not provide a clear and systematic way to improve the
convergence of the calculations and do not form an orthonormal set. As a result,
the calculations often depend on the choice of basis set. For low-dimensional or
finite systems, such as atoms, molecules and clusters, plane-waves can also be used
in a supercell approach. A large amount of vacuum along non-periodic directions
is added to the unit cell (now a supercell), in such a way to avoid spurious interac-
tions among cell replica along non periodic directions, then the system is treated
as a 3D one. A truncation of the Coulomb interaction can be applied to reduce
the volume of the supercell (i.e. the amount of vacuum required), as described
in Appendix C.3 and Ref. 115. In this work, all DFT simulations are performed
using the Quantum ESPRESSO simulation package [116, 117], implementing
PW basis set and pseudopotential approach.



1.3. PRACTICAL DFT 27

1.3.4 The band gap problem

The band gap of an N electron system is defined as the difference between the ion-
ization potential IP = E0

N−1−E0
N =−EHOMO the electron affinity EA = E0

N−E0
N+1

= −ELUMO:

Egap = IP − EA = ELUMO − EHOMO (1.27)

where HOMO and LUMO stand, respectively, for highest occupied and lowest
unoccupied molecular orbital. So, the gap is just the difference between two single-
electron removal/addition energies, so it is immediately addressed by Many-Body
Perturbation Theory (MBPT), the main theory applied in this work. The quantity
Egap can also be calculated by means of KS-DFT energies εKSi :

Egap = εKSN+1(N + 1)− εKSN (1.28)

being εKSN+1(N+1) is the energy of the highest occupied KS orbital of the N+1
electron system, and εKSN (N) the HOMO level of the N electron system. Indeed,
the affinity of an N electron system is the opposite of the ionization potential
of the N + 1 electrons, and that the Kohn-Sham HOMO level equals the actual
one (this is the only KS energy with an explicit physical meaning). For a non-
interacting system, the gap can be readily written in terms of its orbital energies.
Therefore, for the fictitious N electron KS system we have

EKS
gap = εKSN+1 − εKSN (1.29)

which is well-known to be an underestimation of the real band gap of a sys-
tem [118]. This failure is related to a pathological non-analytical behaviour of the
true xc energy functional. Namely, the xc potential may be increased by a finite
constant of the order of the eV as a result of the addition of an extra electron to
an extended system, that is, after an infinitesimal change of the electron density.
Indeed, we can relate the real and the KS gap as

Egap = (εKSN+1 − εKSN ) + (εKSN+1(N + 1)− εKSN+1) = EKS
gap + ∆xc (1.30)

relation also depicted in Fig. 1.2. ∆xc is just the difference between the energies
of the (N + 1)-th orbitals of the KS systems that correspond to the neutral
and ionised electron systems, and it is a finite variation of Vxc(r) due to and
infinitesimal variation of n(r):

∆xc =

(
δExc[n]

δn(r)

∣∣∣∣∣
N+1

− δExc[n]

δn(r)

∣∣∣∣∣
N

)
+ O

(
1

N

)
(1.31)

Now it is easy to see the relation between a non-analytical Vxc(r) and the band gap
problem. If Vxc(r) were actually discontinuous, the actual band gap would not be
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Figure 1.2: Sketch of the KS band structure before and after the addition of the
∆xc term.

given in terms of the KS energies of the N electron system. On the contrary, if ∆xc

were zero (or very close to zero), the difference between the actual gap and the KS-
DFT one would be just an inherent limitation of the LDA/GGA approximations.
Godby showed in 1988 [119] that indeed the main cause of discrepancy between
the real and KS band gap has to be addressed to the discontinuity ∆xc, so to
intrinsically the KS scheme rather than DFT itself or LDA. The band gap of a
system, as well as its full band structure, can be accurately reproduced by means
of MBPT, specifically within the GW approximation. This will be the object of
the next chapter.



Chapter 2

Many-Body Perturbation Theory

In matter, a moving electron interacts with the surrounding medium (i.e. other
electrons, ions etc.) by means of the bare Coulomb interaction v(|r − r′|). Fol-
lowing the concept of quasiparticle [120, 96, 121], it is possible to consider a new
entity composed of the electron plus its surrounding screening cloud. The quasi-
particle is then a weakly interacting particle where the interaction is mediated by
the screened Coulomb potential W(r, r′, t− t′), which allows us to describe the in-
teraction in terms of perturbative expansions, from which the name ”Many-Body
Perturbation Theory” [96]. A systematic method to solve Schrödinger equation
to all order in perturbation theory is possible if we adopt the Green’s function
approach.

2.1 Response functions

The aim of MBPT is to study how the system behaves under the action of an
external perturbation (in general weak). This perturbation can induce a finite
polarization, due to charge redistribution, charge/spin density waves, plasmonic
excitations. The quantity that describes this response of the system is called
response function. Considering a generic Hamiltonian Ĥ = Ĥ0 + Ĥ1(t), where1

Ĥ1(t) = θ(t)Ĥ1(t) is the perturbed, time- (but also, generally, space-) depen-
dent part of the Hamiltonian, the response functions describe the change in the
expectation value of an operator Ô(t)2. If we limit ourselves to linear response
theory3, where we consider only the first-order response function, we obtain the
Kubo formula [96, 121]:

δ 〈N | Ô(t) |N〉 =

∫ t

0

dt′ 〈N | [Ĥ1(t′), Ô(t)] |N〉 (2.1)

1We define θ(t) as the Heaviside step function.
2We consider the operator in the Heisenberg representation. See Eq. A.3
3This is the regime where most of the spectroscopic measurements are performed.
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which describes the variation of an observable at time t due to a perturbation
switched on at time t = 0. We may here explicit a general form of the interacting
part of the Hamilatonian as Ĥ1(t) =

∫
dr φ(r)B̂(r), where φ(r, t) is the external

perturbation and B̂(r) is an operator acting on the system. In this way we can
rewrite Eq. 2.1 as:

δ 〈N | Ô(t) |N〉 =

∫
dt′
∫
dr χ(r, r′, t− t′)φ(r, t′) (2.2)

where we have defined a (retarded) correlation function χ(r, r′, t−t′), the so called
linear response function:

χ(r, r′, t− t′) = −iΘ(t− t′) 〈N | [Ô(t)(r, t), B(r′, t′)] |N〉 (2.3)

Now we should consider what happens when our electronic system, where the
electrostatic interaction is described via the instantaneous4 Coulomb potential
v(|r − r′|) = 4π

|r−r′| , is perturbed by longitudinal external potential φ(r, t) =

Vext(r, t). This is physically interpreted as the injection of an external charge
into the system. Under the action of this field, the system may react with a re-
organization of its charge density ρ(r, t), in the attempt to create an opposing
polarization field. This results in a variation δρ(r, t), called induced charge den-
sity, which generates a modification of the total potential: Vtot = Vext+Vind, where
Vind is the new induced potential, described classically as:

Vind(r, t) =

∫
dr′ v(|r− r′|)δρ(r′, t) (2.4)

In this case, the interacting term of the Hamiltonian is

Ĥ1(t) =

∫
dr ρ(r, t)Vext(r, t) (2.5)

Using Eq.2.1 we obtain the induced charge density as:

δρ(r, t) =

∫
dr′
∫
dt′χ(r, r′, t− t′)Vext(r′, t′) (2.6)

Where we defined the reducible polarizability as:

χ(r, r′, t− t′) = −iΘ(t− t′) 〈N | [ρ(r, t), ρ(r′, t′)] |N〉

=
δρ(r, t)

δVext(r′, t′)

(2.7)

Let’s define the corresponding time-ordered reducible polarizability as:

χ(r, r′, t− t′) = −i 〈N | T̂ [ρ(r, t)ρ(r′, t′)] |N〉 (2.8)

4Here we are neglecting relativistic effects.
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To inspect its analytical structure, we can insert the complete basis of N-particle
state |Ni〉 (the corresponding eigenvalue being EN

i ) inside Eq. 2.8 and express the
density operator in the interaction picture as δρ(r, t) = eiH0tδρ(r, 0)e−iH0t (where
H0 |N〉 = EN

0 |N〉). These two operation lead, in turn, to:

χ(r, r′, t− t′) = −i
∑
i

T̂ [〈N | ρ(r, t) |Ni〉 〈Ni| ρ(r′, t′) |N〉]

= −i
∑
i

T̂
[
fi(r)f ∗i (r′)e−i(E

N
0 −ENi )(t−t′)

] (2.9)

The quantities fi(r) = 〈N | ρ(r, 0) |Ni〉 are also defined as the oscillator strenghts
of the i-th transition contributing the excited state of the system. Indeed, a
final Fourier transform in time makes then explicit the analytic structure of the
polarizability in energy space as:

χ(r, r′, ω) =
∑
i

[
fi(r)f ∗i (r′)

ω − Ωi + iη
+

fi(r
′)f ∗i (r)

ω + Ωi + iη

]
(2.10)

The above quantity has poles at Ωi = (EN
0 −EN

i ), the exact excitation energies of
the interacting N-particle system. The first (second) term of Eq. 2.10 is defined
as the resonant (antiresonant, or a.r.) part. The fictitious parameter η is added
in order to regularize the time integral.
If we consider a non-interacting system, and its corresponding ground state, by us-
ing Eq. 2.10 in conjunction with Eqs A.1 - A.4 we can easily define the independent-
particle polarizability as:

χ0(r, r′, ω) =
∑
i,i′

(fi − fi′)φ∗i (r)φi′(r)φ∗i′(r)φ∗i (r)

ω − ωii′ + iη
+ a.r. (2.11)

The quantities fi and ωii′ = εi − εi′ represent the occupation number and the ex-
citation energies in the independent-particle case. For periodic systems described
in a PW basis (see Eq. 1.22), Eq. 2.11 (as well as Eq 2.10) assumes a tensorial
form in the reciprocal space (and omitting the regulator factor iη):

χ0
GG′(q, ω) =2

∑
nm

∫
BZ

dk

(2π)3
ρ∗mn(k,q,G)ρmn(k,q,G′)fnk−q(1− fn′k)

×
[

1

ω + εnk−q − εmk

− 1

+εmk − εnk−q

] (2.12)

where we defined the matrix element of orbitals pairs as:

ρnm(k,q,G) = 〈nk| ei(q+G)·r |mk− q〉

=
1

Ω

∑
G′

C∗nk(G′)Cnk−q(G−G′).
(2.13)
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To compute practically Eq. 2.12, the integral over the BZ is transformed into a
discrete sum:∫

BZ

dk

(2π)3
→ 1

NkΩ

∑
k

(2.14)

where Nk are the number of k-points in the real sampling of the BZ, Ω is the
volume of the primitive cell in real lattice.

2.1.1 Microscopic dielectric function

Using Equations 2.4 and 2.6, the total potential (felt and produced) by the system
can be expressed as a response to the external potential as:

Vtot(r, t) = Vext(r, t) + Vind(r, t)

= Vext(r, t) +

∫
dt′
∫
dr′
∫
dr′′ v(|r− r′|)χ(r′, r′′, t− t′)Vext(r′′, t′)

=

∫
dt′
∫
dr′ ε−1(r, r′, t− t′)Vext(r′, t′)

(2.15)

where we have defined the inverse microscopic dielectric function:

ε−1(r, r′, t− t′) = δ(r− r′)δ(t− t′) +

∫
dr′′v(r− r′′)χ(r′′, r′, t− t′) (2.16)

Persevering in going towards periodic system and plane-wave basis, the space and
time Fourier transform of Eq. 2.16:

ε−1
GG′

(q, ω′) = δGG′ + v(q + G)χGG′(q, ω) (2.17)

where v(q + G) = 4π
|q+G|2 is the Fourier transform in the reciprocal space of the

Coulomb potential. The physical meaning of the total field Vtot is now evident:
it represent the screened resulting interaction that the electrons (or generally the
particles in the system) feel, generated in part by the external field and in part
by the response of all the charges to it. We can then define the screened Coulomb
interaction as:

WGG′(q, ω) = ε−1
GG′

(q, ω)v(q + G′)

= v(q + G) + v(q + G)χGG′(q, ω)v(q + G′)

= ε−1
GG′

(q, ω)
4π

|q + G||q + G′|
= v(q + G) +W p

GG′
(q, ω)

(2.18)
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where, following the notation of Ref. [121], we defined W p
GG′

(q, ω′) as the polar-
ization contribution. It is worth noting that this contribution is a dynamical one,
as exploited by its frequency dependence. This represents the momentum-energy
(or space-time) response of the system to the external perturbation. Analogously
to Eq. 2.7 we now define the irreducible polarizability χ̃ as:

χ̃(r, r′, t− t′) =
δρ(r, t)

δVtot(r′, t′)
(2.19)

if we expand the functional derivative of Eq. 2.7 in terms of Vtot and we use
Eq. 2.19, we obtain a Dyson’s equation [122] for the reducible polarizability:

χ = χ̃+ χ̃vχ (2.20)

which gives us the solution, written in a plane wave basis:

χGG′(q, ω) = [δGG′′ − v(q + G′′)χ̃GG′′(q, ω)]−1χ̃G′′G(q, ω) (2.21)

a fundamental result that will be used in the next sections. Indeed, the com-
mon Random Phase Approximation (RPA) [2], puts the χ̃ equal to the independent-
particle one χ0, allowing us to solve (at least partially) the many-body problem
of charged excitations.
Finally, we further proceed with definition, and we write here another particular
response function:

χ̄ = χ̃+ χ̃v̄χ̄ (2.22)

where v̄ is the bare Coulomb interacting without it long-range term:

v̄(q) =

{
0 if q = 0

v(q) if q 6= 0
(2.23)

In this way only the short-wavelength limit of the Coulomb potential is explicitly
considered. The long range term is hidden in the definition of the perturbation.
Eq. 2.22 will be of fundamental importance in the next sections.

2.1.2 Macroscopic dielectric function and Local Field Ef-
fects

We can infer about the tensorial nature of Eq. 2.17. What does it mean phys-
ically? We may answer this question by observing the connection between the
microscopic-macroscopic worlds, the first concerning band structures, density of
states etc., the second one obeying Maxwell’s equations (see Appendix B). Here
we want to underline that microscopic quantities are in general local both in space
and time, like ε−1(r, r′, t−t′). Instead, the analogous macroscopic counterpart has
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to be represented by taking an average of a microscopic quantity. This allows us
to access from the microscopic world to macroscopic quantities like absorption
or energy loss spectra. In the case of dielectric function, following the works of
Adler [123] and Wiser [124], we can define the macroscopic dielectric function as:

εM(ω) = lim
q→0

1

[ε−1(q, ω)]G=G′=0

(2.24)

which is not simply the reciprocal of the head of the matrix ε(q, ω), but is the
reciprocal of the first element of its inverse. This means that we are effectively
mixing all the G,G′ components in doing the inverse. The physical reason to do
this is that an external perturbation induces charge fluctuations and potentials
at both macroscopic (described by the long-range part G=0) and microscopic
(short-range, G 6= 0) levels. By including also short-range effects, also known
as Local Field Effects (LFE), we are taking into account the inhomogeneity of
the system, and appropriately describing experiments where shorter distances are
probed (with increasing momentum transfer).

2.1.3 Connection with experiments

We have already shown in the previous section the connection between micro-
scopic and macroscopic dielectric functions. In the long-wavelength limit (vertical
transitions), this allows us to compute the photo-absorption spectrum as:

Abs(ω) = Im εM(ω). (2.25)

If we escape the optical limit for a while, and we consider possible indirect tran-
sition where initial and final state have different momentum k and k’ we can
define [121]:

εM(q, ω) =
1

ε−1
G=G′

(q, ω)

=
1

1 + v(q + G)χGG(q, ω)

= 1− v(q + G)

1 + v(q + G)χGG(q, ω)

(2.26)

where k − k′ = q. This relation can be further rewritten using Eq. 2.22:

εM(q, ω) = 1− v(q + G)χ̄GG(q, ω) (2.27)

The generalized absorption spectra, i.e. still q-dependent, is then defined as:

Abs(q, ω) = −v(q + G) Im χ̄GG(q, ω) = Im εM(q, ω). (2.28)
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If we now consider the Loss function, which can be experimentally accessed by
electron energy loss spectroscopy (EELS) and non-resonant inelastic X-ray scat-
tering (NRIXS), we have 5 (see Appendix B):

L(q, ω) = −v(q + G) Im χGG(q, ω) = −Im

(
1

εM(q, ω)

)
. (2.29)

We notice similarities between Eq. 2.28 and Eq. 2.29: they only differ in the
definition of the polarizability (with or without the long-range component of the
Coulomb interaction).
In EELS and NRIXS experiments, the measured quantity is the intensity of the
scattered particles resolved with respect to the scattering angle and to the energy
of the outgoing particles (either electrons or photons). This quantity, that is the
differential cross-section d2σ

dΩdE
of the process, can be related to the loss function

by the relation [125, 126]:

d2σ

dΩdE
∼


q−2L(q, ω) EELS,

q2L(q, ω) NRIXS.
(2.30)

2.2 Green’s function formalism

We now define another correlation function, the (time-ordered) single-particle
Green’s function (GF) as [127, 121]:

G(rt, r′t′) = −i 〈N | T̂ [Ψ(r, t)Ψ†(r′, t′)] |N〉

=


−i 〈N |Ψ(r, t)Ψ†(r′, t′) |N〉 if t > t′

i 〈N |Ψ†(r′, t′)Ψ(r, t) |N〉 if t < t′

(2.31)

where T̂ is the time-ordering operator. For simplicity, we don’t consider here the
dependence on the spin coordinate σi. We observe that this form of GF is non-local
both in space and time, and has the physical meaning of a particle propagator.
Indeed, for t > t′, it expresses the probability amplitude that a particle generated
at (r′, t′) will be annihilated at (r, t): this represents the life/propagation of a
conduction electron. The second term of Eq. 2.31, non-vanishing for t < t′,
instead has the same meaning but regarding the propagation of a hole (seen in
other terms as a particle going backward in time).
The single-particle GF contains a considerable amount of information about the

5L(q, ω) = −Im ε−1M (q, ω)
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system which belongs6. It is straightforward to show [96] that the ground-state
expectation value of any single-particle operator7 Ô =

∫
drΨ†(r)O(r)Ψ(r) can be

expressed as:

〈Ô(r)〉 = −i lim
t′→t+

lim
r′→r

O(r)G(rt, r′t′) (2.32)

Where the time t+ is an infinitesimal time greater than t in order to ensure the
correct time ordering. In particular, we can express the ground state expectation
value of the density operator ρ̂(r) = Ψ†(r)Ψ(r) as:

〈ρ̂(r)〉 = −iG(rt, rt+). (2.33)

Another quantity that can be expressed in terms of GF is the total energy of the
system8, through the very general Migdal–Galitzki formula [127]:

E0 = ±1

2
i lim
t′→t+

lim
r′→r

∫
dr

[
i
∂

∂t
+ T (r)

]
G(rt, r′t′). (2.34)

Moreover, it is worth to rewrite here the independent irreducible polarization of
Eq. 2.7 in terms of Green’s functions as:

χ0(r, r′, t− t′) = −iG0(r, t′)G0(r′, t′) (2.35)

that describes the uncorrelated propagation of two particles, meaning that they
do not mutually interact. We recognise immediately that such a picture is ade-
quate to describe the processes of direct and inverse photoemission, i.e. charged
excitations, where the excited electron/hole and the corresponding counterpart
propagate independently. Neutral excitations like exciton formations are not in-
cluded in this description, but are correctly captured by a 2-particles Green’s
Function, which will be described in the following sections.

2.2.1 Diagrammatic expansion of GF: Dyson’s equations

The explicit calculation of the exact GF as described in Eq. 2.31 is not possible for
the system of interest (real solids). How can we solve the problem? The answer
relies in the Wick’s theorem [128] and Feynman diagrams [129], that allows us
to compute at all orders of perturbation theory an approximate expression of

6For an extended list of these properties see Ref. [121]
7As we will see later, the two-particle GF is related to two-particle operators, and so on.
8Indeed, also the 2-body operator potential V (r, r′) can be expressed in terms of single-

particle GF [96].
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Figure 2.1: Dyson equation for G in terms of Feynman diagrams. We can interpret
this expansion in terms of a bare propagation G0 and an effective interaction Σ

G(rt, r′t′). This eventually [96] leads to a Dyson-like equation for our Green’s
function:

G(12) = G0(12) +

∫
d3d4 G0(13)Σ(34)G(42) (2.36)

where we condensed space and time coordinates (r1t1, r2t2) → (12) and Σ(34)
is the proper/irreducible self-energy, containing implicitly all the many-body in-
teracting terms of the problem. Eq. 2.36, depicted also in Fig. 2.1 in terms of
Feynman diagrams [96], is of fundamental relevance, as implies the possibility
to describe G(12) in terms of perturbative expansions, where the lowest order is
represented by the non-interacting G0(12). The advantage of perturbative expan-
sions is that we can stop at a certain order to include only the desired physics,
i.e. we do not need to solve the full problem to obtain the properties that we are
interested in. We observe that Eq. 2.36 is an integral equation where the kernel
is the self-energy Σ, containing the effective coupling (the Coulomb interaction
v(|r−r′|). It is possible to consider in perturbation expansion also the self-energy
Σ [96].
The first orders of the self-energy expansion leads us to the direct-Hartree ΣH

(usually already contained in G0) and exchange-Fock Σx results [96]:

ΣH(rr′) =− iv(|r− r′|) lim
t′→t+

G0(r′r′, t− t′)

Σx(rr′) = iv(|r− r′|) lim
t′→t+

G0(rr′, t− t′)
(2.37)

We observe that the Hartree-Fock interaction ΣHF = ΣH + Σx is static and un-
screened, i.e. does not consider dynamical effects like charge oscillations and re-
tarded response to the potential (the system is ”frozen”). This is why usually the
HF picture fails for materials: the system has no time to produce an appropriate
response to the excitation (charge and spin oscillations etc.). We need the dynam-
ically screened potential W defined in Eq. 2.18 to correctly describe correlation
effects in solids. Usually, even DFT performs better for solids, as KS equations
already contain an attempt to describe all the correlations effects happening in
the materials, through the exchange-correlation potential vxc.
Dyson equations are not restricted to single particle Green’s functions and self-
energy, but are valid also for any N-particles Green’s function and the correspond-
ing derived quantities.
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2.2.2 The Lehmann representation

Moreover, the single-particle GF gives us access to the true single-particle excita-
tion spectrum (i.e., the energy level of the electronic states). Indeed, by inserting
in Eq. 2.31 the complete set of many-body |N ± 1, i〉 excited states9, and taking
a Fourier transform in time, we obtain the so-called Lehmann representation of
the GF:

G(rr′, ω) =
∑
n

ψn(r)ψ∗n(r′)

ω − (En − E0) + iη sgn(En − E0 − µ)
(2.38)

Where En = En(N ± 1) and ψn(r) = 〈N |Ψ(r) |N + 1;n,k〉 〈N ± 1;n,k|. Let’s
analyse he energy difference in the first denominator of Eq. 2.38:

En(N + 1)− E0(N) = [En(N + 1)− E0(N + 1)]+

+ [E0(N + 1)− E0(N)]

= εn + µ

(2.39)

where εn and µ are respectively the excitation energy of the N+1 particle system
and the chemical potential10. By doing the same analysis for the second denomi-
nator in Eq. 2.38 and then Fourier transforming in space, we obtain the final form
of the GF which explicitly shows as poles the excitation energies of the system:

G(k, ω) =
∑
n

ψnkψ
∗
nk

ω − εnk + iη sgn(εnk − µ)

=
∑
nk

Gnk(ω)
(2.40)

Analogously, the non-interacting Green’s function G0 is obtained considering the
ψnk as the single particle orbitals. In this basis, G0(k, ω) is diagonal, and so it is
possible to write:

G0
nk(ω) =

fnk
ω − εnk − iη

+
1− fnk

ω − εnk + iη
(2.41)

where fnk are then the occupation number of the state |nk〉. This quantity is
fundamental for a practical solution of the many-body problem, as we will see in
the next sections.

2.2.3 The spectral function

From the equation of motion of the annihilation operator

i
∂

∂t1
Ψ =

[
Ψ, Ĥ

]
−

(2.42)

9solution of the fully interacting Hamiltonian Ĥ |N ± 1, n〉 = En |N ± 1, n〉.
10which equals the Fermi level at zero temperature [114].
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it is possible to derive the equation of motion for the full GF:[
i
∂

∂t1
−H0(1)

]
G(12)−

∫
d3 Σ(13)G(32) = δ(12) (2.43)

with H0(1) being the non-interacting part of the Hamiltonian:

H0(1) = −1

2
∇2

1 + Vext(1) + VHartree(1) (2.44)

It is easy to obtain the equation of motion for the non-interacting G, namely G0:

[
i
∂

∂t1
−H0(1)

]
G0(12) = δ(12) (2.45)

Combining the Eq. 2.43 and Eq. 2.45 we obtain the very same Eq. 2.36. Inserting
Eq. 2.43 in Eq. 2.42, we obtain the so-called quasi-particle equation11 [121]:

H0(r)Ψi(r, ω) +

∫
dr′ Σ(r, r′, ω)Ψi(r

′, ω) = Ei(ω)Ψi(x, ω) (2.46)

Which shows a frequency dependence, meaning that the interaction described
by the self-energy is a dynamical one. Indeed, a particle suffering of a screened
potential responds to it with a certain delay in time.
The analogy between Eqs. 2.43 and 2.46 sheds a light also on the mathematical
meaning of the single-particle GF: it is actually the solvent, i.e. the mathematical
operator called Green’s function [130] of Eq. 2.46, being verified the relation:

G(r, r′, ω) = [ω − ε0 − Σ(r, r′, ω)]
−1

(2.47)

This allows us to write the GF in terms of a spectral representation:

G(r, r′, ω) =
∑
i

Ψ†(r)Ψ(r′)

ω − Ei
(2.48)

which actually corresponds to Eq. 2.38. If we go to reciprocal space, we can define
the spectral function 12 as:

A(r, r′, ω) =
1

π
ImG(r, r′, ω) (2.49)

which, for a general diagonal element in reciprocal space, is written as:

Ak(ω) =
1

π

|ImΣ(ω)|
[ω − ε0k − ReΣ(ω)]2 + [ImΣ(ω)]2

(2.50)

11We notice here that we can recover the KS equations 1.9 just by letting Σ(r, r′, ω) =
Vxc[n](r)δ(r− r′), which express the locality of the Vxc.

12For a general discussion on spectral functions, we redirect the reader to Ref. [121]
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If we start by considering the non-interacting picture, we have a vanishing Σ,
the spectral function has a series of δ-peak centered at the non-interacting single-
particle energies ε0k; when we turn on the interaction, the self-energy shifts the
peaks of ε0nk → ε0nk + Re[Σnk(ω)] and applies a broadening Γnk = ImΣnk(ω).
Because of the one-to-one correspondence with the non-interacting peaks, this
structure is called quasi-particle peak [121]. The quantity Γnk is also known as
quasiparticle lifetime. A schematic representation is provided in Fig. 2.2. How-
ever, in the interacting case we see other peaks, called satellites and coming from
the imaginary part of the self-energy. These are due to excitations that can be
created when a particle is added/removed in/from the system, e.g. plasmons and
atomic-like excitations. If these peaks have too much weight in the spectrum, the
single-particle like picture is no more valid and we talk about strong correlation13.

Figure 2.2: Effects of the many-body self-energy: the delta-like independent-
particle peak (ε0) is shifted ε0 → ε0 + Re[Σ(ω)] and its weight is redistributed
between the quasiparticle peak εQP and satellites.

The experimental analogous that allows to measure such spectral functions
(and hence the quasiparticle levels of the system) are direct and inverse photoe-
mission, shown in Fig. 2.3. Experimental measures of the full band structure of
a system can be carried out within Angle-Resolved Photoemission Spectroscopy
(ARPES) [131, 132].

13The total weight of the spectral function is conserved and governed by its own sum-rule.
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Figure 2.3: (a) Direct photoemission: an incident photon hν excites an electron
in the system, occupying a state εi, which is emitted with kinetic energy K. (b)
Inversion photoemission: an impinging electron loses energy and is captured by
the system, emitting a photon hν. In both cases, the conservation of energy
requires K = hν + εi.
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2.3 Hedin’s equations

In the last part of the previous section we showed the connection between the
Green’s function of a system, the associated quasiparticle energy levels εnk of a
system, and their experimental counterpart. We have not yet proposed a scheme
to practically obtain such quantities. This could be a very difficult task, as we
need the knowledge of the exact Self-energy Σ(x,x′, ω), to be inserted in Eq. 2.46.
Moreover, an additional degree of complexity is that, as shown in Eq. 2.46, the
Self-energy is dynamical, i.e. presents a frequency dependence.
An iterative procedure was proposed by Lars Hedin more than 50 years ago,
and starts from a closed (self-consistent) set of Dyson’s equations, the Hedin’s
equations [1]:

Σ(12) = i

∫
d(34)G(14)W (1+3)Γ̃(42, 3)

G(12) = G0(12) +

∫
d(34)G0(13)Σ(34)G(42)

Γ̃(12, 3) = δ(12)δ(13) +

∫
d(4567)

∂Σ(12)

∂G(45)
G(46)G(75)Γ̃(67, 3)

P (12) = −i
∫
d(34)G(13)(G(41+)Γ̃(34, 2)

W (12) = V (12) +

∫
d(34)W (13)P (34)V (42)

(2.51)

where we condensed space and time variables using the compact notation (xi,ti)→(i).
We introduced here the irreducible vertex function Γ̃(12, 3):

Γ̃(12, 3) = −δG
−1(12)

δVtot(3)
(2.52)

responsible of the introduction of two-particle effects in the irreducible polariz-
ability P14. W = ε−1V is the screened interaction, containing the response to the
external and the classical induced (Hartree) fields. G0 is the independent-particle
(or Hartree) Green’s function.
Hedin’s equations are exact, but not practically solvable exactly. This means that
approximations are needed, in particular starting from the functional form of the
self-energy Σ in terms of Green’s functions G. If one starts from an approximate
form of Σ, for example, it is possible then to iterate along the so-called Hedin’s
pentagon, shown in Fig. 2.4 and solve the equations 2.51 self-consistently. The
last step of the cyclic iterative procedure is dictated by the physics that we want
to describe.

14also mentioned throughout this thesis as χ̃, response to the total potential Vtot as expressed
in Eq. 2.19.
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Figure 2.4: Hedin’s pentagon, corresponding to the iterative solution of Equa-
tions 2.51. If a starting value of the self-energy Σ is guessed, then the iteration
can start and give as result a new approximated value of Σ.

2.4 GW approximation

The simplest starting point to solve the problem was suggested by the same Hedin
in its seminal work [1], and consists in a single iteration over the Hedin’s pentagon,
starting from Σ = 0 and neglecting vertex corrections, i.e. Γ̃(12, 3) = δ(12)δ(13).
This is practically done by skipping the vertex part in the Hedin’s pentagon and
going directly from G to P. Following the loop of Fig. 2.4, we obtain the first order
expression of the self-energy:

Σ(12) = 0

Γ̃(12, 3)) = δ(12)δ(13)

G(12) = G0(12)

P (12) = −iG0(12)G0(21+) = P 0(12)

W (12) = V (12) +

∫
d(34)W 0(13)P 0(34)V (42) = W 0(12)

Σ(12) = iG0(12)W 0(1+2)

(2.53)

The effect of starting from Σ = 0 makes the Green’s function to be the independent
particle one. This in turn leads to the RPA for the polarizability P 0 = χ̃0 = χ0

(Eq. 2.12) and the screening W 0. Finally, we complete the first iteration of the
loop and now the new approximated Self-energy, the last of Equations 2.53, is
expressed as the product between G0 and W 0. Due to this concise form, this
approximation is called GW approximation. In particular, a single iteration on
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the Hedin’s pentagon is properly called (single-shot) G0W0. More advanced self-
consistent GW calculation can be performed, but usually the G0W0 is good enough
to describe the quasiparticle band structure of a material within the accuracy of
tens of meV [133]. In this work we only considered single-shot non self-consistent
G0W0 calculations.
In frequency space, the GW self-energy reads:

ΣGW (ω) = −
∫

dω′

2πi
eiω
′0+

G(ω + ω′)W (ω′). (2.54)

The non-interacting Green’s function G0 used in the approximation is not the
Hartree one, but the one built on the non-interacting Kohn-Sham single-particle
orbitals φKSnk (|nk〉 in abstract vector space). This is a better choice as in φKSnk
there is already an attempt to include exchange and correlation effects, encoded
in vxc. The self-energy can be further split into the (Fock) exchange, Σx, and in
the frequency dependent correlation parts Σc. The diagonal elements read:

Σnk = 〈nk|Σx |nk〉+ 〈nk|Σc |nk〉
= Σx

nk + Σc
nk

(2.55)

that can be expanded in plane waves as:

Σx
nk = −

occ∑
m

∫
dq

(2π)3

∑
G

v(q + G)|ρnm(k,q,G)|2fm,k−q (2.56)

Σc
nk(ω) =− i

Nb∑
m

∫
dq

(2π)3

Gcut∑
GG′

ρnm(k,q,G)ρ∗n′m(k,q,G′)×∫
dωWGG′(q, ω

′)×[
fm,k−q

ω − ω′ − εm,k−q − iη
+

(1− fm,k−q)

ω − ω′ − εm,k−q + iη

]
.

(2.57)

where the quantity W δ
GG′(q, ω) is the δ-like part15 of the screened interaction

WGG′(q, ω) already shown in Eq. 2.18.
It is clear that the screened potential can be computed once known the dynamical
screening matrix ε−1

GG′
(q, ω) (Eq. 2.17). This can be eventually computed using

the Dyson’s equation for the reducible polarizability χ, which in the RPA becomes:

χGG′(q, ω) = [δGG′′ − v(q + G′′)χ0
GG′′(q, ω)]−1χ0

G′′G(q, ω) (2.58)

15Its full expression is shown in Ref. 65.



2.4. GW APPROXIMATION 45

where the expression of χ0
GG′′(q, ω) is given in Eq. 2.12. Usually, the integral

involved in Eq. 2.57 is computationally demanding, due to the high number of
frequencies needed in the numerical integration. This integral can be performed
analytically, within the so-called plasmon-pole approximation (PPA) [52]. The
approximation considers a modellic single-pole function for ε−1

GG′
(q, ω):

Im ε−1
GG′

(q, ω) =AGG′(q)×
[δ(ω − ω̃GG′(q))− δ(ω + ω̃GG′(q))]

Re ε−1
GG′

(q, ω) =1−
AGG′(q)ω̃2

GG′(q)

ω2 − ω̃2
GG′

(q)

(2.59)

This corresponds to assigning all the spectral weight of the dielectric function at
a plasmon excitation pole. The parameters16 of the model AGG′(q) and ω̃2

GG′(q)
can be obtained by imposing different constraints [134], that distinguish different
flavors of PPA. Details on the PPA implemented in the Yambo code, the Godby-
Needs PPA [53], together with other technicalities of the code are provided in
Appendix C.
The solution of the quasiparticle equation will be:

εnk = εKS
nk + 〈nk|Σ(εKS

nk )− vKS
xc |nk〉 (2.60)

self-consistent in the quasiparticle energies. Since this involves only diagonal ele-
ments of the self-energy, solutions of this equation are cheaper to determine than
poles of the fully interacting Green’s function. This is a good approximation if
the self-energy is diagonally dominant in the basis of the DFT orbitals. This is
in general the case, a part some special case [135, 136]. This is particularly the
case of isolated atoms or molecules, since the KS orbitals do not decay properly
at large distances. We observe that we have to subtract to the self-energy the
exchange-correlation potential vxc used in the KS solution, to avoid double count-
ing of these effects. Near the QP solution, the self-energy is approximately linear
in frequency: we can Taylor expand it around ω = εKSnk and stop at the first order
(Newton’s approximation). We eventually obtain:

εnk = εKS
nk + Znk 〈nk|Σ(εKS

nk )− vKS
xc |nk〉 (2.61)

where the renormalization factor Znk = [1− 〈nk| ∂Σxc/∂ω |nk〉 |εKSnk ]−1 represents
the weight of the quasiparticle peak in the full spectral function, Eq. 2.49, which
in the linearized case becomes:

Ank(ω) ≈ Znk
Znk|ImΣ(ω)|

[ω − ε0k − ReΣ(ω)]2 + [ZnkImΣ(ω)]2
. (2.62)

The QP solution (main peak) is characterized by large Znk values, which lie around
0.7 to 0.8 for simple insulators, semiconductors and metals and around 0.9 for
molecules [137]. Small Znk values indicate satellite features.

16which, for instance, are matrices.
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2.5 Bethe-Salpeter equation

We are now interested in the theoretical counterparts of experiments that con-
cern neutral excitations. These are, for example, absorption, electron energy loss
spectroscopy (EELS), or non-resonant inelastic x-ray scattering (NRIXS), and are
fundamental in order to describe optical properties of materials. These effects are
not effectively captured by the RPA-GW approximation: the piece of theory still
missing is the interaction between two particles, like the electron and the hole
couples created by the absorption of a photon, and propagating together in the
system interacting with each other. The envelope of couples of such electrons and
holes contributes to the formation of a quasiparticle called exciton.

2.5.1 2-particle Green’s function and 4-point polarizabili-
ties

In terms of Green’s function, we now use the two-particle Green’s function, defined
as:

G2(1234) = (−i)2 〈N | T̂ [Ψ(1)Ψ(2)Ψ†(3)Ψ†(4)] |N〉 (2.63)

Which allows us to define a reducible two-particle correlation function L, or re-
ducible 4-point polarization, subtracting from G2 the uncorrelated contribution:

L(1234) = −G2(1234) +G(13)G(24). (2.64)

This equation describes the propagation of two interacting particles, and contains
information that can be accessible from a series of experiments: optical spectra,
EELS spectra, dynamic structure factor (from NRIXS). By choosing appropriate
time orderings, we can describe different processes: for example, the choice of
equal time limits t3 = t+1 and t4 = t+2 corresponds to the propagation of an
electron-hole pair. Moreover, setting x1 = x3 and x2 = x4 allows us to recover the
density-density response function of Eq. 2.7:

χ(12) = −iL(121+2+) = −iθ(t1 − t2) < [ρ(1)ρ(2)] > (2.65)

It is possible to show [4, 2] that Eq. 2.64 can be rewritten as a Dyson’s equation,
the so-called Bethe-Salpeter equation (BSE) [138]:

L(1234) = L0(1234) + L0(1536)Ξ(5678)L(7284) (2.66)

where L0 is the non-interacting electron-hole contribution and Ξ(1234) is the
interaction kernel of the equations, i.e. the effective two-particle interaction:

Ξ(1234) = −iδ(12)δ(34)v(12) +
δΣxc(13)

δG(42)
(2.67)
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In the Σxc(12) = iG(12)W (12) approximation it reads 17:

Ξ(1234) = −iδ(12)δ(34)v(12) + iδ(13)δ(24)W (12) (2.68)

where the first term is called exchange term, the second one is the direct term18,
and contains the screened interaction W. It is possible to obtain this expression as
a second iteration of Hedin’s equations Eq. 2.51, where we recalculate the vertex
correction Γ.
Moreover, we further define [2] a new polarization function L̄ as:

L̄(1234) = L0(1234) + L0(1536)Ξ̄(5678)L̄(7284) (2.69)

where, as we may guess with the analogy with respect to Eq. 2.22, the new kernel
Ξ̄ contains only the short-range part v̄ of the bare Coulomb potential (defined in
Eq. 2.23):

Ξ̄(1234) = −iδ(12)δ(34)v̄(12) + iδ(13)δ(24)W (12). (2.70)

The contraction of Eq. 2.69 from a 4- to a 2-point polarization gives us Eq. 2.22:

χ̄(12) = −iL̄(121+2+) (2.71)

which, together with Eq. 2.65, connects directly L̄ and L with experiments, as
explained in Sec. 2.1.3. Indeed, we can rewrite Eq. 2.27:

εM(q, ω) = 1− v(q)

∫
dr1dr2e

iq·(r1−r2)L̄(r1, r1, r2, r2, ω). (2.72)

The same equation can be written for L.

2.5.2 Effective two-particle Schrödinger equation

The solution of the Dyson’s equations of Eq. 2.64 and 2.69 can be done through
inversion. The problem can be mapped into an effective two-particle Hamilto-
nian, whose eigenvalue-eigenvector problem can be solved by a single diagonal-
ization [141]. Let’s consider L̄ for the explanation of such a procedure. The first
step is to neglect all the dynamical effects that may be contained in the Ker-
nel Ξ through the frequency dependence of the screening W. This corresponds
to consider the propagation of the particle simultaneous and their interaction in-
stantaneous, i.e. W (12) = W (r1, r2)δ(t1 − t2): excitons do not interact with each
other. Eventually, this assumption leads to a single frequency coordinate in the
Fourier transform of L̄:

L̄(1234)→ L̄(1234|ω) (2.73)

17We omitted the derivative of the screening potential, as it can be safely neglected. [139, 140]
18If we neglect this term, Eq. 2.66 defines the irreducible response function L̃.
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The basis set of the problem is the transition basis, i.e. the basis composed by
pairs of single particle orbitals φi(r). In such transition space, the polarizability
reads:

L̄(n1n2)(n3n4) =

∫
dr1dr2dr3dr4L̄(1234)φn1(r1)φ∗n2

(r2)φ∗n3
(r3)φn4(r4) (2.74)

where ni implicitly considers both the band index n and wave vector index k.
The non-interacting polarizability L0 is expressed as:

L0
(n1n2)(n3n4) =

(fn2 − fn1)δn1,n3δn2,n4

εn2 − εn1 − ω − iη
(2.75)

Solving Eq. 2.69 by inversion, it is possible to show [2] that the polarizability L̄
can be rewritten as19

L̄(n1n2)(n3n4) = [Hexc− Iω]−1
(n1n2)(n3n4)(fn3− fn4) = l̄(n1n2)(n3n4)(fn3− fn4) (2.76)

where Hexc is the desired excitonic Hamiltonian:

Hexc
(n1n2)(n3n4) = (εn2 − εn1)δn1,n3δn2,n4 + i(fn2 − fn1)Ξ̄(n1n2)(n3n4). (2.77)

the first term consists in the difference of the quasiparticle energies, i.e. the
independent particle transition. The kernel in transition space is:

Ξ̄(n1n2)(n3n4) = −i(Ξ̄x
(n1n2)(n3n4) − Ξ̄d

(n1n2)(n3n4)) (2.78)

where we define the exchange and direct terms in transitions space as:

Ξ̄x
(n1n2)(n3n4) = 2γ

∫
drdr′φ∗n1

(r)φn2(r)v̄(|r− r′|)φ∗n3
(r′)φn4(r′)

Ξ̄d
(n1n2)(n3n4) =

∫
drdr′φ∗n2

(r)φn4(r)W (r, r′)φ∗n3
(r′)φn1(r′)

(2.79)

where γ=0 in the case of singlet excitons (electron and hole with opposite spins),
γ=1 if the excitons are triplets (same spin)20. The kernel Ξ̄ represents the electron-
hole mutual interaction, and gives rise to the so called Excitonic Binding Energy
(EBE), the difference between the quasiparticle energy of the transition and the
excitation energy solution of the BSE. The EBE discriminates the strength of an
electron-hole couple and determines how much energy it is needed to separate
them.

19The same can be done for the independent particle polarizability as well, that in the case
of RPA-GW it can be written as: L0

(n1n2)(n3n4)
= [HQP − Iω]−1(n1n2)(n3n4)

(fn3 − fn4).
20The singlet excitons are the ones that can be accessed experimentally with linearly polarized

light, due to selection rules. If the spin-orbit coupling is not negligible, the spin structure of the
excitonic Hamiltonian is different [121]
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In analogy with Eq. 2.47, we can say that the term l̄(n1n2)(n3n4) of Eq. 2.76, coincides
with the mathematical Green’s function of Eq. 2.77. This allows us to rewrite
l̄(n1n2)(n3n4) in its spectral representation:

l̄ =
∑
λλ′

|λ〉S−1
λλ′ 〈λ|

Eλ − ω
(2.80)

valid for a general non-hermitian matrix. Eλ and |λ〉 are the excitonic energies
and eigenvectors, solution of:

Hexc |λ〉 = Eλ |λ〉

|λ〉 =
∑
n1n2

Aλn1n2
|n1n2〉 (2.81)

where |n1n2〉 ≡ |n2〉 ⊗ |n1〉, |n1〉 and |n2〉 being valence and conduction wave-
functions, respectively. Sλλ′ = 〈λ|λ〉 is called overlap matrix. In our transition
basis, the excitonic wavefunction is expressed as:

Ψλ(r1, r2) = 〈r1, r2|λ〉 =
∑
n1n2

Aλn1n2
φn1(r1)φn2(r2) (2.82)

in this way we define the effective two-particle Schrödinger equation as:

Hexc
(n1n2)(n3n4)A

(n3n4)
λ = EλA

λ
n1n2

(2.83)

This problem can be solved simply diagonalizing the excitonic Hamiltonian, and
at the end allow us to evaluate L̄ through Equations 2.76 and 2.80:

L̄(n1n2)(n3n4) =
∑
λλ′

Aλn1n2
S−1
λλ′A

λ′∗
n3n4

Eλ − ω
(2.84)

The overlap matrix is now given by Sλλ′ =
∑

(n1n2) A
λ∗
n1n2

Aλ
′
n1n2

, and for a general
non-hermitian matrix differs from the identity: the eigenstates are not orthogonal.
The macroscopic dielectric function of Eq. 2.72 then becomes, for a general trans-
ferred momentum q = k− k′:

εM(q, ω) = 1− v(q)
∑
λλ′

[ ∑
(n1n2)

〈n1| e−iq·r1 |n2〉
Aλn1n2

Eλ(q)− ω − iη

× S−1
λλ′

∑
(n3n4)

〈n4| eiq·r2 |n3〉A∗λ
′

(n3n4)(fn4 − fn3)

] (2.85)
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2.5.3 Structure of the Excitonic Hamiltonian

To understand the structure of Eq. 2.77, we need to assign a precise character to
each ni, which then corresponds to a valence v or conduction c at a given k 21.
Moreover, we do not take into account the spin structure of the problem, whose
exhaustive description is done in Ref. [121]. Considering the occupations factors
in Eq. 2.77, it is easy to write the excitonic matrix in a triangular block form:

Hexc =

(
A B
0 D

)
(2.86)

or, explicitly:

Hexc
(n1n2)(n3n4) =


Hexc

(v,c)(v′,c′) Ξ̄(v,c)(c′,v′) Ξ̄(c,v)(v′,ṽ′) Ξ̄(v,c)(c′,c̃′)

−[Ξ̄(v,c)(v′,c′)]
∗ −[Hexc,res

(v,c)(v′,c′)]
∗ Ξ̄(c,v)(v′,ṽ′) −Ξ̄(c,v)(c′,c̃′)

0 0 (εṽ − εv)δv,v′δṽ,ṽ′ 0
0 0 0 (εc̃ − εc)δc,c′δc̃,c̃′


(2.87)

which is still rather complex to manage. Furthermore, to simplify this matrix
structure we take the hint of the occupation factors explicitly written in Eq. 2.76,
which tells us that only the first block column of the l̄ matrix will contribute to
our description. This means that, as Hexc is an upper triangular matrix, we can
safely reduce the full matrix to the block A of Eq. 2.87:

Hexc =

 Hexc,res
(v,c)(v′,c′) Kcoupling

(v,c)(v′,c′)

−[Kcoupling
(v,c)(v′,c′)]

∗ −[Hexc,res
(v,c)(v′,c′)]

∗

 (2.88)

where we Hexc,res
(v,c)(v′,c′) is the resonant term, which considers only positive frequency

transitions (v → c):

Hexc,res
(v,c)(v′,c′) = (εc − εv)δvv′δcc′ + iΞ̄(v,c)(v′,c′) (2.89)

The off-diagonal terms Kcoupling
(v,c)(v′,c′) are the coupling terms, as they mix positive and

negative frequency transitions (excitations and de-excitations). The last term
is the anti-resonant one, concerning only negative energy transitions (important
for photo-luminescence). In most of the cases, we can safely neglect the cou-
pling terms, as often these matrix elements are small with respect to the energy
range of transitions. This approximation is called Tamn-Dancoff approximation
(TDA) [142, 143], and allows one to work with hermitian matrices and reduce the
matrix size of a factor 2.

21For the moment we are considering only vertical transitions.
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In plane wave basis set, we have the following resonant excitonic Hamiltonian:

Hexc,res
(vc,k)(v′c′,k′)

= (εck − εvk)δvv′δcc′δkk′

+ 2γΞ̄x
(vc,k)(v′c′,k′)

− Ξ̄d
(vc,k)(v′c′,k′)

(2.90)

where the exchange and direct term are, respectively:

Ξ̄x,res
(vc,k)(v′c′,k′)

=
2γ

Ω

∑
GG′

v̄(G) 〈c,k| eiG·r |v,k〉×

〈v′,k′| e−iG′·r |c′,k′〉 ,
(2.91)

and

Ξ̄d,res
(vc,k)(v′c′,k′)

=− 1

Ω

∑
GG′

v̄(q′ + G)ε−1
GG′

(q′) 〈c,k| ei(q′+G)·r |c′,k′〉×

〈v′,k′| e−i(q′+G′)·r |v,k〉 δk−k′,q′ .
(2.92)

The formulation of the BSE contemplates excitons with a general transferred
momentum q between the valence v and conduction c states: both direct and
indirect excitons are considered and will be studied throughout this work. The
long-wavelength limit can be easily recovered just by letting q→ 0.

The eigenvalue eigenvector problem Eq. 2.83 can be rewritten as:

Hexc
(vc,k)(v′c′,k′)(q)Aλv′c′k′(q) = Eλ(q)Aλvck(q) (2.93)

where the eigenvectors are

|λ,q〉 =
∑
vc,k

Aλvck(q)|vck,q〉 (2.94)

and |vck,q〉 ≡ |c,k〉 ⊗ |v,k− q〉, |v,k− q〉 and |c,k〉 being valence and conduc-
tion wave-functions, respectively. The eigenvalues Eλ(q) constitutes the excitonic
band structure or exciton dispersion. So, the finite-momentum resonant excitonic
Hamiltonian reads:

Hexc,res
(vc,k)(v′c′,k′)

(q) = (εck − εvk−q)δvv′δcc′δkk′

+ 2γΞ̄x
(vc,k)(v′c′,k′)(q)

− Ξ̄d
(vc,k)(v′c′,k′)(q)

(2.95)

where the exchange and direct term are, respectively:

Ξ̄x,res
(vc,k)(v′c′,k′)

(q) =
2γ

Ω

∑
GG′

v̄(q + G) 〈c,k| ei(q+G)·r |v,k− q〉×

〈v′,k′ − q| e−i(q+G′)·r |c′,k′〉 ,
(2.96)
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and

Ξ̄d,res
(vc,k)(v′c′,k′)

(q) =− 1

Ω

∑
GG′

v̄(q′ + G)ε−1
GG′

(q′) 〈c,k| ei(q′+G)·r |c′,k′〉×

〈v′,k′ − q| e−i(q′+G′)·r |v,k− q〉 δk−k′,q′
(2.97)

We observe that the excitonic Hamiltonian is an (Nv ×Nc ×Nk)2 square matrix,
and it has to be inverted for each value of the transferred momentum q that we
want to compute.
Within the TDA, the exciton Hamiltonian matrix is hermitian and the excitonic
eigenstates are ortogonal, i.e. Sλ,λ′ = δλ,λ′ . This simplify Eq. 2.85 as the very
intuitive form, which for the resonant part becomes:

εM(q, ω) = 1− 2

ΩNq

v(q)
∑
λ

|
∑

(vc,k) 〈vk− q| e−iq·r |ck〉Aλvck(q)|2

Eλ(q)− ω − iη

= 1− 2

ΩNq

v(q)
∑
λ

Φλ(q)

Eλ(q)− ω − iη

(2.98)

where we defined Φλ(q) as the oscillator strengths of the exciton λ that occur
between transitions where valence states and conduction states are separated in
k-space by a momentum q. Ω is the volume of the unit cell and Nq is the number
of points in the BZ sampling. Within this expression, the Absorption spectrum
(Eq. 2.28) can be interpreted as a sum of Lorentzian peaks where the broadening
can be tuned by changing the parameters η. Oscillator strengths are used to
distinguish between active and inactive excitons (in the q = 0 limit, in particular,
to identify those that are dipole active/forbidden, i.e. bright/dark). A very similar
equation can be used to describe the inverse macroscopic dielectric function, if
Eq. 2.66 is used to solve the BSE:

ε−1
M (q, ω) = 1 +

2

ΩNq

v(q)
∑
λ

Φλ(q)

Eλ(q)− ω − iη
(2.99)

In this way we can describe the Loss function Eq. 5.7. Indeed, EELS experiments
are able to capture long-range interactions, e.g. plasmons.
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Chapter 3

Towards high-throughput MBPT:
efficient algorithms and
automated workflows

A first step towards HT GW calculations was made by M. J. van Setten and co-
workers [144]. They proposed a scheme to perform automated GW simulations,
analyzing also the interdependence between different involved parameters to be
converged for ∼80 solids. They showed different levels of correlation between
GW gaps with respect to experimental and Kohn-Sham ones, and the need of an
improved starting point or self-consistency to obtain more accurate results. An-
other relevant advancement was presented by Rasmussen et al. [145], where more
than 60.000 G0W0 self-energy evaluations of 370 2D semiconductors, taken from
the Computational 2D Materials Database [14] (C2DB), were analyzed in order to
draw useful conclusions for future HT studies. Their results concern the validity of
the basis set extrapolation limit, the acceptability of a scissor operation to correct
bands and in general the accuracy of GW calculations with respect to experiments.

In this work, I propose algorithms to automate the most common tasks of a
MBPT study: GW–BSE convergences and GW band interpolations (by means of
Wannierization [146]). Convergence of involved parameters is crucial to obtain
accurate GW and BSE results and often its cumbersome resolution has been a
limiting factor for the application of MBPT. Besides automation, the algorithm
is meant to reach converged results in a limited number of steps, thus minimiz-
ing the number of calculations to be performed and related computational effort,
which represents one the main bottleneck characterizing GW and BSE studies.
I implemented the workflows in the AiiDA framework [39, 40], a platform that
is routinely used for HT studies [12, 147, 148, 149] and that incorporates the
ADES model for Automation, Data, Environment and Sharing [35]. The imple-
mentation is a clear demonstration of software interoperability between different
codes/software projects, i.e. Yambo [64, 65], Wannier90 [150] and Quantum

55
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ESPRESSO [116, 117]. Efficient error handling and logic flows are encoded
within the workflows. Algorithms are validated for a selection of systems, mainly
semiconductors, for G0W0 convergences and band interpolations. The following
Chapter is contained in the following work: “Automated Many-Body Pertur-
bation Theory”, by Miki Bonacci, Junfeng Qiao, Nicola Spallanzani, Giovanni
Pizzi, Antimo Marrazzo, Deborah Prezzi, Elisa Molinari, Daniele Varsano, and
Andrea Ferretti (2022, preprint).

3.1 Convergence parameters...

In the following, we summarize the main equations of the GW–BSE theory con-
sidering a plane wave expansion, as implemented in the Yambo code [64, 65], the
software used to perform the simulations of this work. More details can be found
in Chapter 2.

3.1.1 ...in GW

The independent particle polarizability, Eq. 2.12, is defined as:

χ0
GG′(q, ω) =2

Nb∑
nm

∫
BZ

dk

(2π)3
ρ∗mn(k,q,G)ρmn(k,q,G′)fnk−q(1− fn′k)

×
[

1

ω + εnk−q − εmk

− 1

+εmk − εnk−q

] (3.1)

where

ρnm(k,q,G) = 〈nk| ei(q+G)·r |mk− q〉 . (3.2)

The parameter Nb (“BndsRnXp” in Yambo) represents a cutoff over the summa-
tion of empty states (usually, all the valence states are included), and the integral
in reciprocal space samples the k-points belonging to the Brillouin Zone (BZ).
Both Nb and the size of the k-points grid need to be increased until the conver-
gence is reached. The reducible polarizability χ, Eq. 2.21, defines the response
of the system to an external electromagnetic field. It can be expressed through a
Dyson’s equation which involves the independent particle irreducible polarizabilty
χ̃ = χ0 (RPA [2]):

χGG′(q, ω) =
[
δG,G′′ − v(q + G′′)χ0

GG′′(q, ω)
]−1

χ0
G′′G′(q, ω) (3.3)

In practice, Eq. 3.3 is solved including a finite number of G vectors determined by
a cutoff parameter Gcut (“NGsBlkXp” in Yambo), which defines the size of the
response matrix thus having an impact on the accuracy and on the computational
effort needed to store and perform the inversion and matrix multiplication.
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In the GW approximation the self-energy can be split into the Fock exchange,
Σx, and in the (frequency dependent) correlation part Σc. The diagonal elements
read:

Σnk = 〈nk|Σx |nk〉+ 〈nk|Σc |nk〉
= Σx

nk + Σc
nk

(3.4)

that can be expanded in plane waves as (see also Eqs. 2.56 and 2.57):

Σx
nk = −

occ∑
m

∫
dq

(2π)3

Gxcut∑
G

v(q + G)|ρnm(k,q,G)|2fm,k−q (3.5)

Σc
nk(ω) =− i

Nb∑
m

∫
dq

(2π)3

Gcut∑
GG′

ρnm(k,q,G)ρ∗nm(k,q,G′)×∫
dωWGG′(q, ω

′)×[
fm,k−q

ω − ω′ − εm,k−q − iη
+

1− fm,k−q
ω − ω′ − εm,k−q + iη

]
.

(3.6)

where here Nb, in Yambo, is indicated as is “GbndRnge”. In the following we
always consider the same value for “GbndRnge” and “BndsRnXp” (Eq. 3.1). So,
a typical GW calculation needs to be converged with respect to the following
parameters:

1. Nb: empty states summation for both response χ0
GG′ , Eq. 3.1, and self-energy

Σc, Eq. 3.6;

2. Gcut: PW Kinetic energy cutoff for χGG′ (or ε−1
GG′

), in the calculation of Σc;

3. BZ k-points sampling, i.e. the k-point mesh, to perform integrals in the
reciprocal space.

It has been shown in several previous works [134, 151, 144] that the first two pa-
rameters, Nb and Gcut, are often interdependent. Indeed, we can observe that in
Eq. 3.6 we have a summation over both empty states m and reciprocal lattice vec-
tors G. The latter determines the size of the screening matrix ε−1

GG′
, which through

χ0
GG′ contains the summation over empty states. The convergence procedure is

non-trivial: at fixed Gcut, it is possible to converge each element of χ0
GG′ with

respect to Nb; then, further convergence is required for the χ0
GG′ matrix size, i.e.

for the parameter Gcut, at fixed Nb. Results have then once more to be converged
with respect to Nb, and so on up to the overall convergence. Indeed, as Eq. 3.2
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is a convolution in G-space between the periodic parts of the Bloch states associ-
ated in the dipole, screening matrix elements with large G should be governed by
higher energy KS states, as pointed out by M. J. van Setten and co-workers [144].

The above described interdependence enters in a non-trivial way in the sub-
sequent evaluation of the correlation self-energy, as we have to solve a Dyson’s
Equation (Eq. 3.3), which requires an inversion. We then have a further summa-
tion over empty states in Eq. 3.6, which concerns the generalized dipole matrix
elements in the numerator and the relative eigenvalues in the denominator. In the
following the same cutoff Nb for summations appearing in the Eqs. 3.6 and 3.1 is
considered.

It is clear that Nb and Gcut are strictly interdependent, and their
convergence has to be performed jointly .

At variance, the k-mesh convergence can be done separately, as it has been
shown [144] that the final converged value of the coupled parameters Nb and Gcut

is almost independent on the value of the used k-mesh (and viceversa).
As final comment, an additional convergence parameter can be the number of

G vectors for expanding wavefunctions (Eq. 1.22) in transition matrix elements,
expressed in Eq. 3.2, and Fast-Fourier-Transform (FFT) operations. This (“FFT-
Gvecs” in Yambo) can be much less than the kinetic energy cutoff used in the
corresponding DFT simulation and helps in memory savings.

3.1.2 ...in BSE

Neutral excitation energies are computed by solving the Bethe-Salpeter equa-
tion [4]. This allows to compute the macroscopic dielectric function (considering
only resonant and anti-resonant parts of the Hexc) as:

ε−1
M (ω,q) = 1− 2

V Nq

v(q)
∑
λ

Φλ(q)

×
[

1

Eλ(q)− (ω + iη)
+

1

Eλ(q) + (ω + iη)

]
,

(3.7)

where V is the volume of the unit cell and Nq is the number of points in the BZ
sampling. We defined Φλ(q) as the oscillator strengths of the exciton λ that occur
between transitions where valence states and conduction states are separated in
k-space by q = k− k′:

Φλ(q) =

∣∣∣∣∣∣
∑

(vc,k)

〈vk− q| e−iq·r |ck〉Aλvck(q)

∣∣∣∣∣∣
2

(3.8)

Summations over valence, conduction bands and k-points in Eq. 3.8 indicate that
in a practical BSE calculation we have to converge these three parameters. Usu-
ally, the summation over bands allows us to choose what bands are included in
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the BSE solution, and the range of energy we want to investigate. Instead, the
k-points are more crucial as an exciton can be composed of transitions from re-
gion of the BZ that are extended or not, depending often on how conduction and
valence bands are parallel each other. Excitons that are composed of transition
from a wide region of the BZ are often very localized in real space, and at variance
a very delocalized exciton in real space corresponds to a small region of the BZ
for what concerns single particle transitions 1.

Usually, the BSE k-meshes are larger than the one needed to con-
verge the GW band structure.

3.2 Automation of GW and BSE convergences

These non-trivial convergences, combined with computationally expensive calcu-
lations, call for efficient procedures to describe and explore the convergence space
to minimize the number of runs needed to achieve converged results and save
computational resources. A possible strategy is to describe the convergence space
as function of the parameters. Different functional forms, such as inverse power
laws, have been considered in previous studies [60, 152, 144, 48, 145], and in some
cases, the analytical forms were derived from non trivial models [153]. For a gen-
eral (N+1) dimensional space, a model convergence surface f(x), which represents
the value of a given observable (i.e. quasiparticle energies or excitonic eigenvalues)
as a function of the values of the N parameters x = [x1, ..., xN ], can be expressed
as:

f(x) =
N∏
i

(
Ai
xαii

+ bi

)
. (3.9)

Here, Ai, bi and αi are free parameters and b =
∏N

i bi is the exact theoretical
converged value. The accuracy of the latter anyway, depends on the value of the
x parameters used to evaluate the convergence behaviour, i.e. on how close the
estimated values is from the converged one, as noticed by Rasmussen et al. in
Ref. 145.

From Eq. 3.9 the interdependence of different parameters can be addressed by
looking at the mixed partial derivatives. Not taking this interdependence directly
into account can result in a very tedious convergence procedure, as it would require
multiple univariate convergences(further details are provided in Appendix G and
Ref. 65). The advantage of having an analytical form for the description of the
convergence space is the possibility to compute all-order derivatives, once the

1Summations over G vectors for the calculation of the BSE kernel like in Eq. 2.91 and 2.92, are
usually easy to converge and are often borrowed from the GW convergence step (the parameters
Gcut mentioned in Section 3.1.1).
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fitting parameters are known. The gradient components are:

f ′xi(x) = −αi
Ai

xαi+1
i

N∏
j 6=i

(
Aj
x
αj
j

+ bj

)
(3.10)

while second derivatives are:

f ′′xi(x) = αi(αi + 1)
Ai

xαi+2
i

N∏
j 6=i

(
Aj
x
αj
j

+ bj

)
(3.11)

f ′′xi,xj(x) = αiαj
AiAj

xαi+1
i x

αj+1
j

N∏
k 6=i,j

(
Ak
xαkk

+ bk

)
(3.12)

In order to perform a fit using the functional form of Eq. 3.9, we need at least
3N calculations, where N is the dimensionality of the parameter space and 3 is
the minimum number of of calculations for each direction needed to estimate the
fitting parameters. A further reduction of the number of needed calculations can
be done by performing different fits keeping the αi parameters to a fixed value in
a specified range as done in Ref. 144: in this way the lowest number of needed
calculations is reduced to 2N.

The convergence surface will approach the exact result for all the N parameters
going to infinite at the same time. For sufficiently high values of the parameters,
f(x) can be considered to describe accurately this asymptotic region of the conver-
gence surface. The asymptotic region can be determined by imposing two precise
conditions:

|f ′xi(x)| < ∆i

|f ′′xi,xj(x)| < ∆ij

(3.13)

for each parameters xi, xj with i, j = 1, ..., N . The first condition is used to deter-
mine the region in which the convergence surface becomes flat (and so approaches
convergence), whereas the condition on second partial derivatives is used to ensure
that the different parameters are no longer interdependent 2. Once this asymp-
totic region has been determined, a guess for the converged value Eguess is made,
defined as the value of f(x) with the lowest value of the parameters at convergence
with the region satisfying the conditions of Eq. 3.13, in terms of a convergence
threshold ∆.

The accuracy of the guess for the converged results is then checked and vali-
dated according to the automated algorithm described below.

2These threshold values can be tuned according to the desired accuracy, and we found that
the values ∆i = 5 · 10−5 eV

[xi]
and ∆ij = 1 · 10−8 eV

[xi][xj ]
are good thresholds to identify the

asymptotic region.
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3.2.1 Algorithm

The algorithm is specifically designed to handle the coupled convergence between
Nb and Gcut, but it can be used also to accelerate convergence tests with respect
to other parameters, like the k-point mesh in the Brillouin Zone (BZ) and the fast
Fourier transforms grids.

The workflow is designed to obtain accurate converged results with the min-
imum possible number of calculations and is schematically depicted in Fig. 3.1.
The first step (i) consists in the construction of the N-dimensional space of param-
eters as a grid of equally spaced points, with a given spacing and ranges provided
as input. Then, M calculations are performed on a subset of the points in the
parameter grid, to cover efficiently the space.

Next (ii), the results are fitted using the expression Eq. 3.9 keeping the power
laws fixed αi ∈ {1,2} ∀ i=1, ...N and choosing the one resulting with the lowest
mean squared error.

The asymptotic region is then identified by computing the first and second
order derivatives (Eqs. 3.10-3.12) and imposing the conditions Eq. 3.13. If such
a region cannot be found, new calculations are performed on a shifted parameter
grid, increasing the values of the parameters. Once the asymptotic region has
been identified, (iii) a guess converged value is selected Eguess= E(N0

b , G
0
cut) where

(N0
b , G

0
cut) is the cheapest point at convergence with the asymptotic region.

If not already included in previous calculations, (iv) E(N0
b , G

0
cut) is evaluated

and the fit is performed again, considering also this new point.
To establish the accuracy of Eguess, the calculated value E(N0

b , G
0
cut) is com-

pared with the outcome of the old fit Efit(N0
b , G

0
cut) with a given convergence

threshold ∆ and new parameters N1
b , G

1
cut coming from the fit according to (iii)

are evaluated and compared with the previous ones. Steps (ii)-(iv) are repeated
until convergence is reached i.e. the two conditions:

|E(N i
b , G

i
cut)− Efit(N i

b , G
i
cut)| < ∆ (3.14a)

(N i+1
b , Gi+1

cut ) = (N i
b , G

i
cut), (3.14b)

are simultaneously satisfied.

3.3 The aiida-yambo plugin and automated work-

flows

The above convergence algorithm has been implemented in the new version of the
aiida-yambo plugin [65] by means of high-level workflows devoted to fully auto-
mate Yambo calculations within the AiiDA informatics infrastructure and work-
flow management system [39, 40]. In AiiDA, each calculation is a process and, to-
gether with inputs and outputs, it is stored in the AiiDA relational database. The
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Figure 3.1: Flowchart of the convergence algorithm. After generating the grid for
the N-dimensional parameter space, a subset of M simulations are performed. The
results are then fitted to predict the converged parameters. Finally, the accuracy
(Eq. 3.14a) and the convergence (Eq. 3.14b) of the prediction are verified, and the
procedure iterated, if needed.

aiida-yambo plugin implements the YamboCalculation and YppCalculation

classes to manage individual simulations that can be performed by using the
Yambo code through the p2y, yambo and the ypp (yambo pre/post processing)
executables, i.e., Independent-Particle RPA (IP-RPA), GW, BSE calculations, as
well as general data interface with different codes (e.g., Quantum ESPRESSO
and Wannier90). The automation concerns input generation, scheduler submis-
sion, and output parsing phases. Here, the output parsing is partially done by
using yambopy functions [65]. Links between single calculations, fundamental
for data provenance, are stored as well and usually managed by ad-hoc workflows
(the so-called workchains in the AiiDA jargon). This ensures data provenance
and full reproducibility of results. Workflows are dynamic, i.e. their execution
path is not fixed, but can depend on the results of completed calculations. This
allows for the implementation of complex logics, such as those characterizing the
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convergence algorithm that we propose in this work.
Part of the AiiDA philosophy (ADES model [35]) is to organize the workflows

in a modular way, in order to automate tasks of increasing complexity, from
handling a single calculation to managing thousands of them. These workflows
encode the knowledge of expert scientists, where the final goal is the development
of complete, turn-key solutions enabling both accuracy and reproducibility of
results, as well as the possibility to perform high-throughput screening studies.
Within the aiida-yambo plugin, three main workflows are provided, each of them
targeting a precise task:

• YamboRestart: automation of error handling and restart for each YamboCalculation;

• YamboWorkflow: automation of the single GW/BSE flow (composed of sev-
eral interlinked steps, explained in the following);

• YamboConvergence: automation of the convergence (multiple YamboWorkflow
runs);

Their nested organization is shown in Fig. 3.2. The highest level workflow is rep-
resented by the YamboConvergence workchain, which implements the convergence
algorithm of Sec. 3.2, in order to fully automate it and reduce the human time
needed for input creation and submission steps. All the Yambo simulations are
organized automatically on the fly, without any external user intervention. The
fundamental input to provide to YamboConvergence is the python list containing
the information on the parameter space to be explored. An example of such input
reads:

[
{

' var ' : [
'BndsRnXp ' ,
'GbndRnge ' ,
'NGsBlkXp ' ,
] ,

' s t a r t ' : [ 5 0 , 50 , 2 ] ,
' stop ' : [ 4 00 , 400 , 1 0 ] ,
' de l ta ' : [ 5 0 , 50 , 2 ] ,
'max ' : [ 1000 , 1000 , 3 6 ] ,
'what ' : [ ' gap GG ' ] ,
' conv thr ' : 0 . 1 ,
' conv th r un i t s ' : 'eV ' ,
} ,

]

The list contains a python dictionary with all the information needed to run the
convergence on the empty states Nb (“BndsRnXp” and “GbndRnge”) jointly with
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Figure 3.2: Hierarchical structure of aiida-yambo workchains. The highest level
one is YamboConvergence, which calls multiple YamboWorkflow workchains. A
single YamboWorkflow contains all the possible steps needed to perform a MBPT
calculation from scratch. The outputs are stored in the AiiDA database, in a
human readable fashion and easily accessible and shareable from the user.

the Gcut (“NGsBlkXp”), from the edges of the starting parameter grid (“start”
and “stop”) to its spacing (“delta”). The key “what” indicates the quantity to
be converged: here as an example, we focus on the direct Γ − Γ band gap of
the material under scrutiny, up to 0.1 eV (“conv thr”). The “max” keyword is
needed in order to set an upper limit to computationally affordable values of
the parameters. The output summarizes the convergence history and allows the
user to easily parse the converged simulation. YamboConvergence allows one to
converge several many-body quantities like quasiparticle levels, band-gaps, as well
as excitation energies. Notably, the convergence block in Fig. 3.2 can be skipped
if converged parameters are already known.

A single GW (BSE) flow is automated within the YamboWorkflow. This is
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the core workchain of the plugin, to be used each time a yambo calculation has
to be performed within the aiida-yambo plugin. Indeed, the YamboWorkflow

takes care of performing all the steps needed in a typical MBPT simulation: self-
consistent (SCF) and non-self-consistent (NSCF) Quantum ESPRESSO DFT
calculations, and actual Yambo calculations. The workflow ensures robust in-
teroperability between codes (Yambo and Quantum ESPRESSO) and links
subsequent calculations, interfacing data automatically. In this way, it is possible
to skip the steps already done, in the case a parent calculation is provided at
the YamboWorkflow input level. For example, the workflow is able to reuse the
desired NSCF calculation if already stored in the database. Furthermore, quasi-
particle eigenvalues are often needed in order to build the BSE Hamiltonian. If
required, YamboWorkflow is able to run this intermediate GW step by computing
the quasiparticle bands. The precise states to be computed can also be decided
automatically by means of an energy range provided in input (default is set to
be 120% of the DFT computed band gap). The states belonging to this energy
window (centered at the Fermi level) are explicitly computed. Often, the num-
ber of requested quasiparticle is large and because of limited wall-time reason,the
simulation have to be split in several runs calculating a fraction of quasiparticle
corrections. Here, the procedure is again automated, and –taking advantage of
functionalities provided within the yambopy package– a final database collect-
ing all the quasiparticle corrections is provided as output, ready to be used in
the final BSE calculation. Finally, YamboWorkflow can parse ad-hoc quantities,
like energy levels, gaps and excitation energies. This is particularly useful in the
YamboConvergence workflow, used to converge these specific quantities.

YamboWorkflow performs DFT calculations by calling the PwBaseWorkchain,
provided in the aiida-quantumespresso plugin. This workchain contains auto-
matic error handlers (inherithed from the BaseRestartWorkchain class, imple-
mented within the AiiDA software). An analogous automatic error handling is
used for the Yambo part by means of the YamboRestart workchain, called as a
sub-workflow by the YamboWorkflow. The restart run is then dependent on the
encountered error. In presence of out-of-memory errors, YamboRestart submits a
new calculation by changing appropriately the requested memory resources, con-
cerning specifically the number of processors involved and the balance between
distributed and shared memory. Parallelization errors, due to wrong distribution
of quantities among involved processors, are managed by setting the default par-
allelism decided on the fly by yambo, overriding all the parallelism instructions of
the input parameters. Instead, for errors due to exceeding the requested walltime,
the new run is submitted increasing the walltime by a factor of 1.5*N, where N
is the number of the restarting iteration, up to a maximum walltime provided in
input (the default value is 24 hours). In all these cases, the workchain understands
if we already have some useful outputs computed in the remote directory of the
failed calculation and, if any, these are copied in the remote directory of the new
calculation and then reused. In this way, it is possible to provide an efficient,
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CPU-time-saving restart mechanism that avoids to recompute quantities that are
already available. The workchain resubmits a failed calculation up to a maximum
number of iterations, fixed to 5 as default value.

For an easier development of automated workflows, AiiDA allows one to cre-
ate inputs with pre-populated default values for several parameters, which are
defined by the so-called protocols. Most of DFT-based AiiDA plugins provide
the same protocols, corresponding to an increasing level of accuracy: fast, mod-
erate and precise [154]. Such code-agnostic protocols are robust due to the well-
known high level of reproducibility of DFT with different quantum engines [46],
and their reliability is guaranteed by means of large scale studies on several sys-
tems with different characteristics (i.e. metals, semiconductors, dimensionality
and so on) and represent a valid alternative with respect to heuristic approaches
only guided by the user’s knowledge. However, defining protocols for GW and
BSE calculations is still an open issue [144], as the high computational cost lim-
ited the number of systems to be studied extensively in such a way to define
safe convergence parameters. Moreover, code-agnostic parameters are not easy
to be determined as for DFT based codes, as GW (BSE) implementations can
differ in several aspects, starting from different considered parameters to be con-
verged [134, 48]. Here, in the aiida-yambo plugin, we provide heuristic protocols
based on previous experience on limited subset of systems, for both GW and
BSE simulations. Such protocols, namely “fast”, “moderate” and “accurate”,
concern several parameters (Yambo input variables): FFT grid (“FFTGvecs”),
empty states summations (“BndsRnXp” and “GbndRnge”), plane-wave expan-
sion for the polarizability (“NGsBlkXp”) and the k-point sampling of the BZ.
The aiida-yambo plugin is fully available online with an open MIT license [155]
and a detailed documentation is also provided [156]. Example of provenance graph
can be found in Appendix E.

3.4 Validation of the convergence workflow

The YamboConvergence workchain has been validated by performing convergence
studies for the quasiparticle G0W0 gap of a small set of well-known semiconduc-
tors: Silicon, ZnO, rutile TiO2, monolayer MoS2, bulk and monolayer hBN. We
used symmetrized geometries in such a way to reduce the computational cost of
simulations: we do not expect relevant differences in the results obtained with
fully-relaxed structures. The KS-DFT exchange-correlation functional was ap-
proximated using GGA-PBE [98], through the optimized norm-conserving Van-
derbilt (ONCV) SG15 [110, 111] pseudopotentials. In the case of ZnO, we adopted
Local Density Approximation (LDA), to compare the results with the existing lit-
erature [134, 48], and PseudoDojo pseudopotentials [112]. The Bruneval-Gonze
technique [157] was used to reduce the number of empty states Nb needed in the
construction of the correlation self-energy Σc (Eq. 2.57). For low-dimensional
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System EG0W0
gap (eV) Refs. (eV) Nb Gcut (Ry) ρk(Å−1) ∆Γ−Γ(meV) ∆Γ−Γ

%

Si 1.18 1.16 [48] 400 16 0.33 10 0.3
Diamond 5.42 5.42 [160] 300 20 1 70 0.1
ZnO 2.36 2.35 [134] 800 28 0.25 10 0.4
TiO2 3.2 3.2 [48] 600 12 0.2 10 0.3
MoS2 2.54 2.49 [161] 400 8 0.25 10 0.3
hBN bulk 6.27 6.30 [162] 800 20 0.25 82 1.0
hBN 2D 6.84 6.58 [162] 1200 28 0.2 42 0.5

Table 3.1: Results for the G0W0 convergence tests. We observe good agreement
between our results and ones taken from existing literature (shown in the third
column). For completeness, the other columns report the converged number of
empty states Nb, PW cutoff Gcut and irreducible Brillouin Zone (iBZ) k-points
density ρk, expressed as the maximum distance between adjacent points along a
reciprocal axis. The last two columns refer to the convergence thresholds imposed
on the Γ − Γ G0W0 band gap, both in absolute (∆Γ−Γ) and relative (∆Γ−Γ

% )
terms. Deviations with respect to reference results may be due to different GW
implementations and different KS-DFT starting points.

systems, spurious interactions between supercell replica are avoided using a slab
truncation of the Coulomb potential [115] along the non-periodic direction, and its
divergences are cured by means of the Random Integration Method [158] (RIM),
which also accelerates convergence with respect to the BZ sampling. For 2D sys-
tems, specifically, we adopted a recently developed accelerating technique based
on stochastic integration of the screened potential [159], which allows to have a
GW-converged results using Monkhorst-Pack k-points grid just slightly denser
than the DFT one.
We converged the Γ−Γ band gap with respect to the two coupled parameters Nb

and Gcut and the k-point grid as well, except for TiO2 and ZnO. For these two sys-
tems, we considered fixed k-meshes of 8×8×12 and 8×8×6 respectively, already
at convergence according to previous tests. Once was achieved convergence for a
given system, we computed the minimum band gap. The results are summarized
in Table 3.1, and they are found to be in good agreement with previous works
(for each system, references are indicated in the table, and additional details are
contained in Appendix F). Deviations with respect to reference results may be
due to different GW implementations and different KS-DFT starting points used
in the relative works [48].
The choice of the convergence settings, like the initial value of the parameters
and the boundaries of the convergence space, is an important aspect to be tackled
during the development of an optimization algorithm. We tested the efficiency
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Figure 3.3: Coupled convergence of Nb and Gcut for the direct Γ − Γ quasipar-
ticle band gap of monolayer hBN. The colormap specifies the relative error with
respect to the converged point with the highest value of the parameters. A max-
imum absolute error of ∆ = 42 meV is achieved for (Nb, Gcut) = (1200,28 Ry),
corresponding to a maximum relative error of ∆% = 0.5 %. Points not showed in
the plot are either out of convergence or outside the boundaries imposed by input
for what concerns maximum value of the parameters.

with respect to the starting parameter grid for the monolayer MoS2, by using two
different parameter grids: Nb ∈ [200,800], Gcut ∈ [4,20] Ry and Nb ∈ [200,1200],
Gcut ∈ [8,24] Ry. The same converged couple (Nb,Gcut) = (400,8) is obtained,
meaning that there is no change in the description of the space (i.e. we have the
same fitting parameters) by changing the grid. For the other systems, we adopted
the following parameter grid: Nb ∈ [200,800], Gcut ∈ [4,16] Ry. We found that in
general (except for Silicon) this grid is not a sufficient starting guess, as a new
shifted grid is always generated from the workflow to determine the converged
point: Nb ∈ [400,1000], Gcut ∈ [8,20] Ry. Fig. 3.3 shows the convergence path for
the monolayer hBN, where indeed a new grid (the red one) is created and then
the converged result is found and verified to be consistent with the prediction.
Anyway, in all cases, the workflow is able to achieve convergence after a lim-
ited number of calculations (<20). Figure 3.4 shows the convergence plot of the
k-mesh in the 2D-hBN case. The workflow, as in the previous case, performed
a limited number calculations on the parameter grid (in this case four calcula-
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Figure 3.4: Convergence of the k-mesh for 2D hBN. The black points represent the
actual calculations performed by the workflow on the parameter grid, whereas the
blue points are the ones obtained within the fitting procedure and used to predict
the convergence. After 5 simulations, the final mesh of 8×8×1 is predicted (and
verified) to be converged.

tions, corresponding to the black squares of Fig. 3.4), and then a fit is performed,
resulting in the prediction curve (blue curve). Despite the results of the simu-
lations seem to have an oscillating behavior with respect to the fitted curve, it
is important to note that the error bar considered in the plot is ∼ 0.13% of the
Γ − Γ gap, i.e. ∼ 10 meV, similar to the accuracy of state-of-the-art GW. In
the end, the k-mesh corresponding to the 8×8×1 is found to be the smallest pa-
rameter grid achieving converged gap. The parameter grids used in this work are
guided by previous experience and heuristics, as there are no large scale studies
devoted to define protocols as for DFT simulations, even if some attempts were
done in the last years [144, 145]. Anyway, parameters can be efficiently expressed
in terms of energy cutoffs (for the PW expansion), number of electrons (for the
KS empty states) and inverse distances between points (for the k-point meshes).
The YamboConvergence may be used in the future to capture default parameters
also for MBPT simulations, both for convergence studies and single calculations
with a certain level of desired accuracy, guided by statistical inference performed
on a larger set of systems.



70 CHAPTER 3. HT AND MBPT

3.5 Automatic GW interpolation within

aiida-yambo-wannier90

GW band interpolation from Wannierization is a crucial task in order to obtain
the most accurate quasiparticle band structure with low computational cost. The
aiida-yambo-wannier90 plugin [163, 164] is a tool to perform this task. Essen-
tially, the plugin provides a meta workflow, called YamboWannier90WorkChain,
which utilizes the automation and error handling of the underlying aiida-yambo

and aiida-wannier90-workflows plugins for GW convergence and Wannieriza-
tion, respectively. The flowchart of the workflow is summarized in Fig. 3.5.
Firstly, the workflow accepts a crystal structure as input, then launches a full
YamboConvergence workflow for automatic convergence. Secondly, it finds the
minimal commensurate mesh between GW and Wannier90 (the exact procedure
will be discussed in the next paragraph). If the commensurate mesh is different
from the GW converged mesh, it launches an additional YamboWorkflow on the
new mesh; otherwise this step is skipped. Thirdly, it runs a YamboWorkflow to
compute the corresponding quasiparticle corrections needed for the Wannieriza-
tion, and a subsequent ypp calculation to extract the GW correction in a Wan-
nier90 eig file format. Fourthly, the workflow Wannierizes the structure at DFT
level, saves the unitary transformation matrices of maximal localization, and in-
terpolates the band structure. Finally, the workflow launches the Wannierization
at G0W0 level, which comprises the step of incorporating the GW corrections for
eigenenergies, and the step of Wannier interpolation of the band structure.

During the workflow, one crucial step is finding a commensurate mesh for both
the GW quasiparticle calculation and Wannierization. Specifically, the workflow
utilizes YamboConvergence to converge the GW parameters. However, since Wan-
nier interpolation requires a sufficiently dense k-point mesh to maintain interpo-
lation accuracy, the automatically chosen GW mesh is not always compatible
with Wannier90 mesh. The Wannierization requires quasiparticle energies on a
Monkhorst-Pack (MP) grid, therefore the GW mesh must be integer multiples of
the MP grid.

We propose a recipe to find the commensurate meshes for both GW and Wan-
nier90, as depicted in Fig. 3.6. Suppose nd is the number of k-points chosen by
the YamboConvergence workflow, and nc is the number of k-points chosen by the
Wannierization protocol (k-point spacing = 0.2 Å−1 [149]), the target is to find
a new (n′d, n

′
c) such that the dense mesh n′d = k · n′c where k ∈ N, i.e. a natural

number. The given input (nd, nc) restricts the search space to a sector bounded
by klow and khigh (see Fig. 3.6), where klow = 1 since n′d = n′c = max(nd, nc)
is always a good solution, and khigh = dnd

nc
e where d·e means the ceiling integer.

Then we check each grid point between the two bounds and collect all the valid
solutions. The search always succeeds since slow = (max(nd, nc),max(nd, nc)) and
shigh = (khigh ·nc, nc) are already two good solutions. However, we want to look for
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Structure

Input

YamboConvergence

Find commensurate 
yambo-wannier90 k-mesh

Yambo QP

Wannier90BandsWorkchain for 
interpolated bands@DFT

Wannier90BandsWorkchain for 
interpolated bands@GW

Exit

Figure 3.5: Flowchart of the YamboWannier90WorkChain for automated GW
convergence and Wannier-interpolated GW band structure. The workflow per-
forms the Yambo convergence, searching of commensurate k-point mesh between
Yambo and Wannier90, and running the Yambo quasiparticle calculation. The
quasiparticle correction is provided and the final steps of the flow comprise the
Wannierizations and the band interpolations at DFT level and GW level.
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Figure 3.6: Recipe to find commensurate meshes for GW and Wannier90, using
an input meshes (11, 5) as an example. Final commensurate meshes (12,6) are
found. The orange and cyan lines are the upper and lower bounds for searching
the commensurate meshes, respectively. the grey dots are valid solutions, the red
dot is the chosen solution which is the closest to the input, in the metric of `1

norm.

a computationally effective solution. In fact, often the optimal solution is inside
the triangular region determined by the input (nd, nc), slow, and shigh. The final
solution is chosen according to the `1 distance to the input, therefore minimal
increase of computational cost. It is also possible to change the metric, e.g., push-
ing the solution towards increasing the Wannier mesh or GW mesh, depending
on which calculation is cheaper. The aforementioned recipe is repeated for each
of the three dimensions of the MP grid, to find the commensurate meshes for
arbitrary input.

3.6 Bands interpolation for Silicon and Copper

For Silicon, we tested also the YamboWannier90 workchain, to validate the au-
tomatic W90@GW band interpolation workflow. Results are plotted in Fig.
3.7, where we compared the Quantum ESPRESSO bands, the interpolated
W90@DFT and W90@GW bands. Comparison between the DFT bands shows
that the results are almost identical, meaning that the Wannierization of the KS
wavefunctions was precise enough. The typical quasiparticle band gap opening
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Figure 3.7: Interpolated band structure of Silicon for both DFT (red dashed)
and GW (green solid) solutions, compared with the DFT bands (black dots).
W90@DFT and DFT bands show very good agreement, as they are almost over-
lapping. The GW effect results in a larger final band gap. The top of the valence
band is set to zero for both DFT and GW results.

is shown in the GW band structure. In the following we show the results ob-
tained applying the automated band interpolation of Copper. Results are shown
in Fig. 3.8, and the comparison between QE bands and W90@DFT shows a dis-
crepancy of ∼ 10 meV around the Fermi energy (here set to zero). Better accuracy
can be achieved imposing more stringent values of the involved parameters. We
observe that here the GW correction is very small around the Fermi level (∼ 37
meV), but still not negligible. Moreover, here the GW convergence is more strict
than Silicon, especially for the k-point mesh. Indeed, we need denser parameter
grids to have a better approximation of the q→0 intraband transition contribu-
tion, not explicitly included within the plasmon pole approximation. Converged
parameters are (Nb, Gcut, ρk) = (400, 18 Ry, 0.2 Å−1). We needed 2900 quasi-
particle evaluations (as we have 20 bands and 145 k-points in the iBZ) in order
to interpolate the bands for the minimum converged Wannier90 k-point mesh
(16×16×16). This quite large number of quasiparticle can be easily computed
using the YamboWorkflow workchain.
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Figure 3.8: Bands interpolation for Copper. The GW correction around the
(DFT) Fermi energy is not large, but must be considered for a correct description
of properties like the Fermi surface.

3.7 Conclusions

In this Chapter we showed the successful design and implementation of advanced
algorithms, to achieve complex tasks in a typical GW (BSE) flow: convergence
between interdependent parameters, error handling and automatic band interpo-
lation by means of Wannierization. We validated the tools on a few selected cases
among semiconductors and metallic systems.



Chapter 4

Benchmarking the GW100
dataset with the Yambo code by
means of G0W0 approximation

In the field of electronic structure and materials science, first principles computa-
tional methods are well established as techniques complementary to experimental
science. Indeed, the predictive power of computational methods nowadays allows
us to compare with experiments and drive them towards the discovery of novel
properties and materials. Once the mathematical framework is defined (as is the
case for DFT or MBPT), different numerical approaches should ideally yield the
same results. However, this is not granted a priori and needs to be checked.
When discrepancies are present, those are typically due to the fact that numer-
ical implementations introduce several parameters, used to approximate exact
equations and requiring careful, time-consuming and non-trivial convergence. In
this respect, a validation of different computational approaches tackling the same
problem is crucial in order to define their accuracy and reliability.

During the last decade, several assessments on the accuracy of Density Func-
tional Theory (DFT) calculations for solids [165, 46] have been worked out, show-
ing that most of the commonly used electronic structure codes can now predict
essentially very similar results. These works are crucial both to support the re-
liability of existing methods, as well as for newly developed methodologies, that
can be tested e.g. against these benchmarks for cross validation.

Similar studies concerning the quasiparticle energy levels of solids, relevant
for the theoretical prediction of direct and inverse photoemission experiments [2],
has been done in the past mainly concerning the comparison between theoretical
and experimental results [166, 167, 168, 169]. A recent work by Rangel et al. [48]
compared the G0W0 [1] quasiparticle properties of four solids (Si, Au, TiO2, and
ZnO), obtained within three different plane-wave (PW) codes: Yambo [64, 65],
BerkeleyGW [170] (BGW) and Abinit [171]. These code differ in several
aspects of their GW implementation, from the treatment of the Coulomb diver-
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gences to the frequency integration schemes. On average, results agreed within
100 meV, addressing long-standing controversies on the GW results for difficult
systems, such as ZnO.

Concerning molecules, early studies [172, 173, 174, 175] have focused on mul-
tiple small datasets mostly driven by specific scientific targets (e.g. molecules for
photovoltaic applications) and not for benchmark purposes. More recently, a large
scale community effort defining and making use of the GW100 dataset [66, 176] has
focused (mostly but not exclusively [177]) on the single-shot G0W0 method [66,
152, 178], aiming at the evaluation of vertical ionization potential (IP) and elec-
tron affinity (EA). The chosen set was the GW100 dataset [176], a set of 100
closed-shell molecules1, and results, published in the original GW100 paper [66],
showed a discrepancy of around 200 meV of PW based codes with respect to
localized basis set codes (which all agree within few meV).

In this work we provide the results for IP and EA of all the 100 molecules of
the set as computed within the Yambo code. In this way, we enlarge the GW100
benchmark considering the largely used Godby-Need Plasmon Pole Approxima-
tion [53] (GNPPA), used in Yambo to describe the frequency dependence of the
screening potential and not yet included in previous GW100 studies.

4.1 The GW100 dataset

The GW100 dataset is composed of 100 closed-shell molecules [66], in such a way
to cover a wide IP energy range (4–25 eV) and a certain variety of chemical bond-
ing configurations. For example, the set includes carbon-based covalent bonded
compounds like C2H2, C2H4, C2H6, as well as ionic bonded molecules like the al-
kaline metal halide LiF. Moreover, some molecules in the set contain metal atoms
(among them Ag2, Li2, K2), and Na4, Na6 are included as representative of small
metallic clusters. Common molecules such as water and carbon mono- and dioxide
are also included. The structures of all molecules considered in this study are the
ones from the official GW100 github repository [176], taken from experimental
data (for a complete reference, we redirect the reader to Ref. 66) and sometimes
optimised using PBE-based relaxation (within the def2-QZVP basis set). The ge-
ometries of two molecules of the set, CH2CHBr and C6H5OH, were re-optimized
in Ref. 152, and their final structures are taken from there.

For the sake of computing single shot G0W0 corrections, a DFT-PBE starting
point is usually considered [98]. In this way, in principle, all codes should avoid
the critical problem of the GW starting point [180, 181, 182] and give the same
G0W0@PBE results. Of course, this is not the case, as different implementations
may differ in several aspects. A partial discussion on similarities and differences

1They specifically decided to include only closed-shell molecules, to avoid well-known issues
of open-shell systems [179].
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of some of the approaches used by GW100 codes is reported in Refs. 66, 178, and
we summarized the ones considered in this work in Table 4.1.

One of the most critical numerical aspect when comparing different codes is
the choice of the basis set. A common choice, particular suitable for the descrip-
tion of extended systems, is the use of plane waves (PWs), which expand the
eigenstates of the KS problem by means of Fourier coefficients. Convergence to
the infinite basis set limit can be approached by just tuning a parameter, the
kinetic energy cutoff used in the wavefunction expansion. On the other side, PWs
require the use of pseudo-potentials, and, when dealing with isolated systems
such as molecules or clusters, one drawback is that periodic boundary conditions
(PBC) must be imposed anyway, resulting in the use of very large supercells to
avoid spurious interaction between cell replica along non-periodic directions. In
particular for GW simulations the long-range nature of the screened Coulomb in-
teraction usually requires a larger extension of the vacuum region with respect to
DFT requirements.

Other basis set used for GW100 studies are: projector augmented waves [183,
184] (PAW), linear augmented plane waves [185] (LAPW), linearized muffin tin
orbitals [186] (LMTO), and local orbital (LO) basis sets. LO basis set, like def2-
QZVP (contracted Gaussian orbitals [187] GTO, optimized for HF total energies),
in particular, are more adapt for the description of isolated systems, and are
significantly more compact (i.e. smaller) than the analogous PW sets. There,
the main issue is that there is no unique way to increase the basis set expansion;
hence in LO schemes it is much more difficult to control accuracy, especially in
the description of higher energy states, with respect to other approaches.

An additional level of approximation is in the description of core and va-
lence electrons and their interaction. As already mentioned, when using PWs,
the pseudopotential approach [188, 189, 190, 191, 110] is mandatory and shown
to be very successful in separating the two different contributions, considering
explicitly only the valence electrons. Pseudopotentials may lead to sizable inac-
curacies in GW calculations, e.g. because of the neglect of core effects and in
particular of core-valence interactions [192, 181, 160], and need to be tested with
care. The pseudopotentials used in this work to compute the Kohn-Sham (KS)
single-particle energies and electronic density are the optimized norm-conserving
Vanderbilt (ONCV) pseudopotentials SG15 [110, 111], and the KS-DFT exchange-
correlation functional was approximated using GGA-PBE [98], as for all the other
GW100 studies. Non-linear core corrections [113] (NLCC) are not included in the
chosen pseudopotentials.

Another important aspect to consider when comparing different GW datasets
is the treatment of the dynamical dependence of the screened interaction W . In-
deed, the dynamical nature of W plays a key role both in terms of theoretical
framework, since it distinguishes the GW approximation from other static theo-
ries like Hartree-Fock, as well as because it introduces additional computational
challenges when evaluating GW corrections.
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A number of different strategies to address this issue have been devised, ranging
from fully-analytic [49] (FA) to full-frequency real-axis integration [51] (FF), an-
alytic continuation [50] (AC), contour deformation (CD) [193] and multi-pole [54]
(MP) approaches. The earliest and simplest approach to describe the frequency
dependence of W (ω) in the context of GW, is the so called plasmon-pole approx-
imation [52, 53] (PPA), based on a simplified description of the screening matrix.
In this respect, PPA models represent a computationally-cheaper alternative to
more sophisticated approaches. The basic idea behind PPA, also explained in Ap-
pendix C, consists in attributing, for each q,G,G′ matrix element, all the spectral
weight of the dynamical screening to a single pole:

Re ε−1
GG′

(q, ω) = 1−
AGG′(q)ω̃2

GG′(q)

ω2 − ω̃2
GG′

(q)
(4.1)

Im ε−1
GG′

(q, ω) = AGG′(q)× (4.2)

× [δ(ω − ω̃GG′(q))− δ(ω + ω̃GG′(q)] ,

where the matrices AGG′(q) and ω̃2
GG′(q) are the parameters of the model. Among

the flavours of PPA [134], in this work we will adopt the Godby-Needs PPA
(GNPPA) [53], which imposes the condition that the model should exactly fit
the ε−1 function at zero frequency, i.e. ω = 0, and at an imaginary frequency
ω = iEPPA. Here, we set EPPA= 30 eV. The Hybertsen-Louie generalized plasmon-
pole model [52] (HLPPM), follows a different approach and, besides the evaluation
of the screening at zero frequency, imposes a constraint on the fulfilling of the
Johnson’s frequency sum-rule (f -sum rule) [194]. For a detailed comparison of the
two approaches see e.g. Refs. 134, 54. Importantly, numerical results obtained
using GNPPA and HLPPM may differ significantly, as reported in the existing
literature [134].

As an additional relevant point, considerable discrepancy between different
GW approaches may be carried by the way to solve the quasiparticle equation:

Eqp
n = εDFT

n + 〈ψn|ΣGW(Eqp
n )− vKS

xc |ψn〉. (4.3)

This is a non-linear equation, also including the possibility to have multiple phys-
ical solutions. In this respect, approaches at different level of sophistication ex-
ist [66, 178], either addressing the full or a linearized version of the equation. In
this work we solved the linearized quasiparticle equation (Newton’s method) as
implemented in the Yambo code, which relies on assumption that the PPA self-
energy is smooth near the quasiparticle energy. Alternative approaches, such as
the secant method, can be used within the Yambo implementation only in the
FF case, which is not the subject of the current work.
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Code basis set core-valence empty states χ-basis Σc-integration QP solutions Refs.

TM [195] def2-QZVP AE all LO FA [49] largest weight 66

FHI-aims [196] def2-QZVP* AE all LO AC [197, 196] iterative method 66

BGW [170] PW NC truncated [198] PW HLPPM [52]/FF [51] linearized/graphical 66

VASP [199] PAW* PAW all** PW* AC [200] linearized 152

WEST [59] PW ONCV avoided [58, 59] PDEP* [201] CD [193] secant/linearized 178

Yambo [64, 65] PW ONCV truncated [157] PW GNPPA [53] linearized this work

Table 4.1: Main approximations of the GW100 codes considered in this work. The
* superscript means extrapolated. TM and FHI-aims make use of the resolution-
of-identity (RI) technique to compute the four-center Coulomb integrals [66]. The
** superscript means all the states given the number of basis functions. The
acronyms FA, AC and CD mean respectively fully-analytic, analytic continuation
and contour deformation.

4.2 Technical details

4.2.1 Computational aspects

The accurate simulation of G0W0 quasiparticle corrections for isolated systems
(like molecules) still represents a computational challenge when using plane-wave
implementations and we had to resort to the use of high performance comput-
ing (HPC). As a general trend, current HPC architectures are extensively taking
advantage of hardware accelerators based on graphical processing units (GPUs),
significantly reducing the time-to-solution (and the energy-to-solution) with re-
spect to CPU-only machines. In this respect, a profitable exploitation of GPU
acceleration is a pre-requisite of our calculations. As an example, the timing for a
typical G0W0 flow performed in this study is shown in the right panel of Fig. 4.1.
Increasing the number of PWs used to describe the screening matrix (Eq. 2.17)
clearly results in a longer time-to-solution, but still within a wall-time of 10 min-
utes. The cheapest calculation plotted in Fig. 4.1, which takes about 1 minute
on GPUs, can take up to 20 minutes on a CPU-only machine using the same
MPI/OpenMP (distributed/shared memory) parallel setup.

Anyway, the speedup granted by the GPU acceleration is often capped by a
combination of several hardware (RAM amounts and bandwidth) and software
(availability of GPU-aware distributed linear algebra (LA) libraries) limitations.
In particular, our implementation does not support distributed LA, so large ma-
trices requiring diagonalization have to be stored without memory distribution
on each single GPU, quickly exceeding the RAM available on the cards (gener-
ally between 16 and 40 GB for current generation harware). For example, in
computing the dynamical screening matrix ε, we need to compute the irreducible
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Figure 4.1: GPUs scalings. Left: cubic scaling of the memory needed to store the
polarizability matrix χGG′ with respect to the PW cutoff Gcut. We easily reach the
maximum GPUs storage value of 40 GB around 40-45 Ry for the FCC reduced cell
for the SC cell with 20 Å side, we observe that already at 15 Ry we need 45 GB,
exceeding the GPUs memory. Right: time-to-solution with respect to Nb and Gcut

using GPU acceleration. We observe that even for the largest matrices we usually
need not more than 10 minutes, a very short time. Calculations are performed
using 20-64 nodes of Juwels-Booster (Julich), each of them equipped with 4 A100
GPUs (40 GB of memory).The calculation with Nb=1000 and Gcut=24 Ry done
with the same number of MPI tasks on a CPU-only machine takes ∼ 20 minutes
instead of ∼1 minute. On average, all 24 calculations will take ∼ 1.5 hours per
molecule on A100 GPUs the above mentioned memory resources.

polarizability matrix χ (Eq. 3.3)

(1− vχ0)χ = χ0. (4.4)

To solve this problem on GPUs, we are currently forced to use serial routines and
so the whole matrix has to be stored on a single GPU.

The specific problem of treating low-dimensional systems within PW codes lies
almost entirely on the fact that we need a very large supercell to avoid spurious
interactions among replicas along non-periodic directions. The consequence of
large supercells are very short reciprocal lattice vectors, and a large number of
PW needed for our expansions. This study is conducted using two PW codes,
yambo and Quantum ESPRESSO, so that an optimized choice of the supercell
is very beneficial. Other codes running the GW100 set used a simple-cubic (SC)
supercell with different lattice parameters, up to a = 25 Å. In this work, for all
molecules, we decided to use a face-centered-cubic (FCC) supercell of a = 13 Å.
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Figure 4.2: From SC to FCC. At the same NN distance a =13 Å, the volume is
reduced by a factor

√
2.

The use of FCC supercells reduces the required volume by a factor
√

2 with re-
spect to cubic ones at fixed nearest neighbor (NN) distances, as shown in Fig. 4.2.
This approach helps in reducing the memory needed to store the screening matrix,
Eq. 2.17, which scales quadratically with the number of PW used, or cubic when
considering the PW energy cutoff (here indicated as Gcut). For the sake of com-
pleteness, in the left panel of Fig. 4.1 we show the scaling of the χGG′ matrix size
with respect to the imposed PW cutoff Gcut, for an FCC supercell of 13 Å side:
The cubic scaling of the memory reaches the maximum size of 40 GB (considering
NVIDIA A100 GPUs) for a PW cutoff of 43 Ry, while the memory required for
Gcut = 15 Ry when using the SC cell with 20 Å side is already 45 GB (exceeding
the GPU capability).

We should also consider that this memory limitation is further increased by
the fact that we have to store additional quantities such as wavefunctions or
temporary workspace for linear algebra.

We decided to use this small FCC cell in such a way to allow the other con-
vergence parameters (detailed in what follows) to be large, as they are critical to
evaluate convergence results, and to provide an estimation of the maximum error
bar associated with our reduced volume. We performed the vacuum convergence
test for two molecules: LiF and C5H5N5O. The first one is very small, and is
composed of only 10 electrons, whereas the latter has 56 electrons and is the most
elongated molecule, with a maximum distance between two atoms of 7.5 Å. Con-
vergence data are shown in Fig. 4.3. We performed the calculations considering
our FCC cell and three cubic cells of side 13, 20, and 24 Å. We kept fixed Nb and
Gcut, both given in terms of energy cutoff, at very low values, in such a way to
also perform the calculations for very large supercells.

We observe a good convergence of ∼25 meV for LiF, and a larger discrepancy
of ∼180 meV for C5H5N5O. Increasing the other convergence parameters, the
absolute value of the discrepancy seems to lower. As a result, the maximum error
bar can be estimated to be about 180 meV for all the results shown here, but
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Figure 4.3: Convergence evaluation of the HOMO level for two molecules, LiF
and C5H5N5O, keeping fixed Nb=0.75 Ry and varying Gcut and the cell volume,
corresponding to our FCC cell (the lowest volume) and SC cells of lattice vector
R=13, 20 and 24 Å. For LiF, we have a good convergence of ∼25 meV, whereas
the C5H5N5O, more elongated in real space than LiF, shows a worse convergence,
of only ∼180 meV. Anyway, we can see that increasing the value of Gcut results in
a better convergence agreement, meaning that an error bar of 180 meV is probably
overestimated.
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we expect that for the value of the parameters used in the simulations, as well as
taking into account the smaller size of many of the GW100 molecules, the actual
error bar is smaller. Finally, the usage of such a small cell is possible within yambo
because we are using a spherical truncation of the Coulomb interaction [115], as
implemented in yambo, combined with the Martyna-Tuckerman method [202]
to correct both total energy and self-consistent-field potential at the DFT level.
Moreover, the spherical truncation method cures analytically (i.e. exactly) the
divergence of long-range part of the Coulomb interaction v(q→ 0).

The study is performed entirely on GPU-enabled machines and software, and
resulted in a series of technical developments and optimizations to tackle the
above-mentioned issues of graphical cards. Indeed, a strong cleanup of the Yambo
code was done in order to avoid memory duplication (i.e. storing data not strictly
necessary) and complete the GPU porting of the routines involved in the GW
flow. One of the most relevant software developments done during this work is
the introduction of a new level of parallelization in the routine responsible of the
calculation of the correlation self-energy Σc, concerning the block-distribution of
the previous computed screening matrix εGG′ . In this way, memory occupation
for each single GPU is further reduced.

4.2.2 Interdependence of parameters and extrapolation

To obtain an accurate estimation of the quasiparticle GW corrections to the IP
and EA, results need to be converged with respect to the number of empty states
Nb and the number of reciprocal lattice vectors Gcut used in the evaluation of the
screening matrix χGG′ and of the correlation Self-energy Σc. The parameter Gcut

expresses the highest kinetic energy of the plane-waves included in the χ basis
set, analogously to the kinetic cutoff used to represent wavefunctions, but usually
lower. The two parameters Nb and Gcut are often found interdependent, so that
we have to study their convergence simultaneously. Moreover, for single QP levels,
this convergence is non-trivial and often not possible to be achieved for reasonable
times-to-solution and computational resources. This is why, for standard studies,
the gap is the quantity that is converged. Moreover, in the present study we use
rather large supercells which imply a very large density of empty states and a
huge number of reciprocal lattice vectors even for a small value of energy cutoff
Gcut.

Due to the above-mentioned difficulties, the first approximation that we in-
troduce is the usage of an extrapolation procedure to estimate the IP and EA of
each molecule.

In this way, we compute quasiparticle corrections on a uniform 2D grid in the
parameter space, and then a fit is performed. Except for the case of He and H2,
where we used a reduced grid for memory reasons, for each molecule we performed
calculation on a rectangular grid for (Nb,Gcut) ∈ [1000, 11000] ⊗ [24, 36] (Ry),
with spacing (∆Nb,∆Gcut) = (2000, 4), for a total of 24 calculations per molecule.
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The fit is then performed using the functional form:

f(Nb, Gcut) =

(
A

Nα
b

+ b

)
×
(

C

Gβ
cut

+ d

)
(4.5)

where the exponents α and β are chosen among [1,2,3] in such a way to minimize
the mean absolute error (MAE) of the fit. A similar analytic form was already in
use in the GW community [153, 60, 203, 144, 145] and captures the interdepen-
dence of the parameters (i.e. the Hessian of the convergence surface f(Nb, Gcut)
is not diagonal). The extrapolated value then is

EQP
extra = f(Nb →∞, Gcut →∞) = b× d. (4.6)

The parameters on which we decided to extrapolate are (Nb,Gcut), both expressed
in terms of energy cutoff.

Further acceleration on Nb is obtained by using the Bruneval-Gonze (BG) ter-
minator [157] procedure for the correlation part of the self-energy. This approxi-
mately accounts for all empty states non included explicitly in the sum-over-poles
by adding an extra energy pole contribution. Such auxiliary pole is usually located
at an energy EGT=1 Ha higher than the last conduction state explicitly included.
Here we performed an optimization of such pole energy and we found that the
best value, i.e. the one for which we can achieve convergence faster, is EGT=0.25
Ha. This is shown in the right panel of Fig.4.4. The need of such a small value
with respect to the default one (mostly tested on solids) is due to the fact that
in molecules, due to the large volume of the supercell, we have a high density of
KS empty states, all very close to each other and contributing with small weight
to the construction of the correlation self-energy. These contributions can be ef-
fectively captured by using an EGT slightly higher than the last explicitly empty
state used.

Moreover, during this work, the routine responsible of the BG was entirely
ported on GPU (before it was only available for non-accelerated machines), where
we have also optimized the search of reciprocal lattice G vectors involved in the
remapping G′′=G′−G. This in particular is very useful when large supercells are
used, due to the large number of G-vectors involved.

4.2.3 Validation of AiiDA workflows

This work is entirely performed using a workflow based on the aiida-yambo plu-
gin [39, 40, 155, 63], which takes care of running all the calculations in an or-
ganised, reproducible, robust (in terms of error handling) and automatic way.
As we are considering 100 molecules for a 2D parameters grid of 24 points, we
computed in an automated way about 2400 calculations. The timing of a typi-
cal full molecule study is shown in the right panel of Fig. 4.1, showing that all
calculations, even the largest ones, take less than 10 minutes to be completed,
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Figure 4.4: Convergence studies for the LiF molecule. On the left, we plotted the
convergence the HOMO level with respect to the PW cutoff Gcut in the screening
matrix, for different values of the number of empty states included Nb and setting
to zero the results with the highest Gcut (used as reference). We can observe
that increasing Nb puts Gcut more out of convergence. The values Nb = 3, 9,
12, 14, 16 Ry correspond to 1000, 5000, 7000, 9000 and 11000 bands. Right:
optimization of the Bruneval-Gonze terminator energy EGT , corresponding to the
parameter GTermEn in the yambo code. We plotted the discrepancy with respect
to the extrapolated value Eextra = 10.06 eV (set to zero in the plot). We observe
that among the studied values, the one which allows us to approach faster the
extrapolated value is EGT=0.25 Ha. For this optimization, the parameter Gcut is
fixed to 8 Ry.
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for a total of 1.5 hours per molecule (including all 24 simulations). This is possi-
ble because of the computational speedup provided by GPU-accelerated machines
and codes. The predicted wallclock time required to run the whole GW100 set
was then estimated in about 150 hours. Calculations are performed using 20-64
nodes of Juwels-Booster (Julich), each of them equipped with 4 A100 GPUs (40
GB of memory). The actual average human time was actually ∼150/8 = 18.75
hours, as most of the time 8 calculations are running at the same time and con-
tinuously (i.e. without human intervention to submit new calculations), thanks
to the AiiDA scheduling system.

All results are contained in the AiiDA database and are fully reproducible, as
all the parent calculations and inputs are stored as well. For each molecule of
the set, we used the YamboConvergence workchain as implemented in the latest
version of the aiida-yambo plugin. In this case, we do not want to reach conver-
gence, but only to compute all the points belonging to the user-defined parameter
grid, and then run the extrapolation with an ad-hoc python script. This work
represents also a validation of the workflows implemented in the plugin, and the
first HT-fashioned work done within this code.

4.3 Results

To compare with the other codes running the GW100 set, we computed for all
100 molecules the IP and EA. These are evaluated as:

IP = Evac − EHOMO

EA = Evac − ELUMO
(4.7)

Where the vacuum energy level Evac is evaluated at the DFT level and is deter-
mined by the electrostatics of the system. Results are provided in Tabs. 4.2 and
4.3 for what concerns IPs, and Tab. 4.5 for EAs.

We begin by discussing the verification and validation of IP and EA data
computed using the DFT starting point (here PBE). Results are shown in the
first column of the Tables (DFT label). These data are compared to results shown
in the SI of Ref. 178, obtained with the same code (Quantum ESPRESSO)
and the same SG15 pseudopotentials. The only difference here is represented
by the unit cell. In Ref. 178, a SC supercell of 25 Å side is used, very large
with respect to our FCC cell with a lattice vector of 13 Å. We found a very good
agreement of few meV for the majority of the cases. This is not surprising as DFT
calculations present a faster convergence with respect to the vacuum introduced in
the supercell. Considering the PBE-HOMO results reported for GTO (de2-QZVP)
calculations in the SI of Ref. 66, the agreement shows a smaller discrepancy with
respect to non-extrapolated basis. This is shown and justified also for VASP
results in Ref. 152.
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The situation is different when we consider QP HOMO and LUMO correc-
tions, where we have the long-range Coulomb interaction and several additional
parameters and approximations to be taken into account during the compari-
son. We first analyze the convergence of our IP and EA computed at the highest
value of the parameters with respect to the extrapolated value, to understand how
far we are from the true convergence of HOMO and LUMO QP corrections. In
Fig. 4.5 we show an histogram of frequency distribution for the deviation of both
IP and EA with respect to extrapolation, for all the 100 molecules. On average,
results converge within a mean absolute error (MAE) of 64 and 39 meV, for IP
and EA, respectively. We decided to consider as final results the extrapolated
ones. Extrapolation can be considered robust in particular when we are solving
the linearized QP equation, as its solution is unique in the range of interest. This
suggests to focus our analysis to the comparison with other codes taking linearized
solutions: Westextralin , VASP, and BGWHLPPM. Indeed, Tabs. 4.2 and 4.3 show the

Figure 4.5: Convergence evaluation of Yambo results. Left panel: evaluation of
the convergence of IP and EA with respect to the extrapolated value. We observe
a MAE of 64 and 39 meV for IP and EA, indicating that part of the molecules are
still out of convergence. For this reason we retain as final results the extrapolated
ones. Right: evaluation of the relative error with respect to extrapolation for the
QP-IP. On the right panel we show the frequency of relative convergence deviation.
We can see that in general a good relative convergence threshold lower than 2%
is achieved for all molecules.

results for the IP obtained in this work, together with the previous results from
other GW codes, CCSD [204] (quantum chemistry methods) and experimental
data. These last ones are taken from the NIST database [205].

As expected, different implementations of the G0W0 theory agree only within
a few to hundreds meV. This is presented in Table 4.4, where the mean error
(ME), the MAE, and the mean absolute relative error (MARE) of Yambo results
with respect to other codes are shown. We found the best agreement (i.e. the low-
est errors) with Westextrasol , and a very good agreement with VASP and Westextralin

results. The last two are cases in which, as in our work, the QP equation is lin-
earized. The linearized QP solution is computed also in the BGWHLPPM case but,
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index Formula DFT Yamboextra Westextralin Westextrasol VASP TM FHI-aims BGWHLPPM BGWFF CCSD EXP

1 He 15.76 23.43 23.65 23.42 23.62 23.48 23.48 24.1 - 24.51 24.59
2 Ne 13.33 20.05 20.52 20.33 20.36 20.38 20.38 21.35 - 21.32 21.56
3 Ar 10.26 15.32 15.5 15.37 15.42 15.13 15.13 15.94 - 15.54 15.76
4 Kr 9.25 13.83 13.87 13.76 14.03 13.57 13.57 14.0 - 13.94 14.0
5 Xe 8.23 13.48 13.38 13.22 12.22 12.0 12.02 12.08 - - 12.13
6 H2 10.39 16.03 16.03 15.84 16.06 15.81 15.82 16.23 - 16.4 15.43
7 Li2 3.23 5.24 5.19 5.04 5.32 5.0 4.99 5.43 - 5.27 4.73
8 Na2 3.12 5.11 5.07 4.98 5.06 4.84 4.83 5.03 - 4.95 4.89
9 Na4 2.33 4.13 4.28 4.24 4.23 4.12 4.1 4.34 - 4.22 4.27
10 Na6 2.4 4.04 4.42 4.37 4.4 4.24 4.24 4.47 - 4.35 4.12
11 K2 2.51 4.3 4.21 4.14 4.24 3.99 3.98 4.02 - 4.06 4.06
12 Rb2 2.37 4.14 4.08 4.01 4.14 3.79 3.8 3.92 - 3.92 3.9
13 N2 10.29 14.84 15.08 14.94 15.06 14.89 14.89 15.43 14.72 15.57 15.58
14 P2 7.11 10.57 10.48 10.43 10.4 10.2 10.21 10.66 - 10.47 10.62
15 As2 6.49 9.7 9.58 9.55 9.62 9.47 9.47 9.67 - 9.78 10.0
16 F2 9.42 14.6 15.16 15.0 15.08 14.96 14.96 15.59 14.73 15.71 15.7
17 Cl2 7.28 11.43 11.5 11.41 11.4 11.1 11.1 11.85 - 11.41 11.49
18 Br2 6.8 10.5 10.52 10.44 10.65 10.22 10.22 10.64 - 10.54 10.51
19 I2 6.26 10.59 10.56 10.41 9.59 9.24 9.28 9.58 - 9.51 9.36
20 CH4 9.46 14.01 14.1 13.99 14.14 13.93 13.93 14.28 13.8 14.37 13.6
21 C2H6 8.16 12.42 12.53 12.44 12.58 12.36 12.36 12.63 12.22 13.04 11.99
22 C3H8 7.76 11.84 11.92 11.84 11.98 11.8 11.79 12.05 - 12.05 11.51
23 C4H10 7.57 11.51 11.48 11.41 11.69 11.49 11.49 11.73 - 11.57 11.09
24 C2H4 6.77 10.47 10.46 10.39 10.5 10.32 10.32 10.68 10.3 10.67 10.68
25 C2H2 7.19 11.16 11.18 11.09 11.24 11.02 11.02 11.35 10.97 11.42 11.49
26 C4 7.26 10.96 10.97 10.9 10.97 10.78 10.78 11.49 - 11.26 12.54
27 C3H6 7.06 10.62 10.73 10.67 10.78 10.55 10.56 10.93 - 10.86 10.54
28 C6H6 6.33 9.09 9.13 9.08 9.16 8.99 8.99 9.21 - 9.29 9.23
29 C8H8 5.28 8.09 8.2 8.16 8.24 8.06 8.06 8.47 - 8.35 8.43
30 C5H6 5.4 8.47 8.49 8.44 8.51 8.35 8.35 8.77 - 8.68 8.53
31 C2H3F 6.55 10.28 10.36 10.29 10.36 10.2 10.2 10.8 10.14 10.55 10.63
32 C2H3Cl 6.43 9.96 10.0 9.94 10.0 9.76 9.76 10.32 - 10.09 10.2
33 C2H3Br 5.83 9.16 9.71 9.64 9.83 8.99 8.99 9.42 - 9.27 9.9
34 C2H3I 6.04 9.9 9.94 9.81 9.36 9.02 9.04 9.48 - 9.33 9.35
35 CF4 10.44 15.13 15.65 15.51 15.53 15.37 15.36 15.96 - 16.3 16.2
36 CCl4 7.66 11.33 11.41 11.29 11.31 10.98 10.98 11.77 - 11.56 11.69
37 CBr4 6.92 10.15 10.22 10.11 10.38 9.9 9.9 10.4 - 10.46 10.54
38 CI4 6.13 10.01 - - 9.23 8.75 8.82 9.23 - 9.27 9.1
39 SiH4 8.51 12.59 12.55 12.42 12.53 12.31 12.31 12.77 - 12.8 12.3
40 GeH4 8.36 12.53 12.44 12.32 12.24 12.02 12.02 12.28 - 12.5 11.34
41 Si2H6 7.27 10.6 10.58 10.52 10.52 10.31 10.31 10.8 - 10.64 10.53
42 Si5H12 6.1 8.7 9.25 9.19 9.19 8.94 8.94 9.45 - 9.27 9.36
43 LiH 4.36 7.55 7.2 6.62 7.2 6.55 6.54 7.85 6.67 7.96 7.9
44 KH 3.48 5.99 5.39 4.97 5.37 4.86 4.86 5.76 - 6.13 8.0
45 BH3 8.5 13.06 13.08 12.95 13.09 12.87 12.87 13.28 - 13.28 12.03
46 B2H6 7.88 12.01 12.03 11.92 12.04 11.84 11.84 12.17 - 12.26 11.9
47 NH3 6.16 10.29 10.4 10.18 10.44 10.32 10.32 10.93 - 10.81 10.82
48 HN3 6.82 10.32 10.54 10.48 10.56 10.4 10.4 10.96 - 10.68 10.72
49 PH3 6.72 10.61 10.51 10.43 10.45 10.27 10.27 10.79 - 10.52 10.59
50 AsH3 6.78 10.44 10.4 10.33 10.36 10.12 10.12 10.45 - 10.4 10.58

Table 4.2: Quasiparticle Ionization Potentials of the first 50 molecules of the
GW100 dataset as obtained within this work (the last 50 molecules are presented
in Table 4.3). Both DFT and QP values are indicated, and for all of the other
considered codes the QP-IP values are shown. For almost all molecules, codes
agree with a discrepancy of few hundreds of meV.
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index Formula DFT Yamboextra Westextralin Westextrasol VASP TM FHI-aims BGWHLPPM BGWFF CCSD EXP

51 SH2 6.29 10.37 10.36 10.23 10.3 10.03 10.03 10.64 - 10.31 10.5
52 FH 9.65 15.03 15.47 15.23 15.38 15.3 15.3 16.24 - 16.03 16.12
53 ClH 8.03 12.57 12.6 12.48 12.51 12.24 12.25 12.97 - 12.59 12.79
54 LiF 6.13 10.34 10.54 10.11 10.45 9.95 9.95 11.84 - 11.32 11.3
55 F2Mg 8.31 12.59 12.84 12.46 12.77 12.32 12.32 13.73 12.44 13.71 13.3
56 TiF4 10.45 13.95 14.31 - 14.22 13.9 13.89 14.88 - 15.48 13.3
57 AlF3 9.72 14.22 14.63 14.4 14.53 14.25 14.25 15.11 - 15.46 15.45
58 BF 6.78 11.08 10.71 10.56 10.67 10.56 10.56 11.49 - 11.09 11.0
59 SF4 8.37 12.4 12.41 12.32 12.29 12.12 12.12 12.79 - 12.59 11.69
60 BrK 4.72 8.1 7.96 - 8.04 7.3 7.3 7.99 - 8.13 8.82
61 GaCl 6.58 10.28 10.27 10.19 9.99 9.56 9.55 10.24 - 9.77 10.07
62 NaCl 5.29 9.01 - - 8.76 8.07 8.1 9.6 - 9.03 9.8
63 MgCl2 7.61 11.44 11.47 11.25 11.41 10.99 10.99 11.98 - 11.66 11.8
64 AlI3 6.48 10.3 10.59 10.31 9.69 9.28 9.32 9.67 - 9.82 9.66
65 BN 7.47 11.31 - - 10.61 11.0 11.03 12.19 9.68 11.89 11.5
66 NCH 9.04 13.28 13.41 13.22 13.43 13.21 13.21 13.87 - 13.87 13.61
67 PN 7.74 11.26 11.43 11.26 11.41 11.14 11.14 12.13 - 11.74 11.88
68 H2NNH2 5.28 9.23 9.42 9.27 9.45 9.28 9.28 9.78 9.1 9.72 8.98
69 H2CO 6.27 10.24 10.56 10.41 10.57 10.33 10.33 11.02 - 10.84 10.88
70 CH4O 6.35 10.36 10.74 10.6 10.72 10.56 10.56 11.14 - 11.04 10.96
71 C2H6O 6.16 9.97 10.36 10.21 10.33 10.16 10.16 10.57 - 10.68 10.64
72 C2H4O 5.97 9.49 9.81 9.61 9.8 9.55 9.55 10.16 9.43 10.21 10.24
73 C4H10O 5.77 9.09 9.52 9.4 9.52 9.32 9.32 9.7 - 9.82 9.61
74 CH2O2 6.95 10.72 11.01 10.82 10.98 10.73 10.73 11.39 - 11.42 11.5
75 HOOH 6.45 10.79 11.16 11.0 11.12 10.99 10.99 11.58 10.82 11.59 11.7
76 H2O 7.25 11.81 12.09 11.87 12.05 11.97 11.97 12.75 11.68 12.56 12.62
77 CO2 9.1 13.1 13.46 13.37 13.44 13.25 13.25 13.81 13.17 13.71 13.77
78 CS2 6.79 10.09 10.1 10.05 10.01 9.75 9.75 10.37 - 9.98 10.09
79 OCS 7.48 11.14 - - 11.13 10.91 10.91 11.49 11.02 11.17 11.19
80 OCSe 6.94 10.45 10.43 10.37 10.5 10.2 10.2 10.55 - 10.78 10.37
81 CO 9.35 13.77 13.79 13.66 13.76 13.57 13.57 14.33 - 14.21 14.01
82 O3 7.95 11.86 - - 12.07 11.4 11.39 13.05 12.0 12.55 12.73
83 SO2 8.04 11.81 12.08 11.96 12.04 11.82 11.82 12.55 - 13.49 12.5
84 BeO 6.17 9.57 - - 9.5 8.51 8.58 10.66 8.45 9.94 10.1
85 MgO 4.8 7.32 - - 7.1 6.68 6.68 8.51 7.08 7.49 8.76
86 C7H8 5.97 8.64 8.75 8.71 8.79 8.61 8.61 8.97 - 8.9 8.82
87 C8H10 5.92 8.51 8.7 8.66 8.73 8.55 8.55 8.92 - 8.85 8.77
88 C6F6 6.64 9.46 9.7 9.65 9.69 9.49 9.49 10.04 - 9.93 10.2
89 C6H5OH 5.62 8.34 8.42 8.37 8.43 8.37 8.37 8.72 - 8.7 8.75
90 C6H5NH2 5.0 7.62 7.8 7.73 7.84 7.64 7.64 7.98 - 7.99 8.05
91 C5H5N 5.92 9.07 9.28 9.13 9.31 9.04 9.04 9.5 - 9.66 9.66
92 C5H5N5O 5.21 7.52 7.86 7.82 8.18 7.69 7.69 7.92 - 8.03 8.24
93 C5H5N5O 5.5 7.88 8.14 8.09 8.18 7.98 7.98 8.35 - 8.33 8.48
94 C4H5N3O 5.71 8.23 8.49 8.4 8.5 8.29 8.29 8.77 - 9.51 8.94
95 C5H6N2O2 6.0 8.62 8.88 8.82 8.89 8.71 8.71 9.19 - 9.08 9.2
96 C4H4N2O2 6.27 9.22 9.26 9.19 9.55 9.22 9.22 9.94 - 10.12 9.68
97 CH4N2O 5.93 9.33 9.6 9.4 9.59 9.32 9.32 9.94 - 10.05 9.8
98 Ag2 5.19 8.27 8.12 8.04 7.95 7.67 7.07 8.57 - 7.49 7.66
99 Cu2 4.75 7.6 - - 7.4 6.68 7.54 8.6 - 7.57 7.46
100 NCCu 6.78 10.09 - - 9.99 9.42 9.42 10.91 - 10.85 -

Table 4.3: Continuation of Table 4.2, representing the second half of the IP com-
parison.
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Code ME (meV) MAE (meV) MARE (%) σ (meV)

BGWHLPPM -406 515 5 332

BGWFF 269 308 3 424

Westextrasol 5.7 157 1.8 166

Westextralin -122 178 1.8 1359

VASP -49 234 2.4 213

TM 226 301 3.2 320

AIMS 220 295 3.1 319

CCSD -343 450 4.2 372

EXP -259 535 5.2 398

Table 4.4: Mean error (ME), mean absolute error (MAE), mean absolute relative
error (MARE) and standard deviation (σ) for the quasiparticle ionization potential
between Yambo and other past results, coming from different codes and approx-
imations. We also included experimental (EXP) results. The best agreement is
found to be with Westextrasol . The largest MAE is found to be with experiments.

as already pointed out in the past [134, 48], the GNPPA and the HLPPM can
in general give sensibly different results due to the different constraints imposed
during the approximation. The largest MAE concerns the comparison with ex-
perimental values, probably due to the neglect of finite temperature effects and
coupling with ionic degrees of freedom, but also GW self-consistency, vertex cor-
rections [66]. In this case, the BGWHLPPM is shown [66] to have better agreement
with experiments [206, 66].

Comparisons with other codes can be further analyzed by means of the violin
plot (a box plot combined with a density plot) shown in Fig. 4.6. In general,
we observe that the IPs computed within Yambo agree well with the results of
other PW codes like West (both linearized and full versions) and VASP. Slightly
larger discrepancy is found with respect to LO basis set codes like Turbomole and
FHI-aims, as well as with full-frequency BGWFF , anyway with a MAE around
350 meV. This discrepancy is probably due to the usage of a Plasmon-pole ap-
proximation for Yambo calculations, and partially due to the fact that we are
not considering multiple solutions of QP equation, but only the linearized case.
For all these plots, we observe an asymmetric distribution of the results where,
depending on the reference code, Yambo overestimates or underestimated the IP-
QP correction. The width of each main peak is related to the standard deviation
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Figure 4.6: Violin plot representing the distribution of the deviation between
Yambo and other codes IP. We observe good agreement between Yambo and
almost all other results within a few hundreds of meV. The best agreement is
found to be with the WEST code. For Westextralin we found that 40% of the results
deviate from Yambo results by less than 100 meV. The Westextrasol instead presents
a peak around 100 meV, due to 38% of the molecules. Outliers, where the absolute
deviation is larger than 1 eV, are only a small part of the dataset.
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σ, shown in Table 4.4.

In particular, when comparing with Westextralin data, we observe a systematic
deviation peaked around ∼ 0 meV for ∼ 40 % of the molecules (i.e. 40 molecules),
with a σ of only ∼ 50 meV. Moreover, an additional shoulder is found at ∼ -120
meV. We observe the presence of some outliers for almost all distributions. Specif-
ically the largest deviation with respect to VASP results is due to the Xe molecule,
with a deviation of 1.39 eV. Instead, we found that comparing with Westextralin (with
experimental results) the KH molecule presents the largest discrepancy of 600 meV
(2 eV), and that significant absolute deviations around 400-500 meV are mainly
composed of molecules containing fluorine (F2, AlF3, CF4). This is probably due
to the fact the 3d and 2p electrons are strongly localized and challenging to be
described within PW approaches.

We can safely assert that our results, carried out within the GNPPA, outper-
forms in terms of verification the ones obtained with HLPPM as ours better agree
with all other codes, except for the CCSD datasets and experimental results. For
example, BGWHLPPM presents a ME of 254 meV and a MAE of 354 meV with
respect to Westextralin . Almost all plots in Fig. 4.6 show an asymmetric distribution
towards the overestimation of the IP of Yambo with respect to the other results.
The only exceptions are BGWHLPPM, CCSD and experiments.

As an additional source of discrepancy we identify the reduced amount of
vacuum due to the FCC supercells used in this work, as compared to other cal-
culations (like the SC of 25 Å side of West [178]). According to our tests, the use
of a smaller amount of vacuum results in an underestimation of the quasiparticle
IP. In particular with respect to the other linearized solutions (Westextralin , VASP
and BGWHLPPM), we found that indeed our results indicate an underestimation
of the IP up to a maximum of 150 meV. This is the region where the VASP peak
(more or less represented by 30% of the molecules) in Fig. 4.6 is positioned (in the
negative part of the x-axis, so ∼-150 meV), and also corresponds to a significant
portion (the second highest peak, at ∼ -150 meV) of the Westextralin area (around
30% of the molecules). Moreover, if we consider as an example the two molecules
used in our vacuum convergence tests (LiF and C5H5N5O, see Fig. 4.3), the dis-
crepancy with respect to Westextralin and VASP is 340 and 160 meV, respectively.
Such an error is compatible with the error bar associated to the volume, estimated
here to be ∼ 180 meV.

As a final comment, we cannot find a correlation between the error due to the
result extrapolation (as compared with our best converged results) and discrepan-
cies with respect to other codes, as shown in Fig. 4.7. This means that the most
critical aspects responsible for the discrepancies with the other codes are mainly
the following:

• Different numerical implementations;

• reduced FCC volume.
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Figure 4.7: Comparison between the error given by the extrapolation procedure
(x-axis) and the discrepancies with other codes (y-axis). We cannot find corre-
lation between the two quantities, meaning that difference in results can be only
addressed in a minor part to the extrapolation of Yambo results.

For the analysis of EA data, we just compared our results with the WEST
ones, obtained in the linearized version of the QP solution. A summary of the
results is shown in Table 4.5, and a distribution of the deviation between Yambo
and WEST is shown in Fig. 4.8. The EA results seem to have an accuracy similar
to the IP ones, with a ME and a MAE of respectively -15 and 221 meV. As for
the IP case, larger deviations >100 meV are observed mainly for molecules with
fluorine: F2, AlF3, SF4, TiF4. The largest deviation of the series, due to the SF4

molecules, is also justified by the fact that even at the DFT level the LUMO shows
a considerable discrepancy of ∼ 600 meV with other existing results (see e.g. SI
of Ref. [178]).

4.4 Conclusions

In this work we have performed benchmark analysis of IP and EA of 100 molecules
in the GW100 set computed with G0W0 method as implemented in the Yambo
code. We have compared our data against previous results presented in the lit-
erature and coming from different approximations and methodologies (GW im-
plemented using PW and LO basis sets, other methods such as CCSD, and also
experimental data). In particular, for the first time we provided G0W0 results
for the GW100 set using the GNPPA approximation for the dynamical dielec-
tric matrix. We successfully performed the study entirely on GPU-accelerated
machines and using automated workflows as implemented in the aiida-yambo

plugin. As additional outcomes of the work, further GPU-oriented optimization
of the Yambo code has been achieved.

We observe that, in general, results present small deviations with respect to
other codes, and that the main sources of discrepancy are probably coming from
the different approaches to solve the quasiparticle equation, here only linearized,
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index Formula DFT Yamboextra Westextralin

7 Li2 1.75 0.76 0.58
8 Na2 1.7 0.79 0.58
9 Na4 1.8 1.04 1.04
10 Na6 1.43 0.93 1.0
11 K2 1.33 0.79 0.72
12 Rb2 1.17 0.65 0.71
14 P2 3.42 1.08 1.08
15 As2 3.39 1.08 1.08
16 F2 5.94 0.3 1.05
17 Cl2 4.22 1.25 1.37
18 Br2 4.49 1.79 1.87
19 I2 4.44 3.17 3.21
26 C4 6.05 2.93 3.11
29 C8H8 2.29 -0.04 0.05
35 CCl4 2.69 0.31 0.39
36 CBr4 3.48 1.42 1.44
37 CI4 4.11 3.05 3.03
41 Si5H12 1.22 -0.17 0.05
42 LiH 1.59 0.1 0.05
43 KH 1.6 0.3 0.22
54 F2Mg 2.64 0.25 0.32
55 TiF4 4.08 0.22 0.82
56 AlF3 2.61 0.03 0.14
58 SF4 3.57 3.35 0.05
59 BrK 1.82 0.42 0.39
60 GaCl 2.39 0.45 0.42
61 NaCl 2.22 0.46 0.45
62 MgCl2 2.57 0.72 0.68
63 AlI3 2.58 1.54 1.65
66 PN 3.41 0.34 0.49
77 CS2 2.79 0.33 0.48
81 O3 6.17 1.87 2.6
82 SO2 4.4 1.02 1.36
83 BeO 4.84 2.28 2.23
84 MgO 4.29 1.71 2.03
93 C5H6N2O2 2.24 -0.11 0.08
94 C4H4N2O2 2.44 -0.05 0.13
96 Ag2 3.08 1.53 1.47
97 Cu2 3.09 1.3 1.29
98 NCCu 4.12 1.85 1.92

Table 4.5: Quasiparticle electron Affinity for some molecule of the GW100 dataset
as obtained within this work, compared with the available results of Westextralin .
Both DFT and QP values are indicated.



Figure 4.8: Deviation of the quasiparticle electron affinity between the Yambo and
the West linearized extrapolated results. On average, results agree well within a
ME and a MAE of respectively -15 and 221 meV.

and from the treatment of the frequency dependence of the self-energy, done here
within the GNPPA. Additional sources of error can be attributed to the reduced
supercell used in this work. Only a small part of the discrepancy can be addressed
to the extrapolation procedure of the results, as we did not find a correlation
between extrapolation error and discrepancies with respect to previous results
obtained with other codes like West and VASP.

In particular, we observe a very good agreement with respect to the Westextralin

data, where the few significant deviations (400-500 meV) are due to molecules
containing fluorine. Results are in good agreement also with data obtained us-
ing local orbital basis set (FHI-aims and Turbomole) and with respect to the
full-frequency treatment implemented within the BGW code. The largest dis-
crepancies are due to comparison with CCSD and experimental results, both in
better agreement with BGWHLPPM. In general, we show that the GNPPA per-
forms better in terms of verification than the HLPPM as compared with other
GW implementations using PWs, and even LO basis sets. As future perspectives,
it would be important to provide Yambo results also using more sophisticated ap-
proaches such as the multi-pole approximation [54] or a full-frequency treatment
of the GW self-energy.
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Chapter 5

Excited state properties of
graphene-like C3N

Carbon-nitrides CxNy (e.g. CN, C2N, C3N, or C3N4) are gaining significant at-
tention in recent years [207]. These are metal-free carbon-based layered materials
with comparable (or even superior) structural, chemical, and electronic properties
with respect to graphene. While preserving structural affinities with graphene,
they generally display a semiconducting behavior. One of the most studied ma-
terials in this class is graphitic-C3N4 [208], as its strong optical absorption in
the visible makes it suitable for solar energy conversion and photocatalysis ap-
plications [209]. Recently, a new carbon nitride, C3N (structurally analogous to
graphene and also known as 2D-polyaniline; see Fig. 5.1), an indirect gap semi-
conductor, has been experimentally synthesized using different methods [67, 210].
Since then, several studies were undertaken to characterize it. Theoretical investi-
gations have shown that monolayer C3N displays interesting features: remarkable
mechanical properties, similar to graphene [68, 69], high stability at room tem-
perature and high thermal conductivity [70, 71]. Moreover, it seems a promising
material for acting as anode for Li-, Na-, and K-ion batteries [211, 212, 213, 214].
It was also studied in heterostructures with graphene [69], C3B [215], and g-
C3N4 [216], showing interesting properties for optoelectronic and electrochemical
energy storage devices.

Despite these interesting features, an extended characterization of excitations,
including excitonic effects, in monolayer C3N is still lacking. This knowledge
would be relevant when considering C3N for optoelectronic applications like pho-
tocatalysis, photodetection, solar cells, or light emitting diodes. Since the system
is a 2D monolayer, the electronic screening is strongly reduced, implying that
the enhanced electron-hole interaction typically leads to large excitonic binding
energies (EBE) for all the relevant excitons. In a complementary direction, as
discussed by Qiu et al. [217] and Cudazzo et al. [218], the study of the excitonic
dispersion with respect to the transferred momentum q can give more information
on the excitonic features, in particular for low-dimensional systems. Moreover, it
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Figure 5.1: Lattice structure of C3N, with the corresponding unit cell. Brown and
grey spheres represent the C and N atoms respectively. Inset: Brillouin zone with
the k-path considered in this work.

may have implications in plasmon/phonon - exciton coupling phenomena and can
help in the determination of the exciton propagation along the crystal, relevant for
excitation energy transport in the material [219]. In this work we employ Many-
Body Perturbation Theory methods in the GW approximation [1, 2] and the Bethe
Salpeter equation (BSE) [4] to study C3N. In addition to a full characterization
of the electronic and optical properties of this system, the excitonic band struc-
ture is computed in order to understand the exciton dispersion beyond the long
wavelength limit. Specifically, momentum-dependent excitonic wavefunctions are
also computed and discussed.

This chapter is extracted from a dedicated publication: “Excitonic effects in
graphene-like C3N” from Miki Bonacci, Matteo Zanfrognini, Elisa Molinari,
Alice Ruini, Marilia J. Caldas, Andrea Ferretti, and Daniele Varsano. The work
was published in Physical Review Materials (2022) [72], my first publication as
first author.

5.1 Electronic properties

C3N has a honeycomb lattice, with a unit cell composed of 6 carbon and 2 nitrogen
atoms, as shown in Fig. 5.1. Like graphene, it assumes a planar and continuously
bonded geometry, due to the character of the sp2 hybridized orbitals.

We used optimized norm-conserving Vanderbilt (ONCV) pseudopotentials [110]
to compute the relaxed structure and the corresponding Kohn-Sham (KS) single-
particle energies and electronic density. The KS-DFT exchange-correlation func-
tional was approximated using GGA-PBE [98]. The KS electronic structure was
converged using a plane wave kinetic energy cutoff energy of 60 Ry to represent the
wavefunctions, and a Monkhorst-Pack k-point grid of 8×8×1. We verified that a
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gaps PBE (eV) G0W0 (eV)
M → Γ 0.42 1.42
Γ → Γ 1.86 2.96

M → M 1.61 2.67

Table 5.1: Indirect and direct energy gaps at high symmetry points obtained at
PBE and G0W0 level.

supercell with a vacuum of 15 Å along the vertical direction was enough to treat
the system as 2D, avoiding spurious interactions between layers. For monolayer
C3N we find a relaxed lattice constant of 4.857 Å (using GGA-PBE). This result
agrees well with previous DFT calculations (4.862 Å) [220] and is slightly larger
than the experimental value (4.75 Å) [67]. The KS band structure (Fig. 5.2a)
shows a Dirac cone at the K point. Now, since C3N has two more electrons per
unit cell than graphene, the level-filling goes up and the Dirac cone is no longer at
the valence-band top. The calculated band gap is indirect (M → Γ) and amounts
to 0.42 eV (at the GGA-PBE level). The direct gaps at Γ and M are 1.86 eV
and 1.61 eV, respectively. Figure 5.2a highlights also the σ and π character of the
bands in the gap region, and we can observe that the top valence bands show π
symmetry as well as the two lowest conduction bands, whereas σ-like character is
seen in the third and the fourth conduction bands (which start above ∼2 eV with
respect to the top valence band).

Converged quasiparticle energies were obtained using a kinetic energy cutoff
of 10 Ry to represent the screening matrix, including 300 empty states in the
sums over transitions and adopting a k-point grid of 30×30×1. Convergence
on screening matrix cutoff and empty states is reached by means of automated
workflows as implemented in the current version of the aiida-yambo plugin [65] of
the AiiDA software [39], imposing a convergence threshold of 15 meV. More details
on the convergence workflow are provided in Section 5.1.1. The inclusion of GW
corrections provides a gap opening of ∼ 1 eV, resulting in an indirect quasiparticle
band gap of 1.42 eV (Fig. 5.2b). The direct gaps at Γ and M are also increased to
2.96 and 2.67 eV, respectively, as summarized in Tab. 5.1. The minimum direct
gap is located in the middle of the Γ-M region of the BZ and has a value of 2.62
eV. The GW band gap is consistent with the one obtained in a recent work by
Wu et al. [221], calculated at the GW level using the Hybertsen-Louie generalized
plasmon pole model [52], and as expected is larger than that obtained directly with
the HSE06 hybrid functional[222], by ∼0.38 eV [220]. The C3N gap is narrower
with respect to the two well-known carbon nitrides g-C3N4 (∼4.24 eV for the
triazine structure) [223] and C2N (∼3.75 eV) [224] single layers. This is consistent
with the fact that C3N is continuously bonded, while the two other carbon nitrides
have saturated porous structure resulting in electronic confinement.

Along the same BZ path, the C3N band structure calculated at GW level
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 a)                                b)

Figure 5.2: a) Orbital projected PBE band structure. π and π∗ bands are indicated
in blue, σ∗ as orange dots. b) G0W0 band structure (red); the corresponding PBE
bands are reported again as dashed curves for reference. In both panels the zero
of the energy scale is set at the top of the valence band for both PBE and G0W0

results.
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Figure 5.3: Quasiparticle G0W0 energies vs. Kohn-Sham PBE eigenvalues. The
top of the valence band is chosen as a common zero of the energy. The colors
and the corresponding insets indicate the predominant π, π∗ (blue) and σ∗ (or-
ange) character. In the conduction region, two branches result from the different
localization of the π∗- and σ∗-character states leading to different quasiparticle
corrections.

is qualitatively similar to the one calculated using PBE, as shown in Fig. 5.2b.
In fact, the GW gap is still indirect with the valence band maximum located
at M and the conduction band minimum at Γ. We observe, anyhow, that the
GW correction is not uniform across the bands, as different corrections apply due
to wave functions with different character. Orbital-dependent GW corrections
are a well-known feature of GW already discussed in the literature [225, 226]. In
particular, the corrections in the low conduction region are distinguished according
to the different localization of the KS wavefunctions, as can be observed from
Fig. 5.3, where the GW energies are plotted against the respective KS eigenvalues.

A larger correction is observed for the bands with π∗ (blue dots) character
with respect to bands having σ∗ character (orange dots). Since the valence bands
considered here only present a π character (σ-states are deeper in energy), their
GW correction shows a more common scissor/stretching behavior. We note that
this picture allows us to include the GW correction (for instance in the BSE
calculations) as a generalized scissor and stretching operator, taking into account
different corrections according to the specific localization character of the KS-
states.
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Figure 5.4: Convergence of the direct gap of C3N at Γ, with respect to empty
states and cutoff on the screening matrix. As shown in the plot, 30 GW runs
are sufficient to achieve a convergence of about 30 meV. Further convergence on
k-points mesh has been done without the workflow.

5.1.1 Automatic GW convergences

The convergence of the numerical parameters for the GW calculations, with the
exception of the k-point grid, was achieved using the automatic workflow imple-
mented in the aiida-yambo plugin [65, 155, 156] and as explained in Chapter 3.
In particular, the automatic workflow was used to converge the kinetic energy
cutoff to represent the screening matrix and the number of empty states needed
to converge the polarizability and the GW self-energy. These two parameters are
strongly interdependent, and cannot be treated separately [227].

The workflow used here, as shown in Fig. 5.4, performs several convergence
tests on each parameter, increasing one value while keeping fixed the other(s).
The increment applied in each iteration is provided as input by the user. The
convergence threshold is chosen to be ± 15 meV with respect to the last simulation
performed by the workflow, meaning that the final error bar is of 30 meV.

All the calculations are performed taking advantage of other sub-workflows of
the plugin, mainly concerning automatic error handling.
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5.2 Optical properties

The optical absorption, obtained from the q→ 0 limit of the macroscopic dielectric
response, according to Eq. 2.25, is shown in Fig. 5.5. Excitonic effects were
included by solving the BSE equation. All the excitation energies are plotted,
together with the independent-particle onset, at EIP−GW=2.62 eV, indicated by
the vertical red line. The absorption spectrum is dominated by a main peak at
1.96 eV, originated by the doubly-degenerate exciton E4,5

0 . At lower energies,
three dark excitons are present, the lowest ones (1.82 eV, E1,2

0 ) being also doubly-
degenerate.

Both bright and dark excitons are strongly bound, displaying EBE of 0.93 eV
and 0.66 eV, for E1,2

0 and E4,5
0 . The EBE are computed considering the difference

between the excitation energy of the exciton and the average energy of the involved
electron-hole transitions, as shown in the lower panel of Fig. 5.6. Interestingly, the
EBE of the lowest bright exciton E4,5

0 satisfies the scaling law EBE ∼ 1
4
EIP−GW ,

found valid for 2D single-layered systems. [228, 229].

In order to analyze the spatial extension of the main excitons, we plot their
excitonic wavefunction, by showing the electron spatial distribution for a fixed
hole position. The upper panel of Fig. 5.6 displays the excitonic wavefunction
for the lowest (E1,2

0 ) and the brightest (E4,5
0 ) direct excitons, with the hole placed

on a N site. Both excitons show a 3-fold rotational plus a reflection symmetry
with respect to the axis in the armchair direction. Interestingly, these excitons
are localized on benzene rings, avoiding the N atoms. We observe that the dark
excitons (lower energy) are strongly localized around the hole, while the active
ones (higher energy) are more delocalized. We can explain the different spatial
localization in terms of the single particle transitions that contribute to the exci-
tations, as represented in the lower panels of Fig. 5.6. The first excitons E1,2

0 are
built from electron-hole transitions belonging to a larger region of the Brillouin
zone with respect to E4,5

0 , resulting in a larger confinement in real space. Simi-
larly to the fundamental gap, the optical gap of C3N is also smaller than the ones
calculated for g-C3N4 and C2N (by about ∼2 eV and ∼1 eV [224], respectively, by
considering the first bright excitons), which is consistent with a picture where the
presence of saturated pores in each layer of the structure induces wavefunction
localization and quantum confinement.

5.3 Indirect excitons

Besides the optical absorption limit, our understanding of electron-hole excitations
in C3N is further enhanced by inspecting the excitonic spectrum over a wider range
of transferred momenta q = kelec−khole, providing us with the exciton dispersion
in momentum space. Indeed, the excitonic dispersion was recently proposed [218]
as a powerful tool to distinguish excitons of different character in low-dimensional
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Figure 5.5: Calculated Im(εM) in the optical limit (q→ 0), in arbitrary units (arb.
units). A Lorentzian broadening of 0.02 eV has been included. The dots indicate
the amplitude of each excitonic state in the BSE solution. The vertical dashed red
line represents the onset of the single quasiparticle continuum (minimum direct
gap in the GW solution, 2.62 eV).

systems, going beyond the mere evaluation of the EBE. The solution of the BSE
for finite q then allows us to fully characterize the C3N excitations accessible by
means of momentum-resolved electron energy loss spectroscopy or non-resonant
inelastic X-ray scattering. Figure 5.7 shows the loss function calculated for differ-
ent transferred momenta q along the Γ−M path. To compare spectra at different
momentum, we multiplied the loss function by a q2 factor. While making the plot
more readable, this factor is also experimentally motivated by the form of the
NRIXS cross section, as discussed in the theory section.

We observe that the low-energy peak goes down in energy for q moving away
from Γ, as expected for an indirect gap system. This indicates the presence
of a dispersive excitonic band reaching a minimum of ∼0.8 eV at q = M in
correspondence of the indirect gap.

To complement the information provided by the loss spectra, in Fig. 5.8a
we present the calculated q-resolved exciton band structure. A color map is
added to indicate the (generalized) amplitude/strength of each excitonic state,
actually offering richer information complementary to the loss spectrum. The
lowest degenerate exciton E1,2

0 at Γ splits into two excitonic bands that we call
E1
q and E2

q. For both Γ −M and Γ − K directions, we observe that the lowest
excitons present quadratic and almost linear dispersions in the neighborhood of
the Γ point, as also found for other 2D systems [217, 230, 218]. Nevertheless, at
variance with what reported in the work of Qiu et al. [217] for the direct gap MoS2
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Figure 5.6: Upper panels: excitonic probability distribution for the dark E1,2
0 and

the bright (1.96 eV, E4,5
0 ) excitons at vanishing q. The blue contours represent

the probability of finding the electron (hole) when the hole (electron) is fixed on a
N atom (yellow circle). Lower panels: distribution of the electron-hole transitions
in the BZ for the corresponding excitons of the upper panels.

monolayer, here we find a lower band with quasi-linear dependence on |q| and an
upper band with a clear parabolic dispersion, both with a negative slope and
concavity. Such a behavior is due to the indirect nature of the gap, and we note
that –at difference with other 2D materials such as MoS2 and phosphorene [219]–
in the case of C3N we do not observe a non-analytical dispersion for the lowest
bands. This is related to the fact that the E1,2

0 excitons are dark, making the
exchange contribution to the dispersion negligible. Moreover, the observed down-
ward quasi-linear behavior can be seen to be connected to the independent-particle
contribution to the excitonic Hamiltonian, as shown in Section 5.3.1.

Moreover, the Γ−M direction is of special interest, since it corresponds to q-
vector involved in the indirect band gap: the most relevant excitonic transitions
occur in that zone, and the decrease of excitation energies going from Γ to M
reflects the indirect gap of C3N. From Fig. 5.8a we observe that the lowest exciton
(E1

q) is inactive, with an energy minimum of 0.8 eV at q = M . For this momentum,
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Figure 5.7: Loss function for different values of the transferred momentum along
the direction Γ-M , starting from the lowest q = M/32 (light blue), to the highest
q = M (dark blue). Following Cudazzo et al. [218], we multiplied all spectra by the
corresponding q2. This is needed in order to enhance higher momentum spectra
and physically motivated by the form of the NRIXS cross section (as shown in
Eq. 2.30).

the immediately higher-energy exciton (0.9 eV, E2
q) is active. Concerning the Γ-K

path, we observe a minimum near K/2 that corresponds to an inactive state of
energy ∼1.3 eV. We find that EBE range from 0.6 eV to 0.93 eV for the lowest
excitonic band in the Γ-M direction (E1,2

0 -E1
q). As we move out of the long-

wavelength regime and choose given directions of the center-of-mass momentum
q, we expect some symmetries in the excitonic wavefunctions, like the 3-fold
rotational invariance observed in the plots of Fig. 5.6, to break. Figure 5.8b shows
the square modulus of exciton wavefunctions (E1

q and E2
q) at q=M , corresponding

to minima in the band structure of Fig. 5.8a. As before, the hole is placed on a
nitrogen atom. The 3-fold rotational symmetry is no longer present, and only the
reflection invariance with respect to the armchair direction is maintained. Both
E1
q and E2

q excitons are delocalized along the zig-zag direction. For the inactive
excitons the symmetry axis lies on a nodal plane, where the probability amplitude
of finding electrons vanishes. The spatial delocalization increases with q and is
higher for the indirect active exciton E2

q, as happens for the bright excitons in
the optical limit case. The behavior of the excitonic wavefunctionc of C3N is very
similar to that observed in hBN by Sponza et al. [230]. This is because, along
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Figure 5.8: (a) Momentum-resolved exciton band structure for the lowest seven
excitons. Excitonic amplitudes are normalized with respect to the brightest ex-
citon among all the bands for each momenta from dark violet to yellow (active
exciton). Inset: focus on the region near the q=0 for the two lowest excitonic
bands. (b) Exciton probability distribution for E1

q (top) and E2
q (bottom), at

q = M . The vertical solid line denotes the symmetry plane perpendicular to the
figure and the hole position is indicated in yellow near the center of the figures.
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the armchair direction, both systems present the same reflection symmetry that
characterizes the localization of excitons.

5.3.1 Independent particle effects in the excitonic band
structure

As shown in the previous Section, close to Γ the first two bands in the excitonic
band structure have negative slope and concavity. Moreover, the lowest one has
a quasi-linear dependence on |q|. The comparison between the full BSE solution
at finite q close to Γ with the average of the independent particle (IP) transition
energies, as done in Fig. 5.9, shows that these two peculiar features of the excitonic
band structure are inherited from the IP contribution to the Hamiltonian.

Formally, we consider the BSE excitonic Hamiltonian, together with its eigen-
vectors represented on the transition basis, and separate out its finite-q contribu-
tions, as follows:

Hexc(q)|λ,q〉 = Eλ(q)|λ,q〉, (5.1)

|λ,q〉 =
∑
vck

Aλvck(q)|vck,q〉, (5.2)

where

Hexc(q) = H IP(q) +Kx(q) +Kd(q) (5.3)

= Hexc(0) + ∆H IP(q) + ∆Kx(q) + ∆Kd(q).

Then, the average independent particle contribution, 〈IP〉, plotted in Fig. 5.9 is
computed as the expectation value of the diagonal IP term of the BSE excitonic
Hamiltonian on the eigenvectors obtained diagonalizing the whole Hamiltonian
at each q, namely 〈IP〉λ = 〈λ,q|H IP(q)|λ,q〉. In practice, these IP energies are
evaluated as the weighted energies of all the transitions concurring in the formation
of the given exciton as:

〈IP〉λ =
∑
cvk

|Aλvck(q)|2 (Eqp
c,k − E

qp
v,k−q). (5.4)

Moreover, the 〈IP〉 and BSE points in the plot are also aligned at q = 0 by a
shift ∆BSE0 (equal to -0.93 eV, i.e. the EBE of the lowest exciton at Γ). This
amounts to consider the whole BSE Hamiltonian at q = 0, while neglecting the
q-dependence of ∆Kx,d at finite q, i.e.

〈IP〉λ + ∆BSE0 = 〈λ,q|Hexc(0) + ∆H IP(q)|λ,q〉. (5.5)
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Figure 5.9: Comparison between independent particle (IP) transition energies
(red) and proper excitonic energies (black) for the two lowest excitonic bands.
The IP energies are shifted in order to match the excitonic energies at the Γ
point. We can observe that the negative concavity and the linearity of the lowest
excitonic bands are effects already included in the IP dispersion. 〈IP〉 and BSE
points are aligned at q = 0 by including a shift ∆BSE0=-0.93 eV.

5.4 Conclusions

In this chapter we have studied the electronic and optical properties of single-
layer C3N by using ab initio methods based on DFT and many-body schemes.
In particular, we have computed the 2D band structure of C3N within the GW
approximation, revealing an indirect quasi-particle band-gap of 1.42 eV (top of
the valence band located at M , bottom of the conduction band at Γ), with direct
gaps at Γ and M of 2.96 and 2.67 eV, respectively. The GW corrections to
quasi-particle energies were also discussed in view of the orbital symmetry and
localization.

Neutral excitations, as those sampled by optical absorption (q = 0) and elec-
tron energy loss spectroscopy (finite q), are computed using the Bethe Salpeter
equation. One of the main results of the work comes from the calculation of the
full excitonic dispersion of C3N in q-space, giving access to indirect exciton en-
ergies and intensities. These excitons play an important role in phonon-assisted
photoluminescence [231, 232], and they can be efficiently exploited for chemical
sensing [233]. Interestingly, while the excitonic dispersion shows a parabolic be-
havior at M , corresponding to the indirect band gap, at Γ we observe a degenerate
doublet which splits into a parabolic and a quasi-linear dispersing bands, as for
other 2D materials. A peculiarity of C3N, connected with its indirect gap as well
as with the dark nature of the excitons involved, is that the quasi-linear band has
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downward convexity, at variance with MoS2 or hBN and the quasi-linear disper-
sion of the lower excitonic band, comes from its independent-particle contribution.
Finally, this work represents a solid starting point to consider the role of excitonic
effects of C3N in more specific cases, e.g. in describing exciton-phonon scattering
or the spectroscopy of in-plane adsorbates/defects.



Chapter 6

Band gap opening and dielectric
response in double-side highly
hydrogenated free-standing
graphene

The manipulation of material properties is tremendously attractive to materials
scientists as a rich playground for both fundamental science and technological
developments. In this respect, graphene [5, 6] is among the most extensively
studied materials of the last decades. Despite its widely-recognized, intriguing
properties [7, 8] are promising for a variety of applications (from sensing to energy
storage [9, 10, 11]), many others are hindered by its gapless semi-metallic band
structure of pristine graphene. Several efforts have been done in the past to
overcome this issue and open a band gap in various ways, among them: chemical
modifications, functionalization and doping [234, 235, 236, 237, 238]. Here, we
focus on the hydrogenation of mono- and bi-layer graphene, which leads to a
band gap opening whose magnitude depends on the H chemisorption configuration
and on its effective surface-ratio storage [239, 240]. Moreover, stable hydrogen
harvesting is crucial in hydrogen-based fuel cells as promising solutions for efficient
and clean delivery of electricity [241].

Fully hydrogenated graphene, the so-called graphane, is characterized sp3 bonds
between carbon and hydrogen atoms. So far, this ideal system has not been yet re-
alized experimentally, as the maximum H uptake approach an upper limit of∼36%
in terms of H/C ratio, and depends on the hydrogenation techniques as well as
the graphene quality [242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253].
Other limiting factors for a large and clean hydrogenation can be oxygen con-
tamination, the influence of the substrate, and the presence of defects/edges in
graphene flakes (either pre-existing or induced by the hydrogenation itself). In the
following, we present a computational characterization of electronic and optical
properties of various ideal configurations of hydrogenated graphene by means of
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Figure 6.1: The top panels represent the photoemission spectromicroscopy for
UHV-clean NPG (left), hydrogenated sample (right) and valence band (center,
for both the two cases of left and right top panels). We observe the presence of
distorted sp3 bounds appearing with the hydrogenation and corresponding to a
band gap opening. The panel located at the center of this figure shows a Scanning
electron microscopy (SEM) imaging zoomed at a mesoscopic level (10 × 10 µm2),
unveiling the porous structure of NPG.

GW and BSE methods. Our results corroborate an experimental characterization
performed by the groups led by Prof. Maria Grazia Betti and Prof. Carlo Mar-
iani at the Sapienza University in Roma, and by Prof. Roberto Biagi and Prof.
Valentina De Renzi at the University of Modena and Reggio Emilia. The experi-
mental samples are constituted by the so-called nano-porous graphene (NPG), i.e.,
a compact, bi-continuous interconnected 3D arrangement of high-quality graphene
veils, composed by one to a few weakly interacting layers [254, 255]. was synthe-
sized by using a nano-porous Ni template via chemical vapor deposition (CVD).
Subsequently, the as-grown NPG acquires the three-dimensional morphology of
the substrate and is subsequently exfoliated by chemical dissolution of the Ni
template. In this way, it was possible to obtain a high-quality, nearly defect-free,
and free-standing graphane prototype. The hydrogenation (deuteration) process
happened in ultra-high-vacuum (UHV) conditions, by exposure of the sample to
atomic H produced by H2 cracking into a capillary source locally heated at 2100
°C. For more details on the sample preparation we redirect to Ref. 73.

In particular, my contribution concerned the calculation of quasiparticle band
structures and density of states (DoS) which corroborate spectromicroscopy pho-
toemission measurements on the NPG samples and allow us to address the hydro-
genation configurations among the ideal ones proposed, confirming the achieve-
ment of an unprecedentedly high H uptake in NPG, around ∼90%, as schemati-
cally shown in Fig. 6.1. For the first time an almost complete saturation in fully
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free-standing graphene of the available C sites with hydrogen is obtained.

Moreover, I performed a computational characterization of the optical proper-
ties of some of the candidate structures (within the BSE method), to support the
experimental investigation of the dielectric response of deuterated-NPG (D-NPG)
by means of high-resolution electron energy loss spectroscopy (HREELS). The
use of the deuterium isotope of hydrogen unequivocally identifies the D-C con-
tribution in the vibrational spectra even at low coverage, neglecting any H con-
taminant effect. Electron correlation effects lead to a renormalized bandgap and
large exciton binding energy. Understanding the changes in the optical properties
and electron-hole interaction from semi metallic graphene towards hydrogenat-
ed/deuterated graphene with large gap, is crucial for both fundamental knowledge
of 2D materials and for emerging applications of graphene/graphane in electronic
and optoelectronic devices.

Theoretical results, together with the experimental ones, are collected and
exposed in two works. The first part, on electronic properties of hydrogenated
graphene, is published on Nano Letters (2022) in Ref. 73: “Gap opening in
double-sided highly hydrogenated free-standing graphene”, from Maria
Grazia Betti, Ernesto Placidi, Chiara Izzo, Elena Blundo, Antonio Polimeni,
Marco Sbroscia, Jośe Avila, Pavel Dudin, Kailong Hu, Yoshikazu Ito, Debo-
rah Prezzi, Miki Bonacci, Elisa Molinari, and Carlo Mariani. The final part
about the optical characterization is part of the following preprint: “Dielectric
response and excitations of free-standing graphane”, from Maria Grazia
Betti, Dario Marchiani, Elena Blundo, Marta De Luca, Antonio Polimeni, Ric-
cardo Frisenda, Carlo Mariani, Samuel Jeong, Yoshikazu Ito, Andrea Tonelli,
Nicola Cavani, Roberto Biagi, Valentina De Renzi, Peter N. O. Gillespie, Miki
Bonacci, Elisa Molinari, and Deborah Prezzi (2022).

6.1 Quasiparticle electronic properties

As mentioned above, our experimental collaborators were able to obtain, in the
NPG sample, an unprecedented hydrogen uptake of ∼ 90%, which is in line with
a chemisorption model for graphane with almost each C sp3 being bound, never
achieved experimentally before in fully free-standing low-defect graphene [73].
The next step was to correlate the opening of a band gap in H–NPG with the
transition from sp2 → sp3 due to the C–H bonding. This was done by performing
spatial resolved photoemission spectroscopy on a partially hydrogenated sample
(∼ 50%) in order to distinguish the valence and core level spectral shapes for
regions of different levels of hydrogenation. Results are exposed in Fig. 6.2, where
in panel (a) and (d) are shown the spatially resolved intensity of the sp2/sp3

(cross/star) character and the intensity of the 2p–π peak, respectively. Panel (b)
and (c) represent the schematics of the core-level XPS spectra for the two levels of
hydrogenation, respectively low and high. The 2p–π peak is associated with the
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graphene band structure and corresponds to the regions where the sp2 character
is dominant. This can also be observed for the spectral density of states (DoS),
shown panel (e): in the case of sp2 character (red line) we definitely see the 2p–π
peak, whereas in the sp3 dominant region the peak is almost quenched. Indeed, at

Figure 6.2: (a) sp2 C 1s intensity map, quantified as the ratio Isp2/(Isp2 + Isp3),
after background subtraction; the blow-up represents the same ratio in a
10× 10µm2 area; The spectra taken in the sp2-rich and in sp3-rich regions (labeled
by a cross and a star, respectively) are shown in panels (b) and (c), respectively.
(d) Valence band intensity map corresponding to the 2p-π intensity. The ratio
was calculated as in panel (a); the intensity was found by integrating in the energy
range indicated by the shadowed vertical ribbon in panel (e), which displays the
VB spectrum for sp2-rich (cross) and sp3-rich (star) regions.

H saturation coverage (∼ 90%), the quenching of the DoS below the Fermi level
EF suggests a transition from semimetal to a semiconducting state, as clearly
observed in Fig. 6.4a. From the experimental results, the valence band maximum
(VBM) can be extrapolated to be located at about 3.50±0.25 eV below EF. The
correlation between the emergence of C–H sp3 bonding and the position of the
VBM unambiguously ascribes the gap opening to the distortion of the bond to
sp3 1.

The theoretical support to corroborate these experimental results, and address
the band-gap opening to a given degree of H chemisorption, is provided by means
of ab-initio computational characterization of the spectral DoS for some hydro-

1Despite this, the assignment of the hydrogen adsorption sites, as well as the fundamental
band gap size, cannot be unambiguously identified from the photoemission experiment only.
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genated graphene configurations. We performed both DFT and GW simulations,
in order to first assess the stability of the structures and provide preliminary in-
formation on electronic properties (by means of DFT), and then to obtain the
accurate quasiparticle band structures and DoS, by performing GW calculations,
to directly compare with experimental spectral DoS. As shown in Fig. 6.3a, we
investigated single- (1side) and double-side (2side) hydrogenation of the single-
(H-Gr) and bi-layer (H-bGr) graphene. In fact, in addition to the ideal graphane
configuration (Fig. 6.3a-3), where each C atom of single-layer graphene is bound
to H forming an alternately up and down sp3 distorted structure (also called chair
or meta), we also considered the case of monolayer graphene saturated on one
side only, i.e. the so-called graphone [256]. For the latter, we investigated both
the chair-like (Fig. 6.3a-2), also denoted as triangular, T, or meta) and boat-like
(Fig. 6.3a-1, also denoted as rectangular, R, or para/ortho) structures, the latter
being the most stable one for single-side hydrogenated free-standing graphene.

As displayed in Fig. 6.3a(4-6), we also considered the two-side hydrogenation
of graphene bi-layers with different registry, which aim at mimicking the various
local structures of a turbostratic arrangement, as recognised by an atomic-scale
analysis of the NPG microscopic structure [254]. The 2-side hydrogenation of the
bi-layer graphene is found to foster the formation of C puckering and interlayer
bonding, as also found in the studies on the stability and realization of diamanes,
i.e. 2D diamond-like thin films, as summarized in a recent review [257].

For each of the above described systems, the atomic positions within the cell
were fully relaxed until forces were less than 5 × 10−4 a.u. A vacuum region larger
than 15 Å in the non-periodic direction was introduced to prevent interaction
between periodic images. The kinetic energy cutoff for the wave functions was
set to 80 Ry; the Brillouin zone was sampled by using a 14 × 14 × 1 (8 ×
8 × 1) k-points grid for the primitive (2 × 2) cell, respectively, according to
Monkhorst-Pack algorithm. The optimized in-plane lattice parameters, a = b, are
reported in 6.1, together with the C–C bond lengths, lCC , as well as the energy
gap Eg,PBE. Fig. 6.3b displays the DFT-PBE DoS for the configurations described
above and reported in panel (a). An additional curve, representing the average
of all the 2-side hydrogenated configurations (solid black line), is also reported
in panel (b), to mimic the results for turbostratic few-layer samples and ease the
comparison with the experimental VB spectra (inset, dashed cyan and solid thick
black lines). While the comparison clearly highlights the well-known limitations of
the DFT-PBE theory for a quantitative description of the electronic properties [2],
the overall shape is in agreement with experimental findings. The theory curve
is however much more detailed if compared to the featureless curve of H–NPG
presented in the inset. This is because we only apply an homogeneous broadening
of 140 meV to build our DoS, while experimental spectra contain information on
the the real spectral amplitude, which is energy- and k-dependent [258].

To overcome some of the above-mentioned limitations of DFT, the quasiparti-
cle band structure and DoS for selected geometries were computed within the GW
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Figure 6.3: (a) Ball-and-stick models (top and side views) for different hydro-
genated graphene structures (1-6). C (H) is represented by brown (white) spheres.
For the bi-layer structures (4-6), the bottom C layer is represented in light blue,
in order to make the figures clearer. (b) DFT-PBE DoS for the configurations
reported in (a). An additional curve, representing the average of all the 2-side
hydrogenated configurations (labeled as “avrg 2side”, solid black line), is also
reported in the main panel, to ease the comparison with the experimental VB
spectra for clean (inset, dashed cyan) and totally hydrogenated NPG (inset, solid
thick black line), taken with HeIα (21.218 eV) photon energy.

Table 6.1: Calculated structural and electronic properties of the different H-Gr
configurations displayed in Fig. 6.1. Except for the 2side H-Gr, all systems are
computed in a 2× 2 supercell.

System a (Å) lCC (Å) Eg,PBE (eV) Eg,G0W0 (eV)

1side H-Gr (T) 5.063 1.50 0.65 3.18
1side H-Gr (R) 5.019 1.36; 1.50; 1.57 2.46. 5.60
2side H-Gr 2.537 1.54 3.49 6.15
2side H-bGr (R) 4.960 1.61; 1.56; 1.53; 1.57 2.69 4.70
2side H-bGr (TAA) 5.043 1.54; 1.58 2.90 -
2side H-bGr (TAB) 5.057 1.54; 1.56 3.10 5.10
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approximation within the yambo code [64, 65]. A slab truncation scheme [115] for
the Coulomb potential was adopted to avoid spurious interactions between replica.
The Brillouin zone was sampled by 16× 16× 1 k-points for the primitive cell. We
used a random integration scheme for the calculation of the screened Coulomb
interaction [159], ensuring convergence of the quasiparticle gap with such low
density k-points meshes. The sum-over-states in the calculation of polarization
function and Green function have been truncated both at Nb=800 bands. The
kinetic energy cutoff to represent the response functions corresponds to Gcut=30
Ry. The above parameters were chosen by considering a convergence threshold be-
low 15 meV on the fundamental gaps, by employing the automated aiida-yambo

based workflow [39, 40, 155, 63] described in Chapter 3. The energy gap values
Eg,G0W0 computed according to the G0W0 approximation are reported in Fig. 6.4
and Table 6.1.

Figure 6.4: (a) Experimental VB spectra for clean (dashed) and totally hydro-
genated NPG (solid line), taken with HeIα (21.218 eV) photon energy. (b) Three
model structures of 1-side and 2-side hydrogenated single- and bi-layer graphene
(top and side views). The colored circles in the top view highlight the H sites
in the hexagon. (c) Simulated quasi-particle density of states (DoS) in the GW
approximation for the models in (b); zero energy set at midgap; a homogeneous
broadening of 140 meV is applied. (d) Simulated DFT (solid gray lines) and GW
(open circles) band structures for the corresponding models in (b); zero energy
set at the VBM.

Fig. 6.4 shows the quasiparticle DoS (c) and band structures (d) of a few se-
lected cases. We find in all cases that the computed quasiparticle band gap for



120 CHAPTER 6. HIGHLY HYDROGENATED GRAPHENE

the free-standing hydrogenated sheets exceeds 3 eV (see Table 6.1). The single-
side hydrogenation leads to the appearance of an indirect gap of 5.6 eV. For the
double-side hydrogenation, we predict a direct gap of 4.7 eV for the H-bGr and
6.1 eV for H-Gr, the largest of the series, in line with previous calculations [240].
For a more direct comparison with experiments, in Fig. 6.4c we plot the DoS of
the three systems, setting the Fermi level to the midgap, a reasonable assump-
tion given the high experimental quality (negligible contaminations/defects) of
this hydrogenated sample 2. Irrespective of the exact position of the VBM onset,
the single-side H-Gr system noticeably presents a structured DoS at the VBM,
originating from the 2p-π orbitals of the unsaturated side, that is totally absent in
the experimentally achieved saturated phase of Fig. 6.4a (solid thick line). On the
contrary, the double-side single- and bi-layer hydrogenated graphene is character-
ized by a step-like DoS at the VBM, typical of 2D semiconductors [259], without
any 2p-π contribution, in excellent agreement with the experimental data. Most
of the spectral weight is indeed arising from the sp3 hybrid orbitals, lying in the
energy region below -6 eV. This compares well in terms of energies and overall
shape with the experimental spectrum (Fig. 6.4a, solid thick line), taking into ac-
count the coexistence of single layer and bi-layer graphene [254, 255] in our NPG
samples (see also Figure S1b). Overall, we can conclude that the calculated band
structure and quasiparticle DoS unequivocally allow us to establish the achieve-
ment of double-side hydrogenated single and bi-layers graphene configurations.

6.2 Optical properties of deuterated graphene

In the previous section we provided quasiparticle band structure and DoS for
some candidate structures of hydrogenated graphene, in order to support experi-
mental results on H–NPG. We addressed the main hydrogenation process as the
double-side one, by directly comparing GW–DoS and experimental photoemis-
sion spectral density. However, an experimental estimation of the fundamental
gap cannot be obtained, as we only have information on the VBM, at variance with
theoretical results where the band gap can be explicitly estimated through GW
band structure. While comprehensive spectroscopy studies have focused on hy-
drogenated on-substrate graphene so far [260], here for the first time quasiparticle
and optical band gaps — as predicted for different hydrogen chemisorption con-
figurations [239, 261, 240] — are determined experimentally on fully free-standing
and unsupported graphene.

In this chapter we compute optical properties, within the GW -BSE scheme,
on a few selected candidate structures of hydrogenated graphene. By doing so, we

2While not having information on the position of the conduction band bottom from ex-
periments, we though observe that the pristine NPG is undoped, with the Dirac point at the
Fermi level. We can thus expect a similar behavior for the H-NPG sample, which supports the
assumption of the Fermi level lying approximately at midgap.
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Figure 6.5: (a) HREEL vibrational spectra of NPG (black dots) and D-NPG (blue
dots). The NPG spectrum has been upshifted for clarity (complete, unshifted
spectra are reported in Supplementary Information). (b) Ball-and-stick models of
1-side (light violet, top left) and 2-side (dark violet, top right) single-layer D-Gr,
as well as boat (red, bottom left) and chair (orange, bottom right) conformers of
2-side bi-layer D-Gr. (c) Simulated IR spectra for the structures in (b), displayed
with the same color code. The energy range displayed on the x axis is the same
as in panel (a), but in different units.

corroborate experimental assessment of the dielectric response of deuterated NPG
(D–NPG) as obtained within high resolution electron energy loss spectroscopy
(HREELS) 3, which provide information on both vibrational (structural) and di-
electric properties of the sample. The use of deuterium for the chemisorption
process allows us to definitely distinguish the adsorbed deuterium, with respect
to other H contaminants, in view of the isotopic shift imparted to the vibrational
features, as detected by HREELS. Fig. 6.6b shows the fundamental gap in the
G0W0 approximation for all the double-side deuterated systems considered. We
neglect the single-side deuteration, which was ruled out by the direct compari-
son between theoretical (DFT) and experimental (HREELS) vibrational analysis

3The HREELS experiments were performed at Modena and Reggio Emilia University in
Modena, in the SESAMO laboratory by the group of Prof. Roberto Biagi and Prof. Valentina
De Renzi.
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(briefly shown in Fig. 6.5, where we can identify the peaks of the 2-side in the
theoretical IR spectra of panel (c) with the experimental ones of D–NPG, shown
in panel (a)). Depending on the specific configuration, the gap Eg ranges be-
tween 4.7 and 6.1 eV, with a VB maximum located at -Eg/2 (i.e. -2.35 and -3.05
eV respectively) if we consider EF lying at midgap in the absence of doping, as
discussed in the previous section (and in Ref. 73). Taking into account that
experimental NPG samples are constituted by single and bi-layer graphene in a
turbostratic arrangement, the calculated range of GW VB maximum values com-
pares well with the experimental findings. BSE eigenvalues are converged up to
10 meV, using a k-point mesh of 34 × 34 × 1 in addition to the computational
setup already explained in the previous section.

Fig. 6.6d shows the optical absorption spectra for the same configurations,
which is characterized by a step-like shape (shaded area), typical of 2D semicon-
ductors, with prominent individual excitonic peaks lying below the onset of the
continuum. The optical gap ranges from 4 (yellow curve) to 4.66 eV (violet curve),
to be compared with the experimental onset of about 2.8 eV. The discrepancy is
probably related to the fact that we are here considering the optical response of
ideal systems in vacuum with perfect registry. The real material comprises instead
single- and few-layer regions with misoriented (turbostratic) stacking, which can
give rise to quantitatively different excitations, including optically inactive ones
(see below) that may become relevant when probing the sample at finite mo-
mentum. The exciton binding energy (EBE) of the lowest lying excitation with
respect to the continuum is predicted to exceed 1 eV, irrespective of the specific
free-standing configuration computed here, as can be seen in Fig. 6.6d by compar-
ing the excitation energy of the first exciton, Eexc,1 with the GW gap (exemplified
in panel f for 2-side D-Gr, violet curve, where the EBE1 amounts to 1.44 eV).
This holds true also for the boat conformer of 2-side D-2LGr (red curve), for which
the first bright exciton corresponds to the 19th excitation, while the first excita-
tion lies at about 3.6 eV, with EBE1 = 1.1 eV. Such a large value results from
both the enhanced e-h interaction in reduced dimensions and the weak screening
of few-atom-thick free-standing systems in vacuum, as previously found for other
low-dimensional materials [218].

To better understand the nature of the excitations, we analyse the excitonic
wavefunctions, which are inspected by fixing the hole position in the centre of
the C–C bond, where the valence states are located, and by plotting the electron
probability density. For both mono and bi-layer deuterated Gr, as shown in
Fig. 6.7, we find that the lowest lying excitons have charge transfer character, with
the hole localized on the C–C bond and the electron having mixed C–H localization
and free-electron-like character, as already shown for single-layer graphane [240].
This again demonstrates that the optical properties of the system are robust
irrespective of the actual configuration considered (e.g. single- or bi-layer).
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Figure 6.6: (a) Experimental VB spectra for clean NPG (black curve) and deuter-
ated NPG (blue curve). (b) Simulated G0W0 DoS for the models in 6.5b (same
color code); zero energy set at midgap; a homogeneous broadening of 140 meV is
applied. (c) HREEL spectra of pristine NPG (black dots) and deuterated NPG
(blue dots). (d) Calculated Im(εM) in the optical limit (q → 0), for the models
in 6.5b (same color code). The binding energy of the nth exciton (EBEn) can be
read as the difference between the GW gap Egap,GW and the corresponding excita-
tion energy Eexc,n, here exemplified for the first exciton of the 2-side D-Gr (violet
curve). A Lorentzian broadening of 100 meV has been included. The continuum
region is indicated as coloured shaded area.
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Figure 6.7: Electron probability distribution for the lowest excitons in mono (top)
and bi-layer (bottom) configurations. The hole is fixed on a C–C bond. Electrons
show mixed C–H localization and free-electron-like character.

6.3 Conclusions

We performed successful computational characterization of different configura-
tions of hydrogenated graphene, and corroborated the experimental results to
assess the candidate configurations composing the NPG samples. Strong electron
electron interaction effects are identified, resulting in large quasiparticle correc-
tions and the opening of an insulating quasiparticle gap. Besides, large exciton
binding energies are computed (∼ 1eV), leading to an optical gap exceeding 4 eV
irrespective of the specific configuration, as resulting from GW and BSE simula-
tions. Predicted spectral GW-DoS, band structure and (BSE-enabled) excitonic
effects support the realization of double-side, fully-hydrogenated single- and bi-
layer structures, thus confirming this as a successful strategy to realize a thermo-
dynamically stable prototype of graphane. Most interestingly, both single layer
and bi-layer double side hydrogenated graphene unveil a direct band gap opening,
which makes this prototype of semiconducting graphane a promising platform for
optoelectronics applications.



Chapter 7

Discovering novel 2D excitonic
insulators

In this Chapter I present results on computational screening on a set of 2D ma-
terials, proposed to the discovery of novel excitonic insulators. Calculations are
still running, as the project started only a few months before the writing of this
Thesis, and here only preliminary results are shown. Despite that, they are very
promising, and I’m planning to conclude the study in the next future.

More than fifty years ago, hypothesis about the spontaneous Bose condensa-
tion of excitons in matter, i.e. without external optical excitation, were done [77,
262, 263]. This new theorized phase shows formal analogies with the superconduc-
tor ground state [78], albeit the nature of the order is different [264], and it may
exhibit effects like macroscopic quantum coherence and exotic low-energy excita-
tions [79, 80, 81, 82]. Firstly, Mott [265] made the hypothesis that in semimetals,
under specific conditions, there can be a formation of non-conducting and strongly
interacting bound electron-hole pairs, with a consequent opening of a small band
gap. This corresponds to an instability of the ground state of the system with
respect to the formation of a Bose condensate of excitons. Additional consid-
erations were done by Knox [266] for semiconductors 1. He suggested that this
crystal instability may occur when the excitonic binding energy (referred as EBE
or EB throughout this work) is larger than the transport energy gap Eg. In this
case, the energy required for the formation of an exciton, namely Eexc =Eg−EB, is
negative. The new ground state, containing these spontaneously formed excitons,
presents lower symmetry as for instance the formation of charge density waves
(CDW) and eventually structure anomalies with respect to the normal ground
state. These two were just the initial ideas that led to speculations and theoret-

1He specifically targeted indirect band gap semiconductors, but the same theoretical approach
can be used for the direct case.
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ical insights [75, 263, 77, 76, 267] that in materials with zero or small band gap
this new phase of matter, called the excitonic insulating phase, may be induced
(below a critical temperature Tc or above a critical pressure Pc).
Narrow gap low-dimensional materials or bulk semimetals/semiconductors under
pressure are promising candidates for the excitonic insulator (EI) realization be-
cause of the reduced electronic screening and enhanced Coulomb interactions. A
possible strategy to theoretically predict such phase is a combination of ab-initio
methods (Many-Body Perturbation Theory), to find the instability Eg−EB < 0,
and effective mean field theories with model Hamiltonians to get insight into the
excitonic ground state. This approach was successfully used in the past for several
systems, e.g. armchair carbon nanotubes [268]. Other examples are T′ MoS2 [269]
(a quantum spin Hall insulator, QSHI) and Bulk MoS2 under pressure [270], that
have been theoretically predicted to develop a purely electronic ferroelectricity as-
sociated to the charge density wave driven by the excitonic order. Experimental
evidences of the EI phase is rather complex to be found as there are not uni-
versal (i.e. not system-independent) fingerprints to guide experimental groups.
For example, in Ta2NiSe5 an optical gap is found below Tc comparable with the
EB [271], and the temperature-dependent superfluid plasma frequency of the ex-
citonic condensation has been determined from measured optical data [272]. Any-
way, in this system, as in TiSe2, besides the excitonic instability a singularity in
the phonon density of states indicates that also structural instabilities contribute
to the opening of tha gap [273, 274, 275, 276]. The ideal EI transition is purely
electronic, with only small lattice distortions [262, 277]. Very recently, two inde-
pendent researches showed experimental evidence of the realization of the EI in
WTe2 monolayers [278, 279] and other systems as stacked WTe2 has been shown
to present unexpected but interesting properties that might be inquire the EI
phase, namely ferroelectricity [280] and gate-induced superconductivity [281, 282]
in close proximity to the insulating phase. In this context, theoretical study are of
paramount importance in explaining observed experimental features that could be
associated to the EI transition as for instance bulk MoS2, where unexpected fin-
gerprint in Raman spectra where observed experimentally [283, 284, 285, 286, 287]
and then clarified by theoretical considerations [270] suggesting the realization of
the EI above a critical pressure. Moreover, theoretical predictions can be of great
relevance in proposing materials that are good candidates for the EI realization.

In this work we perform an high-throughput study based on MBPT [3, 4, 2]
on recently discovered 2D materials (by computational exfoliation) [12] to find
candidates showing excitonic instability. MBPT is the state-of-the-art approach
to study excited states of materials and is able to correctly capture the electron-
electron and electron-hole interactions providing accurate estimation of the elec-
tronic gap and electron-hole binding energies from which it is possible to individ-
uate excitonic instabilities.
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7.1 A DFT-based preliminary screening

The systems object of this study are contained in the Material Cloud 2D materials
database (MC2D) [13]. The database contains N>2000 two-dimensional systems
discovered by computational exfoliation [12] of experimentally known bulk crystal
structures taken from different available databases: COD [288], ICSD [289] and
MPDS [290]. We considered previous relaxed structure as contained in the MC2D,
together with the associated KS-DFT band structure to understand the character
of the system (metal, semimetal, semiconductor) and extract preliminary informa-
tion to reduce the number of systems to be studied by means of computationally
demanding GW/BSE simulations. A first estimation of the EB can be provided,
at the DFT level, using a simple 2D hydrogenic excitonic model, which requires to
know only the exciton effective mass µexc = µe + µh and the static polarizability
α, both already computed 2 and stored in the database. The model was derived
by Thygesen and co-workers [291, 292], and expresses the 2D-EB as:

E2D
B =

8µexc
(1 +

√
1 + 32παµexc)2

(7.1)

This preliminary analysis was done by Davide Campi and resulted in the iden-
tification of 35 candidates over N>2000 input systems with E2D

B ∼ Eg. The
candidates are shown in Table 7.1, ordered for increasing exfoliation binding en-
ergy BEexf . With a BEexf < 60 meV/Å2, ∼70% of the materials considered here
are easily exfoliable. We considered metals the systems with EDFT

g < −200 meV,
namely the As2Ir2, As2Rh2 and Ir2P2. Indeed, as shown in Fig. 7.1 for the Ir2P2,
this is indeed a metallic band structure. We decided to exclude these 3 systems
from our set as metallic systems are not ideal candidates as we are looking for
semimetals or small band gap semiconductors. The remaining systems are 13
semimetals (−200 meV < EDFT

g < 20 meV), and 19 semiconductors.

Around ∼50% of these candidates are very large systems, with large supercell
volumes (V> 750Å3) and more than 100 electrons per unit cells. This is shown in
Fig. 7.2, where we plotted histograms for the frequency distribution of the number
of electrons Ne− and the cell volume V as reported in Table 7.1. Moreover, ∼40%
of systems are semimetals: for these cases the effect of the Spin-Orbit Coupling
(SOC), that can eventually open a small gap, has been included. In presence of
spin orbit coupling, GW and BSE calculation are solved in a spinorial basis which
almost double the required computational cost with respect the cases it can be
neglected.

2At the DFT level
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Figure 7.1: Band structure computed at the DFT level for Ir2P2. The orange
band represents the top of the valence region (VBM), whereas the red one is the
bottom of the conduction bands (CBm). These are obtained considering a priori
the number of electrons in the unit cell and populating bands. The Fermi level is
set to zero. Ir2P2 is a metallic system and should be excluded by our study. The
other two systems, As2Ir2 and As2Rh2, present an almost identical band structure
(see Appendix I for further details).

Figure 7.2: Histograms for the distribution of the candidate systems with respect
to the cell volume V (left) and the number of electrons in the unit cell (right).
We observe that ∼50% of the materials have V> 750Å3 and Ne− >100.
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index System BEexf (meV/Å2) V (Å3) Ne− EDFT,bands
g (meV) EGW

g,coarse (meV) EGW,Γ−Γ
g,coarse (meV)

1 Li4S4 7.5 700 36 -65 -157 2061
2 Fe2O12Si4 8.2 592 120 52 73 132
3 Ga2I2Y2 13.4 428 82 -149 -153 1332
4 I2N2Ti2 14.6 362 68 20 2008 -1470
5 Hf2Te10 16.5 1247 212 -20 403 603
6 Te10Zr2 16.7 1259 184 61 94 336
7 FeNO8S2 18.1 471 81 71 -82 -172
8 CdK4P2 19.3 902 66 -154 -981 1558
9 Fe3O12Si4 19.9 587 136 -32 − −
10 Pd6Ta4Te10 23.5 1698 376 -7 1274 1311
11 Ir2Ta2Te8 25.8 1151 216 -26 11 11
12 Rh2Ta2Te8 26.4 1134 216 33 248 130
13 Mo4S8 26.8 674 104 29 -158 -13
14 Ir2Nb2Te8 27.1 1153 188 -8 60 -133
15 Cl6Cu2H8Li2O4 29.5 1278 118 143 2183 2260
16 O2S4Sb2Y2 31.1 492 88 94 75 4119
17 In2S4Zn 36.0 392 70 0 247 247
18 Bi4Br2In2Se8 37.8 1913 148 101 − −
19 Cl4K4O8V2 38.4 1216 112 18 -120 -57
20 Cl4K4O8 38.4 1445 112 47 415 431
21 Cu2Se6Tl2Zr2 41.2 1058 124 129 972 972
22 Cu2Te6Ti2Tl2 43.9 1182 184 57 704 709
23 Cu4Te6Ti2 44.0 1101 196 1 − −
24 Cu2Sb2Se4 52.2 669 92 200 357 357
25 Cu6K2Te4 52.6 947 196 144 1004 1004
26 AsCuLi2 62.7 334 30 -1 136 223
27 Na2O6Pt 68.3 492 72 80 515 670
28 As2Ir2 72.1 279 44 -1097 − −
29 Cu2Na2S4Zr 73.1 662 92 173 1320 1320
30 Ag4K2Se8Ta2 75.1 1519 196 10 774 865
31 As2Rh2 77.1 275 44 -982 − −
32 I6Rb2Sn2 83.4 1355 148 29 1168 1264
33 Ir2P2 85.8 262 44 -903 − −
34 FKO2Se 116.0 617 34 53 501 1445
35 Ni6Ta4Te10 − 1317 376 48 -72 -84

Table 7.1: Candidate systems from the DFT-based screening (performed by Da-
vide Campi), ordered for increasing exfoliation binding energy BEexf (as computed
using DF2-C09 vdW functional in Ref. [12]). For BEexf <60 meV/Å2, a system
can be considered easily exfoliable. This is the case for ∼70% of them. The next
three columns indicate the volume of the supercell V, the number of electrons
per unit cell Ne− , the KS-DFT band gap as obtained from bands computed on
the high-symmetry k-path with Quantum ESPRESSO. The last two columns
concern the minimum and the direct Γ− Γ band gaps as computed with Yambo
using the coarse k-mesh, as described in Section 7.2. The “−” sign indicates that
the related data is not yet available to be presented.
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Figure 7.3: Screening funnel. After the first DFT screening, we performed the
triple step GW+BSE, to further exclude systems. Then, proper GW convergence
and BSE extrapolation is performed. Only for AsCuLi2 we have the BSE extrap-
olated results. For each step of the funnel, we applied the filter indicated by the
lower text in the figure. The superscript * indicates that we are still running
simulations, so we only have preliminary results.

7.2 MBPT screening protocol

The large size of the systems object of this study represents a real computational
challenge for GW and BSE simulations: Results have to be converged with respect
to several interdependent quantities like the empty state summations and PW ex-
pansions (see Chapter 3 for more details), considering that each single calculation
is computationally heavier than the corresponding DFT step of at least one order
of magnitude. These limitations prevent us from proceeding directly with brute
force GW and BSE convergence studies for each of the 31 systems. For this reason
we designed the following screening protocol, also depicted in Fig. 7.3. The first
two steps are the ones already mentioned: the DFT screening and the exclusion
of metallic systems from the set under scrutiny. Then we start by performing, for
each system, two GW calculations with moderate converged parameters using two
different k-point meshes, chosen in such a way to include the k-points that detects
the band gap (as obtained from the KS-DFT bands) with increasing precision:

1. a coarse mesh calculation, i.e. with k-point density ρk
3 such that 0.125 ≤

ρk ≤ 0.07 Å−1;

2. a denser mesh calculation: 0.07 < ρk ≤ 0.02 Å−1.

3Expressed as the maximum distance between adjacent points along a reciprocal axis.
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An additional criterion for the mesh choice is the number of crystal symmetries
characteristic of a system: for Nsymm <6 symmetries, we used the lowest mesh in
the range of the available ρk, despite the explicit inclusion of the band gap in the
mesh. The denser mesh is very stringent and, as we are using a recently developed
k-point convergence accelerator (RIM-W [159]), we consider this mesh as safely
converged. A further increment of such a mesh will make the calculations to
converge the other parameter unfeasible. If the system is a semimetal at the DFT
level, or even after the GW simulations, the same calculation is performed again
with SOC to observe a possible gap opening. Otherwise, the system is excluded
from the ones delivered to the next step of the study. For the two GW steps we
filtered only systems with band gap 0< EGW

g <300 meV and 0< EGW
g <200 meV,

respectively. These upper limits are reasonable as we are looking for very small
band gap semiconductors and we do not expect consistent variations larger than
200 meV with respect to the final converged result.

Next, a BSE single calculation 4 using the denser GW mesh, in order to un-
derstand if the energy of the first exciton Eexc is already negative for the semi-
converged value of the parameters. We expect the value of the excitation energy
to lower in modulus, by approaching convergence, but to not change sign.

The most computational effort consists in the GW convergences 5 for the
systems showing negative eigenvalue for the first excitons. This is done at fixed
k-mesh density. The convergence is imposed on the gap EGW

g and the relative
absolute convergence threshold is between 10 and 30%, depending on the size
of the system and of the band gap. Here, gaps are very small: even a 30% of
convergence is near the state-of-the-art GW precision (∼ 10, 20 meV). The usual
constraint for the GW gap, i.e. 0< EGW

g <200 meV, is applied at the end of the
convergence.

Then, a final BSE extrapolation of the exciton eigenvalue is done considering
calculations performed with different k-meshes, starting from the GW one and
lowering the density ρk. The extrapolation is performed using the expression
E = A/(Nk)

α + b, where Nk is the number of k-points in the irreducible Brillouin
Zone (iBZ).

4The quasiparticles needed are computed with the YamboWorkflow provided in the aiida-
yambo plugin and then used in the BSE. For further details see Chapter 3. In this way we
can track the real GW gap (not the one inherited from DFT) and understand at what transfer
momentum q solve the BSE. Now this task is automated, so we are able to run BSE@GW, a
non-trivial task, automatically from scratch.

5The parameters to be converged are FFTGvecs, Empty states summations and PW cutoff
for the screening matrix. FFTGvecs is the number of G-vectors or energy cut off for expanding
the wavefunctions/FFT transforms.
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7.3 Results

Ground state charge densities and KS-DFT eigenvalues and eigenfunctions are
computed by means of Density Functional Theory within the Quantum ESPRESSO
package [116, 117], implementing plane-wave basis set and pseudopotential ap-
proach. The GGA-PBE [98] approximations was used to describe the KS-DFT
exchange-correlation functional, by means of optimized norm-conserving Vander-
bilt (ONCV) SG15 [110, 111] pseudopotentials. GW and BSE simulations are
performed within the Yambo code [64, 65]. The dielectric screening matrix is
described by using the Godby-Needs plasmon pole approximation [53] (GNPPA).
Slab truncation of the Coulomb potential [115] is used to exclude interactions
between supercells along the non-periodic direction (z -axis), and the Random
Integration Method [158] (RIM) was used to fix divergences of the Coulomb inter-
action and to accelerate convergence with respect to the BZ sampling. We adopted
the already mentioned stochastic integration of the screened potential (RIM-W
method) [159], which allows to have a GW-converged results using Monkhorst-
Pack k-points grid just slightly denser than the DFT one.

All simulations are performed within the aiida-yambo plugin [63, 155, 156],
based on the AiiDA high-throughput oriented infrastructure [39, 40]. Specifically,
we used the implemented workflows, namely YamboWorkflow and YamboConvergence,
to automate the single DFT+GW (BSE) calculations and full convergence stud-
ies, respectively. In this way, each single step in the funnel of Fig. 7.3 is computed
entirely without human intervention. Analysis of the results is performed by hand,
as careful attention has to be paid at the decisional step.

7.3.1 Triple-step MBPT screening

This first screening is composed of three steps, in the sense that we perform two
GW and one BSE calculations to preliminary decide if a system has to be further
investigated (i.e., converged) or not. The two GW calculations are performed
with semi-converged parameters and two different k-points meshes, both chosen
in such a way to contain the k-point of the gap with a certain degree of precision.
The results on the first GW calculations, the one with the coarse k-point mesh,
are shown in the last two columns of Table 7.1. In particular, we note that there
are some negative values of EGW

g,coarse and EGW,Γ−Γ
g,coarse , meaning that we are facing a

metallic behavior or a resolution of the band inversion (BI), respectively. This is
the case of the I2N2Ti2, studied by Marrazzo et al. [24] by means of DFT+MBPT.
As shown in Fig. 7.4, the KS-DFT band structure shows a (distorted, due to
anisotropy) Dirac cone near the Γ point. When the GW correction is applied, the
order of the bands between the Γ and the Dirac cone is inverted due to a positive
correction of the valence band and a negative one for the conduction band. This
gives a resolution of the BI, here for I2N2Ti2 evaluated to be EGW,Γ−Γ

g,coarse = −1.47 eV.
Both metallic and BI systems are discarded at this level of the study. Excluding
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Figure 7.4: KS-DFT band structure of I2N2Ti2, showing the band inversion which,
once applied the GW correction, gives EGW,Γ−Γ

g,coarse = −1.47 eV.

also the other systems with 0< EGW
g,coarse <300 meV, the next step, concerning the

GW simulation with the denser k-grid, considered only 7 systems. In particular, in
this case we computed several quasiparticle corrections in order to inspect the GW
band gap of a given system: indeed, the KS-DFT and GW gap can be located at
different k-points, so an estimation of the GW gap a priori from DFT results can
be erroneous. The quasiparticle corrections are computed automatically within
the YamboWorkflow by imposing a maximum distance of 150 meV for the KS-DFT
bands with respect to the middle of the gap region.

As shown in Table 7.2, only 4 out of these 7 materials are predicted to have
a 0< EGW

g,dense <200 meV, and so are then further investigated with respect to
the BSE eigenvalues Eexc. Moreover, plotting the quasiparticle corrections with
respect to the corresponding DFT eigenvalues determines the possibility to use
or not a scissor&stretching operator to skip the calculation of the quasiparticle
bands at the BSE step and approximate with a linear correction the DFT ones.
We found that only for O2S4Sb2Y2 this approximation can be done without loss
of significant accuracy around the band gap region, as shown in Fig. 7.5 (plots for
the other systems are shown in Appendix J).
Among these resulting 4 materials, the AsCuLi2 is the only one with BEexf >60

meV/Å2, i.e. only potentially exfoliable. Together with O2S4Sb2Y2 (easily exfoli-
able), there are no previous experimental studies to be compared with. The last
two candidate materials, Rh2Ta2Te8 and Ir2Ta2Te8, are easily exfoliable systems
which were already studied in the past as component of layered van der Waals
topological metals [293]. In particular the monolayer Ir2Ta2Te8 has been predicted
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Figure 7.5: GW quasiparticle eigenvalues vs the corresponding DFT results for
O2S4Sb2Y2. We observe that in this case a scissor&stretching correction can be a
good approximation to correct DFT eigenvalues.

to be a QSHI [294] and the bulk geometry was experimentally characterized to be
isostructural to Rh2Ta2Te8 (as well as the excluded Ir2Nb2Te8) [295, 296]. This
is indeed suggested also from the similarities in the KS-DFT bands structures
shown in Appendix I. Results for the BSE calculations show for 3 of the systems
a negative first excitonic eigenvalue as reported in Table 7.2. BSE calculations on
Rh2Ta2Te8 are currently ongoing and we decided anyway to also consider it as a
candidate for the GW convergence step by virtue of its small value of EGW

g,dense and
of the similarities with the other candidate Ir2Ta2Te8.

7.3.2 GW convergence

This is the most expensive step of the study. Up to now, we performed full
GW convergence only for AsCuLi2 and Rh2Ta2Te8 [293]. For O2S4Sb2Y2 and
Ir2Ta2Te8, we have not yet converged results. For AsCuLi2, we obtained a GW
band gap of 185 meV, converged up to its 10%, and the final parameters are (FFT-
Gvecs, Bands, PW cutoff) = (77 Ry, 1400, 10 Ry). This system was also shown
to be a QSHI [24]. For Rh2Ta2Te8, easily exfoliable (BEexf=26.4 meV/Å2), we
obtained a GW band gap of 98 meV, converged up to its 25%, and the parameters
are (FFTGvecs, Bands, PW cutoff) = (36 Ry, 400, 8 Ry). Here we underline that
this band gap is computed for the same k-point mesh of the DFT band gap; the
difference can arise due to the fact that GW and DFT minimal gaps can be lo-
cated in different points of the BZ. A better estimation of the gap will be provided
after the calculation of quasiparticles over a larger set of k points needed for the
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index System BEexf (meV/Å2) EGW
g,coarse (meV) EGW

g,dense (meV) Eexc (meV) EGW,conv
g,dense (meV) SOC Candidate

26 AsCuLi2 [289] 62.7 140 94 -240 185 True True

16 O2S4Sb2Y2 [290] 31.1 76 52 -365 − False True

12 Rh2Ta2Te8 [293] 26.4 250 67 − 98 False True

11 Ir2Ta2Te8 [294, 293] 25.8 11 6 -432 − True True

14 Ir2Nb2Te8 [295, 296] 27.1 60 -155 − − True False

17 In2S4Zn [297] 36.0 250 -360 − − True False

6 Te10Zr2 [298, 299] 16.7 94 -225 − − False False

Table 7.2: Summary of the triple step screening. In order, we have the exfoliation
Binding Energy BEexf . We consider easily exfoliable materials with a BEexf <60
meV/Å2. Then, we indicated the GW gap for the coarse mesh EGW

g,coarse, for the
denser one EGW

g,dense, the eigenvalues for the first exciton Eexc, the SOC activated
or not and if the system can be considered for GW convergence. We see that
the first four systems are candidates to be further investigated. Even if Eexc for
Rh2Ta2Te8 is not yet computed, the value of the EGW

g,dense suggests that it can be
a possible candidate for the excitonic insulating phase. The last three systems
show a strong band inversion, so we decided to not continue the investigation on
them. Please note that the GW and BSE quantities shown here are not yet fully
converged.

BSE step.

7.3.3 BSE extrapolation

BSE extrapolation has been done firstly on the smallest system of the set, the
AsCuLi2. The calculations are performed for a set of four k-point meshes: 20×20×1,
26×26×1, 34×34×1 and 40×40×1. Results, shown in Fig. 7.6, are very promis-
ing. The extrapolation of the results is done for both the GW band gap and BSE
excitation energy with an inverse power law with respect to the number of k-points
in the iBZ, Nk: E = A/(Nk)

7
2 + b. This was the best power law to perform the

fit, in terms of mean squared error. Optimal power laws can be found with more
points (i.e. additional k-meshes). We performed the extrapolation considering
only the largest three meshes (as the mesh (20×20×1) is clearly out of conver-
gence and can be excluded from the fit. From Fig. 7.6 we see that the GW band
gap is very well converged (∼ 1 meV), and the first BSE eigenvalue is still out of
convergence even for a 40×40×1 mesh (the highest one in the plot) of ∼ 20 meV.
More calculations have to be included in the extrapolation to have a more accurate
extrapolation, but anyway it seems that the exciton energy remains negative, with
an extrapolated value of -151 meV. The resulting extrapolated excitonic binding
energy is estimated to be EB,extra = 316 meV.
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Figure 7.6: First results on AsCuLi2, for GW gap and BSE first eigenvalue. The
extrapolation is done using an inverse power law with respect to the number of
k-points in the iBZ, Nk: E = A/(Nk)

7
2 + b. The black X in the plot represent

points not used in the fitting procedure, as too much out of convergence. The
resulting extrapolated excitonic binding energy is EB,extra = 316 meV.

7.4 Computational details of the simulations

As anticipated above, MBPT calculations on the selected structures are extremely
cumbersome due to the large size of the systems and are at the verge of the
possibilities of modern machines. Such calculations were possible thanks to the
use of a large partition of the CPU partition of the LUMI machine [300], where the
access was granted in the framework of a fruitful collaboration with the THEOS-
MARVEL group of Prof. Nicola Marzari at EPFL in Lausanne. GW and BSE
simulations are done using from 80 up to 200 nodes (128 cores/node, 256 GB of
maximum RAM memory per node) with massive usage of the OPENMP (shared
memory) parallelism: the average number of CPUs per single MPI (distributed
memory) task was between 16 and 128, due to memory reason.

The effective human time and the computational time spent to run the simu-
lations performed in this work (254 runs, excluding the final BSE extrapolations
as still ongoing) are shown in Fig 7.7. On the left panel, we observe that the total
time to run all the simulations (the cumulant curve) is >200 hours. Considering
the cumulant per system, i.e. the cumulant of all the set divided by the number
of systems, we can prove that the real global time required to run all the study
(each single step of the screening) was 50 hours, i.e. ∼2 days. The right panel
shows the core-hours timing for the calculations: to run the full set, we spent ∼2.5
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Figure 7.7: Timings for the 254 simulations of the MBPT steps of this work,
excluded the BSE extrapolations. Left: effective human time needed to run the
simulations. The cumulant per system, i.e. the cumulant for all systems (green
curve) divided by their number, shows that the full set required only 50 hours.
Right: computational time, in terms of core-hours. The work was performed
in ∼2 running days consuming ∼2.5 million core-hours. We underline that all
the curves, except the cumulant per system, concern the simulations for all the
systems.

million core-hours (in less than two full-running days).
As expected, the DFT simulations represent only a very small fraction of the

human (computational) time spent.

7.5 Conclusions and future plan

From these first calculations, AsCuLi2 seems promising to be an excitonic insu-
lator (EI) candidate, as it shows a negative extrapolated BSE eigenvalue (-151
meV). Moreover, this system is also a topological insulator (TI) [24], so it can be
interesting to study the interplay between TI phase and EI one (if any), as in the
1T′ MoS2 case [269].

To conclude the work presented in this Chapter, the following steps will be
performed in the next future:

1. complete the study on AsCuLi2 by adding more data for the BSE extrapo-
lation;

2. perform the BSE extrapolation for the Rh2Ta2Te8;

3. complete GW convergences for O2S4Sb2Y2 and Ir2Ta2Te8 and then compute
the BSE extrapolations.
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Then, this successful protocol for the discovery of novel excitonic insulator can
be applied also to other databases of 2D materials, like the C2DB [14].



Conclusions

In this Thesis I developed advanced and complex workflows to perform MBPT sim-
ulations in an automated and HT fashion, requiring the least possible human in-
tervention and encoding ad-hoc algorithms. The most relevant tasks accomplished
by these workflows are efficient GW (BSE) convergence and automatic GW band
structure interpolation. I specifically designed the workflows to deal with complex
chain of interlinked calculations, interfacing different codes (Yambo, Quantum
ESPRESSO, Wannier90), and to perform error handling with respect to sev-
eral common problems. Moreover, I tackled the issue of interdependence between
selected crucial parameters as implemented in Yambo, fundamental in order to
perform accurate convergence studies of MBPT quantities. I also implemented
GPU-oriented optimizations in Yambo, targeting the stringent memory require-
ments that characterize the study of low-dimensional systems. These develop-
ments are fully available, as contained in open source codes (aiida-yambo plugin,
Yambo).

I firstly exploited the power of these workflows by computing the quasiparticle
ionization potential and electron affinity of the molecules belonging to the GW100
dataset, within the Godby-Needs plasmon pole model, not yet provided among
the approximations used in the past for the study of this dataset.

Concerning two-dimensional systems, I obtained the momentum-resolved ex-
citonic dispersion of the carbon-nitride C3N, showing also that the quasi-linear
downward convexity of the excitonic band structure comes from the indirect na-
ture of the fundamental band gap, as a result of the strong independent-particle
contribution. Still focusing on carbon-based systems, I corroborated experimental
results on hydrogenated nano-porous graphene by computational characterization
of the electronic and optical properties for several hydrogenated graphene config-
urations. My calculations helped in the determination of the candidate structures
composing the experimental samples, and provided useful insights for what con-
cerns the character of the involved excitons. I successfully designed and applied
a screening protocol to a subset of recently discovered (by computational exfo-
liation) two-dimensional materials. As a result, I found four materials that are
expected to be unstable with respect to exciton formation in their ground state, a
prerequisite to the realization of the excitonic insulating phase. Further analysis
is still in progress but the preliminary results are very promising.
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The results contained in the present Thesis clearly show the power of these
newly developed workflows for the automated study of excited states properties
of materials, paving the way for real high-throughput studies by means of Many-
Body Perturbation Theory. Thanks to these developments and within the next-
generation of pre-exascale and exascale supercomputers, these simulations may
become extensively and routinely performed by the materials science community
in the next future.
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Appendix A

Second quantization

In order to greatly simplify the discussion of many identical interacting particles,
we rely on the second quantized form of the Hamiltonian (or, more generally, of
operators). This approach considers physical systems in a quantum-basis |N〉 =
|n1, ..., n∞〉 that describes the number of particles ni occupying a given state i in a
complete set of single-particle states. One advantage of second quantization is that
now the quantum-mechanical operators incorporate the statistics of Fermionic
(Bosonic) states, and avoid to treat directly the many-body wavefunction that
otherwise should be written as antisymmetrized (symmetrized) products of single-
particle wavefunctions. Let’s focus on fermionic systems: we define the creation
and annihilation operator â†i and âi, which create and destroy a particle if acting
on a given fermionic state |i〉. They modify the number of particles belonging to
that state, and satisfy the anticommutation relations {âi,â†j} = δij, {âi,âj} = 0.
These anticommutation rules reproduce the correct statistics of Fermions.
It is convenient to define the so-called creation and annihilation field operators,
that are simply a linear combination of the â†i and âi ones:

Ψ†(r) =
∑
i

ψ†i (r)â†i

Ψ(r) =
∑
i

ψi(r)âi
(A.1)

the coefficient of the expansion are the single-particle states ψk(r), and the sum
is over the set of single-particle quantum numbers i. Therefore, the expression of
one- and two-body operators in terms of these field operators is, respectively:

T̂ =

∫
drΨ†(r)T (r)Ψ(r)

V̂ =
1

2

∫
drdr′Ψ†(r)Ψ†(r′)V (r, r′)Ψ(r′)Ψ(r).

(A.2)
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Let |N0〉 be the true many-body ground state1 of the fermionic system composed
of N identical particles, written in the Heisenberg picture. This is solution of the
time-independent interacting Schroedinger equation Ĥ |N0〉 = E0 |N0〉, and the
time evolution of field operators is described as follows:

Ψ(r, t) = eiĤΨ(r)e−iĤt. (A.3)

Finally, we can also express the charge density of a fermionic system in terms of
the field operators as:

ρ(r, t) = Ψ†(r, t)Ψ(r, t). (A.4)

1We assume also |N0〉 to be normalized, i.e. 〈N0|N0〉 = 1.



Appendix B

Maxwell’s equations and
dielectric properties of solids

The vast majority of the studies performed throughout this thesis concern the
interaction of radiation with matter. The theoretical treatment of dielectric and
optical properties of solids is based on Maxwell’s equations and their solution for
time-varying electric (magnetic) fields. In the presence of a medium, the action
of electric and magnetic fields substantially creates effects like electric dipoles,
magnetic moments, polarization charges and induced currents. We can decompose
the total charge density of a system in two contributions:

ρtotal = ρext + ρpol (B.1)

where ρext the external charge density to the medium, responsible of the exter-
nal electric field, and ρpol is the consequently induced polarized charge density,
described in terms of the polarization vector P:

ρpol = −∇ ·P (B.2)

Considering no external current 1 Jext = 0, the total current density is:

Jtotal = Jcond + Jbound

= σ1E +

(
∂P

∂t
+∇×M

)
(B.3)

where σ1 is the conductivity of the material and M is the magnetization vec-
tor. From these definitions, we further define the displacement vector D and the
magnetic field strength H as:

D = ε1E = (1 + 4πχe)E = E + 4πP

H =
B

µ1

=
B

(1 + 4πχm)
= B− 4πM,

(B.4)

1Related with the external charge density by the continuity equation: ∂ρext/∂t+∇·Jext = 0
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where ε1, χe, χm are the dielectric constant, the electric and magnetic susceptibil-
ity, respectively. After these definitions, we can give the expression of Maxwell’s
equations in presence of a medium [301]:

∇× E +
1

c

∂B

∂t
= 0

∇ ·B = 0

∇×H− 1

c

∂D

∂t
=

4π

c
Jcond

∇ ·D = 4πρext

(B.5)

Considering an harmonic time dependence of the fields F = [D,E], namely ∂F
∂t

=
−iωF, it is possible to define the complex dielectric function as

ε̂ = ε1 + iε2 = ε1 + i
4πσ1

ω
= εM(ω). (B.6)

The same extension to the complex field can be done for the conductivity: σ̂ =
σ1 + iσ2. The solution of Maxwell’s equations lead to the following dispersion
relation between the complex wavevector q and the frequency ω:

q =
ω

c

[
ε1µ1 + i

4πµ1σ1

ω

]1/2

nq (B.7)

where nq = q
|q| . It is possible to define, as new response function, the complex

refractive index N̂ as:

N̂ = n+ ik =

[
ε1µ1 + i

4πµ1σ1

ω

]1/2

(B.8)

B.1 Absorption coefficient and Loss function

Considering an harmonic electromagnetic wave and the complex form of the
wavevector, as we are inside a medium, we obtain the following for the mag-
nitude 2 of the associated electric field:

E(r, t) = E0e
iω(nc nq·r−t)e−

ωk
c
nq·r, (B.9)

where we see that the imaginary part of q takes into account an attenuation effect
due to the energy absorption of the medium. By virtue of the Lambert-Beer’s law:

α = −1

I

dI

dr
(B.10)

2The associated intensity I(r) is proportional to its modulus square.
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we can define the absorption coefficient α as:

α = −2kω

c
=

4πk

λ
. (B.11)

So, α ∝ σ1 (or equivalently to ε2): highly conducting materials attenuate radiation
strongly. The absorption spectrum of a given materials is then computed as:

Abs(ω) = ε2(ω) = ImεM(ω). (B.12)

Considering an external electron moving inside the solid, it will lose energy as
measured in electron energy loss (EELS) experiments. This moving charge pro-
duces a field D, and the associated rate of electronic energy density absorbed per
unit volume is given by:

Re

(
E · ∂D

∂t

)
= Re

(
D

ε̂
· ∂D

∂t

)
= ωIm

(
1

ε̂(ω)

)
|D|2, (B.13)

which clearly allows us to define the Loss function, as considered throughout this
work, as:

L(ω) = −Im

(
1

εM(ω)

)
(B.14)

B.2 Macroscopic and microscopic connection

It is possible to connect the macroscopic dielectric function, and all the associated
quantities (like absorption and loss spectra), with the macroscopic description of
the materials, i.e. the description of the single electronic states and the associated
properties like the energy εn,k and the occupation factors f(εn,k). Indeed, following
Ref. 301 in spite of a semiclassical independent single-particle approach, and for
the response to a transverse electromagnetic field, we can define the imaginary
part of the macroscopic dielectric function as:

ε2(q, ω) =
4π2

Ω

e2

ω2m2

∑
k

∑
l,l′

f(εl,k)[δ(εl,k − εl′,k−q − ~ω)−

− δ(εl′,k+q − εl,k − ~ω)]× | 〈l′,k + q|p |l,k〉 |2
(B.15)

where we see that indeed ε2 is built on the sum of single particle transitions
between states of energy εn,k and occupations f(εn,k), obtainable from the micro-
scopic information of the solid.
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Appendix C

Additional numerical aspects
within the Yambo Code

In this chapter we present technical details and approximations as implemented
in the Yambo Code, and used throughout this work.

C.1 Godby-Needs Plasmon Pole Approximation

and beyond

We already pointed out as in computing the dynamical screening W, the standard
method to computed the dielectric function is to apply the so-called plasmon pole
model [134, 52, 53], in which all the spectral weight is concentrated in a single
pole:

Re ε−1
GG′

(q, ω) = 1−
AGG′(q)ω̃2

GG′(q)

ω2 − ω̃2
GG′

(q)

Im ε−1
GG′

(q, ω) = AGG′(q)× [δ(ω − ω̃GG′(q))− δ(ω + ω̃GG′(q)]

(C.1)

where the matrices AGG′(q) and ω̃2
GG′(q) are the parameters of the model. Among

the flavours of PPA [134], Yambo implements the Godby-Needs PPA (GN-PPA) [53],
which imposes the condition that the model should exactly fit the ε−1 function
at zero frequency, i.e. ω = 0, and at an imaginary frequency ω = iEPPA, given
the plasmon frequency EPPA (by default at 1 Ha in Yambo, but tunable from in-
put). In this way the integral on frequencies in Eq. 2.57 can be done analytically,
yielding the result:

Σc
nk(ω) =

1

NqΩ

∑
GG′q

gnkGG′W
c
GG′(q) (C.2)
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Where W c(q) is the static correlation part of the screening potential, and gnk is
the frequency dependent part:

gnkGG′ =
1

2

∑
m

−ρnm(k,q,G)ω̃GG′(q)ρ∗nm(k,q,G′)

ω + [ω̃GG′(q)− iη]sgn(ν − εKSmk−q)− εKSmk−q
. (C.3)

If one wants to get rid of a model function for the dielectric function, has to rely on
Full-Frequency(FF) methods [51], where the integration is performed numerically:
a more sophisticated description of the dielectric function can be achieved, useful
in cases where the PPA fails. In Yambo, the FF integral is performed on the real-
axis, as explained in Ref. 65. However, as computational effort is considerably
heavier, we should always try to rely on PPA as a first approximation. All the
results in this work are obtained using GN-PPA. Last, but not least, intermediate
possibilities between PPA and FF methods are possible, like Pade expansions
of the dielectric matrix [200] or a recently developed multipole approximation,
implemented in Yambo. [54].

C.2 Random integration methods

Most of the quantities considered in the GW implementation in the Yambo code
require an integration over q, where q belongs to the BZ. This integral is then
substituted by a summation over a suitable grid of points:∫

BZ

dk

(2π)3
→ 1

NkΩ

∑
k

. (C.4)

For example, the exchange part of the Self-Energy becomes:

Σx
nk ≈ −

(2π)3

NqΩ

∑
m,q

∑
G

|ρnm(k,q,G)|2fm,k−qv(q + G) (C.5)

this approximation can be written assuming that Σx is a smooth function of q.
This is in general not true for the Coulomb interaction v(q + G), that diverges
for vanishing momentum. If in a three-dimensional system this divergence is
removed [115], for a low-dimensional system it is a very critical issue. To treat with
this problem, Yambo implements the Random Integration Method (RIM) [158],
which rewrites the HF self-energy, Eq. C.5 as:

Σx
nk ≈ −

(2π)3

NqΩ

∑
m,q

∑
G

|ρnm(k,q,G)|2fm,k−q
∫
RΓ

dq′

(2π)3
v(q + q′ + G) (C.6)

where the integral is evaluated in a region RΓ around Γ is performed using a Monte
Carlo technique. In this way, the divergence at q = Γ is cured and moreover,
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an acceleration on the convergence of the k-point sampling is obtained for the
exchange of self-energy. Combining this method with a stochastic integration
technique for the static screening, as done by Guandalini et al. in Ref. 159 for 2D
semiconductor and implemented in the Yambo code, it is possible to obtain very
accurate GW results with a k-mesh grid only slightly larger than the one used to
compute the DFT starting point. We pictorially named this method “RIM-W”.

C.3 The supercell approach within MBPT

When we deal with a low-dimensional system in a PW basis, a supercell with
a large amount of vacuum along the non-periodic direction has to be taken into
account. This is done in order to avoid spurious interaction between the fictitious
supercell replica along the direction where the periodicity is not wanted to be
physically true. The vacuum space then requires a large number of G vectors in
the PW expansion to be accurately described. If in DFT these ”vacuum layer”
can be safely retained to be not so large (for 2D, usually Rz = 15Å), when we
consider excited state properties, these length can be very large, making very soon
the calculations not feasible from the computational point of view. This is due to
the correlation part of the self-energy [115]. A solution, implemented in Yambo, is
the so-called Truncation of the Coulomb potential [115]. Within this method, the
Coulomb potential is truncated near the boundaries of the supercell non-periodic
edges in real space. This allows the use of a supercell with a moderate (usually
similar to the DFT case) vacuum layer. Several types of truncation are proposed
in Ref. 115, for a given dimensionality of the system. We proposed here the two
schemes used in this work, the spherical and the slab cutoff. For 0D systems,
like molecules the first method truncates the potential at the edges of a sphere of
radius R [302]:

ṽ0D(G) =
4π

G2
[1− cos(GR)] (C.7)

We can indeed observe that also the divergence for q→0 is analytically curated
in this case. For 2D systems instead, placed in a supercell of lenght L along the
non periodic direction, the slab cutoff lead to the following form for the Coulomb
potential:

vG(q) =
4π

|q + G|2
[
1− e−|q‖+G‖|L/2 cos[(qz +Gz)L/2]

]
, (C.8)

which still is divergent for q→0. In this case the divergence can be cured numer-
ically through the RIM method explained in Sec. C.2.
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Appendix D

Maximally-localized Wannier
functions

Maximally-localized Wannier functions (MLWFs) are an optimized (local) basis
set that can be profitably used to describe advanced properties of materials which
require very dense Brillouin zone integration like, e.g., interpolated band structure,
shift currents [303], gyrotropic effects [304] and superconductivity [305]. They
can be efficiently used to build tight-binding models and then bridge the atomic
and the mesoscopic scales, i.e. from the microscopic description of materials to
functional nano-devices [306, 307]. Here, we give a review the basic theory the
method relies on. More details can be found in several works and reviews [308,
309, 310, 311].

D.1 Basic theory

Considering a Bloch state |ψnk〉, satisfying the Bloch theorem ψnk(r) = unk(r)eik·r

(unk(r) being a periodic function of with the same periodicity of the lattice), the
Wannier function corresponding band n can be computed via a unitary transfor-
mation

|wnR〉 = V

∫
BZ

dk

(2π)3
e−ik·R |ψnk〉 (D.1)

where V is the volume of the unit cell, and R is a Bravais lattice vector. This
transformation is known as Wannier transform [312]. Bands that are well sepa-
rated from the others in terms of energy gaps, are said to be isolated. Generalizing
the theory for a single band, it is possible to describe the bundle of isolated elec-
tronic states in terms of wavefunctions related to Bloch states via two unitary
transformations:

|wnR〉 = V

∫
BZ

dk

(2π)3
e−ik·R

J∑
m=1

|ψnk〉Umnk (D.2)

155



156 APPENDIX D. MAXIMALLY-LOCALIZED WANNIER FUNCTIONS

where Uk are unitary matrices mixing Bloch states, and J is the subset of the iso-
lated bands. Up to now, we have not imposed any condition on the wavefunctions
|wnR〉. To obtain MLWFs it is necessary to impose the minimization on the sum
of the quadratic spread of the wavefunctions about their centers with respect to
a reference R (for example R=0). This quantity is called the spread functional :

Ω =
J∑
n=1

[
〈wn0| r · r |wn0〉 − | 〈wn0| r |wn0〉 |2

]
. (D.3)

The spread functional can be seen as composed [308, 311] of a gauge-invariant
term ΩI :

ΩI =
J∑
n=1

[
〈wn0| r · r |wn0〉 −

∑
mR

| 〈wn0| r |wmR〉 |2
]
, (D.4)

and a gauge-dependent part ΩD:

ΩD =
J∑
n=1

J∑
mR6=n0

| 〈wn0| r |wmR〉 |2. (D.5)

This last part of the spread functional, ΩD, is the only one that changes under Uk

action, and so it is the quantity that has to be minimized in order to obtain max-
imally localized Wannier functions. By making reference to Bloch wavefunctions,
Eqs. D.4 and D.5 can be re-written as [311, 313]:

ΩI =
1

Nk

∑
k,b

wb

J∑
m=1

[
1−

J∑
n=1

|Mmnkb|2
]

(D.6)

and

ΩD =
1

Nk

∑
k,b

wb

[ J∑
n=1

(−Im(lnMmnkb)−b·〈wn0| r |wn0〉)2+
∑
m 6=n

|Mmnkb|2
]
, (D.7)

where b connects a k point and its neighbour k+b, wb are the associated weights
to the finite difference representation of the gradient operator in k-space and
Mmnkb are defined as:

Mmnkb = 〈umk|unk+b〉 . (D.8)

If bands are not well isolated, but hybridize with other bands which do not belong
to the energy range of interest, these bands are called entangled. In this very
common case, the number of bands in a given energy window is not fixed, so
the subset of target wavefunction Jk (now k-dependent) can be different with
respect to the desired subset J . These requires the so-called disentanglement
procedure [309] that is composed of two steps:



D.2. BAND STRUCTURE INTERPOLATION 157

• select the smoothest possible subspace by applying unitary transformation
to the Jk states;

• perform the minimization of ΩD as for the isolated bands case.

The smoothness of the subspace is minimized by minimizing the gauge invariant
spread ΩI [309]. However, this disentanglement procedure is strongly dependent
on the initial trial wavefunctions belonging to the J subset, and is often guided
by chemical intuition. A recent method, the selected columns of the density ma-
trix (SCDM) algorithm [314, 315], has been proposed to avoid the need of this
initial guess and produce automatically already well localized candidate wave-
functions to obtain MLWFs. Recently, this approach was successfully used in a
high-throughput study on solids [149]. SCDM is parameter-free for an isolated
set of bands, and in the case of entangled bands requires only two parameters to-
gether with the choice of the target dimensionality for the disentangled subspace
(i.e., the number of MLWFs required).

D.2 Band structure interpolation

Once MLWFs have been obtained, the energy band structure can be interpolated
without major additional computational cost at arbitrary k-points in the BZ [309,
310]. The interpolation is performed by means of Slater-Koster interpolation
scheme [316, 317]. Considering the rotated Bloch states |ψrotnk 〉, obtained by the
action of the unitary matrix Uk (determined from the minimization of ΩD), their
corresponding Hamiltonian is computed from the starting (unrotated) one as:

Hrot(k) = U †kH̃(k)Uk (D.9)

with H̃mn(k) = ε̃mkδmn. Then, Hrot(k) is Fourier transformed in real space into N
Bravais lattice vectors R belonging to a Wigner-Seitz supercell centered in R=0,
and eventually Fourier transformed back to an arbitrary k’:

Hrot
mn(k′) =

∑
R

eik
′·RHmn(R). (D.10)
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Appendix E

Provenance graphs for
aiida-yambo workflows
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Figure E.1: Example of provenance graph for YamboCalculation. A set
of inputs are provided to the calculation instance, and outputs are collected and
generated after the actual yambo calculation, managed by the YamboCalculation

calcjob. We can observe that actually, this YamboCalculation was called by a
YamboRestart workflow.
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Figure E.4: Example of provenance graph for YamboConvergence. Provided
the inputs (the first column of boxes from the left), the YamboConvergence calls
a series of YamboWorkflows to perform the needed runs of PwCalculation and
YamboCalculation, represented by the red boxes. Outputs are then generated
and analysed by the workflow.



Appendix F

Convergence plots for all the
systems studied in Chapter 3

In the following, we show the plots produced during the convergence studies of the
systems analyzed in Section VI of the main text. We converged the Γ − Γ band
gap with respect to the two coupled parameters Nb and Gcut and the k-point grid
as well, except for TiO2 and ZnO. For diamond, we also converged the FFTGvecs
parameter, responsible for the Fast-Fourier-Transform (FFT) grids.

Figure F.1: Convergence of Nb and Gcut for bulk hBN.
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Figure F.2: Convergence of Nb and Gcut for monolayer hBN.

Figure F.3: k-mesh convergence for monolayer hBN.
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Figure F.4: Convergence of Nb and Gcut for Rutile TiO2.

Figure F.5: Convergence of Nb and Gcut for monolayer MoS2.
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Figure F.6: k-mesh convergence for monolayer MoS2.

Figure F.7: Convergence of Nb and Gcut for silicon.
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Figure F.8: k-mesh convergence for silicon.

Figure F.9: Convergence of Nb and Gcut for diamond.
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Figure F.10: k-mesh convergence for diamond.

Figure F.11: FFT convergence for diamond.
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Figure F.12: Convergence of Nb and Gcut for ZnO.
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Appendix G

Old implemented algorithm in
the aiida-yambo plugin

The procedure explained in the following describes the simplest convergence al-
gorithm, and was the one implemented in the first version of the aiida-yambo

plugin [65], working with the AiiDA 0.x version [35]. It performs univariate con-
vergences on each parameter serially (i.e. one at the time) and cyclic way (i.e. it
converges multiple times the same parameter). This cyclic approach is necessary
due to the interdependency of the parameters: when a parameter is converged, of-
ten the other one is out of convergence (in other terms, the Hessian of the function
describing the space is not diagonal, or at least its out-of-diagonal elements are not
negligible for the tested region of the parameters space). Each parameter conver-
gence consists in the following: N calculations are performed each time increasing
the parameter of a user-defined δ (and starting from a user-defined value), where
N is the user-defined number of steps for each iteration. Then, the results are
compared with respect to the last one (considered the most converged): if enough
calculations (i.e. more than a given convergence window, usually three) are con-
verged, we consider the parameter converged and we continue to convergence the
next one. If not, we perform other N calculations increasing the same parameter.
This is performed up to a maximum number of iterations M. When N∗iter>M,
the workflow exits in Failed state. Several calculations are needed, and we do
not make any prediction on the space: saddle points can trap the algorithm, and
we are limited only to the simulations carried out explicitly. Indeed, this algo-
rithm is highly inefficient - working, but inefficient - especially for interdependent
parameters:

• As the Hessian is usually not diagonal, we require a lot of calculation to
converge all parameters, and so the convergence is slow;

• We may be stuck in local flat regions (not minima or maxima), as we are
checking only the discrepancy with the last calculation; This follows in the
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need of strict convergence thresholds: risk to reach very high value of the pa-
rameters; this can be also caused by poor choice of the starting parameters,
the δ incremental step and the convergence thresholds (see Fig.G.1).

Figure G.1: Old implemented algorithm for the Γ − Γ gap of 2D hBN and the
number of empty states (Nb in above plots, here indicated as # of bands) and PW
cutoff (the Gcut parameter). Left panel: we imposed a convergence threshold of
0.03 eV, and we reached convergence (∼8.5) after 25 calculations, doubled with
respect to the 13 calculations needed with the new algorithm (see Fig.F.2). Right:
poor choice of the convergence threshold = 0.1 eV give a wrong converged result
of ∼8.2 eV, anyway not consistent with the final 8.5 obtained before.

This method is suitable for the convergence of independent parameters (so no
need of cycling procedures) that we know how to converge. For example, the
k-point mesh is very efficient, as we know that it is not dependent on the other
parameters and we usually change the mesh in a smart way.



Appendix H

Details on Wannierization at the
GW level and restart from DFT
Wannierization

Figure H.1 shows a detailed flowchart of the Wannierization workflow for GW
band structure. The left column of Fig. H.1 is essentially the same as Fig.
3.5 in the main text. The right column shows further details of Wannieriza-
tion. Firstly, a Wannier90Calculation is launched to generate the nnkp file
for the subsequent YppRestart, which performs the ypp calculation for writ-
ing the quasiparticle correction in the eig file format for Wannier90. Then,
a Wannier90BandsWorkChain is launched for Wannier interpolated bands at DFT
level. Next, a Gw2wannier90Calculation sorts the new eigenenergies in ascending
order, and rewrites relevant files. Finally, a Wannier90BaseWorkChain is launched
to obtain the Wannier interpolated bands at G0W0 level.

Some special cares need to be taken at the step of incorporating the GW
correction to the Wannier90 inputs, i.e., the initial projection matrices Amnk,
the overlap matrices Mmnkb, the eigenvalues εnk, and the Bloch wavefunctions
|unk〉, where the b is the b vectors connecting neighboring k-points[150]. Since
the GW correction might change the order of eigenvalues, and the Wannierization
disentanglement process requires the eigenvalues to be sorted in ascending order,
we need to sort the GW corrected eigenenergies and rewrite the Amnk, Mmnkb,
and |unk〉 files accordingly. Then the Wannierization and interpolation proceed as
usual. Another option is reusing the unitary transformation matrices Umnk from
the Wannierization at DFT level. Since G0W0 only corrects energies, while the
wavefunctions are left unchanged, it is expected that the orbital characters of the
wavefunctions are unchanged, thus the disentanglement process should still choose
the same set of orbitals, i.e., the previous Umnk should work as well for the G0W0
corrections. Therefore, we can also reuse the Umnk for the Wannier interpolation of
G0W0 eigenenergies thus skipping the second disentanglement step. The Wannier
interpolation is the inverse Fourier transform of the Hamiltonian on the k-point
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Structure

YamboConvergence

Find commensurate
kmesh

GW mesh 
changed?

YamboWorkflow 
for commensurate kmesh

YamboWorkflow 
for QP correction

yes no

Wannier90Calculation 
for nnkp

YppRestart 
for eig file

Wannier90BandsWorkChain 
for interpolated bands@DFT

Gw2wannier90Calculation 
for sorted eig

Wannier90BaseWorkChain 
for interpolated bands@GW

Figure H.1: Detailed flowchart of the YamboWannier90WorkChain for automated
GW convergence and Wannier interpolated GW band structure. The workflow
performs the Yambo convergence, searching of commensurate k-point mesh be-
tween Yambo and Wannier90, and running the Yambo quasiparticle calculation.
The quasiparticle correction is provided and the final steps of the flow comprise
the Wannierization and the band interpolations at DFT level and GW level.

path for the band structure, the order of eigenenergies is irrelevant, thus the Amnk,
Mmnkb, and |unk〉 can be left intact. This can speed up large-scale calculations
where the file size of these matrices are large, since usually the disk read/write
speed is the slowest part of the calculations. Moreover, reusing the Umnk means
it will reach the same minimum as the Wannierization at DFT level, thus the
Wannier interpolation accuracy of GW eigenenergies should be similar to that at
DFT level.



Appendix I

KS-DFT bands for the systems
studied in Chapter 7

In the following, we show the KS-DFT band structures for all the systems studied
in Chapter 7, as stored in the MC2DB [13, 12] and used to perform the DFT
screening as well as the first estimation of the fundamental band gap.
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Appendix J

Plots of GW corrections vs DFT
eigenvalues for candidate systems
studied in Chapter 7

In the following, we show the GW corrections with respect to the corresponding
DFT eigenvalues of the 7 systems resulted candidates after the first GW single
calculation (the one with the coarse mesh). Here the quasiparticles are computed
with the dense mesh to determine easily the real quasiparticle gap and understand
if a linear correction of the DFT bands is reliable to reproduce the GW ones.
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Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng,



BIBLIOGRAPHY 197

and Karsten W Jacobsen. The atomic simulation environment—a Python
library for working with atoms. Journal of Physics: Condensed Matter,
29(27):273002, July 2017.

[37] Kiran Mathew, Joseph H. Montoya, Alireza Faghaninia, Shyam
Dwarakanath, Muratahan Aykol, Hanmei Tang, Iek-heng Chu, Tess Smidt,
Brandon Bocklund, Matthew Horton, John Dagdelen, Brandon Wood, Zi-
Kui Liu, Jeffrey Neaton, Shyue Ping Ong, Kristin Persson, and Anubhav
Jain. Atomate: A high-level interface to generate, execute, and analyze com-
putational materials science workflows. Computational Materials Science,
139:140–152, November 2017.

[38] Jens Mortensen, Morten Gjerding, and Kristian Thygesen. MyQueue:
Task and workflow scheduling system. Journal of Open Source Software,
5(45):1844, January 2020.

[39] Sebastiaan P. Huber, Spyros Zoupanos, Martin Uhrin, Leopold Talirz,
Leonid Kahle, Rico Häuselmann, Dominik Gresch, Tiziano Müller, Aliak-
sandr V. Yakutovich, Casper W. Andersen, Francisco F. Ramirez, Carl S.
Adorf, Fernando Gargiulo, Snehal Kumbhar, Elsa Passaro, Conrad John-
ston, Andrius Merkys, Andrea Cepellotti, Nicolas Mounet, Nicola Marzari,
Boris Kozinsky, and Giovanni Pizzi. AiiDA 1.0, a scalable computational
infrastructure for automated reproducible workflows and data provenance.
Sci. Data, 7(1):300, December 2020.

[40] Martin Uhrin, Sebastiaan P. Huber, Jusong Yu, Nicola Marzari, and Gio-
vanni Pizzi. Workflows in AiiDA: Engineering a high-throughput, event-
based engine for robust and modular computational workflows. Comp. Mat.
Sci., 187:110086, February 2021.

[41] Qimin Yan, Jie Yu, Santosh K. Suram, Lan Zhou, Aniketa Shinde, Paul F.
Newhouse, Wei Chen, Guo Li, Kristin A. Persson, John M. Gregoire, and
Jeffrey B. Neaton. Solar fuels photoanode materials discovery by integrat-
ing high-throughput theory and experiment. Proceedings of the National
Academy of Sciences, 114(12):3040–3043, March 2017.

[42] Fengnian Xia, Thomas Mueller, Yu-ming Lin, Alberto Valdes-Garcia,
and Phaedon Avouris. Ultrafast graphene photodetector. Nature
Nanotechnology, 4(12):839–843, December 2009.

[43] Won-Yong Lee, Seunghyun Ha, Hyunjae Lee, Jin-Hyuk Bae, Bongho Jang,
Hyuk-Jun Kwon, Yeonghun Yun, Sangwook Lee, and Jaewon Jang. High-
Detectivity Flexible Near-Infrared Photodetector Based on Chalcogenide Ag

2 Se Nanoparticles. Advanced Optical Materials, 7(22):1900812, November
2019.



198 BIBLIOGRAPHY

[44] P.G. Eliseev. Optical strength of semiconductor laser materials. Progress in
Quantum Electronics, 20(1):1–82, January 1996.

[45] Stephen Derenzo, Gregory Bizarri, Ramesh Borade, Edith Bourret-
Courchesne, Rostyslav Boutchko, Andrew Canning, Anurag Chaudhry,
Yetta Eagleman, Gautam Gundiah, Stephen Hanrahan, Martin Janecek,
and Marvin Weber. New scintillators discovered by high-throughput
screening. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
652(1):247–250, October 2011.

[46] Kurt Lejaeghere, Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Ste-
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[77] D. Jérome, T. M. Rice, and W. Kohn. Excitonic insulator. Phys. Rev.,
158:462–475, Jun 1967.

[78] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of Superconductivity.
Physical Review, 108(5):1175–1204, December 1957.

[79] B.I. Halperin and T.M. Rice. The excitonic state at the semiconductor-
semimetal transition**a summary of thin paper was presented at the meet-
ing of the american physical society, at toronto, canada, june 1967. vol-
ume 21 of Solid State Physics, pages 115–192. Academic Press, 1968.
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Layered van der Waals Topological Metals of TaTMTe 4 (TM = Ir, Rh, Ru)
Family. The Journal of Physical Chemistry Letters, 12(28):6730–6735, July
2021.

[294] Peng-Jie Guo, Xiao-Qin Lu, Wei Ji, Kai Liu, and Zhong-Yi Lu. Quantum
spin hall effect in monolayer and bilayer tairte4. Phys. Rev. B, 102:041109,
Jul 2020.

[295] Arthur Mar, Stephane Jobic, and James A. Ibers. Metal-metal vs tellurium-
tellurium bonding in wte2 and its ternary variants tairte4 and nbirte4.
Journal of the American Chemical Society, 114(23):8963–8971, 11 1992.

[296] Arthur Mar and James A. Ibers. Synthesis and physical properties of the
new layered ternary tellurides mirte4 (m = nb, ta), and the structure of
nbirte4. Journal of Solid State Chemistry, 97(2):366–376, 1992.

[297] Tianxi Zhang, Tian Wang, Fanlu Meng, Minquan Yang, and Sibudjing
Kawi. Recent advances in znin2s4-based materials towards photocatalytic
purification, solar fuel production and organic transformations. J. Mater.
Chem. C, 10:5400–5424, 2022.

[298] Nathan D. Lowhorn, Terry M. Tritt, Edward E. Abbott, and J. W. Kolis.
Enhancement of the power factor of the transition metal pentatelluride hfte5
by rare-earth doping. Applied Physics Letters, 88(2):022101, 2006.

https://mpds.io/#start


222 BIBLIOGRAPHY

[299] Davide Grassano, Davide Campi, Antimo Marrazzo, and Nicola Marzari. A
complementary screening for quantum spin hall insulators in 2d exfoliable
materials, 2022.

[300] https://www.lumi-supercomputer.eu.
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