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We propose a pure 0-1 formulation for the wireless network design problem, i.e. the problem of configuring

a set of transmitters to provide service coverage to a set of receivers. In contrast with classical mixed integer

formulations, where power emissions are represented by continuous variables, we consider only a finite set

of powers values. This has two major advantages: it better fits the usual practice and eliminates the sources

of numerical problems which heavily affect continuous models. A crucial ingredient of our approach is an

effective basic formulation for the single knapsack problem representing the coverage condition of a receiver.

This formulation is based on the GUB cover inequalities introduced by Wolsey (1990) and its core is an

extension of the exact formulation of the GUB knapsack polytope with two GUB constraints. This special

case corresponds to the very common practical situation where only one major interferer is present. We

assess the effectiveness of our formulation by comprehensive computational results over realistic instances of

two typical technologies, namely WiMAX and DVB-T.
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1. Introduction

Wireless communication systems constitute one of the most pervasive phenomena of every-

day life. Television and radio programs are distributed through broadcasting networks

(both terrestrial and satellite), mobile communication is ensured by cellular networks,

internet service is provided through broadband access networks. Moreover, a number of

*This is the authors’ final version of the paper published in Management Science 59(1), 142-

156, 2013. DOI: 10.1287/mnsc.1120.1571 . The final publication is available at INFORMS via

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1120.1571
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security services are provided by ad-hoc wireless networks. All these networks have grown

very rapidly during the last decades, generating dramatic congestion of radio resources

such as frequency channels. Wireless networks provide different services and rely on differ-

ent technologies and standards. Still, they share a common feature: they all need to reach

users scattered over an area with a radio signal that must be strong enough to prevail

against other unwanted interfering signals.

The perceived quality of service thus depends on several signals, wanted and unwanted,

generated from a large number of transmitting devices. Due to the increasing size of the

new generation networks, co-existing in an extremely congested radio spectrum and subject

to local and international constraints, establishing suitable power emissions for all the

transmitters has become a very difficult task, which calls for sophisticated optimization

techniques.

Since the early 1980s several optimization models have been developed to design wire-

less networks. It is claimed that the use of automatic and optimization-oriented planning

techniques may lead to cost reduction of up to 30% (Dehghan 2005). Concretely, recent

experiences have clearly shown that the adoption of optimization techniques results in sen-

sible increases in the quality of coverage plans and in a more effective and efficient use of

the limited resources that a network administrator has at disposal - see the case of atesio

for UMTS networks in Germany (ATESIO 2000) and the case of the CORG for DVB-T

networks in Italy (CORG 1998).

Two fundamental issues must be faced when designing a wireless network: localizing the

transmitters and dimensioning their power emissions. In most models, power emissions are

represented as continuous decision variables. This choice typically yields ill-conditioned

constraint matrices and requires the introduction of very large coefficients to model dis-

junctive constraints. The corresponding relaxations are very weak and state-of-the-art

Mixed-Integer Linear Programming solvers are often affected by numerical instability. The

use of continuous decision variables also contrasts with the telecommunications practice. In

fact, the actual design specifications of real life antennas are always expressed as rational

numbers with bounded precision and, consequently, assume a finite number of values.

Motivated by the above remarks we propose a pure 0-1 formulation for the problem

that is obtained by considering only a finite set of power values. This formulation has two

basic advantages: first, the ensuing model better fits the usual practice and, second, the
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numerical problems produced by the continuous variables are sensibly reduced. Indeed,

the new approach allows us to find better solutions to large practical instances with less

computational effort. In addition, the model fits the common network planning practice of

considering a small number of power values and it directly models power restrictions that

are often imposed by the technology (e.g., Mallinson et al. 2007). The situation where only

two power values (on, off) are allowed is not rare (Ridolfi 2010). Finally, the new approach

easily allows for generalizations of the model, such as power consumption minimization or

antenna diagram optimization.

For our purposes, a wireless network can be described as a set of transmitters B dis-

tributing a telecommunication service to a set of receivers T . A receiver is said to be covered

(or served) by the network if it receives the service within a minimum level of quality. The

set B actually contains all candidate transmitters: in general, only a subset of B will be

activated to cover the set T . Transmitters and receivers are characterized by a number of

locations and radio-electrical parameters (e.g., geographical coordinates, power emission,

transmission frequency). The Wireless Network Design Problem (WND) consists of estab-

lishing suitable values for such parameters with the goal of maximizing the coverage (or a

revenue associated with the coverage).

Each transmitter b ∈B emits a radio signal with power pb ∈ [0, Pmax]. We remark that

a transmitter b such that pb = 0 is actually not activated and thus not deployed in the

network. The power p(t) received by receiver t from transmitter b is proportional to the

emitted power pb by a factor ãtb ∈ [0,1], i.e. p(t) = ãtb · pb. The factor ãtb is called fading

coefficient and summarizes the reduction in power that a signal experiences while propa-

gating from b to t. The value of a fading coefficient depends on many factors (e.g., distance

between the communicating devices, presence of obstacles, antenna patterns) and is com-

monly computed through a suitable propagation model. For a detailed presentation of all

technical aspects, we refer the reader to Rappaport (2001).

To simplify the discussion, we assume here that all the transmitters of the network

operate at the same frequency. This assumption is dropped in Section 5 where we introduce

the real-life application which motivated our developments. Among the signals received

from transmitters in B, receiver t can select a reference signal (or server), which is the one

carrying the service. All the other signals are interfering.
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A receiver t is regarded as served by the network, specifically by server β ∈ B, if the

ratio of the serving power to the sum of the interfering powers (signal-to-interference ratio

or SIR) is above a threshold δ′ (Rappaport 2001), the SIR threshold, whose value depends

on the technology and the desired quality of service:

ãtβ · pβ
µ+

∑

b∈B\{β} ãtb · pb
≥ δ′. (1)

Note the presence of the system noise µ > 0 among the interfering signals. Since each

transmitter in B is associated with a unique received signal, in what follows we will also

refer to B as the set of signals received by t. By letting δ=−µ · δ′ < 0 and letting:

atb =







ãtb if b= β

δ′ · ãtb otherwise

for every b ∈ B, inequality (1) can be transformed into the so-called SIR inequality by

simple algebra operations:
∑

b∈B\{β}

atb · pb− atβ · pβ ≤ δ. (2)

For every t∈ T , we have one inequality of type (2) for each potential server β ∈B. Receiver

t is served if at least one of these inequalities is satisfied or, equivalently, if the following

disjunctive constraint is satisfied:

∨

β∈B





∑

b∈B\{β}

atb · pb− atβ · pβ ≤ δ



 . (3)

The above disjunction can be represented by a family of linear constraints in the p variables

by introducing, for each t∈ T and each b∈B, a binary variable xtb that is equal to 1 if t is

served by b and to 0 otherwise. For each β ∈B, the following constraint is then introduced:

∑

b∈B\{β}

atb · pb− atβ · pβ −M · (1−xtβ)≤ δ (4)

where M is a large positive constant (big-M ). When xtβ = 1 then (4) reduces to (2);

when instead xtβ = 0 and M is sufficiently large (for example, we can set M = −δ +
∑

b∈B\{β} atb ·Pmax), (4) is satisfied for any feasible power vector and becomes redundant.

Constraints of type (4) appear in the Mixed-Integer Linear Programs (MILP) for the
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WND presented in several papers in different application contexts, such as radio and video

broadcasting (e.g., Mannino et al. 2006, 2009), GSM (e.g., Mathar and Schmeinck 2005),

UMTS (e.g., Amaldi et al. 2006a, Eisenblätter and Geerdes 2008, Kalvenes et al. 2006,

Naoum-Sawaya and Elhedhli 2010), WiMAX (Zhang 2009). Such MILPs are informally

called big-M formulations. For a comprehensive description of the main elements that

constitutes such models we refer to the recent book by Kennington et al. (2010) and to

Amaldi et al. (2006b). For a more detailed discussion about how modeling an UMTS net-

work, we refer the reader to Eisenblätter et al. (2002), and additionally to Siomina et al.

(2006), where focus is on dimensioning pilot channel powers rather than the overall power

emissions, considered as fixed.

The MILPs have been also tailored to cope with uncertainty affecting parameters of

the model: in (Rosenberger and Olinick 2007) and (Olinick and Rosenberger 2008), two

stochastic optimization approaches are presented to establish a robust location plan of

the transmitters to tackle fluctuations in the traffic demand; in (Heikkinen and Prekopa

2004) and (Bienstock and D’Andreagiovanni 2009), Stochastic and Robust Optimization

are respectively adopted to tackle the uncertainty affecting the fading coefficients.

WND instances of practical interest typically correspond to very large MILPs. In prin-

ciple, such programs can be solved by standard Branch-and-Cut and by means of effective

commercial solvers such as IBM ILOG Cplex (2010). However, it is well-known that the

presence of a great number of constraints of type (4) results in ill-conditioned instances,

due to the large variability of the fading coefficients, and weak bounds, due to the presence

of the big-M coefficients. Furthermore, the resulting coverage plans are often unreliable

(e.g., Kalvenes et al. 2006, Kennington et al. 2010, Mannino et al. 2009). In some cases,

feasible WND instances can be even considered as unfeasible. In practice, only small-sized

WND instances can actually be solved to optimality.

It is interesting to note that though these problems are known, only a limited number of

papers of the wide literature about the WND has tried to overcome them. Kalvenes et al.

(2006) proposed to execute a post-processing procedure that tries to repair coverage errors

by eventually dropping service of a number of receivers. Naoum-Sawaya and Elhedhli

(2010) focused on networks based on Code Division Multiple Access (CDMA) and adopted

Benders’ decomposition to obtain a new problem where the big-M coefficients are elim-

inated. However, the fading coefficients are still present, thus maintaining a relevant
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source of numerical problem. Inspired by practical observations about DVB networks,

Mannino et al. (2009) considered a relaxation of the WND problem, obtained by including

a single interfering transmitter in each SIR constraint and solved by a heuristic approach.

Finally, Eisenblätter and Geerdes (2008) proposed a new approach for reducing inter-

ference in an UMTS network to increase the overall capacity of the network, under the

assumption of perfect power control.

All the previously cited work are based on modeling the power emission of a transmitter

as a continuous variable. In this paper, we follow instead a different path: we discretize the

continuous power variables and consider only a finite number of feasible values. We stress

that discretization is a classical tool in combinatorial optimization (e.g., Dyer and Wolsey

1990) and in telecommunication modeling (e.g., Castorini et al. 2008, Fridman et al.

2008, Mallinson et al. 2007), but, to our best knowledge, no effort has been made to go

beyond the simple use of discretized SIR inequalities and replace them by more combi-

natorial inequalities. By using discretization, we are instead able to completely eliminate

the two main sources of numerical issues, namely the fading and the big-M coefficients.

We accomplish this by introducing a set of (strong) valid inequalities for the resulting 0-1

problem that radically improve the quality of obtained solutions. Additionally, solutions

do not contain errors.

In the next section, we introduce our new contribution to the WND, the Power-Indexed

formulation. In Section 3, we prove that for a special case that is very relevant in practice

(single server interfered by a single transmitter), we can characterize the convex hull of

the knapsack polytope associated with discrete power levels. In Section 4, we describe

our solution approach to the WND. Finally, extensive computational results on realistic

instances of WiMAX and DVB-T networks are presented in Section 5, showing that the

new approach outperforms the one based on the big-M formulation.

2. A Power-Indexed formulation for the WND

As discussed in the previous section, a classical and much exploited model for the WND

belongs to the class of the so-called big-M formulations and writes as:

max
∑

t∈T

∑

b∈B

rt · xtb (BM)

s.t.
∑

b∈B\{β}

atb · pb− atβ · pβ −M · (1−xtβ)≤ δ t∈ T, β ∈B (5)
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∑

b∈B

xtb ≤ 1 t ∈ T (6)

0≤ pb ≤ Pmax b ∈B

xtb ∈ {0,1} t∈ T, b∈B

where rt is the revenue (e.g. population, number of customers, expected traffic demand)

associated with receiver t∈ T and the objective function is to maximize the total revenue.

Constraint (5) is the SIR inequality (4) introduced in Section 1 and constraint (6) ensures

that each receiver is served at most once.

Technology-dependent versions of (BM) can be obtained from the basic formulation by

including suitable constraints or even new variables. For example, in the case of WiMAX

networks, a knapsack constraint involving the service variables xtb is added to (BM) to

model the bandwidth capacity of each transmitter b ∈ B (Zhang 2009). In the case of

antenna diagram design, the number of power variables associated with each transmit-

ter b is multiplied by 36 to represent the power emissions along the 36 directions which

approximate the horizontal radiation pattern, and new constraints are included to repre-

sent physical relations between different directions (Mannino et al. 2009).

As observed in the introduction, the model (BM) has serious drawbacks both in terms

of dimension of the solvable instances and of numerical instability. We tackle these issues

by restricting the variables pb to assume value in the finite set P = {P1, . . . , P|P|} of feasible

power values, with P1 = 0 (switched-off value), P|P| = Pmax and Pi >Pi−1, for i= 2, . . . , |P|.

To this end, we introduce a binary variable zbl, which is 1 iff b emits at power Pl. Since b

is either switched-off or emitting at a positive value in P, we have:

∑

l∈L

zbl =1 b∈B

where L = {1, . . . , |P|} is the set of power value indices or simply power levels. Then we

can write:

pb =
∑

l∈L

Pl · zbl b ∈B. (7)

By substituting (7) in (5), we obtain the following SIR constraint that only involves 0-1

variables:
∑

b∈B\{β}

atb
∑

l∈L

Pl · zbl − atβ
∑

l∈L

Pl · zβl −M · (1−xtβ)≤ δ
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The following discrete big-M formulation (DM) for the WND with a finite number of

power values directly derives from (BM):

max
∑

t∈T

∑

b∈B

rt · xtb (DM)

s.t.
∑

b∈B\{β}

atb
∑

l∈L

Pl · zbl − atβ
∑

l∈L

Pl · zβl +M · xtβ ≤ δ+M t∈ T, β ∈B (8)

∑

b∈B

xtb ≤ 1 t ∈ T

∑

l∈L

zbl = 1 b∈B (9)

xtb ∈ {0,1} t∈ T, b∈B

zbl ∈ {0,1} b∈B, l ∈L.

Note that, due to (7), every pb also satisfies 0 ≤ pb ≤ Pmax. As a consequence, the box

constraints on pb and thus variable pb are dropped from the formulation.

The Power-Indexed formulation is obtained from (DM) by substituting each knapsack

SIR constraint (8) with a set of GUB cover inequalities (Wolsey 1990).

In the following, we denote a GUB cover inequality by the acronym GCI. The GCIs

constitute a stronger version of simple cover inequalities of a knapsack constraint, and

are defined by exploiting the presence of the additional constraints (9), that are called

generalized upper bound (GUB) constraints.

Before introducing the GCIs, we recall some related definitions and concepts introduced

in (Wolsey 1990). We consider the set of binary points Y = P ∩Bn, where P ⊆Rn
+ is the

polytope defined by:

(i)
∑

j∈N1

aj · yj −
∑

j∈N2

aj · yj ≤ a0

(ii)
∑

j∈Si

yj ≤ 1 for i∈ I1 ∪ I2 (10)

y ∈Rn
+,

where N =N1∪N2, N1∩N2 = ∅, aj > 0 for j ∈N ,
⋃

i∈I1
Si =N1,

⋃

i∈I2
Si =N2 and, finally

Si ∩ Sl = ∅ if i, l ∈ Ik with i 6= l for k = 1,2. In other words, the variables of the knapsack
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(10.i) are partitioned into a number of subsets, and at most one variable can be set to 1

for each subset. Each of these subsets thus defines a GUB constraint (10.ii). Furthermore,

by definition each subset is entirely contained either in N1 or N2 and thus the coefficients

of the corresponding 0-1 variables have the same sign in the knapsack constraint (10.i).

A set C =C1 ∪C2 is a GUB cover for Y if:

(i) Ck ⊆Nk for k= 1,2

(ii) |Ck ∩Si| ≤ 1 for i∈ Ik and k= 1,2

(iii)
∑

j∈C1

aj −
∑

j∈C2

aj > a0.

On the basis of the GUB cover C, it is easy to build a standard cover inequality which is

valid for the set Y . Such constraint can be lifted by including new variables, by exploiting

the GUB inequalities (10.ii). In particular, with the GUB cover C we associate the following

sets:

I+k = {i∈ Ik :Ck ∩Si 6= ∅} for k= 1,2

S+
i = {j ∈ Si : aj ≥ al for l ∈C1 ∩Si} for i∈ I+1

S+
i = {j ∈ Si : aj ≤ al for l ∈C2 ∩Si}for i∈ I+2 .

For each set Si with one element in the cover, S+
i represents the set of elements which may

be added to the cover in order to lift the corresponding inequality. In particular, if the

elements of Si correspond to non-negative coefficients aj of the knapsack, then we can add

all the elements that correspond to coefficients that are larger than al (i.e., the coefficient

of the element of Si in the GUB cover). We instead include all the elements with smaller

coefficient in the case of negative coefficients.

In (Wolsey 1990), Wolsey proves that if C =C1∪C2 is a GUB cover, the following GUB

cover inequality (GCI) is valid for Y :

∑

i∈I+
1

∑

j∈S+

i

yj ≤ |C1| − 1+
∑

i∈I+
2

∑

j 6∈S+

i

yj +
∑

i∈I2\I
+

2

∑

j∈Si

yj. (11)

When I+2 = I2 and |I2|=1, such valid inequality reduces to:

∑

i∈I+
1

∑

j∈S+

i

yj +
∑

i∈I+
2

∑

j∈S+

i

yj ≤ |C1|. (12)
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Now, let us focus on a single knapsack constraint (8) of (DM) associated with testpoint

t∈ T and server β ∈B, along with constraints (9) for b∈B and the valid inequality xtβ ≤ 1.

We can cast this into the GUB framework introduced by Wolsey by making the following

associations:

N1 = {(b, l) : b∈B\{β}, l ∈L} ∪ {(t, β)}

N2 = {(β, l) : l ∈L.}

Observe that, with a slight abuse of notation, in the definition of N1 we are also including

index (t, β) corresponding to variable xtβ . Similarly, we let:

I1 = {b : b∈B\{β}} ∪ {(t, β)}

I2 = {β}.

Indeed, for each b ∈ B at most one variable zbl can be equal 1, for l ∈ L, and we have

Sb = {(b, l) : l ∈L} for all b ∈B. Also, we let St,β = {(t, β)} be the singleton corresponding

to variable xtβ. Observe that we have N1 = St,β ∪ (
⋃

b∈B\{β} Sb) and N2 = Sβ.

Before translating conditions (i), (ii) and (iii) into our setting, we provide an intuitive

explanation of how a CGI is build for formulation (DM). For a fixed couple of receiver

and server and a fixed subset of interferers, a GUB cover corresponds to one serving power

level and a combination of interfering power levels that jointly deny the coverage of the

receiver by the server. Thereafter, the lifting is done by considering lower serving power

levels and higher interfering power levels. We now proceed to define formally the GCI. To

this purpose, consider first the coverage condition (2) corresponding to receiver t ∈ T with

server β ∈B. Suppose that the server β is emitting at power value pβ =Pλ, for some λ ∈L.

Let Γ = {b1, . . . , b|Γ|} ⊆ B\{β} be a set of interferers (for t when β is its server) and let

q1, . . . , q|Γ| be power levels for each interferer in Γ such that:

atb1 ·Pq1 + · · ·+ atb|Γ|
·Pq|Γ|

− atβ ·Pλ > δ. (13)

In other words, receiver t is not served when t is assigned to server β emitting at power value

Pλ, and the interferers b1, . . . , b|Γ| are emitting at power values pb1 = Pq1, . . . , pb|Γ|
= Pq|Γ|

,

respectively.

By letting C1 = {(bi, qi) : i= 1, . . . , |Γ|} ∪ {(t, β)} and C2 = {(β,λ)}, it follows that C =

C1∪C2 is a cover of (8). Also, it is not difficult to see that C is a GUB cover, since C1 ⊆N1,
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C2 ⊆N2, |C1 ∩ Sb| ≤ 1, for all b ∈ I1 and |C2 ∩Sβ |= 1. We also have I+1 =Γ∪ {(t, β)} and

I+2 = {β}.

Since atb · Pl < atb · Pl+1 for all b ∈ B and l = 1, . . . , |L| − 1, we have that S+
bi

=

{(bi, qi), (bi, qi+1), . . . , (bi, q|L|)} for bi ∈B\{β}, S+
t,β = {(t, β)} and S+

β = {(β,1), . . . , (β,λ)}.

It follows from (12) that, for t∈ T , β ∈B, the inequality

xtβ +
λ

∑

l=1

zβl +

|Γ|
∑

i=1

|L|
∑

j=qi

zbij ≤ |Γ|+1 (14)

is valid for the set of binary vectors satisfying (8) and (9).

Now, for all the subsets of interferers Γ ⊆ B\{β}, denote by LI(t, β, λ,Γ) the set of |Γ|-

tuples q ∈L|Γ| satisfying (13). The following proposition follows immediately by the validity

of (14):

Proposition 1. Given t∈ T , β ∈B, the family of inequalities:

xtβ +
λ

∑

l=1

zβl +

|Γ|
∑

i=1

|L|
∑

j=qi

zbij ≤ |Γ|+1 (15)

defined for Γ ⊆ B\{β}, λ ∈ L, q ∈ LI(t, β, λ,Γ), is satisfied by all the binary solutions of

(8) and (9).

It can be formally shown that the reverse is also true, namely all binary solutions to (15)

and (9) also satisfy (8). It follows that the following formulation, that we call Power-Indexed

(PI), is valid for the WND (with finite set of power values):

max
∑

t∈T

∑

b∈B

rt · xtb (PI)

s.t. xtβ +

λ
∑

l=1

zβl +

|Γ|
∑

i=1

|L|
∑

j=qi

zbij ≤ |Γ|+1 t∈ T, β ∈B, Γ⊆B\{β},

λ∈L, q ∈LI(t, β, λ,Γ) (16)
∑

b∈B

xtb ≤ 1 t ∈ T (17)

∑

l∈L

zbl = 1 b ∈B (18)

xtb ∈ {0,1} t ∈ T, b∈B (19)

zbl ∈ {0,1} b ∈B, l ∈L. (20)
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The above formulation contains a very large number of GCIs (potentially exponential in

|B| for all t ∈ T ). To cope with this we proceed in a standard fashion by initially considering

a subset of all inequalities and subsequently generating new inequalities when needed. In

Section 4, we give the details of our column and row generation approach to solve the WND

along with a heuristic routine for separating violated GCIs (16). The overall behaviour of

the row generation approach is strongly affected by the quality of the initial relaxation. In

the context of WND, a particularly well-suited choice consists of including only the GCIs

(16) corresponding to interferer sets Γ with |Γ| = 1; we denote such initial relaxation by

(PI0). This choice has several major advantages.

First, the number of constraints in (PI0) is small and can be generated efficiently. In the

next section, we actually show that, for each t ∈ T,β ∈B and b ∈B\{β}, the number of

non-dominated GCIs (16) is at most |L|.

Second, as the Power-Indexed formulation (PI) is derived from the discretized SIR for-

mulation (DM), so (PI0) can be thought as derived from a relaxation (DM0) of (DM).

Namely, the relaxation (DM0) is obtained from (DM) by replacing, for each t ∈ T and each

β ∈B, the SIR inequality (8) with the family of inequalities (one for each interferer):

atb
∑

l∈L

Pl · zbl − atβ
∑

l∈L

Pl · zβl +M · xtβ ≤ δ+M b∈B\{β}. (21)

Clearly, each inequality of type (21) is dominated by the original inequality (8) from which

it derives, and the 0-1 solutions to (DM0) may not be feasible for (DM). Nevertheless,

in many applicative contexts (DM0) appears to be a very good approximation of (DM).

Indeed, this type of relaxation has been introduced in (Mannino et al. 2009) to cope with

DVB network design problems, and successfully applied to the design of the Italian national

reference DVB network. Similarly, our experiments reported in Section 5 show that (PI0)

is a good approximation of (PI). Indeed, the number of inequalities not in (PI0) generated

by our Branch-and-Cut is always very small. This can be well explained by the practical

observation that, for a given receiver, there exists most of the time one particular interferer

whose signal is much stronger than the others (see Section 5 for a more detailed discussion).

A third and most crucial feature of (PI0) relates to the strength of its GCIs. In the

next section we show that, for each t ∈ T , β ∈ B and b ∈ B\{β}, the family of GCIs

associated with (21) along with the trivial facets define the corresponding GUB knapsack

polytope, i.e. the convex hull of the 0-1 solutions to the knapsack SIR constraint (21) and
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its corresponding GUB constraints (9). This is a very desired property which explains why

the LP-relaxations of (PI0) provide much tighter bounds than those provided by (DM0),

thus in turn implying more effective searches and the capability to solve larger instances.

Summarizing, (PI0) can be easily generated, is a good approximation of the original

problem and provides strong LP-relaxations.

3. The GUB knapsack polytope for the single-interferer SIR inequality

For a receiver t ∈ T , server β ∈ B and a single interferer b ∈ B\{β}, let us consider the

family of GCIs associated with the constraint (21):

xtβ +
λ

∑

l=1

zβl +

|L|
∑

j=q

zbj ≤ 2 λ∈L, q ∈LI(t, β, λ,{b}). (22)

Since Pl > Pl−1 for q = 2, . . . , |L|, the set LI(t, β, λ,{b}) of interfering levels of b for a

server power level λ can be written as {q(λ), q(λ) + 1, . . . , |L|}, where q(λ) = min{l ∈ L :

atb ·Pl−atβ ·Pλ > δ}. It follows that the subfamily of inequalities (22) associated with λ is

dominated by the single inequality corresponding to q(λ). Finally, observe that q(λ′)≥ q(λ)

for λ′ ≥ λ.

In order to simplify the notation, we now let u= xtβ, vl = zβl for l ∈ L and wl = zbl for

l ∈L. After removing the dominated GCIs, the remaining family can be rewritten as:

u+

λ
∑

l=1

vl +

|L|
∑

l=q(λ)

wl ≤ 2 λ= 1, . . . , |L|. (23)

The following theorem extends a result presented in (Wolsey 1990) (Proposition 3.1), also

providing an alternative and simpler proof for it.

Proposition 2. The polytope P defined as the set of points (u,v,w)∈R
1+2|L| satisfying

(23) and the constraints 0≤ u≤ 1, 0≤ v≤ 1 and 0≤w≤ 1 is the convex hull of the 0-1

solutions to (21).

Proof of Proposition 2. Let A be the 0-1 coefficient matrix associated with the set of

constraints (23). We first show that A is an interval matrix, i.e. in each column the 1’s

appear consecutively (Nehmauser and Wolsey 1988).

We start by noticing that A = (U |V |W ) where U is the column associated with the

variable u; V ∈ {0,1}|L|×|L| is the square matrix associated with the variables v1, . . . , v|L|;

and W ∈ {0,1}|L|×|L| is the square matrix associated with the variables w1, . . . ,w|L|.



D’Andreagiovanni et al.: GUB Covers and Power-Indexed formulations for Wireless Network Design

14 Article published in Management Science

The vector U has all the elements equal to 1 as u is included in every constraint (23).

The matrix V = [nij] with i, j = 1, . . . , |L| is lower triangular and such that nij = 1 for

i≥ j. Indeed, the constraint (23) corresponding with λ∈L includes exactly the v variables

v1, . . . , vλ.

Finally, consider the matrix W = [mij] with i, j = 1, . . . , |L|. First, observe that for all

λ, j ∈L, we have:

mλj = 1 ⇐⇒ j ≥ q(λ).

Recalling that for every λ′, λ∈L with λ′ ≥ λ, we have q(λ′)≥ q(λ), it follows that, for all

λ≤ λ′, mλ′j = 1 =⇒ j ≥ q(λ′) =⇒ j ≥ q(λ) =⇒mλj = 1. W is thus an interval matrix and

as U and V are interval matrices as well, it follows that A is an interval matrix and thus

totally unimodular.

Finally, if we denote by Ā the matrix associated with the constraints (23) and the

box constraints on variables u,v,w, then Ā is obtained by extending A with I and −I,

where I is the identity matrix of size 1 + 2|L|. Thus Ā is a totally unimodular matrix

(Nehmauser and Wolsey 1988) and, since the right hand sides of the constraints are inte-

gral, the vertices of P are also integral, completing the proof. �

4. Solution Algorithm

The solution algorithm is based on the (PI) formulation for the WND and consists of two

basic steps: (i) a set P of feasible power values is established; (ii) the associated formulation

is solved by row generation and Branch-and-Cut. We start by describing step (ii) and we

come back to step (i) later in this section.

In the following, for a fixed power set P, we denote the solution algorithm for the

associated (PI) formulation as SOLVE-PI(P). Since the (PI) formulation has in general an

exponential number of constraints of type (16), we apply row generation. Namely, we start

by considering only a suitable subset of constraints and we solve the associated relaxation.

We then check if any of the neglected rows is violated by the current fractional solution.

If so, we add the violated row to the formulation and solve again, otherwise we proceed

with standard Branch-and-Cut (as implemented by the commercial solver Cplex). The

separation of violated constraints is repeated in each branching node.

At node 0, the initial formulation (PI0) includes only a subset of constraints (16), namely

those including one interferer (i.e., |Γ|= 1). In Section 2 and Section 3 we discussed why
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this is a good choice for (PI0). Indeed, in our case studies, only a low number of additional

constraints is added by separation during the iterations of the algorithm.

4.1. Separation.

We now proceed to show how violated constraints are separated. Let (x∗, z∗) be the cur-

rent fractional solution. In Section 2 we have showed that constraints (16) are GUB

cover inequalities of (8). In order to separate a violated GCI of type (16), we make use

of the exact oracle introduced by Wolsey (1990) and heuristically solve it by extend-

ing the standard (heuristic) approach to the separation of cover inequalities described in

(Nehmauser and Wolsey 1988).

To this end, let us first select a receiver t ∈ T and one of its servers, say β ∈ B. We

want to find a GCI of type (16) that is associated with t and β, and is violated by the

current solution (x∗, z∗). In other words, we want to identify a power level λ ∈ L for β,

a set of interferers Γ = {b1, . . . , b|Γ|} ⊆ B\{β} and an interfering |Γ|-tuple of power levels

q= (q1, . . . , q|Γ|) ∈LI(t, β, λ,Γ), such that:

x∗
tβ +

λ
∑

l=1

z∗βl +

|Γ|
∑

i=1

|L|
∑

j=qi

z∗bij > |Γ|+1. (24)

Recall that q ∈LI(t, β, λ,Γ) if

|Γ|
∑

i=1

atbi ·Pqi − atβ ·Pλ > δ. (25)

We solve the separation problem by defining a suitable 0-1 Linear Program. In particular,

in order to identify a suitable pair (β,λ) we introduce, for every l ∈ L, a binary variable

uβl, which is 1 iff l = λ. Similarly, we introduce binary variables ubl for all b ∈B\{β} and

l ∈ L, with ubl = 1 iff (b, l) = (bi, qi), where bi ∈ Γ and qi is the corresponding interfering

power level. Then u∈ {0,1}|B(t)|×|L| satisfies the following system of linear inequalities:

∑

b∈B\{β}

atb
∑

l∈L

Pl · ubl − atβ
∑

l∈L

Pl · uβl > δ (26)

∑

l∈L

ubl = 1 b∈B. (27)

Constraint (26) ensures that u is the incidence vector of a cover of (8), whereas constraint

(27) states that u satisfies the GUB constraints.
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Observe now that |Γ| =
∑

b∈B\{β}

∑

l∈L ubl. So, if u identifies a violated GCI (24), we

must have:

∑

l∈L

uβl

l
∑

k=1

z∗βk +
∑

b∈B\{β}

∑

l∈L

ubl

|L|
∑

k=l

z∗bk >
∑

b∈B\{β}

∑

l∈L

ubl +1−x∗
tβ . (28)

In order to (heuristically) search for a violated inequality, we proceed in a way which

resembles the classical approach for standard cover inequalities (Nehmauser and Wolsey

1988), by considering the following linear program (SEP), introduced by Wolsey (1990):

Z = max
∑

l∈L

uβl

l
∑

k=1

z∗βk +
∑

b∈B\{β}

∑

l∈L

ubl ·





|L|
∑

k=l

z∗bk − 1



 (SEP )

s.t.
∑

b∈B\{β}

atb
∑

l∈L

Pl · ubl − atβ
∑

l∈L

Pl · uβl ≥ δ (29)

∑

l∈L

ubl = 1 b∈B

ubl ≥ 0 b∈B, l ∈L.

It is easy to notice that the feasible region of (SEP) contains all binary vectors satisfying

(26) and (27). Let Z be the optimum value to (SEP). If Z ≤ 1−x∗
tβ then no binary vector u

satisfies (28) and consequently no violated constraint exists. If Z > 1−x∗
tβ then a violated

constraint may exist, and we resort to a heuristic approach to find it. In particular, observe

first that Z can be computed by relaxing the knapsack constraint (29) in a Lagrangian

fashion and then by solving the resulting Lagrangian dual, namely:

Z = min
η≥0

Z(η)

where η ∈R
+ is the Lagrangian multiplier and:

Z(η) = max
u≥0

∑

l∈L

uβl

l
∑

k=1

z∗βk +
∑

b∈B\{β}

∑

l∈L

ubl ·





|L|
∑

k=l

z∗bk − 1





+ η ·





∑

b∈B\{β}

atb
∑

l∈L

Pl · ubl − atβ
∑

l∈L

Pl · uβl − δ





s.t.
∑

l∈L

ubl = 1 b ∈B.
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For fixed η ≥ 0, the objective Z(η) can be easily computed by inspection. To simplify the

notation we rewrite the objective function of the above linear program as:

− δ · η + max
u≥0

∑

b∈B

∑

l∈L

cbl(η) · ubl (30)

where, for every b ∈B, l ∈L, we let:

cbl(η) =















∑l

k=1 z
∗
βk − η · atβ ·Pl if b= β

∑|L|
k=l z

∗
bk − 1+ η · atb ·Pl if b∈B\{β}.

For fixed η ≥ 0, an optimal solution u(η) to the inner maximization problem can be found

by inspection as follows. For each b∈B, identify a power level lb ∈L which maximizes the

coefficient in (30), namely cblb(η) =maxl∈L cbl(η); then, for each b∈B and each l ∈L, let:

ubl(η) =







1 if l= lb

0 otherwise.

It is straightforward to see that, for all η ≥ 0, u(η) ≥ 0 satisfies all constraints (27) and

maximizes (30). For η ≥ 0, the function Z(η) is convex and unimodal and the opti-

mum solution η∗ can be found efficiently by applying the Golden Section Search Method

(Gerald and Wheatley 2004). Suppose now that Z(η∗) > 1− x∗
tβ (otherwise no violated

constraints exist). If, in addition, u(η∗) also satisfies (26), then the positive components of

the binary solution u(η∗) are in one-to-one correspondence to the variables of a violated

constraint. Otherwise the algorithm returns no violated cover.

Finally, when the current solution (x∗, z∗) is purely 0-1, we perform an exact separation

by directly checking the satisfaction of each of the constraints (16).

4.2. The Algorithm

We come back now to the first step in our algorithm, namely the choice of the set of

admissible power values P. Large sets are in principle more likely to produce better qual-

ity solutions. However, the ability of the solution algorithm to find optimal or simply

good-quality solutions is strongly affected by |P|, as we will show in more details in the

computational results section. Thus, the size and the elements of P should represent a
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suitable compromise between these two opposite behaviors. Moreover, the effectiveness

of the Branch-and-Cut is typically affected by the availability of a good initial feasible

solution. Thus, we decided to iteratively apply SOLVE-PI(P) to a sequence of power sets

P0 ⊂P1 ⊂ · · · ⊂ Pr. Each invocation inherits all the generated cuts, the best solution found

so far and the corresponding lower bound from the previous invocation. More precisely,

if we denote by -99 the switched-off state (in dBm), and P dBm
min , P dBm

max are the (integer)

minimum and maximum power values (in dBm), then we have P0 = {−99, P dBm
max }, P1 =

{−99, P dBm
min ,

⌊

P dBm
max −P dBm

min

2

⌋

, P dBm
max } and Pr = {−99, P dBm

min , P dBm
min + 1, . . . , P dBm

max }. The struc-

ture of the intermediate power sets will be described in Section 5. Observe that the actual

power values are only used in the separation oracle where the dB values are converted into

the original non-dB values.

The overall approach, denominated WPLAN, is summarized in Algorithm 1, where i

denotes the current iteration, along with the associated best solution found xi, the cor-

responding value LBi, and the set of feasible powers Pi. If SOLVE-PI(Pi) is executed in

less than the iteration time limit TLi then the residual time τi is used to increase the time

limit of the following iteration (i.e., TLi+1:= TLi+1 + τi). The initial incumbent solution

x−1 corresponds to all transmitters switched off and no receiver served (LB−1 = 0).

Algorithm 1 WPLAN

Input: the power sets P0,P1, . . . ,Pr , the iteration time limit TLi for i= 0, . . . , r

Output: the best solution xr

LB−1 := 0

for i= 0 to r do

1. Invoke SOLVE-PI(Pi) with lower bound LBi−1, incumbent xi−1 and TLi

2. Get xi, LBi and τi

3. TLi+1 := TLi+1+ τi

end for

Return xr

5. Computational Results

The model that we have considered so far has a very simple and basic structure and applies

to the main wireless technologies. More precisely, it can be effectively used if the service
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coverage condition of a receiver is expressed by means of a SIR constraint (1). As pointed

out in Section 2, each technology generally requires its own peculiar parameter values and

additional constraints and/or variables to model its own specific features.

In this section, we present computational results concerning realistic instances of two

important wireless technologies: the IEEE Standard 802.16 (WiMAX 2004) and the Ter-

restrial Digital Video Broadcasting (DVB-T, ETSI 2006).

The target of these tests is manyfold. First, we compare the new (PI) formulation to the

two big-M formulations (BM) and (DM) and show that (PI) outperforms (BM) and (DM)

both in terms of quality of bounds and quality of solutions. Then, we illustrate specific

features of the solution algorithm WPLAN and we motivate the iterative approach with

increasing power sets. Finally, we assess the ability of WPLAN to tackle realistic network

design instances. The tests were performed under Windows XP 5.1 operating system, with

1.80 GHz Intel Core 2 Duo processor and 2×1024 MB DDR2-SD RAM. The algorithm is

implemented in C++ (under Microsoft Visual Studio 2005 8.0), whereas the commercial

MILP solver ILOG Cplex 10.1 is invoked by ILOG Concert Technology 2.3.

In the following two subsections, we provide a concise description of the main specific

features of the two technologies and we highlight their impact on the basic model that

we presented in Section 2. Furthermore, we describe the characteristics of the realistic

instances that we consider for each technology.

5.0.1. WiMAX Network Design The first set of instances refers to a WiMAX network

and were developed with the Technical Strategy and Innovations Unit of British Telecom

Italia (BT). WiMAX is the common name used to indicate the IEEE Standard 802.16

(WiMAX 2004). Specifically, we consider the design of a Fixed WiMAX Network that

provides broadband internet access.

The major amendments concern the introduction of different frequency channels, channel

capacity and traffic demand. To model the additional features of a WiMAX network, the

formulations (BM) and (PI) must include additional variables to take into account multiple

frequencies (denoted by set F ) and multiple transmission schemes (denoted by set H).

Furthermore, we need to introduce additional constraints to model the capacity of each

frequency to accommodate traffic generated by users. For a detailed description of these

additional features, both from technological and modeling perspective, we refer the reader

to (Zhang 2009).
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All the instances correspond to an urban area of the city of Rome (Italy), selected in

agreement with the engineers at BT, who considered it as a representative residential traffic

scenario. Each activated transmitter can emit by using integer power levels in the range

[20,40] dBm. We define three types of instances, denoted by SX, where X is the instance

identifier ranging in {1, . . . ,7}, RX with X = {1, . . . ,4} and QX with X = {1, . . . ,4}. For

the SX instances, the traffic is uniformly distributed among the TPs and we assign unitary

revenue to each TP (i.e. rt = 1). Finding an optimal coverage plan thus corresponds to

define the plan with the maximum number of covered TPs. Only one frequency and one

burst profile are allowed. For the RX instances, we consider a traffic distribution based on

the actual distribution of the buildings. We also introduce multiple frequencies and burst

profiles. In this case, the revenue of each testpoint is proportional to the traffic generated.

Finally, the QX instances include an increasing number of candidate sites and focus on a

single frequency network with multiple burst profiles. The dimension of each instance is

resumed in Table 1.

Table 1 Description of the WiMAX test-bed instances

ID S1 S2 S3 S4 S5 S6 S7 R1 R2 R3 R4 Q1 Q2 Q3 Q4

|T| 100 169 196 225 289 361 400 400 441 484 529 400 441 484 529
|B| 12 12 12 12 12 12 18 18 18 27 27 36 36 36 36
|F| 1 1 1 1 1 1 1 3 3 3 3 1 1 1 1
|H| 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4

5.0.2. DVB-T Network Design The second set of instances refers to networks based

on the Terrestrial Digital Video Broadcasting technology (DVB-T, ETSI 2006). Indeed,

our algorithm has been used to design the reference networks of the Italian DVB-T plan,

comprising 25 national and hundreds of regional single-frequency networks. Unfortunately,

due to non-disclosure agreements, we cannot reproduce and distribute the details of the

real life instances. Nevertheless, we have synthesized 9 instances using the same digital

terrain and propagation model, the same population database and, finally, the same tech-

nical assumptions defined by the Italian Authority for Telecommunications (Agcom). As

a consequence, our instances and solutions constitute a valid proxy of the real networks

planned by the Authority and currently under deployment by the italian broadcasters.

Each instance corresponds to a regional area of Italy, with an extent ranging from about

3.500 to about 30.000 km2. The network represented in an instance is constituted by a
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set of transmitters B that synchronously broadcast the same telecommunication service

on the same frequency over a target area. Each transmitter can emit by using a subset of

power levels in the range [-40,26] dBkW. Service coverage is evaluated in a set of testpoints

T and the revenue obtained by covering a testpoint is equal to the population living in the

corresponding elementary portion of territory. The coverage is assessed through an adapted

version of the SIR inequality (2): the rules of distinction between serving and interfering

signals and summation of signals comes from the adoption of Orthogonal Frequency Divi-

sion Multiplexing (OFDM) in the DVB-T technology. For a detailed description of how

the SIR inequality is built, we refer the reader to Mannino et al. (2006). The dimension

of each instance is shown in Table 2.

We stress that the coefficient matrices associated to the DVB-T instances are in general

more ill-conditioned than those associated to the WiMAX instances. This can be intuitively

explained by considering that DVB-T networks involve transmitters that are much more

powerful than those used by a WiMAX network. Such transmitters are able to broadcast

signals at very long distance. As a consequence, weak signals can be picked up also far away

from the target area, creating interference that may be very small when compared to the

powerful signal of closer serving transmitters (for example, Italian transmitters in Sardegna

may interfere transmissions in Tunisia and Southern France). The ratio between the largest

and the smallest fading coefficient of a DVB-T SIR inequality is thus in general much

larger than that of a WiMAX SIR inequality. Numerical instability phenomena become

therefore more marked.

Table 2 Description of the DVB-T test-bed instances

ID DVB1 DVB2 DVB3 DVB4 DVB5 DVB6 DVB7 DVB8 DVB9

|T| 2003 1741 5618 4466 2704 4421 197 3400 2003
|B| 127 188 411 202 113 215 109 183 127

5.1. Numerical Results and Comparisons

We have pointed out in Section 1 that the solutions to (BM) and (DM) returned by

state-of-the-art MILP solvers such as Cplex can be affected by numerical inaccuracy, i.e.

the SIR inequalities of testpoints recognized as covered are actually unsatisfied (simi-

lar problems were also reported in Kalvenes et al. (2006), Kennington et al. (2010) and

Mannino et al. (2009)). We detect such coverage errors by evaluating the solutions off-

line: after the optimization process, we verify that the SIR inequality corresponding to
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each nominally covered testpoint is really satisfied by the power vector of the returned

solution. This is not the only issue, as, in the case of some instances, (BM) and (DM) can

be even wrongly evaluated as infeasible.

In our experience, tuning the parameters of Cplex is crucial to reduce coverage errors

and to contain the effects of numerical instability. Furthermore, in the case of (DM), tuning

is essential to ensure that the problem is correctly recognized as feasible. After a series

of tests, we established that, in the case of (BM) and (DM), an effective setting consists

of turning off the presolve and on the numerical emphasis. Moreover, we turn off the

generation of the mixed-integer rounding cuts and of the Gomory fractional cuts as we

observed no advantages in the quality of the bounds and a sensible increase in running

times.

Assessing the strength of the Power-Indexed formulation. The first group of experi-

ments is designed to assess the strength of (PI) comparing it with (BM) and (DM). To this

end, we focus on a single instance of our test-bed (instance S4 presented in Table 1) and

detail the behaviour of WPLAN for each invocation of SOLVE-PI(P). The sets of power

values in the first three invocations of SOLVE-PI(P) are (in dBm) P1 = {−99,40},P2 =

{−99,20,30,40} and P3 = {−99,20,25,30,35,40}, respectively. Then, in each of the follow-

ing invocations, P is expanded by including two more values (suitably spaced). To analyse

the behaviour of the single iterations and establish an effective sequence of power sets, we

set a time limit of 1 hour for each invocation of the solution algorithm for (PI) and (DM).

In order to evaluate the quality of (PI) w.r.t. (DM), we apply WPLAN to (DM) (note

that in this case the solution procedure SOLVE-PI is replaced by the simple solution of

(DM) by Cplex). In Table 3, for each iteration of WPLAN, we report the number |L| of

considered power levels, the number of GCIs included in the initial formulation (PI0) and

the number of GCIs separated during the current iteration. Additionally, for both (PI)

and (DM), we report the upper bound at node 0 (UB), the value |T*| of the final solution

(number of covered testpoints) and the final gap. When the solution contains coverage

errors, two values are presented in the |T*| column, namely the nominal value of the best

solution returned by Cplex (in brackets) and its actual value computed by re-evaluating

the solution off-line.

The last line of the table shows the results obtained for (BM) by setting a time limit

of 3 hours. Note that in this case, the second column reports the number of SIR (big-M )
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constraints (5) included in (BM). This number is by definition also the number of SIR

(big-M ) constraints (8) included in (DM).

Table 3 Behaviour of WPLAN for instance S4

GCIs (PI) (DM)

|L| init added UB |T*| gap% UB |T*| gap%

2 5743 17 199.2193 106 0.00 218.3465 91 125.65

4 9035 7 204.2500 111 0.00 219.0015 97 (98) 102.68

6 14312 13 206.6261 111 59.03 219.3488 100 (101) 115.70

8 17142 45 209.4200 111 67.51 219.7349 100 (101) 122.98

10 24638 6 210.0000 111 79.99 220.2788 100 (101) 123.14

12 27799 1 211.7000 111 82.05 219.9144 100 (101) 124.01

14 35944 0 212.0000 111 83.46 220.1307 100 (101) 123.58

16 38496 10 214.5930 111 85.48 220.3000 100 (101) 125.00

18 45425 2 215.8000 111 86.44 220.1091 100 (101) 124.83

20 48918 2 218.0000 111 89.99 220.0560 100 (101) 125.00

22 57753 3 218.0000 111 90.83 220.3720 100 (101) 125.00

(BM) 1170 - 221.3925 93 97.18 - - -

The figures in Table 3 are representative of the typical behaviour of WPLAN on all

instances of our test-bed. They allow us to make some relevant observations. First, the

size of (PI) grows quickly with the number of power levels, and is typically much larger

than that of (BM) and (DM). This is counterbalanced by the quality of the upper bounds,

which are consistently better for (PI) and, most important, the quality of the solutions

found. Interestingly, the best solution is found quite early in the iterative procedure, namely

for |P| ≤ 6. A similar behaviour is observed for the other WiMAX instances reported in

Table 5 and the DVB-T instances in Table 7 as well. This motivated our choice of the

sequence of feasible power values in the final version of WPLAN for WiMAX: most of the

computational effort is concentrated on small cardinality power sets, and only one large

set. More precisely, there will be only 4 iterations, corresponding to 2, 4, 6 and 22 power

levels, respectively.
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Finally, we note that the number of generated GCIs is small. Also, in most cases the

GCIs include only two interferers, and in any case never more than three. In other words,

even though many interferers can reach a given testpoint, only very few of them (in most

cases only one) give a significant contribution to the overall interference.

The performance of the Power-Indexed approach over the test-bed. In this subsec-

tion, we comment the results over our WiMAX and DVB-T benchmark instances. For an

exhaustive report of the results through tables, we refer the reader to the Appendix of

this paper. In all experiments, we set a time limit of 3 hours for the solution of (BM)

and (DM) and for WPLAN applied to (PI). As in subsection 5.1, we solve (DM) by an

adapted version of WPLAN (we recall that in this case the solution procedure SOLVE-PI

is replaced by the simple solution of (DM) by Cplex).

Besides the results obtained by solving the “pure” models (BM) and (DM), we report

also the results obtained by trying to stabilize (BM) and (DM) through Cplex indicator

constraints and by strengthening (DM) through a suitable subset of our GCIs. The indica-

tor constraints constitute a way to express relationships between variables and may reduce

the flaws of big-M formulations. In our work, we check if declaring the big-M coverage

constraints of (BM) and (DM) by means of Cplex indicator constraints (Cplex 2010) can

improve the quality of solutions. We denote the resulting formulations by adding the sym-

bol “+” to the acronym (e.g., BM+). Furthermore, we investigate if it is convenient to

strengthen (DM) by simply including the GCIs corresponding with the single-interferer

condition (i.e., |Γ| = 1, see Section 4). We denote the resulting formulation by (DM &

GCI1). This investigation is motivated by the fact that such subset of GCIs seems to be

very effective to discover high quality solutions fast.

The results show that WPLAN applied to (PI) outperforms (BM) and (DM) in terms

of quality of the solutions found and, in most cases, running times to obtain them (the

running times obviously include also the time spent by the separation oracle). Coverage

errors, in particular, are completely eliminated. Even if in principle the reduced and quite

small number of power values considered by WPLAN could result in poorer coverage w.r.t.

(BM), the results clearly show that this is not the case. On one hand, this happens as

a small number of well-spaced power values suffices in practice to obtain good coverage;

indeed, it is common practice in WiMAX network planning to neglect intermediate values,

i.e. a device is either switched-off or activated at its maximum power (Ridolfi 2010). On
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the other hand, the size of the (BM) formulation and the ill-conditioned constraint matrix,

along with the presence of the big-M coefficients, makes the solution process unstable, the

solutions found unreliable and the branching tree extremely large. Indeed, due to rounding

errors and numerical instability, several solutions to (BM) turn out to be infeasible when

verified off-line. The effects of numerical instability become more marked in the case of

the DVB-T test bed: the feasible solutions to (BM) of all but one of the instances contain

coverage errors that entail the loss of up to 20.000 users. Furthermore, in contrast to the

good performance of WPLAN, several instances seem to be very difficult for (BM) and no

feasible solution is retrieved by the time limit.

WPLAN applied to (PI) also outperforms (DM) solved by the adapted WPLAN algo-

rithm. The results show that in general the simple discretization of the power range does

not suffice to get better solutions than those obtained by (BM). Indeed, in many cases,

the performance of (DM) is worse than that of (BM) and coverage errors are still strongly

present.

Finally, after having pointed out the advantages of a pure GCI-based approach, we assess

if stabilizing (DM) by indicator constraints or strengthening (DM) by GCIs can lead to

remarkable advantages. The results reported show that stabilizing by indicator constraints

does not allow to reach the quality of the solutions obtainable by the pure GCI formulation

(PI). This behavior can be explained by the simple observations that (PI) allows us to

get rid of the major sources of instability in (BM) and (DM), namely the bad-conditioned

coefficients of the constraint matrix (not affected by the use of Cplex indicator constraints)

and the big-M coefficients. Though in a significative number of cases the value of the best

solution is higher than that of solutions obtained by pure (BM) and (DM), coverage errors

are still (heavily) present. Moreover, the value of the solutions is anyway lower than those

obtained by (PI). Strengthening (DM) by GCIs seems to be more effective than stabilizing

by indicator constraints: in many cases (DM & GCI1) reaches better solutions w.r.t. (DM)

and (DM+) However, also in this case, there are still a few solutions that contain errors

and the final value is anyway lower than that obtained through (PI). Finally, also in the

case of (DM+ & GCI1), the stabilization by indicator constraints seems to decrease the

value of solutions obtained within the time limit, without being able to completely avoid

coverage errors.
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Comparisons between warm and cold start for (PI). Finally, in Table 4 we show

the impact of the iterative approach WPLAN on the quality of the solutions found for

(PI) in the case of the WiMAX instances. A similar behaviour is observed also in the

case of the DVB-T instances. In particular we compare cold starts, which correspond to

invoking SOLVE-PI(P) without benefiting from cuts and lower bounds obtained at former

invocations, with warm starts which, in contrast, make use of such information. The value

of the best solutions found during successive invocations of SOLVE-PI both under warm

and cold starts are shown in the columns identified by |L|= n, where n denotes the number

of corresponding power levels. The value of the best solution found at the first invocation

is in column |L|= 2, while the value of the best solution and the number of levels used to

find it are shown in column |T ∗| and |L∗|, respectively.

Table 4 Comparisons between warm and cold starts

WARM START COLD START

ID |T*| |L*| |L|=2
|L|=4 |L|=6 |L|=4 |L|=6

S1 74 6 69 72 74 71 58

S2 107 4 72 107 107 80 63

S3 113 4 83 113 113 108 101

S4 111 4 75 111 111 100 97

S5 86 6 76 84 86 83 81

S6 170 4 127 170 170 110 127

S7 341 4 296 341 341 314 196

R1 400 2 400 - - 399 304

R2 441 4 416 441 - 394 355

R3 427 2 427 427 427 414 Out

R4 529 2 529 - - 512 Out

Q1 67 2 67 67 67 ∗ ∗

Q2 211 4 196 211 211 156 Out

Q3 463 2 463 463 463 Out Out

Q4 491 2 491 491 491 Out Out
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For all S-instances the best solution can be found only due to warm start. Note that

SOLVE-PI encounters increasing difficulties in finding good solutions as the number of

power levels increases (in the case of the apparently hard instance Q1, for 3 and 5 power

levels, no feasible solution is found within the time limit when cold start is adopted). This

is mainly due to the large size of the corresponding instances, that, in some cases denoted

by Out, makes Cplex run out of memory while building the model. However, a good initial

solution provided to SOLVE-PI can be improved in most cases. We have already observed

that for a larger number of levels (i.e. > 6), no improved solutions can be found for all the

WiMAX instances in our test-bed. Finally, for R1 and R4 a solution covering the entire

target area is found already with |L|= 2, while for R2 such a solution is found with |L|= 4

(and warm-start).

6. Conclusions.

The coverage condition in wireless network design problems is typically modeled by lin-

earizing the signal-to-interference ratio and by including the notorious big-M coefficients.

The resulting Mixed-Integer Programs are very weak and ill-conditioned, hence unable

to solve large instances of real networks. In this paper, we show how power discretiza-

tion, a common modeling approach among professionals, can constitute the first step to

define formulations that are noticeably stronger than the classical ones. These pure 0-1

formulations are based on GUB cover inequalities, that completely eliminates the source of

numerical instability. This new Power-Indexed approach outperforms the classical big-M

models, both in terms of quality of solutions found and of strength of the bound, as showed

by an extensive computational study on real WiMAX and DVB-T instances.

Appendix. Tables of comparison.

In this appendix, we present tables that exhaustively report the computational results about compar-

isons between (BM), (DM) and (PI), that we have commented in Section 5.1. The results are reported in

Tables 5 and 6 for the WiMAX instances and in Tables 7 and 8 for the DVB-T instances. All results are

obtained by setting a time limit of 3 hours. We recall that (BM+), (DM+) respectively denote the versions

of (BM),(DM) stabilized through Cplex indicator constraints, whereas (DM & GCI1) denotes the version of

(DM) strengthened through the GCIs corresponding with the single-interferer condition (i.e., |Γ|= 1).

The value of the best solutions found within the time limit is shown in column |T*| for WiMAX and

column COV% for DVB-T (COV% is the percentage of population covered with service). The gap% columns

report the nominal (i.e., before checking solution correctness) percentage gap between the upper and lower
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bound at termination, the time column specifies when the best solution is found (in seconds), whereas the

last column |L*| is the number of power levels used in the iteration in which WPLAN obtains the best

solution. In the columns |T*| and COV%, the expression “Out” indicates that Cplex runs out of memory

while building the model. Finally, to denote some specials situations, we adopt the following conventions:

i) the expression “None by TL” indicates that the solver is not able to find a feasible solution within the

time limit; ii) the expression “Infeasible∗” indicates that the solver wrongly considers the problem as being

infeasible.

We briefly resume the three main observations that can be made on the basis of the results (discussed in

more detail in Section 5.1): 1) WPLAN applied to (PI) outperforms (BM) and (DM) for all the WiMAX

and DVB-T instances; 2) in most cases, the use of indicator constraint leads to finding solutions of lower

value than those provided by pure (DM) and this reduction in value is not compensated by a complete

elimination of coverage errors; 3) strengthening (DM) by GCIs in general enhances the solving performance,

but solutions containing errors are still generated.

The higher performance of our approach based on the Power-Indexed formulation (PI) is especially appar-

ent for all of the DVB instances and the WiMAX R-instances. In particular, several instances seem to be

quite easy for WPLAN but very difficult for (BM) and (DM). Indeed, when no time limit is imposed to

the solution of (BM), Cplex runs out of memory after about ten hours of computation without getting sen-

sible improvements in the bounds. On the contrary, in the case of WiMAX instances like R1, R2 and R4,

SOLVE-PI(P) finds the optimum solution (when |P|= 2) in less than 1 hour. The higher performance is also

highlighted in the case of instance Q1 that turns out to be hard: both (BM) and (DM) with 2 power levels

cannot find any feasible solution with non-zero value within the time limit, while, in contrast, (PI) finds a

solution with value 67.

Table 5 Comparisons between (BM), (DM), (DM & GCI1) and WPLAN (WiMAX instances)

(BM) (DM) (DM & GCI1) WPLAN
ID |T|

|T*| gap% (nom) time |T*| time |L*| |T*| time |L*| |T*| time |L*|

S1 100 63 (78) 13.72 10698 65 (70) 8705 6 67 8275 6 74 10565 6
S2 169 99 (100) 56.18 10705 86 6830 4 101 6405 4 107 5591 4
S3 196 108 79.54 4010 61 (100) 4811 4 95 6908 4 113 5732 4
S4 225 93 103.43 10761 100 (101) 6507 6 100 6891 4 111 7935 4
S5 289 77 202.24 10002 73 (76) 4602 4 72 (82) 7088 4 86 10329 6
S6 361 154 130.76 8110 121 (138) 5310 4 149 5724 4 170 8723 4
S7 400 259 (266) 49.67 8860 120 (121) 4100 4 239 6003 4 341 7154 4
R1 400 370 7.57 10626 284 (328) 1066 2 304 3424 2 400 1579 2
R2 441 302 (303) 45.03 3595 393 (394) 4713 4 375 (384) 4371 4 441 1244 4
R3 484 99 385.86 10757 188 2891 2 306 3440 2 427 3472 2
R4 529 283 (286) 84.96 10765 307 3026 2 399 3152 2 529 2984 2
Q1 400 0 - - 0 - - 37 3108 2 67 2756 2
Q2 441 191 130.89 9124 158 (179) 6282 4 156 6932 4 211 7132 4
Q3 484 226 112.83 3392 290 (292) 2307 2 316 3091 2 463 3323 2
Q4 529 145 (147) 264.83 6623 273 (280) 1409 2 343 2248 2 491 3053 2
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Table 6 Comparisons between (BM+), (DM+), (DM+ & GCI1) and WPLAN (WiMAX instances)

(BM+) (DM+) (DM+ & GCI1) WPLAN
ID |T|

|T*| gap% (nom) time |T*| time |L*| |T*| time |L*| |T*| time |L*|

S1 100 63 (71) 24.48 7556 53 (56) 7551 6 68 (70) 8650 6 74 10565 6
S2 169 99 (100) 65.92 10322 73 7036 4 67 8816 4 107 5591 4
S3 196 101 (103) 85.43 10241 Infeasible∗ - - 72 (75) 7101 4 113 5732 4
S4 225 71 179.2 8213 97 (102) 6820 4 93 6566 4 111 7935 4
S5 289 69 262.55 6561 75 6695 6 75 6710 4 86 10329 6
S6 361 81 (107) 235.51 5630 98 (116) 5672 4 108 6102 4 170 8723 4
S7 400 238 67.23 7141 157 (241) 6008 4 158 7059 4 341 7154 4
R1 400 309 (340) 17.05 4320 292 2355 2 188 3004 2 400 1579 2
R2 441 329 30.06 7809 296 4682 4 371 4798 4 441 1244 4
R3 484 0 - - 185 (201) 3150 2 374 3256 2 427 3472 2
R4 529 249 (253) 112.44 9203 278 2933 2 329 2871 2 529 2984 2
Q1 400 0 - - 0 - - 53 3400 2 67 2756 2
Q2 441 115 283.47 6135 137 5024 4 128 7082 4 211 7132 4
Q3 484 238 (263) 82.88 5162 258 2644 2 291 2808 2 463 3323 2
Q4 529 252 109.92 7212 378 (416) 2118 2 341 2391 2 491 3053 2

Table 7 Comparisons between (BM), (DM), (DM & GCI1) and WPLAN (DVB-T instances)

(BM) (DM) (DM & GCI1) WPLAN
ID

COV% gap% time COV% time |L*| COV% time |L*| COV% time |L*|

DVB1 95.10 (95.49) 2.67 8707 96.76 10020 6 94.80 7817 6 97.26 7193 6
DVB2 96.15 (96.51) 1.35 9510 89.75 (96.98) 8639 6 96.03 9194 6 97.14 9305 6
DVB3 None by TL - - 70.43 6155 4 70.80 6891 4 71.08 6544 4
DVB4 None by TL - - 77.55 (83.50) 5650 4 80.19 (84.85) 7123 4 88.98 725 2
DVB5 94.94 (96.18) 0.68 9804 92.25 (94.30) 7701 6 95.93 (96.11) 8826 8 96.25 9677 8
DVB6 None by TL - - 71.73 5922 4 74.09 6421 4 74.55 5840 4
DVB7 94.82 (100.00) 0.00 65 80.49 (100.00) 293 8 96.84 (99.83) 311 10 99.47 182 9
DVB8 78.63 22.24 6621 84.35 6212 4 83.54 6049 4 84.35 6293 4
DVB9 None by TL - - 95.26 5003 4 95.57 5447 4 96.60 1538 2

Table 8 Comparisons between (BM+), (DM+), (DM+ & GCI1) and WPLAN (DVB-T instances)

(BM+) (DM+) (DM+ & GCI1) WPLAN
ID

COV% gap% time COV% time |L*| COV% time |L*| COV% time |L*|

DVB1 95.38 (95.50) 2.85 9203 93.45 (96.62) 9642 6 94.27 8559 6 97.26 7193 6
DVB2 96.95 0.90 9940 96.22 (96.77) 10077 6 94.59 9803 6 97.14 9305 6
DVB3 None by TL - - 69.94 6774 4 70.21 7105 4 71.08 6544 4
DVB4 65.53 (65.65) 49.18 9120 83.07 (86.67) 6910 4 77.57 (86.02) 7008 4 88.98 725 2
DVB5 95.14 (95.41) 1.61 6194 94.03 9180 6 95.02 10092 8 96.25 9677 8
DVB6 None by TL - - 70.56 (70.96) 6701 4 70.30 6338 4 74.55 5840 4
DVB7 96.91 (100.00) 0.00 244 92.87 (99.81) 573 10 98.10 414 10 99.47 182 9
DVB8 58.51 64.24 10086 80.09 (80.12) 7050 4 83.80 7122 4 84.35 6293 4
DVB9 None by TL - - 95.85 6108 4 94.44 6966 4 96.60 1538 2
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