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Abstract1

Water and sediment distribution by river bifurcations is often highly unbalanced. This2

may result from a variety of factors, like migration of bars, channel curvature, backwater3

effects, which promote an uneven partition of flow and sediment fluxes in the downstream4

branches, which we call “forcings”. Bifurcations also display an intrinsic instability mecha-5

nism that leads to unbalanced configurations, as it occurs in the idealized case of a geomet-6

rically symmetric bifurcation, which we call “free”, provided the width-to-depth ratio of the7

incoming flow is large enough. Most frequently, these free and forced mechanisms coexist,8

however their controlling roles on bifurcation dynamics has not been investigated so far. In9

this paper we address such question by proposing a unified free-forced modelling framework10

for bifurcation morphodynamics. Upstream channel curvature and different slopes of down-11

stream branches (slope advantage) are specifically investigated as forcing effects typically12

occurring in bifurcations of alluvial channels. The modelling strategy is based on the widely13

used two-cell model of Bolla Pittaluga et al. (2003) here extended to account for the spa-14

tially non-uniform fluxes entering the bifurcation node. Results reveal that the relative role15

of free and forced mechanisms depends on the width to depth ratio falling above or below16

the resonant threshold that controls the stability of free bifurcations: when the main chan-17

nel is relatively wide and shallow (super-resonant regime) the bifurcation invariably evolves18

towards unbalanced configurations, whatever the combination of curvature and slope advan-19

tage values, which instead control the bifurcation response under sub-resonant conditions.20

Detection of the resonant aspect ratio as a key threshold also releases the modelling approach21

from the need of parameter calibration that characterized previous approaches, and allows22

for interpreting under a unified framework the opposite behaviours shown by gravel bed and23

sand bed bifurcations for increasing Shields parameter values.24
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1 Introduction25

Channel bifurcations control the downstream distribution of water and sediments in a variety of26

fluvial environments, such as deltas, alluvial fans, braided and anabranching rivers (Slingerland27

and Smith, 2004; Kleinhans et al., 2013). Understanding their dynamics is therefore important for28

managing water resources and the flooding risk, predicting the long-term morphological evolution29

of channel networks and evaluating the effectiveness over time of river restoration projects aimed30

at reactivating a multi-thread configuration (e.g., Habersack and Piégay , 2007). Bifurcation dy-31

namics also control instream processes in meander bends that mitigate the development of channel32

sinuosity through the occurrence of short cuts through point bars (Grenfell et al., 2012; van Dijk33

et al., 2014).34

River bifurcations have been extensively studied through laboratory-scale physical models (Fed-35

erici and Paola, 2003; Bertoldi and Tubino, 2007; Bertoldi et al., 2009; Le et al., 2018b), and36

mathematical models based on 1D (Wang et al., 1995; Bolla Pittaluga et al., 2003; Kleinhans37

et al., 2013; Salter et al., 2018), 2D (Edmonds and Slingerland , 2008; Siviglia et al., 2013; Le38

et al., 2018b,a) and 3D approaches (Kleinhans et al., 2008). Along with field observations (e.g.,39

Zolezzi et al., 2006; Kleinhans et al., 2012), these studies highlight the almost invariable tendency40

of bifurcations to produce an uneven distribution of flow and sediment transport, which results in41

a strong asymmetry of the channel width and bed elevation of downstream anabranches.42

This type of unbalanced configuration is often promoted by various “forcing” effects that drive43

the bifurcation towards an unbalanced state, sometimes leading to the complete closure of one44

of the anabranches. Forcing factors include both upstream and downstream effects. Upstream45

effects comprise mechanisms that feed the bifurcating node with a topographically-driven uneven46

distribution of flow and transport rate, like the curvature of the upstream channel (Kleinhans47

et al., 2008; Hardy et al., 2011; Sloff and Mosselman, 2012) and the occurrence of migrating48

bars (Bertoldi et al., 2009; Bertoldi , 2012) or steady bars (Le et al., 2018b). Downstream effects49

include mechanisms that provide, locally or through backwater effects, a slope advantage to one50

of the distributaries (Edmonds , 2012; van Dijk et al., 2014; Zhang et al., 2017; Salter et al., 2018).51

For purely illustrative purposes, Figure 1 shows real-world bifurcations with examples of these52
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concepts. Figures 1a and 1b provide examples of bifurcations where one of these forcing factors is53

likely dominant: the upstream channel curvature (Figure 1a) and the slope advantage for the right54

bifurcate (Figure 1b). In Figures 1c and 1d these two forcings likely have comparable relevance.55

They might cooperate in the case of Figure 1c, because the chute channel detaches from the outer56

bank of the upstream channel bend, thus receiving most of the water and sediment input from57

upstream, and is also shorter than the other (left) bifurcate, thus having a slope advantage. On58

the contrary, they likely compete in the case of Figure 1d, because the shorter chute channel occurs59

on the inner bank of the upstream channel bend.60

Interestingly, the unbalanced configuration can also result from an inherent instability mecha-61

nism, even in the absence of external forcings, as shown theoretically by Wang et al. (1995) and62

Bolla Pittaluga et al. (2003), and later demonstrated through laboratory and numerical studies63

(Bertoldi and Tubino, 2007; Edmonds and Slingerland , 2008; Siviglia et al., 2013; Salter et al.,64

2018). More recently Redolfi et al. (2016) provided an interpretation of such “free” bifurcations65

instability within the framework of the theory of morphodynamic influence of Zolezzi and Sem-66

inara (2001), showing that the unbalanced configuration arises when the bifurcation is able to67

exert an upstream morphodynamic influence that allows for the formation of an upstream steady68

bar. Such upstream morphodynamic influence theoretically occurs when the width to depth ratio69

exceeds a threshold “resonant” value, as originally defined by Blondeaux and Seminara (1985) in70

the theory of regular meanders. For small (sub-resonant) values of the width to depth ratio a71

symmetric free bifurcation keeps stable and equally distributes water and sediment fluxes in the72

downstream branches, while in the super-resonant regime such balanced configuration is no longer73

stable and the bifurcation invariably evolves towards an unbalanced configuration.74

The above scenario suggests that in sub-resonant conditions the tendency towards unbalanced75

states observed in real rivers is mainly driven by external forcing factors, while in super-resonant76

conditions both free and forced mechanisms are likely interacting, though their respective roles77

have not been investigated so far. The question therefore arises to which extent the autogenic, free-78

instability mechanism or instead the external forcings affect the behaviour of natural bifurcations,79

and under which conditions those effects cooperate or compete to produce what is observed in80
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such complex settings.81

We aim at answering this question by taking the viewpoint of river bifurcations as dynamical82

systems for which a distinct role of the free and forced responses can be identified. This method-83

ological distinction is based on the recognition that free and forced mechanisms display substantial84

differences in their evolutionary temporal and spatial scales. Similar approaches have proven to85

provide thorough insight in the study of other morphodynamic processes, like the dynamics of86

river bars in curved or meandering channels (Seminara and Tubino, 1989), where migrating free87

bars develop on a much faster scale than that required to shape the meander planform (Tubino88

and Seminara, 1990).89

In this paper we cast within a unified theoretical framework previous results on free and90

forced bifurcations and consider two main forcing factors: the upstream effect exerted by an91

incoming curved channel and the downstream effect of slope advantage of one of the distributaries,92

which can derive from the different length of the distributaries, from differential downstream93

degradation/deposition (Salter et al., 2018), or from backwater effects (e.g. Edmonds , 2012).94

The analysis is based on the two-cell model originally proposed by Bolla Pittaluga et al. (2003),95

as extended by Kleinhans et al. (2008) to account for the curvature-driven secondary flow, and on96

the theoretical results of Redolfi et al. (2016). The analytical model prescribes physically-based,97

simplified nodal point relationships that enables us to explore the basic mechanisms that drive the98

water and sediment distribution at the node. As highlighted by Wang et al. (1995), the behaviour99

of the bifurcation depends on how the sediment is distributed with respect to the downstream100

transport capacity; sediment distribution is in turn determined by the transverse flow-exchange101

and gravitational effects on bed load transport just upstream the bifurcation node, as explained102

by Bolla Pittaluga et al. (2003).103

2 Methods104

Our model stems from the Bolla Pittaluga et al. (2003) two-cell approach, and is formulated to105

incorporate both free and forced bifurcation responses, and their interaction. It allows predicting106

how water and sediment fluxes delivered from the upstream main channel are drained by the107
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Figure 1: Satellite images showing illustrative examples of river bifurcations: (a) Tigris River
near Baghdad (Iraq), 34◦16′N , 43◦50′E, with a curved upstream channel and downstream bi-
furcates having a nearly symmetrical channel geometry; (b) estuary in the Kamchatka Peninsula
(Russia), 60◦02′N , 163◦40′E, where the left bifurcate likely covers a longer distance for the same
elevation gap from the bifurcation node to the sea, suggesting a possible slope advantage for the
left bifurcate; (c) bends with chute cutoffs in the meandering Siret River (Romania), 47◦39′N ,
26◦30′E, with the cutoff channel initiating on the outer bank of an upstream channel bend and be-
ing shorter than the left bifurcate; (d) meandering River in the Ust-Chaun area (Russia), 68◦42′N ,
170◦35′E, with the cutoff channel initiating on the inner bank of a bend and being shorter than
the left bifurcate; from Google Earth, Digital Globe (2018).
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downstream anabranches, under different combination of external forcings.108

The bifurcation geometry is sketched in Figure 2a, having an upstream, curved main channel109

of width Wa, slope Sa and radius of curvature R, which bifurcates in two downstream channels110

having width Wb and Wc and slope Sb and Sc, respectively. In the model, flow and sediment111

balances applied to two cells of length αWa, which also accounts for transverse exchanges, rules112

the distribution of water (Q) and sediment (Qs) fluxes between the bifurcates, as represented in113

Figures 2b and 2c.114

Cell B

Cell C

(a)

(b) Water fluxes (c) Sediment fluxes

Figure 2: Bifurcation geometry and notation used in the mathematical model formulation: (a)
planform view, showing the curved main channel, the two distributaries and the two cells; (b) and
(c) water and sediment fluxes through the cells.

The model considers the effect of secondary flows associated with streamline curvature within115

the node cells (Kleinhans et al., 2008), and includes an extension of such previous model to account116

for the non-uniform distribution for the entering water and sediment fluxes.117
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2.1 The free bifurcation118

The core of the method is a model for a free bifurcation with perfectly symmetrical geometry and119

boundary conditions (i.e. with no curvature nor slope advantage) that follows the classic approach120

of Bolla Pittaluga et al. (2003). The flow and bed topography in the three channels result from121

a 1D mobile bed model, which can be solved once the following five matching conditions at the122

bifurcation node are specified: conservation of sediment and water fluxes (two conditions), energy123

conservation (i.e. water surface elevation) along each cell (two conditions), and a physically-based124

relation that prescribes how sediment fluxes are partitioned at the bifurcation node. This type125

of nodal point relation is the key to incorporate bifurcation morphodynamics within a simple 1D126

scheme, and accounts for the exchange of sediment between the two cells through the following127

relationship:128

Qsy/(αWa)

Qsa/Wa︸ ︷︷ ︸
sediment flux direction

=
Qy/(αWaDabc)

Qa/(WaDa)︸ ︷︷ ︸
velocity direction

− 2r√
θa

ηb − ηc
Wb +Wc︸ ︷︷ ︸

gravitational effect

, (1)

where the direction of the sediment flux is determined by the direction of velocity and by the129

gravitational effect induced by the transverse gradient of the bed elevation. The last term of130

Equation (1) is estimated according to the Ikeda (1982) formulation, where r is a dimensionless131

coefficient (e.g., Baar et al., 2018), θa is the Shields stress in the main Channel a, ηb and ηc indicate132

the bottom elevation at the inlet of the distributary Channels b and c, respectively. The mean133

depth within the cell, defined as Dabc = (2Da + Db + Dc)/4, can be simplified to Dabc = Da as134

proposed by Salter et al. (2018).135

The flow in the three anabranches is modelled using a classic 1D shallow water and Exner136

model, whose steady solution is simply an uniform flow. The water flow in each channel i = {a, b, c}137

is given by:138

Qi = Wi ci
√
gSiD

3/2
i , (2)

where g is the gravitational acceleration, Di is the water depth and ci is the dimensionless Chézy139
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coefficient, which can be calculated as (Engelund and Fredsoe, 1982):140

ci = 6 + 2.5 log

(
1

2.5

Di

d50

)
, (3)

with d50 indicating the median grain size.141

Similarly, the volumetric sediment flux is computed as:142

Qsi = Wi

√
g∆d3

50 Φ

(
θi,

Di

d50

)
, θi =

SiDi

∆d50

, (4)

where ∆ is the relative submerged density of the sediment, θi is the Shields stress and Φ is a143

function given by the sediment transport formula. Specifically, we used the Parker (1990) formula144

for gravel bed channels and the Engelund and Hansen (1967) formula for sand bed cases.145

The free character of the bifurcation manifests itself in the symmetrical configuration of up-146

stream and downstream channels, which determines water and sediment fluxes that enter and exit147

the cells (Figures 2b and 2c). First, the input fluxes QIN
i and QsINi that are delivered by the148

upstream channel into the node cells are uniform. Second, the absence of slope advantage (i.e.149

Sb = Sc) leads to the same water and sediment rating curves for the two bifurcates. Therefore,150

possible asymmetries of the output fluxes are not driven by the upstream/downstream conditions151

but can only derive from an uneven redistribution by the bifurcation node.152

2.2 The forced bifurcation153

Different forcing effects can be further incorporated in the free bifurcation model, to increase its154

ability of the model to represent real bifurcation configurations. The key to model those effects155

is to act on the upstream and boundary conditions imposed at the node cells, which practically156

implies considering non-uniform water and sediment fluxes entering the two node cells, and/or157

imposing different water and sediment rating curves for the two bifurcates. Such an approach has158

been already exploited by Bertoldi et al. (2009) when modelling how bifurcations dynamics can159

be affected by migrating bars, which were schematised as periodic temporal oscillations of water160

and sediment fluxes delivered to the node cells. Here we consider two different forcing effects: (i)161
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a downstream slope advantage of one bifurcate with respect to the other one and (ii) the presence162

of a curved upstream channel.163

A downstream slope advantage increases the probability for an unbalanced water and sediment164

flux towards the “advantaged” distributary. This effect can be taken into account by setting165

different values of Sb and Sc in Equations (2) and (4). This breaks the symmetry in the downstream166

rating curves, even if the other geometrical parameters remain equal between the two downstream167

branches. We quantify the slope advantage through the following parameter:168

∆S =
Sb − Sc
Sb + Sc

, (5)

with positive values of ∆S indicating that the outer bend bifurcate (Channel b of Figure 2a) is169

steeper than the inner bend bifurcate (Channel c).170

We model the presence of an upstream bend (Channel a) feeding the bifurcation as does a171

channel with constant radius of curvature R. The curvature of the main channel leads to the172

formation of a spiral flow (Figure 3a), which in turn produces a shear stress in the transverse173

direction. Therefore, the bottom stress ends up being deflected by an angle φτ , which can be174

computed as (Struiksma et al., 1985):175

tan (φτ ) = −A D

R
, (6)

where D is the local water depth and A is the coefficient that defines the intensity of the secondary176

flow, given by:177

A =
2

κ2

(
1− 1

κ c

)
(7)

with κ = 0.4 indicating the Von Karman constant.178

In the region where the flow is fully developed (i.e., far enough from the bend entrance),179

the flow characteristics do not vary along the channel, and the depth-averaged velocity is purely180

longitudinal. In these conditions, the deflection of the bed shear stress is compensated by a181
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transverse gradient of the bed elevation (see Figure 3a) that is given by:182

dη

dy
=

√
θ

r
tan (φτ ) , (8)

(for mathematical details see Appendix A), which in turn generates non-uniform transverse profiles183

of water depth, longitudinal velocity and shear stress. Consequently, water and sediment fluxes184

feeding the two cells are not uniform but are mainly delivered towards the cell positioned at the185

outer bend (Cell B of Figure 3b).186

(a)

Inner
bend

Outer
bend

(b)
Cell B

Cell C

Figure 3: Illustration of the secondary flow solution in the upstream channel: (a) cross-sectional
view, indicating the vertical profile of the transverse velocity (arrows), and the transverse profiles
of bed elevation and water depth; (b) planimetric view, with the transverse velocity profile (arrows)
and the associated sediment fluxes entering the cells (QsINb and QsINc ).

Furthermore, as suggested by Kleinhans et al. (2008) the deviation of the bed shear stress187

given by Equation (6) is also active within the cells, so that the nodal point relation (1) needs to188

be extended as follows:189

Qsy
αQsa︸ ︷︷ ︸

sediment flux direction

=
Qy

αQa︸︷︷︸
velocity direction

− 2r√
θa

ηb − ηc
Wb +Wc︸ ︷︷ ︸

gravitational effect

− A
Da

R︸ ︷︷ ︸
spiral flow effect

, (9)

where Da and θa are the average values of water depth and Shields stress in the upstream Channel190

a.191

The above formulation is generally suitable for modelling bifurcations with arbitrary channel192

widths. However, for the purpose of analysing the interaction between the different mechanisms,193

also in comparison with previous works (e.g., Bolla Pittaluga et al., 2015), we restrict our attention194
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to the basic case where both the bifurcates have half the width of the main channel (Wb = Wc =195

Wa/2).196

3 Results197

The model solution can be expressed as a function of a few dimensionless parameters. First,198

the solution depends on the reference conditions, which are defined as the uniform flow and199

sediment transport in a straight channel with same slope, width and discharge of the main channel.200

Specifically, we need to prescribe three main parameters, namely the aspect ratio, the Shields stress201

and the relative roughness:202

β0 =
1

2

Wa

D0

, θ0 =
SaD0

∆d50

, ds0 =
d50

D0

, (10)

where zero subscript (e.g., D0) indicates the reference conditions.203

Second, the solution depends on the intensity of the forcing effects, which is specified through204

the normalized curvature Wa/R and the slope advantage ∆S.205

In the following, we analyse the model outputs in terms of discharge asymmetry (Bertoldi206

et al., 2009), which can be taken as a representative indicator of the bifurcation response:207

∆Q =
Qb −Qc

Qa

, (11)

which may range from −1 (no flow in Channel b) to +1 (no flow in Channel c), with ∆Q = 0208

indicating balanced bifurcations.209

3.1 The free bifurcation210

The free bifurcation configuration is made by three straight channels without any slope advantage211

nor width or angle asymmetry, thus without external effects that may force an unbalanced config-212

uration. In this condition the intuitive expectation would be a symmetrical bifurcation response,213

with an even distribution of downstream water and sediment fluxes. As illustrated in Figure 4,214
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the balanced configuration (∆Q = 0) is indeed an equilibrium solution of the system. However,215

for relatively high values of the aspect ratio the balanced configuration becomes unstable, and one216

of the channels, indifferently, tends to dominate.217

As highlighted by Bolla Pittaluga et al. (2003) this type of instability of the symmetric equilib-218

rium solution does not necessarily lead to a complete closure of one branch, but new, unbalanced219

and stable equilibrium states are possible. In Figure 4, this is represented by the formation of a220

so called “pitchfork bifurcation” (e.g., Wiggins , 2003) in the equilibrium diagram, which occurs221

at β0 near 13.5. The two unbalanced equilibrium configurations are physically sustained by the222

formation of an inlet step, i.e. a localized steep reach at the head of the largest flow-carrying bifur-223

cate (Bertoldi et al., 2009), which steers the sediment flux and thus satisfies the balance between224

sediment supply and transport capacity of the bifurcates.225

Balanced
bifurcation

Channel B
dominates

Channel C
dominates

6 8 10 12 14 16 18 20 22
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4: Equilibrium solutions of a free bifurcation (i.e. straight channel with no slope advan-
tage) according to the two-cell model. Solid lines indicates stable solutions, while the dashed line
represents an unstable equilibrium configuration. Parameters are θ0 = 0.1, ds0 = 0.02, r = 0.5;
the Parker (1990) transport formula is used.

The critical point at which the pitchfork bifurcation appears is determined through a linear226

stability analysis (Bolla Pittaluga et al., 2015), whose result can be expressed in the following227
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general form:228

βC =
rα√
θ0

4

ΦD + ΦT − (3/2 + cD)
, (12)

whose coefficients are defined as:229

cD :=
D0

c0

∂c

∂D

∣∣∣∣
D0

, ΦD :=
D0

Φ0

∂Φ

∂D

∣∣∣∣
D0,θ0

, ΦT :=
θ0

Φ0

∂Φ

∂θ

∣∣∣∣
D0,θ0

, (13)

and represent the sensitivity of Chézy coefficient and of the dimensionless sediment transport rate230

to variations of water depth and Shields stress. The algebraic expressions of the coefficients cD,231

ΦD and ΦT for the used formulae of Parker (1990) and of Engelund and Hansen (1967), as well232

as for the classical relation of Meyer-Peter and Muller (1948), are reported in Appendix B for233

the sake of clarity. Equation (12) represents a generalization of the formula proposed by Bolla234

Pittaluga et al. (2015) for arbitrary transport and friction formulae.235

According to Equation (12), the critical aspect ratio is directly proportional to the cell length236

represented by α. In a 1D formulation, the parameter α needs to be empirically calibrated,237

resulting in rather different literature values, ranging from 1 (Bolla Pittaluga et al., 2003) to238

6 (Bertoldi and Tubino, 2007). This limitation has been solved by Redolfi et al. (2016), who239

developed an analytical linear solution of the fully 2D problem; in that formulation, the length of240

the upstream cells is resolved by the model itself, so that no specific calibration is needed.241

The analysis of Redolfi et al. (2016) demonstrated that the emergence of an unbalanced solution242

in a free bifurcation depends on the formation of an upstream steady bar, which occurs when the243

bifurcation is able to exert a morphodynamic influence in the upstream direction (see Figure244

5). As theoretically derived by Zolezzi and Seminara (2001) and experimentally observed by245

Zolezzi et al. (2005) any fixed geometrical disturbance can produce a permanent upstream bed246

deformation, usually taking the form of a steady bar, when the channel is wide and shallow enough247

for the aspect ratio of the main channel to exceed the resonant threshold, βR, as originally defined248

in the theory of regular meanders by Blondeaux and Seminara (1985). Therefore, under super-249

resonant conditions (β0 > βR) the bifurcation node - as a fixed geometrical disturbance - can250

trigger such an upstream morphodynamic influence. This is essentially the physical mechanism251
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behind the mathematical instability of the balanced equilibrium solution, which therefore makes252

a free bifurcation unbalanced.253

Steady bar

Upstream morphodynamic
influence

Super-resonant conditions

Figure 5: Map of bed elevation and water distribution in a free bifurcation from the numerical
simulations of Edmonds and Slingerland (2008), adapted from their Figure 5b. The equilibrium
configuration is made unbalanced by the formation of an upstream steady bar, which deviates
most water and sediment fluxes towards the right bifurcate. According to Redolfi et al. (2016)
this is an effect of the upstream morphodynamic influence exerted by the bifurcation node, which
occurs when the aspect ratio of the upstream channel β0 exceeds the resonant threshold βR.

The computation of the resonant aspect ratio requires the solution of a fourth-order polynomial,254

which can be readily obtained using the available Matlab code (see Acknowledgements Section).255

The resulting values for gravel bed and sand bed river channels as a function of the relevant256

dimensionless parameters are reported in Figures 6a and 6b, respectively. For sand bed rivers257

the Chézy coefficient is independently fixed, rather than derived from Equation (3), to account258

for the higher drag exerted by bedforms, also consistently with previous applications (Edmonds259

and Slingerland , 2008). In gravel bed channels βR increases with both the Chézy coefficient and260

the Shields stress, which explains the tendency of bifurcations to stabilize when increasing θ0261

(Bolla Pittaluga et al., 2015). Conversely, in sand bed channels the resonant threshold tends to262

decrease with the Shields stress, which explains the opposite effect of θ0 observed by Edmonds263

and Slingerland (2008). Consistently with Bolla Pittaluga et al. (2015) the different behaviour of264

sand bed and gravel bed channels is related to the different response of the dimensionless sediment265

transport rate to variations of the Shields stress (which depends on the transport formula) rather266
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Table 1: List of datasets used to evaluate the resonance criterion for bifurcation instability.
Dataset Method Bed material # of cases β0 θ0

Bertoldi and Tubino (2007) Laboratory gravel 25 4.9− 26.3 0.042− 0.099
Edmonds and Slingerland (2008) Numerical sand 11 8 0.80− 2.19
Siviglia et al. (2013) Numerical gravel 18 3.5− 24.0 0.060− 0.200
Zolezzi et al. (2006) Field gravel 6 9.5− 14.5 0.053− 0.088
Bolla Pittaluga et al. (2015) Field sand 11 16.9− 77.1 0.30− 1.16

than an effect of a gradient in the water surface elevation near the bifurcation, as suggested by267

Edmonds and Slingerland (2008).268

Alternatively, the resonant aspect ratio can be calculated though the approximate expression269

by Camporeale et al. (2007):270

βR =
π

2
√

2

c0

√
r

θ
1/4
0

1√
ΦD + ΦT − (3/2 + cD)

, (14)

which provides rather accurate estimates of βR for sand bed channels, while it gives slightly271

underestimated values for gravel bed cases (up to −13% for the range of parameters in Figure 6a).272

The resonant threshold provides a simple criterion to determine if a free bifurcation remains273

balanced or tends to evolve towards unbalanced states. To test this criterion we used the lit-274

erature datasets listed in Table 1, which include gravel and sand bifurcations measured in the275

field, modelled numerically and reproduced in laboratory-scale physical models. For each of the276

71 bifurcations the different authors provided observation of their balanced/unbalanced state and277

the basic flow parameters, which were used to compute the resonant threshold and the parameter278

(β0 − βR)/βR representing the relative distance to resonance. We set r = 0.5 for all cases except279

for the Edmonds and Slingerland (2008) experiments, for which an equivalent r ' 0.35 value was280

needed to match the default αbn = 1.5 value of their Delft3D formulation (e.g., Lesser et al., 2004).281

Results reported in Figures 6c and 6d show that balanced bifurcations (closed markers) tend to282

stay below the dashed line (i.e. sub-resonant conditions), while all the unbalanced bifurcations283

(open markers) are located above the dashed line (i.e. super-resonant conditions), independently284

of the Shields stress. It is worth noting that the resonant criterion also captures the numerical285

results of Edmonds and Slingerland (2008), who demonstrated that balanced solutions in sand bed286

channels tends to become unstable with increasing θ0. The above analysis confirms that the reso-287
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Figure 6: (a) and (b) Resonant aspect ratio βR for gravel and sand bed channels as a function of
Shields stress and Chézy coefficient. Under sub-resonant conditions (i.e. β0 < βR) the balanced
bifurcation configuration is stable, while in super-resonant channels (β0 > βR) the instability
mechanism makes the bifurcation unbalanced. (c) and (d) Observations of the balanced (close
markers) or unbalanced (open makers) state of the bifurcation as a function of Shields stress and
relative distance from the resonant threshold (scaled aspect ratio), for each of the 71 bifurcations
listed in Table 1.
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nant threshold correctly predicts stability of both gravel and sand bed bifurcations, with the key288

advantage of avoiding the need of calibrating a specific parameter like the α required by previous289

theoretical models (e.g., Bolla Pittaluga et al., 2003, 2015).290

The value of α that makes the nonlinear two-cell model consistent with the 2D theory can291

be determined by simply setting βC = βR in Equation (12). Results reported in Figure 7 show292

a significant dependence of α on the reference conditions (θ0 and c0), which explains the large293

variability emerging in the literature. We notice that this estimate is strictly valid in the neighbour294

of the instability threshold, while for larger β it provides an upper limit of the optimal value for295

predicting the discharge asymmetry, as suggested by both laboratory observations and theoretical296

considerations (Bertoldi and Tubino, 2007; Redolfi et al., 2016).297
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Figure 7: Values of the parameter α that make the two-cell model consistent with the linear 2D
theory of Redolfi et al. (2016): (a) gravel bed channels, (b) sand bed channels.

Data of Table 1 include field measurements of natural bifurcations, which are not necessarily298

free. In this case the observed asymmetry may be not fully ascribed to the free instability mecha-299

nism but it may also be enhanced by the presence of the external forcings. The analysis of forcing300

effects and their interaction with the free instability mechanism is the main subject of the next301

section.302
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3.2 The forced bifurcation303

Natural bifurcations are rarely free because of a number of forcing effects, including curvature of304

the main channel, different bifurcation angles, slope advantages, migration of bars, presence of305

obstacles, differential downstream sedimentation (e.g. Van der Mark and Mosselman, 2013; van306

Dijk et al., 2014; Le et al., 2018b,a; Salter et al., 2018).307

In the presence of a forcing effect, for example a curvature of the main channel, the equilibrium308

diagram of Figure 4 changes its topology. Specifically, as illustrated in Figure 8a, the equilibrium309

solution at relatively low values of β0 is not balanced (i.e. ∆Q = 0) and as expected more water310

is flowing towards the outer bend. When β0 increases, the effect of the channel curvature tends to311

be amplified by the bifurcation, resulting in a more and more unbalanced configuration. However,312

at a given β value two additional equilibrium solutions form (a so called “imperfect pitchfork313

bifurcation”, see for example Golubitsky and Schaeffer , 1979). One of them is unstable (dashed314

line in Figure 8a), while the more unbalanced solution is stable. This suggests the possibility for315

the bifurcation to attain a different, stable equilibrium point, where most of water and sediment316

fluxes are deviated towards the inner bend bifurcate.317

The behaviour of the equilibrium solutions for different values of the dimensionless channel318

curvature Wa/R is illustrated in Figure 8b. When Wa/R = 0 (straight channel) we obtain again319

the solution of Figure 4, here represented in terms of the distance from the resonant point, so that320

the pitchfork “bifurcation” appears at (β0 − βR)/βR = 0. By analysing the effect of increasing321

curvature two relevant aspects emerge. First, the increase of the discharge asymmetry with channel322

curvature is significantly more pronounced at relatively small values of the channel aspect ratio323

(i.e. in the sub-resonant regime), where lines corresponding to different curvature values are more324

spaced apart, while at higher (i.e., super-resonant) aspect ratios the effect of curvature is minimal.325

Second, the value of the aspect ratio at which the second stable solution forms increases with326

channel curvature. For example, when Wa/R = 0.1 an aspect ratio 50% higher than the resonant327

value is needed to allow for the existence of multiple stable solutions.328

The possibility of obtaining multistable solutions depending on channel curvature and aspect329

ratio is better illustrated in Figure 9a. While under sub-resonant conditions the equilibrium330
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Figure 8: Stable (solid lines) and unstable (dashed lines) equilibrium solutions for a bifurcation
with a curved upstream channel, as a function of the scaled aspect ratio. (a) Example with fixed
curvature (Wa/R = 0.01), where the dotted line indicates the discharge ratio at the cell entrance
and the grey lines represent the reference, “free” solution. (b) Effect of increasing curvature values.
The vertical dashed line separates the sub-resonant (left) from the super-resonant (right) region.
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solution is unique, two stable equilibrium solutions exist in super-resonant conditions. However,331

if the curvature is sufficiently large (depending on (β0 − βR)/βR) only the solution for which the332

outer channel dominates is possible.333
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Figure 9: Stability diagram indicating regions where two stable equilibrium solutions exist de-
pending on: (a) scaled aspect ratio and channel curvature (no slope advantage); (b) the combined
effect of channel curvature and slope advantage, for different values of the scaled aspect ratio.

The above depicted scenario is characteristic of imperfect systems, and turns out to be similar334

when analysing different kind of forcings. Here we do not specifically report on the effect of the335

slope advantage but we directly focus on the more interesting analysis of its interaction with the336

curvature of the upstream channel.337

In some cases the effect of main channel curvature can be compensated by a slope advantage338

that tends to steer water and sediment flows towards the steeper inner bend bifurcate (e.g., Klein-339
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hans et al., 2008; van Dijk et al., 2014). Analysis of the combined effect of the different forcings340

on the discharge asymmetry gives the results illustrated in Figure 10a, which confirms that for a341

sub-resonant bifurcation a channel curvature can be compensated by a gradient advantage. When342

∆S = −0.01 the discharge asymmetry is the same as the upstream asymmetry independently of343

β0, while for higher slope advantages the bifurcation tends to distribute water towards the inner344

bend channel, in a greater proportion when β0 increases. However, the scenario dramatically345

changes when the aspect ratio exceeds the resonant threshold (i.e. super-resonant conditions).346

In this case, equilibrium solutions are never balanced, with one of the two bifurcates becoming347

dominant for any combination of curvature and slope advantage. In Figure 10b one sees that un-348

der sub-resonant conditions the equilibrium ∆Q varies smoothly with the slope advantages, while349

when β0 exceeds βR sharp transitions and hysteresis are expected when varying ∆S.350

In general the discharge asymmetry depends on slope advantage and curvature as illustrated in351

Figure 11. Under sub-resonant conditions (Figure 11a) variations of ∆Q are always smooth, and352

the effect of channel curvature can be always compensated by negative values of ∆S. Conversely,353

under super-resonant conditions (Figure 11b) the bifurcation is never balanced, and there is a well-354

defined region (black oblique stripes) in the forcing parameters space where two stable solutions355

coexist. The width of such bi-stable region depends on the distance from the resonant point as356

depicted in Figure 9b.357

It is important to remark that all our diagrams have been obtained by considering fixed values358

of relative roughness (ds0 = 0.02), Shields stress (θ0 = 0.1) and Ikeda (1982) coefficient (r = 0.5),359

and the same transport (Parker , 1990) and friction (Equation (3)) formulae. Nevertheless, from a360

qualitative point of view, model results, and therefore their interpretation, are fully independent361

of the specific choice of flow parameters values and closure relations for sediment transport.362

4 Discussion363

The present work has built on previous analyses to propose a theoretical framework for river bifur-364

cations within the context of 1D morphodynamic modelling that accounts for key 2D ingredients365

at the entrance of the bifurcation node and in the fluxes delivered by the upstream channel.366
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Figure 10: Effect of the slope advantage on a curved (Wa/R = 0.02) bifurcation. (a) Equilibrium
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Here we discuss (i) the main implications of our findings and the potential of the proposed367

approach for the interpretation of bifurcation dynamics, as it emerges from both observations and368

modelling; (ii) the significance of the equilibrium analysis for time-dependent processes; (iii) the369

need to clarify the specific use of the wording “instability” when addressing bifurcation dynamics,370

in the light of our findings and in the context of previous studies; (iv) applicability and limitations371

of our approach.372

373

Enhanced insight on bifurcation morphodynamics374

The core of the model lies in incorporating in the 1D scheme of Bolla Pittaluga et al. (2003)375

(i) the resonant aspect ratio as threshold for bifurcation stability (Redolfi et al., 2016) and (ii)376

the effect of the forcing factors, through a proper modelling of the water and sediment fluxes377

delivered from the upstream channel and accepted by the downstream bifurcates. These fluxes378

are laterally symmetrical in the case of a purely free bifurcation, while the opposite occurs when379

adding forcing effects, which are almost invariably observed in real settings. Among the broad380

variety of forcing factors that characterize natural river bifurcations, here we addressed the isolated381

and the combined effect of an upstream channel curvature and a gradient advantage between the382

downstream branches.383

A first important insight allowed by the proposed approach is the confirmation of the key role384

of the resonant aspect ratio on bifurcation behaviour, and an in-depth quantitative understanding385

of how the bifurcation response depends on the relative distance of the channel-forming aspect386

ratio value from such resonant threshold. This is supported with an analysis of an unprecedented387

number of laboratory, numerical and field data, for both gravel-bed and sand bed streams. The388

stability criterion based on the resonant threshold explains the loss of stability with increasing389

Shields stress of balanced sand bed bifurcations observed by Edmonds and Slingerland (2008),390

which is simply the consequence of adopting different transport and friction formulae. Compared391

with previous stability criteria, the analysis based on resonance offers the key advantage that it392

does not require the calibration of a specific parameter like the k exponent of Wang et al. (1995)393

or the α length parameter of Bolla Pittaluga et al. (2003, 2015).394
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Interestingly, the role of the free instability mechanism is not limited to ideal, geometrically395

symmetric bifurcations with symmetrical boundary conditions, but it is also a key controlling396

factor for complex, forced bifurcations. Consequently, also the response of bifurcation to the397

external forcings highly depends on channel conditions with respect to resonance. Under sub-398

resonant conditions, the bifurcation behaviour is relatively simple, as it is perfectly balanced for399

free, symmetrical bifurcations and mostly dominated by the forcing effects when they are present.400

On the contrary, under super resonant conditions balanced equilibrium configurations are never401

stable, so that the bifurcation always tends to highly asymmetric equilibrium states. Here, multiple402

stable solutions are possible, including counter-intuitive configurations where the inner bifurcate403

prevails, which suggests the possibility of complete shifts and hysteresis in the bifurcation response404

to changing conditions (Scheffer et al., 2001).405

The whole picture yields a clear, physically-based key to interpreting results of field observa-406

tions and numerical models, which at times displayed behaviours that could not be given a fully407

exhaustive explanation. An example is provided by the result of Kleinhans et al. (2008), based on408

a three-dimensional model of a curved bifurcation with different channel gradients. These results409

revealed a “dramatic effect” of the width to depth ratio on discharge distribution and overall bed410

morphology, with the bifurcation switching from a dominant inner-bend bifurcate to a dominant411

outer-bend bifurcate, which indicates that the bifurcation behaviour “bifurcates” at a certain412

width between Wa = 288 m and 378 m (see Section 4.5 of Kleinhans et al., 2008). By applying our413

proposed modelling framework, and using the same closure relation and flow conditions as in the414

numerical experiments, it turns out that the observed range of widths correspond to the transition415

from from sub-resonant (Figure 12a) to super-resonant (Figures 12b and 12c) conditions. This416

transition can explain the fairly different morphological evolution upstream the bifurcation: under417

sub-resonant conditions the bifurcation does not significantly affect the upstream bed elevation418

(dashed line of Figure 12a), while under super-resonant conditions the upstream morphodynamic419

influence triggered by the bifurcation induces the formation of steady bars in the upstream channel420

(Figures 12b and 12c), which affect how discharge is downstream distributed.421

Super-resonant conditions are not rare in nature, insofar as gravel bed rivers tends to behave422
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super-resonantly, especially for near-threshold (i.e. low Shields stress) channels (Zolezzi et al.,423

2009). This confirms the tendency of balanced bifurcations to become unstable when the fixed424

bank hypothesis is released so that channels are free to reach their regime width (Miori et al.,425

2006).426

When different forcing effects are simultaneously acting they can compensate themselves (e.g427

Kleinhans et al., 2008; van Dijk et al., 2014; Kleinhans et al., 2013), leading to a nearly balanced428

configuration. For example a gradient advantage in a scroll-slough chute cutoff of a meander bend429

(Figure 11c) can balance the opposite effect of the channel curvature. However, this is possible430

only if the upstream channel is in sub-resonant conditions, so that the bifurcation is intrinsically431

stable. On the contrary, under super-resonant conditions the bifurcations tends to propagate its432

morphodynamic influence in the upstream direction, so that the discharge partition is always433

highly unbalanced, independently of the upstream and downstream conditions.434

Similar results can be found when other kind of forcing effects are interacting with the free435

instability mechanism, as emerging in the analysis of Bertoldi et al. (2009) about the effect of436

downstream-migrating alternate bars on the bifurcation dynamics. In that context, different char-437

acteristic regimes have been identified depending on the channel aspect ratio with respect to a438

critical threshold. For relatively small β0 the bifurcation is essentially balanced with discharge439

oscillations around ∆Q = 0 caused by the passage of bars, while for higher β0 unbalanced states440

are observed. In this latter case the bifurcation can be either “bar perturbed” (small oscilla-441

tions around a stable unbalanced state) or “bar dominated” (frequent switching of the bifurcation442

between opposite, highly unbalanced states). A diagram similar to Figure 10b can be used to in-443

terpret the different scenarios: essentially balanced solutions occur under sub-resonant conditions,444

while super resonant conditions yield highly unbalanced solutions, which are “bar perturbed”445

when the variations of the forcing factor are relatively weak, or “bar dominated” when forcing446

effect is strong enough to make the solution jumping between opposite states.447

448

Quasi-equilibrium and temporal scales: the present work in a broader context449

Our analysis is focused on steady equilibrium configurations, where both upstream and down-450
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stream channels are considered in planimetric and altimetric equilibrium. Strictly speaking, this451

is rarely the case of natural bifurcation, because forcing effects are usually varying in time. Nev-452

ertheless, as long as their rate of change is slow as compared with the intrinsic time scale of the453

bifurcation, the response of the system can be studied as a sequence of quasi-equilibrium states.454

This allows us to interpret the action of downstream migrating bars, as well as the analogous455

effect of the migration of the upstream meander (Kleinhans et al., 2011), by means of equilibrium456

diagrams like those of Figure 10.457

Similarly, the quasi-steady analysis can be applied for interpreting the effect of downstream458

variations, provided they are comparatively slow. For example, in the depositional systems in-459

vestigated by Salter et al. (2018), the interaction between the bifurcation and the downstream460

bifurcates leads to autogenic temporal oscillations of channel slope and discharge asymmetry.461

This process evolves on a time scale that is proportional to the length of the downstream bifur-462

cates, which is usually much longer than the intrinsic time scale of the bifurcation evolution (see463

Miori et al., 2006). Therefore, focusing on the local behaviour of the bifurcation node, such down-464

stream mechanisms can be considered as an external forcing effect, coherently with the definition465

adopted in the present work.466

This provides a worthwhile example of how the definition of the forcing factors depends in467

general on the spatial and temporal scales under consideration. An analogous concept is at the468

core of classical theoretical studies on bar-bend interactions in river meanders (e.g., Tubino and469

Seminara, 1990), which pointed out how the dynamics of sediment bars inside meandering chan-470

nels depends on the interaction between the free instability mechanisms that causes spontaneous471

development of migrating bars, and the effect of the variable meander curvature. In general also472

the channel curvature is not fixed but changes in time as the meander develops. However, as long473

as the two mechanisms act at different time scales, the planform evolution being a much slower474

process, when focusing on bar dynamics the meander curvature can be considered as a fixed forcing475

factor.476

477

The meaning of “instability” within bifurcation dynamics478
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The outcomes of this work also suggest revisiting the use of the key wording “instability”,479

which has been often used in previous studies of river bifurcation morphodynamics, though in480

many times with different meanings. “Instability” has been indeed used to indicate: (i) the sit-481

uation whereby an equilibrium bifurcation configuration is unstable; (ii) a systematic change of482

the discharge distribution over time (e.g., Kleinhans et al., 2013); (iii) a bifurcation that evolves483

towards an highly unbalanced configuration and eventually produces the complete closure of one484

of the two bifurcates (e.g., Burge, 2006; Le et al., 2018b). In this paper we have used “instability”485

in its mathematical meaning (i), thus indicating the mathematical instability of an equilibrium486

configuration (mathematical solution), which in itself could be either symmetrical or asymmetri-487

cal, and therefore may become inconsistent with meanings (ii) or (iii). Moreover, though meanings488

(ii) and (iii) might be interchangeable under some circumstances, this does not apply in general,489

and they may not be of help in disentangling the role of the free and of the forced bifurcation490

mechanisms when analysing a specific situation. For example, the instability of the balanced so-491

lution in the super-resonant regime does not necessarily lead to the closure of one bifurcate, but492

often leads to a stable, unbalanced configuration. Similarly, a partial or complete channel closure493

may be caused by a forcing factor rather than an instability of an equilibrium configuration, which494

in itself could be symmetrical or asymmetrical. This is, for instance, the case when a localized495

obstacle deviates the flux towards one preferred bifurcate (Le et al., 2018b).496

497

Applicability and limitations of the present approach498

In this paper we have adopted a local viewpoint of the bifurcation morphodynamics, which499

focuses on a tile of a complex mosaic of processes where several autogenic mechanisms interact500

at different spatial and temporal scales (e.g., in the case of bifurcations coupled with aggrading501

downstream channels or embedded in braided networks).502

The methodological approach can be broadly applied to analyse river bifurcations in real503

settings. The key ingredient required by the two-cell model to account for the upstream forcings504

is the availability of suitable transverse distributions of flow and sediment transport to compute505

water and sediment fluxes that enter the bifurcation node. Our results refer to the simple case of a506
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relatively long channel of constant curvature, and are based on the assumption of fully developed507

flow, which is not satisfied in short bends and in general when the curvature is spatially varying, as508

in meandering channels. Extending the model to treat such complex configurations would require509

coupling the two-cell nodal point conditions with a sound model for flow and bed topography in510

meandering channels (e.g., Zolezzi and Seminara, 2001). This analysis is beyond the scope of the511

present paper; however, we may expect that in this case bifurcation stability will depend not only512

on local curvature, but also on the position of the bifurcation node with respect to the steady513

pattern of point bars forming in the upstream channel (Le et al., 2018a).514

Further investigation is needed to understand to what extent the key mechanisms driving the515

bifurcation instability, and in particular the upstream morphodynamic influence, can be affected516

by processes that are often not reproduced by mathematical and physical models. Specifically,517

two fundamental processes would probably need more consideration in future research. The first518

is sediment sorting: despite some indications of a relatively weak effect of grain sorting on the519

stability of migrating bars (Lanzoni and Tubino, 1999), its role in determining the bifurcation520

stability is not clear, especially in gravel bed channels (Burge, 2006). The second process is521

suspended sediment transport, which is often dominant in large, multi-thread, sand bed rivers522

(Szupiany et al., 2012): when suspended load is the dominant mode of sediment transport the523

gravitational pull towards the deeper channel is probably weaker, so that the bifurcation may be524

even more unstable than currently predicted (Kleinhans et al., 2006).525

5 Conclusions526

The present work offers a viewpoint of river bifurcations as dynamical systems for which a distinct527

role of the free and forced responses can be identified. We propose a theoretical framework based528

on the 1D model with two-cell bifurcation node originally developed by Bolla Pittaluga et al.529

(2003), as extended by Kleinhans et al. (2008) to account for the curvature-driven secondary530

flow. Furthermore, we incorporate the key outcomes of the fully 2D analytical approach of Redolfi531

et al. (2016) within the classical 1D scheme for river bifurcations. Two main forcing factors are532

considered, the curvature of the upstream channel and a slope advantage of one of the bifurcates,533
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though the approach could be easily extended to account for other factors (e.g., the presence of a534

local obstacle upstream the bifurcation).535

The key advantage of the proposed approach is its ability to clearly isolate the different free536

and forced mechanisms that may control the bifurcation dynamics in a complex setting, like that537

of real-world bifurcations, thus resulting in a suitable tool to gain clear insight in the analysis and538

interpretation of numerical model outcomes and of field observations. The key novel outcomes for539

bifurcation dynamics can be summarized in the following four items.540

1. The bifurcation stability criterion based on the resonant aspect ratio threshold has been541

successfully tested against data of both gravel bed and sand bed channels, and it allows542

for capturing the opposite effects of Shields stress, which tend to promote more balanced543

bifurcations in gravel bed rivers and more unbalanced bifurcations in sand bed streams.544

This criterion can then be used for predicting the balanced/unbalanced character of free545

bifurcations, and it allows incorporating the fully-2D solution of Redolfi et al. (2016) within546

the classical 1D theory (Wang et al., 1995; Bolla Pittaluga et al., 2003) with no need to547

calibrate specific bifurcation parameters.548

2. The role of the free instability mechanism is not limited to purely free bifurcations, but is549

also fundamental in the dynamics of the forced bifurcations that are more representative of550

real-world settings. Therefore, river bifurcations with super-resonant upstream channels are551

dominated by the free mechanism, characterized by multiple, highly unbalanced equilibrium552

configurations. This remarkable behaviour might lead to counter-intuitive outcomes, where553

for example water and sediment fluxes are mainly delivered towards the bifurcate located at554

the inner bank of a channel bend.555

3. Analysis of the interaction between two of the most common forcing effects (slope advantage556

and curvature) allows us to quantify the parameters range where free and forcing effects557

cooperate or compete in determining the overall bifurcation dynamics. Under sub-resonant558

conditions, the interaction between upstream curvature and slope advantage is smoothly559

dependent on the relative intensity of the forcings (Kleinhans et al., 2008; van Dijk et al.,560
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2014), while this is not the case under super-resonant conditions, for which abrupt transitions561

between opposite, highly unbalanced equilibrium states are expected.562

4. The above results highlight how river bifurcations behave as dynamical systems like many563

other eco-morphological processes in rivers and freshwater bodies (e.g. Scheffer et al., 2001),564

where the nonlinear interaction among internal and external mechanisms gives rise to a565

complex response, characterized by sensitivity to the initial conditions, multistable states566

and hysteresis cycles.567
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Appendix A: Fully developed flow in a constant curvature channel575

Here we provide a detailed derivation of the flow field in a channel of constant curvature, obtained576

by following the Struiksma et al. (1985) approach.577

The model is formulated in a curvilinear system of reference {x, y}, where x is pointing in the578

downstream direction and y represents the transverse coordinate (see Figure 3). Assuming a fully579

developed flow, all dependent variables vary only with y, and therefore the x-derivatives vanish; in580

such conditions, the continuity equation gives zero transverse fluxes of water and sediment, while581

the longitudinal momentum equation reduces to an uniform flow relation for the depth-averaged582

longitudinal velocity U , namely:583

U = c
√
g S D, (A1)
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where the longitudinal slope S depends on y as:584

S = S0
R

R + y
, (A2)

with S0 indicating the slope of the channel centreline (i.e. at y = 0).585

The longitudinal velocity generates a shear stress τx, which can be computed as:586

τx = ρ
U2

c2
, (A3)

while the secondary flow produces a shear stress in the transverse direction, given by (see Struiksma587

et al., 1985):588

τy = −ρA DU2

c2

1

R
, (A4)

where ρ indicates the water density.589

The transverse stress τy needs to be compensated by a gradient of the bed elevation. There-590

fore, considering the Ikeda (1982) formulation for the effect of gravity on the sediment transport591

direction, the following relation arises:592

r√
θ

dη

dy
=
τy
τx

= −A D

R
. (A5)

Transverse profiles of bed elevation can be obtained by integrating Equation (A5). To this593

aim, we need to specify how the water depth varies along the cross section through the following594

geometrical relation:595

dD

dy
=
dH

dy
− dη

dy
, (A6)

where H indicates the water surface elevation.596

Under the hypothesis of horizontal free surface, Equation (A6) reduces to dD/dy = −dη/dy,597

so that the differential equation (A5) can be easily solved in terms of D. More generally, the598
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gradient of free surface elevation can be derived from the equation of transverse momentum:599

g
dH

dy
+

τy
ρD

=
U2

R
, (A7)

which, when combined with Equations (A5) and (A6), gives an expression of the type:600

dD

dy
= fct(y,D), (A8)

which can be easily solved by numerical integration.601

The effect of the channel curvature on the transverse profiles of bed and water surface elevation602

is illustrated in Figure 13. The spiral flow induces higher bed elevation and slightly lower water603

surface elevation at the inner bend. Consequently, water depth, velocity, and water and sedi-604

ment fluxes are higher at the outer bend. The resulting transverse profiles are clearly nonlinear,605

especially when the channel is highly curved.606

Wa/2-Wa/2 0
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
water surface elevation

bed elevation

Cell B Cell C

Figure 13: Transverse profiles of (scaled) bed and water surface elevation in the main channel,
where η is the mean bed elevation. Dashed lines: straight channel; solid lines: curved channel.
Parameters are θ0 = 0.1, ds = 0.02, r = 0.5. Background colours indicate the position of the two
cells of size Bb and Bc.

Once the transverse profiles are known, the input fluxes for the two-cell model can be com-607

puted by integrating along their respective domain. In the general case of different width of the608
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downstream bifurcates (i.e. Wb 6= Wc), the width of the two cells (see Figure 13) can be calculated609

as:610

Bb = Wa
Wb

Wb +Wc

, Bc = Wa
Wc

Wb +Wc

, (A9)

so that the transverse position of the interface between the two cells reads:611

yc = Bb −
Wa

2
=
Wa

2

(
Wb −Wc

Wb +Wc

)
, (A10)

which vanishes when Wb = Wc as assumed in the paper. Finally, water and sediment fluxes feeding612

the two cells are given by the following relations:613

QIN
b =

∫ yc

−Wa/2

UD dy, QIN
c = 1−QIN

b , (A11)

614

QsINb =
√
g∆d3

50

∫ yc

−Wa/2

Φ

(
θ,
D

d50

)
dy, QsINc = 1−QsINb . (A12)

Appendix B: Algebraic expression for cD, ΦD and ΦT coefficients615

In this section we provide an explicit expression of the coefficients arising from linear stability616

analysis, which are needed to evaluate the critical and the resonant aspect ratio through Equations617

(12) and (14).618

The cD coefficient, which defines the response of the Chézy coefficient to variations of water619

depth, is defined as:620

cD :=
D0

c0

∂c

∂D

∣∣∣∣
D0

. (B1)

When considering the logarithmic formula of Engelund and Fredsoe (1982) (Equation (3)), we621

obtain:622

cD =
2.5

c0

. (B2)

where c0 is the Chézy coefficient evaluated at reference conditions, namely:623

c0 = 6 + 2.5 log

(
1

2.5 ds

)
. (B3)
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Similarly, the coefficients ΦD and ΦT , which specify the sensitivity of the sediment transport624

to variations of water depth and Shields stress, are defined as:625

ΦD :=
D0

Φ0

∂Φ

∂D

∣∣∣∣
θ0,D0

, ΦT :=
θ0

Φ0

∂Φ

∂θ

∣∣∣∣
θ0,D0

, (B4)

and their explicit expression depends on the sediment transport formula used.626

The Engelund and Hansen (1967) transport formula reads:627

Φ = 0.05 c2θ2.5, (B5)

and gives the following coefficients:628

ΦD = 2 cD, ΦT = 2.5. (B6)

Transport formulae designed for bed load are often expressed in terms of θ only, and therefore629

ΦD vanishes as the bed load function does not depend explicitly on water depth. For example630

when using the Meyer-Peter and Muller (1948) relation631

Φ = 8 (θ − θcr)1.5 (B7)

the coefficients reads:632

ΦD = 0, ΦT = 1.5
θ0

θ0 − θcr
. (B8)

The Parker (1990) formula can be expressed as:633

Φ = 0.00218 θ1.5G(ξ), ξ :=
θ

0.0386
, (B9)
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where G(ξ) is a piecewise-defined function:634

G(ξ) =


5474 (1− 0.853/ξ)4.5 ξ > 1.59

exp [14.2(ξ − 1)− 9.28(ξ − 1)2] 1 ≤ ξ ≤ 1.59

ξ14.2 ξ < 1

. (B10)

In this case we obtain:635

ΦD = 0, ΦT = 1.5 +
Gξ

0.0386
, Gξ :=

ξ0

G0

dG

dξ
, (B11)

where Gξ can be expressed by deriving Equation (B10), which gives:636

Gξ =


4.5

ξ0/0.853− 1
ξ0 > 1.59

−18.56 ξ2
0 + 32.76 ξ0 1 ≤ ξ0 ≤ 1.59

14.2 ξ0 < 1

. (B12)
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