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Abstract

There is an increasing industrial and academic interest towards a more predictable characterization
of real-time tasks on high-performance heterogeneous embedded platforms, where a host system
offloads parallel workloads to an integrated accelerator, such as General Purpose-Graphic Processing
Units (GP-GPUs). In this paper, we analyze an important aspect that has not yet been considered
in the real-time literature, and that may significantly affect real-time performance if not properly
treated, i.e., the time spent by the CPU for submitting GP-GPU operations. We will show that the
impact of CPU-to-GPU kernel submissions may be indeed relevant for typical real-time workloads,
and that it should be properly factored in when deriving an integrated schedulability analysis for
the considered platforms.

This is the case when an application is composed of many small and consecutive GPU com-
pute/copy operations. While existing techniques mitigate this issue by batching kernel calls into a
reduced number of persistent kernel invocations, in this work we present and evaluate three other
approaches that are made possible by recently released versions of the NVIDIA CUDA GP-GPU
API, and by Vulkan, a novel open standard GPU API that allows an improved control of GPU com-
mand submissions. We will show that this added control may significantly improve the application
performance and predictability due to a substantial reduction in CPU-to-GPU driver interactions,
making Vulkan an interesting candidate for becoming the state-of-the-art API for heterogeneous
Real-Time systems.

Our findings are evaluated on a latest generation NVIDIA Jetson AGX Xavier embedded board,
executing typical workloads involving Deep Neural Networks of parameterized complexity.
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1 Introduction

Modern high-performance embedded platforms feature heterogeneous systems, where a
multicore CPU host is integrated with one or more parallel accelerators. These platforms
are used to run cyber-physical real-time systems, requiring workload-intensive tasks to be
executed within given deadlines. While there are many works addressing the schedulability
analysis of real-time tasks on multi-core systems [4], there is an increasing interest in
understanding and refining the adopted task models to better capture the timing behavior of
real-time workloads in practical scheduling settings on heterogeneous embedded platforms.
Thanks to the dramatic improvement of performance-per-Watt figures over multicore CPUs,
GP-GPU (General Purpose GPU) computing is a widely adopted programming model to
perform embarrassingly parallel computations in both embedded and discrete devices. Typical
usage scenarios of heterogeneous embedded platforms are found in the domain of autonomous
driving, avionics and industrial robotics, presenting important design challenges due to the
safety-critical nature of these domains [12, 25].

To address this challenge, we first briefly summarize how computations are orchestrated
in an embedded platform that features a multicore CPU (host) and an integrated GPU
accelerator (device).

1.1 CPU-to-GPU interaction
The interactions between CPU-threads and the GPU are described through different APIs
(Application Programming Interfaces) that allow the host to control the offloading of data
and workload description, to be later executed by the parallel processing units within the
GPU. A way to abstract a higher-level description of the processing units of a GPU is to
think of it as being composed of two engines: the Execution Engine (EE) for computation,
and the Copy Engine (CE) for high throughput DMA data transfers.

The Execution Engine enables a high level of SIMD parallelism by exploiting hundreds
of ALU pipelines, that are usually grouped into processing clusters. Within each of these
processing clusters, a hardware scheduler dispatches small groups of threads in lockstep to the
ALU pipelines. A well-known API for modelling such interactions is CUDA [24], a proprietary
API developed by NVIDIA. In such a model, ALU pipelines are called CUDA cores, and
processing clusters are known as Streaming Multiprocessors (SMs). SMs schedule warps, i.e.
groups of 32 lockstep threads. Considering different GP-GPU APIs (such as OpenCL), the
terminology may slightly vary, but these higher-level concepts remain unchanged. On the
host side, the application developer has the responsibility to trigger data movements and
the workload to be executed to the Execution Engine of the GPU by using API function
calls. This operation is known as kernel invocation. When many workloads have to be
dispatched within short time intervals, the time spent on the CPU for these offloading
operations becomes non-negligible, and it should be properly accounted for when pursuing a
sound schedulability analysis.

A task may be modeled using a Directed Acyclic Graph (DAG), where nodes represent
workloads executing on a CPU core or on a GPU engine, while edges are precedence constraints
between nodes. In a typical application, CPU nodes are constantly interleaved with GPU
nodes. Despite its intrinsic parallelism, the GPU is considered as a single resource. This is
due to its lockstep nature that limits task-level parallelism, especially for embedded GPUs
with a smaller number of SMs. In other words, a GPU node represents a kernel occupying
all the processing units of the considered GPU engine.
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Figure 1 Sequences of sub-tasks of a CPU core submitting work to both compute and copy GPU
engines. White nodes are CPU offloading operations, yellow and green nodes represent GPU copy
and compute operations.

Figure 2 Data transfers and Layer-to-kernel invocations over the YOLO network [26].

Moreover, CPU nodes have to account for a variable cost of GPU commands’ submission
time, related to the translation of API function calls and to trigger the GPU operations,
independently of this operation being synchronous (i.e., the CPU shall wait for the offloaded
GPU kernel to complete before continuing) or asynchronous (i.e., the CPU may proceed to
the next node without needing to wait for the offloaded kernel to complete).

The example depicted in Figure 1 shows a submission-intensive workload, in which a
variable number of CPU-nodes offload-operations interleave among different kernels and copy
invocations. Even if the represented chain may appear simplistic w.r.t. a fully-fledged DAG,
it is not far from real world applications. In Figure 2, we profile CPU and GPU traces of a
single iteration of the inference operation on a widely used YOLOv2 neural network [27]. The
inference over YOLO’s 28 network layers requires heavy data movements and the invocation
of a very large number of kernels, each preceded by a CPU offloading phase. Using nvprof,
the NVIDIA CUDA profiler, we discovered that kernels and copies are invoked as a sequence
of implicitly synchronized operations.

There are two negative effects of interleaving CPU offloads and GPU workloads:
1. the completion of a submission node is a mandatory requirement for the activation of the

subsequent GPU node. This implies that jitters or delays in the completion of the CPU
node will postpone the actual release of the GPU sub-task, increasing the complexity of
the schedulability analysis.

2. In case of shorter GPU kernels, CPU offloading becomes a performance bottleneck.

As a consequence of these considerations, we aim at analyzing and minimizing the time
spent by the CPU for submitting commands related to GPU operations.

In the literature, these issues have been addressed using persistent kernels [15], i.e. a
reduced number of kernel invocations that delegates the responsibilities of future workload
invocations to GPU threads. We hereafter discuss the limitations of CUDA persistent
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threads, showing how novel features of the latest CUDA SDK release allows the programmer
to mitigate the problem of submission-intensive operations. We characterize novel submission
methods such as CUDA Dynamic Parallelism (CDP) and pre-constructed CUDA Graphs, and
investigate a novel API for GPU programming called Vulkan. Vulkan is a next generation bare-
metal API allowing a dramatic improvement in the control that the application programmer
has over the interaction between the application layer and the GPU driver. Aspects that
were commonly well hidden by traditional APIs are completely exposed to the application
programmer: fine grained synchronization, low level mechanisms of memory allocation and
coherency, state tracking and commands validation are all essential parts in direct control
of the application developer. According to the Khronos Group, the industrial consortium
that released and maintains the Vulkan technical specification [21], this increased level of
control enhances applications performance and predictability due to substantially reduced
CPU-to-GPU driver interaction. We will prove that this is indeed the case, especially for
submission intensive workloads, making Vulkan a very promising open standard for real-time
systems executing on heterogeneous platforms.

We experimentally validate our considerations executing representative kernels on an
NVIDIA Jetson AGX Xavier1, a recently released embedded development platform, featuring
a Tegra System on Chip (Xavier SoC) composed of 8 NVIDIA Carmel CPU Cores (superscalar
architecture compatible with ARMv8.2 ISA) and an integrated GPU based on the NVIDIA
Volta architecture with 512 CUDA cores. On this platform, we executed a parametrized
version of a Deep Neural Network, varying the number and position of convolutional and
fully-connected layers.

The remainder of the paper is structured as follows. Section 2 presents a recent overview
on the challenges of achieving timing predictability on GPU-accelerated SoCs, with specific
emphasis on the impact of submission procedures. In Section 3, we describe the relevant
CUDA features that have been introduced in the latest SDK versions, and how we leveraged
them in our experiments. Section 4 provides a brief explanation of the Vulkan API peculiarities
and related programming model, while Section 5 introduces our open source Vulkan Compute
wrapper, that we implemented to simplify the generation (and easy reproduction for artifact
evaluation) of the experiments. Experimental settings and related discussion on the results
are provided in Sections 6 and 7. Section 8 concludes the paper with further remarks and
proposals for future work.

2 Related Work

The recent literature on GPU-based real-time systems identified multiple sources of unpredict-
ability, related to GPU scheduling [17], CPU interactions with the GPU API/driver [13, 14]
and memory contention [28, 2, 9]. In this paper, we focus on minimizing driver interactions
by exploiting recently proposed instruments to pre-record and pre-validate the GPU com-
mands that characterize CPU-to-GPU offloading operations. Previously, a way to minimize
CPU offloading times was to batch compute kernel calls into a single or reduced number of
command submissions. This approach based on persistent kernel proved to have beneficial
effects in terms of average performance [5, 15, 6, 16] and for obtaining a higher degree of
control when scheduling blocks of GPU threads [31, 10]. The problem with persistent kernels
is that they often require a substantial code rewriting effort and they are not able to properly
manage Copy Engine operations mixed with computing kernels. Moreover, a persistent

1 https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit

https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit
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kernel approach would require managing GPU kernels with different safety criticality levels
within a single application context, posing a significant threat to the overall system safety
integrity assessment.

Our work tries to overcome these aspects by exploiting more recent methodologies, such
as CUDA Dynamic Parallelism (CDP) and CUDA graphs. CDP allows the programmer to
minimize kernel launch latencies in a similar way as a persistent kernel, without the need of
substantial code rewriting and still allowing the different GPU tasks to reside in different
process address spaces. CDP has been introduced in the CUDA SDK since version 5.0
(released in 2014).

More recently, the latest release of the CUDA SDK (version 10, released in late 2018)
introduced the concept of CUDA graphs: a CUDA graph allows the developer to construct a
graph of copy, compute and even host sub-tasks together with their related dependencies
in advance. Then, at runtime, the offloading operation only involves a single call to the
CUDA runtime driver. As pointed out in the introductory section, we model CPU and GPU
interactions as sequences of operations that can be generalized to a DAG: this is similar to
the OpenVX programming interface [32].

To the best of our knowledge, we are exploring for the first time not only these novel
CUDA functionalities, but also the real-time capabilities of the Vulkan API, a recently
released open standard for GPU programming. The work on novel low level and low overhead
GPU APIs started in late 2013, with Apple’s Metal and AMD’s Mantle APIs representing
the first concrete efforts toward the implementation of such a novel bare-metal approach.
While the first one is a proprietary effort limited to Apple devices, Mantle development
stopped around mid 2015, but served to the Khronos group as a base to start developing the
Vulkan specifications (Version 1.0 was released in February 2016). In parallel, Microsoft’s
Direct3D 12 saw its release at the same time as Windows 10. All these APIs share a common
programming model that imposes minimal driver overhead as a result of a more explicit and
direct control over GPU related commands.

The problem of minimizing CPU-GPU driver overhead is an issue that the Khronos group
considered also for newer OpenGL releases. The so-called AZDO methodology (Approaching
Zero Driver Overhead) aimed at minimizing the driver interaction by batching draw calls,
state changes, reduced texture bindings and data factorization into command lists to be
submitted within a reduced number of OpenGL API calls. As we already highlighted in
the previous section, we are more interested on reducing submission latencies to improve
the predictability of real-time applications. Hence, our work will focus on measuring how
effective is the compute pipeline of Vulkan compared to traditional and to recently released
CUDA-based submission models. We believe this document may be an instructive reference
for real-time practitioners looking for more predictable settings and programming models on
modern heterogeneous embedded platforms.

3 Alternative submission models for CUDA

In this section we provide an in-depth explanation of the approaches we tested for minimizing
CPU-GPU driver interactions with relation to NVIDIA CUDA. These mechanisms are made
possible by recent releases of the CUDA SDK, and they describe the motivation and typical
usage scenarios of CDP and CUDA graphs.

ECRTS 2019
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Figure 3 Timelines of the baseline CUDA submission model compared to CDP. Note that K0,
K1 and K2 implementations are identical in both cases and the launch configuration of Ki depends
on the result of K(i− 1).

3.1 CDP
GPU kernel invocations are characterized by a launch configuration. A launch configuration
describes the degree of parallelism of the GPU computation. Implementation-wise, this
implies that the programmer has to decide the size and number of CUDA blocks for the
specific launch configuration. A CUDA block is a collection of concurrent threads that share
the same L1 cache and/or scratchpad memory inside a single SM. The size of a block is the
actual number of threads within each block. Trivially, if a GPU task is an algorithm in which
each step presents a different parallelization degree, then the programmer has to break down
this task into multiple kernel launches, each with a potentially different launch configuration.
As discussed in the previous section, this can easily translate in additional overhead on
the CPU side for performing offloading operations, especially when launch configurations
between different launches are not known a priori.

Nested parallelism is a known construct in the parallel programming literature that allows
the programmer to express variable parallelism as a series of nested kernel invocations with
adaptive launch configurations. Nested parallelism has therefore the potential to fully exploit
the GPU parallelism for workloads involving variable depth recursion (e.g: sorting [23], graph
exploration [34], clustering algorithms [1] ...). In CUDA, this is implemented by having a
parent kernel invoking child kernels with a varying block/thread count, without involving
the CPU for launching the child kernels.

An example scenario is depicted in Figure 3, where a baseline offloading (top) is compared
against a CDP sequence of invocations (bottom). In the depicted corner case, the CPU
submission time is comparable to the GPU execution time for the considered kernels. In
the baseline scenario, there is an interleaved work between host and GPU, where the CPU
thread has to adjust the launch configuration for each subsequent kernel. A similar situation
happens even for asynchronous submissions. Conversely, with the CPD scenario the CPU is
only active during the launch of the parent kernel, while subsequent kernel invocations are
managed by the device, allowing the concurrent execution of GPU workloads [3, 24]. This
drastically reduces the response time of the entire task. Another interesting advantage is
related to the simplification of the related worst-case response-time analysis, as the task graph
to consider has significantly less nodes (CPU sub-tasks) and edges (CPU-GPU interactions).
However, we will see in the evaluation section that CDP presents some limitations when data
is requested by the CPU through the Copy Engine and when the sequence of kernels is not
characterized by variable parallelism.
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3.2 CUDA Graphs
CUDA graphs are the most recent innovation to the CUDA runtime set of functions. Graphs
are a step forward compared to the more traditional CUDA streams: a stream in CUDA is a
queue of copy and compute commands. Within a stream, enqueued operations are implicitly
synchronized by the GPU so to execute them in the same order as they are placed into the
stream by the programmer. Streams allow for asynchronous compute and copy, meaning that
the CPU cores dispatch commands without waiting for their GPU-side completion: even
in asynchronous submissions, little to no control is left to the programmer with respect to
when commands are inserted/fetched to/from the stream and then dispatched to the GPU
engines, with these operations potentially overlapping in time.

Graphs improve on this approach by allowing the programmer to construct a graph of
compute, host and copy operations with arbitrary intra- and inter-stream synchronization,
to then dispatch the previously described operations within a single CPU runtime function.
Dispatching a CUDA graph can be an iterative or periodic operation, so to implement
GPU-CPU tasksets as periodic DAGs. This aspect represents an appealing mechanism for
the real-time system engineer. Legacy CUDA applications built on streams can be converted
to CUDA graphs by capturing pre-existing stream operations, as it is shown in Listing 1.

In Listing 1 a baseline implementation of asynchronous offloading of copy, compute and
CPU-side operations is shown (lines from 1 to 7): while the CPU is still inserting operations
within the stream, the GPU fetches previously inserted commands on behalf of the GPU
engines. This mechanism improves the average performance for long GPU-side workloads, but
it is difficult to precisely model this CPU-GPU interaction for scheduling purposes. Moreover,
the CPU can act as a bottleneck in case of a long sequences of small GPU operations. Also,
in case of dispatching periodic work, CPU-GPU interaction will be repeated and the timing
cost for each command submission and validation is bound to increase.

Lines from 9 to 15 show how to capture the same stream operations of the baseline
approach to construct a CUDA graph. Lines from 18 to 32 show a graph construction that
is equivalent to the previous methodology, but nodes and their dependencies are explicitly
instantiated instead of being inferred from pre-existing stream operations. When building
a graph, no operations are submitted to the GPU. This allows the developer to describe
in advance complex work pipelines. Work is then dispatched with a single or periodic call
to cudaGraphLaunch (lines 50 and 58). In the experimental section of this paper, we will
show how submission latencies and CPU-GPU interaction timeline vary by exploiting these
novel CUDA constructs.

4 The Vulkan API

Although Vulkan is defined as a graphics and compute API, the Vulkan model is agnostic to
which of these two pipelines will be mostly used within an application. Initial benchmarks
on the Vulkan API are related to graphics applications, hence measuring the performance of
the same application with a Vulkan renderer and over an OpenGL/OpenGLES or Direct
3D 11 renderer [29]. One of the recent fields of applications that has been shown to provide
sensible benefits from this new API paradigm is Virtual Reality (VR), due to the very
stringent latency requirements required to mitigate motion/cyber sickness for users wearing
VR-enabled devices [30]. We instead investigate the possibility of exploiting Vulkan to
minimize driver interactions for allowing a more predictable response time of computing
kernels. To the best of our knowledge, we are the first to propose the adoption of this newer
generation API for real-time systems. The following overview of the Vulkan API from the
programmer point of view can be followed on Figure 4.

ECRTS 2019
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Listing 1 CUDA baseline streams – node graphs and stream capture.
void baseline ( cudaStream_t &s){

cudaMemcpyAsync (.... ,s);
...
cudaStreamAddCallback (s,.., cpuFunction );

5 kernelCall <<<...,s > > >(...);
...
}

cudaGraph_t cudaGraphFromStreamCapture (&s){
10 cudaGraph_t graph;

cudaStreamBeginCapture (s);
baseline (&s); //no modifications to baseline

cudaStreamEndCapture (s,& graph );
// stream operations are not yet submitted .

15 }

cudaGraph_t cudaGraphCreation (){
cudaGraph_t graph;
// node pointers

20 cudaGraphNode_t * memcpyNodes , * kernelNodes , * hostFuncNodes ;
// node params
cudaKernelNodeParams * memcpyParams , * kerNodeParams ,

* hostNodeParams ;
// define params for all the previously declared nodes

25 //(addesses , function names etc ...)
cudaGraphCreate (& graph ,0);
// for each host/ device node and respective params ...
cudaGraphAdd < Memcpy / Kernel /Host >Node
(& nodePtrs , graph , ..., ..., & nodeParams );

30 // first param: node ptrs , second and third: depedencies
//info , forth: node params .
//No stream operations are submitted to the GPU
}

35 void mainPrepareAndOffload (){
cudaStream_t s, sGraph ;
cudaStreamCreate (&s); // regular stream
cudaStreamCreate (& sGraph ); // stream for graph launch
cudaGraphExec_t graphExec ; // graph execution data structure

40
// enqueue in stream s and launch with baseline behaviour :
baseline (&s);
// wait for finish
// ALTERNATIVE METHOD 1:

45 // create and define graph from pre - existing stream
cudaGraph_t graph0 = cudaGraphFromStreamCapture (&s);
// graph instantiation
cudaGraphInstantiate (& graphExec , graph0 , ....);
// and launch

50 cudaGraphLaunch (graphExec , sGraph );
// wait for finish
// ALTERNATIVE METHOD 2:
// create and define graph from node structures
cudaGraph_t graph1 = cudaGraphCreation ();

55 // graph instantiation
cudaGraphInstantiate (& graphExec , graph1 , ....);
// and launch
cudaGraphLaunch (graphExec , sGraph );
// ...

60 }
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The improved control over the thin driver layer exploited by a Vulkan application comes
at the cost of a significantly increased implementation complexity. While in the CUDA
runtime API establishing a context occurs transparently when the first CUDA API call is
performed, a Vulkan context involves the explicit creation of a vkInstance object2. Such
object stores global states information at application level. A vkInstance is created by default
with no added debug/validation layers: in order to minimize the impact of driver level
runtime checks and hidden optimizations (which are always performed in traditional APIs,
such as CUDA), the application programmer has to explicitly add/activate third-party API
layers at vkInstance creation time.

The layer-based mechanism is also one of the novel features enabled by these next
generation APIs. Once the instance is created, the programmer retrieves a handle to the
physical device(s) to use: from a single physical device (vkPhysicalDevice object), one or more
logical devices (as software constructs able to interface with the chosen physical device) are
created. From the logical device, memory for a vkCommandPool is allocated: a command pool
in Vulkan is used to amortize the cost of resource creation across multiple command buffers.
Finally, the programmer has to create one or more command buffers (vkCommandBuffer),
which are objects that allow storing commands to be later sent to the GPU via a vkQueue. A
vkQueue is the Vulkan abstraction of a queue of commands, with each set of created queues
belonging to specialized family of capabilities (compute, graphics, data transfer etc...). A
vkQueue is roughly the equivalent of a CUDA stream, but with a much finer granularity in
terms of CPU-GPU and intra/inter queue synchronizations.

Compute kernels (more specifically, Vulkan compute shaders) are stored in Khronos’s
SPIR-V (Standard Portable Intermediate Representation [19]) binary cross-compatible format
and compiled at runtime into device specific code (vkShaderModule). Then, the programmer
has to explicitly describe how resources are bound to the compute shader, i.e. how input,
output and constant buffers are mapped to the shader arguments. Vulkan descriptor sets
are allocated within descriptor pools and further specified thorough descriptor layouts. This
allows the developer to efficiently re-use the same bindings in different compute shaders.

For what refers to kernel arguments, constants are specified and updated through Vulkan
push and specialization constants. Associating constants and descriptor layouts to one or
more compute shaders occurs at pipeline creation time. During this phase, different pipeline
stages are defined to allow associating different vkShaderModules to different pre-allocated
descriptor sets. The pipelines are then “baked” into static Pipeline State Objects (PSOs)
for later use within a command buffer recording phase. Recording a command buffer allows
the programmer to switch different pre-constructed PSOs, so to set in advance a plurality
of compute kernels, each with its own descriptor set(s)/layout(s). Recorded commands are
then executed when calling the vkQueueSubmit function. Once such function is called, little
to no other driver interaction is necessary.

This long sequence of operations happens behind a context creation and subsequent kernel
invocations in a Vulkan application, and it gives a very plausible overview of the lower-level
details that are instead transparently managed in CUDA applications. The hidden handling
of these aspects in the closed CUDA implementation makes it less suitable for predictable
settings. Instead, we argue that the explicit handling allowed by Vulkan may make this API
much more suitable for real-time systems, especially considering that aspects like bindings,
sequence of kernel invocations and launch parameters are known in advance for predictable
real-time applications. The Vulkan model is thus a perfect fit in this setting, since all these
parameters are taken into account in pre-compiled structures such as PSOs.

2 We use the term object for brevity, but this has nothing to do with object oriented programming: being
the Vulkan client driver implemented in C, such objects are actually non dispatchable handles to C structs.

ECRTS 2019
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Figure 4 Schematic representation of the operations and modeling artifacts involved in a simplified
Vulkan Compute pipeline. Shaded elements are external to the Khronos Vulkan specifications.

5 VkComp: an open-source wrapper for the Vulkan predictable
compute pipeline

One of the strongest point of the CUDA model is its ease of use, which, as mentioned,
is substantially better than Vulkan. We therefore decided to create a C++ wrapper to
the Vulkan API that easily allows setting up operations such as context creation, buffer
allocations, memory transfers and kernel invocations, to make these operations as easy as
they were using the CUDA runtime API. Our wrapper allows the developer to instantiate
pipeline creation blocks and command buffer recording blocks. These functionalities (roughly
similar to CUDA graphs), are responsible for creating in advance reusable resources such
as PSOs and pre-recorded command buffers. We plan to release this wrapper as an open-
source contribution.

5.1 Wrapper structure

Our C++ wrapper to the Vulkan API exposes the functionalities described by the interface
class represented in Figure 5. The figure shows the member functions are going to be
called within a pipeline creation block, as opposed to command buffer recording blocks and
application initialization.

In our experiments, we only use a single command buffer enqueued in a single queue.
A generic application composed of many kernel invocations and multiple buffers can be
summarized as shown in Pseudo-Algorithm 1.

In the pipeline creation block, a compute kernel is specified together with its launch
configuration (set as specialization constants) and descriptor layouts. Argument buffers
are pointers to SSBOs (Shader Storage Buffer Objects), whereas constants are specified as
Vulkan push constants. Recording a command buffer allows us to order the sequence of kernel
invocations (by selecting previously baked PSOs), data movements between CPU-GPU (any
direction) and constant values updates.
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Figure 5 Vulkan based compute interface describing the exposed functionalities of our model.

Algorithm 1 Pseudocode of our VkComp Vulkan wrapper example application.
{application initialization:}
createContext

for each buffer do
buffer ← deviceSideAllocation

end for
{pipeline creation block}
for each kernel do
program ← loadAndCompileProgram

startCreatePipeline(program)
setArgBuffer(buffer...) for each related buffer
setConstant for each related constant
setLaunchConfiguration

PSO ← finalizePipeline
end for
{Record command list block:}
startRecordCommandList

for each PSO do
selectP ipeline(PSO) for each related PSO
synchBuffer(buffer) for each related buffer
copyConstant for each related constant
launchProgram(kernel)

end for
cmdbuf ← finalizeCommandList
submitWork(cmdbuf)
deviceSynch

5.2 Buffers and programs

At context creation, a persistently mapped staging buffer is allocated. Its allocation size
is large enough to contain all the data used by the application. This persistently mapped
buffer is a driver-owned CPU-side buffer in which we can store buffer data to be later sent
to the GPU. This allows the programmer to avoid mapping and unmapping buffers from
CPU-only visible addresses to GPU-visible memory areas. An allocation table takes care of
sub-allocation segmentation. In our interface, this is transparent to the application designer.

ECRTS 2019
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A compute kernel (called program in Figure 5 and Algorithm 1) is written in GLSL3 [20]
(OpenGL Shading Language) and translated into SPIR-V using the glslangValidator program
that is provided by Valve’s LunarG Vulkan SDK4. Then, a vkShaderModule (see section 5) is
created and bound to a pipeline.

6 Experimental setting

In this section, we validate the proposed considerations on a representative hardware platform.
We adopted an NVIDIA Jetson AGX Xavier development board, featuring a host processor
with 8 NVIDIA Carmel cores, an ARM-based superscalar architecture with aggressive out-
of-order execution and dynamic code optimizations. Carmel Instruction Set Architecture
(ISA) is compatible with ARMv8.2. The Carmel CPU complex presents 4 islands of 2
cores each: each core has a dedicated L1, while each island presents a shared L2 Cache (2
MiB). Moreover, a L3 cache (4 MiB) is contended by all the CPU cores. In this SoC, the
main accelerator is represented by an integrated GPU designed with the NVIDIA Volta
architecture, featuring 512 CUDA cores distributed in 8 SMs. Each SM has a 128 KiB L1
cache, and a shared L2 Cache (512 KiB) is shared among all the SMs. Other application
specific accelerators are present in this SoC, such as the DLA (Deep Learning Accelerator)
and the PVA (Programmable Vision Accelerator): further discussions about these additional
accelerators are beyond the scope of this paper.

The software stack used in our experiments is mostly contained within the latest version
of the NVIDIA Jetpack (4.1.1). It contains the L4T (Linux For Tegra) Operating System
(version 31.1), which is an NVIDIA custom version of Ubuntu, featuring a linux kernel version
4.9. The CUDA SDK version is 10, whereas the Vulkan driver is updated to version 1.1.76.
Lunarg SDK for glslangValidator is updated to version 1.1.97.0.

6.1 Experimental use case
The application we selected for our tests relates to one of the most peculiar workloads to be
accelerated on a GPU: Deep Neural Networks (DNNs). Inference of DNNs is an extremely
common use case for heterogeneous SoCs. For example, latest Advanced Driving Assitance
Systems (ADAS) and Autonomous Driving (AD) prototypes make a heavy use of neural
networks for the detection/classification of objects on the road, making inferencing latencies
a critical aspect of the system.

Analyzing the layers of a DNN, breaking them down into algorithmic steps, each layer
presents algebraic computations that are typical of other generic signal processing tasks: basic
algebraic operations such as matrix/matrix and matrix/vector multiplications, convolution
filters and element-wise linear and/or non-linear functions are perfect example of compute
building blocks for a wide variety of embarrassingly parallel computations.

For these reasons, we believe that parameterizing neural network topologies provides a
synthetic benchmark that is realistic and general enough for our proposed approaches. More
specifically, we characterize our neural network as a sequence of kernel invocations, with each
invocation corresponding to a different layer. We therefore parameterize both the length of
this sequence of kernels and the size of the input data, as shown in Figure 6.

3 Our Vulkan compute wrapper allows the user to write compute shaders in GLSL. This facilitates porting
from CUDA or OpenCL pre-existing kernels.

4 https://www.lunarg.com/vulkan-sdk/

https://www.lunarg.com/vulkan-sdk/
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Figure 6 Schematic description of the application used for benchmarking the different submission
models. Matrix multiplications are used to compute fully connected layers, as we assume dense
matrices. The 3x3 convolution represents a convolutional layer. Simple activation functions (RELU
and sigmoid) conclude the sequence.

In the DAG in Figure 6, copy-in operations are implemented as Copy Engine operations
in which input layers, DNN weights and convolutional filters are made visible to the GPU
(CUDA memcpy host to device). The copy-out operations only relates to the output buffer
(CUDA memcpy device to host). Input and output buffers for each layer are switched between
subsequent kernel calls. We also alternate RELU and sigmoid activation functions between
subsequent iterations. For statistical analysis, the entire sequence of operations is periodically
repeated. Input size matrices for both input and output buffers are (k ∗ block)× (k ∗ block),
with k ∈ [1, 2, 4, 8] and block = 16 and the total sequence length of kernel launches is given
by the number of kernel launches for a single iteration (three) multiplied by the length of
the sequence: 3× l, l ∈ [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000].

Trivially, by increasing the length of the sequence of kernel launches, the CPU is forced
to increase its interactions with the GPU driver. By adjusting the data size, it is possible to
change the ratio between CPU and GPU compute latencies. In our experiments, the range
in which we vary the kernel iterations is compliant with the layer count of known neural
networks, as deployed in real world applications: YOLO [26] is composed of 26 convolutional
layers and 2 fully connected layers, whereas tiny-YOLO has 9 layers in total. Google’s
MobileNet [18] also features 28 layers, whereas larger networks can feature up to hundreds of
layers (e.g. ImageNet [22], R-FCN [11] and latest YOLO versions).

For Vulkan, compute shader implementations are derived from CUDA device kernel
code, that is then converted to GLSL compute shader with a line-by-line exact translation.
Operating this translation is easy, as only the name of the built-in variables used for
thread/block indexing differs between the two languages.

The Volta GPU architecture features application specific circuitry (i.e. tensor cores) for
further acceleration of matrix-multiply-accumulate operations. However, we are not aware of
any Vulkan/GLSL support for tensor core operations. To allow a fair comparison, also our
CUDA kernel implementation uses only regular CUDA cores.

All the experiments have been performed with the highest supported frequency and
voltage for the whole SoC with no dynamic frequency and voltage scaling (i.e. nvpmodel -m
0 && jetson_clocks.sh). Processes are pinned to one CPU core and set to FIFO99 priority.
Display servers/compositors or any other GPU application other than our benchmarks are
not permitted to execute. Code for our experiments can be found at https://git.hipert.
unimore.it/rcavicchioli/cpu_gpu_submission.

ECRTS 2019
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Figure 7 Simplified visualization of the submission and execution metrics evaluated in our
experiments. Depending on the submission model, both the CPU and GPU tasks might be
represented as a variable number of small blocks.

7 Results

We assume that context set up, memory allocations and kernel compiling procedures are
operations performed only once, during the whole system initialization phase. Therefore, we
did not characterize these phases, as they do not impact the runtime latencies of recurring
real-time workloads. For CUDA graphs and Vulkan, we considered graph creation, command
buffer recording and pipeline creation as part of the initialization phase. CUDA graph is
created by capturing the same memory and kernel operations enqueued in the baseline stream.

For this experimental setting, we measured two response times: submission completion
time (submission) and total execution time (execution). The submission time is the time
spent on the CPU submitting thread between the asynchronous submission of a task to the
time in which the control is given back to the CPU submitting thread. In the baseline scenario,
this translates in measuring the time taken for enqueuing all the necessary operations in
the CUDA stream. For CDP, this latency is only observed for submitting the parent kernel
launch, whereas for CUDA graphs we only measure the latency of the cudaGraphLaunch
call. Similarly, for Vulkan we only measure the submission of the pre-recorded command
buffer (VkQueueSubmit function call, equivalent to submitWork in our VkComp wrapper).
The total execution time is the time taken for completing the submitted job. As shown in
Figure 7, this latter measure includes both the CPU submission work and the GPU sequence
of copy and compute kernel operations.

The results are shown in Figure 8 and 9 (pp. 15, 16) and are quite surprising (please note
the logarithmic scale of the plots). In the leftmost column, where the submission time is
shown, a drastic reduction can be noticed for Vulkan compared to all the CUDA alternatives.
With Vulkan, the worst-case time needed to regain control of the CPU submitting thread
can be orders of magnitude smaller than in the CUDA-based approaches. More specifically,
comparing Vulkan with CDP (the best performing among the CUDA methodologies), the
improvement ranges from 4× to 11×.

Even more interestingly from a predictability perspective, while increasing the sequence
length causes significant variations in submission times for CUDA baseline and graphs,
such variations in Vulkan are almost negligible. Figure 10a shows the measured jitter for
different sequence lengths, i.e. the difference between recorded maximum and minimum
submission times.

When comparing the three CUDA methodologies, we see a consistent behaviour through-
out all the tested configurations and data block sizes. As expected, the CUDA baseline
performance are lower then the other two methodologies when considering both average and
worst cases.
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Figure 8 Results of response time for submission (left) and execution (right) for l ∈
[1, 2, 5, 10, 20, 50], block = 16 and k ∈ [1, 2, 4, 8]. Y-scale is logarithmic and different between
left and right column.
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Figure 10 Submission jitter and Vulkan creation latencies. X-Axis scale is logarithmic.

We now discuss the right side of Figures 8 and 9 detailing the total response times.
The Vulkan approach still outperforms the other three methodologies. Increasing l, the
measured response times increase in all the tested methodologies, as expected. However,
Vulkan performance improvement over CUDA becomes more evident and stabilizes with
larger l values (same slope observable in Figure 9), starting from 2× for l = 1 up to ∼ 6×
for l ≥ 10. CDP always performs worse then the other two CUDA based approaches and
the deterioration of CDP performance gets more noticeable when increasing k and l. CUDA
graphs execution times are comparable to the baseline implementation.

7.1 Discussion
The Vulkan design philosophy is responsible for such surprisingly short submission times.
More specifically, by forcing the application developer to explicitly instantiate a pre-recorded
version of the command pipeline and by avoiding any runtime validation checks, it manages
to drastically reduce the interactions between the CPU and the GPU. On the contrary, by
the time a CUDA runtime function is called to when it is actually enqueued in the command
buffer, an overhead is added in terms of validation and error checking: such operations act as
added overhead on the CPU side as they operate in an undisclosed and uncontrolled fashion.

An experiment with just four lines of code can serve as an example to reveal validation
mechanisms at API level: let us create a CUDA runtime application that creates a host and
a device pointer (respectively a pointer to CPU-visible memory region, and a GPU-only
visible pointer). We allocate memory for both and we use pinned (cudaMallocHost) memory
for the host pointer. We then set up a DMA transfer indicating the host pointer as the
source, the device pointer as destination, and we wrongfully flag this to be a device to host
memory copy. This program compiles, runs and – according to nvprof, the NVIDIA CUDA
profiler – executes a host to device to memory copy, hence indicating that pointers were
validated with respect to their address spaces, setting the actual DMA transfer differently
than originally specified. The experiment suggests that calls were checked, validated and (if
necessary) corrected. It is reasonable to assume that heavier driver mechanisms are also in
place for kernel invocations.

Recall that kernels are identical in both the CUDA and Vulkan version. The performance
improvement shown by Vulkan is higher for submission intensive workloads, where CPU times
are not negligible with respect to GPU compute times. In these cases, minimizing submission
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Table 1 Tracing result summary by tracing NVIDIA GPU kernel module: number of submissions,
average duration, number of additional calls required to increment l by 1, memory management calls.

Submission
model

Number of
submit calls

Average
time [s] ∆ Number of

MM operations
Baseline 611 2.66776 · 10−6 3 1,484
CDP 610 1.92295 · 10−6 0 1,484
Graph 635 2.15276 · 10−6 27 1,484
Vulkan 24 2.05 · 10−5 0 1,110

times allows drastically decreasing the total execution time. If the examined workload is
characterized by few kernel calls and reasonably sized data buffers, total execution times
between Vulkan and CUDA would not present such significant differences. This is partially
visible in our results for smaller l and larger k.

A way to avoid paying the price of driver hidden mechanisms is to relieve the CPU from
heavy submission work. The CDP methodology moves the responsibility of future kernel calls
to threads that run on the GPU. From our results, we discovered that this is actually a very
effective approach for minimizing CPU interactions for submission, at least for reasonable
sequence lengths. However, the device-side overhead for nested kernel invocations causes
significant performance deterioration with respect to GPU response time. This effect was
already observed in older GPU architectures [6]. Likely, the CDP model cannot provide
benefits to the kind of GPU workloads used in our tests: a sequence of kernel invocations,
with little variations to their launch configuration, does not resemble a tree-like structure of
nested kernel invocations. We however argue that the tree-like kernel invocations suitable
to CDP are not as common as simpler sequential kernel invocations, at least for typical
embedded workloads.

CUDA graphs performed below our expectations for both submission and execution
metrics. We assumed that this recently-introduced CUDA feature would make it behave
similarly to the Vulkan API – the idea of capturing stream operations strongly resembles
Vulkan’s command buffer recording. Despite launching a CUDA graph involves only calling
a single CUDA runtime function, the hidden driver overhead is comparable to the one
observed in the baseline methodology. Since our measurements only considered user space
runtime functions, the performance of CUDA graph motivated us to further examine kernel
driver overheads.

7.2 Tracing the kernel driver
Although the NVIDIA GPU runtime is proprietary and closed source, its kernel driver module
is open source and freely available at the NVIDIA official website. In order to understand
the submission mechanisms below the user space application that we implemented for our
previous tests, we can thus analyze kernel driver operations with all the tested methodologies.
Basic GPU kernel driver tracing allows us to obtain initial and final timestamps of the GPU
command submission into the actual command push buffer, which is a memory region written
by the CPU and read by the GPU [7, 8]. By enabling the debug interface of the gk20a module,
we discover that command push buffer writes are delimited by gk20a_channel_submit_gpfifo
and gk20a_channel_submitted_gpfifo function traces. We also traced driver functions
related to memory management gk20a_mm_* to understand their impact in the kernel
submission process. We recorded those traces using the trace-cmd-record utility, reporting
our findings in Table 1.
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The second column of Table 1 shows the number of submit operations when l = 1
and k = 1, accounting for both context initialization and actual work submission. The
average time for these submission calls has been calculated by subtracting the timestamps of
gk20a_channel_submitted_gpfifo and its respective gk20a_channel_submit_gpfifo function
trace. The ∆ column is simply the difference of submit calls when l = 2, and represents the
number of additional submit calls required by any submission after the first one. The last
column is the counter of memory management operations.

In terms of sheer number, submit calls show no significant difference among the CUDA
methods. Regarding CUDA graphs, despite the fact that launching a graph only involves a
single user space runtime function, the number of submit calls is even larger than the baseline.
This explains the reason why CUDA graphs response times are comparable to the baseline.
Vulkan is characterized by a 25× reduction in submit calls compared to CUDA. However,
Vulkan submit duration is a magnitude larger than all the other approaches. The ∆ column
shows the results we expected for baseline, CDP and Vulkan: by increasing l by a single unit,
the baseline presents 3 additional submit calls (1 per additional kernel invocation), whereas
CPD does not present any additional calls, as nested invocations are operated inside the
GPU. Vulkan driver activity continues to follow the user space application model: increasing
l leads to a larger recorded command buffer, but this does not cause an increased number
of submit calls as every additional invocation is prerecorded in the same Vulkan command
buffer/queue. We are unable to explain the 9×∆ for the CUDA graph value compared to
the baseline, as if we assume that driver interactions for CUDA graphs would resemble the
baseline, having the same ∆ as the baseline.

The captured traces for memory operations are identical in all the CUDA methodologies
and do not increase with l, with Vulkan presenting 25% less memory management operations
compared to CUDA. For what we were able to infer from a mostly closed source system,
it is safe to assume that Vulkan is able to cache and pre-record GPU commands to then
minimize CPU and GPU interactions (both in user and kernel space) when offloading periodic
workloads. This implies spending a significant amount of time for initialization procedures
(i.e. pipeline creation and command buffer recording) to then utilize the CPU for the
bare minimum for submitting an already well-formatted sequence of operations. For the
sake of completeness, we profiled the time taken by the CPU for creating pipelines and
recording a command buffer of variable size. These metrics are reported in Figure 10b,
where we characterized the time spent on the CPU during the initialization phase of a
Vulkan application.

Recall that pipeline creation manages the binding of each distinct compute program with
its input/output buffer layouts: these do not change when increasing l. On the contrary,
the command buffer should record all the kernel invocations in advance. As a consequence,
larger invocation sequences lead to larger command buffers, with a proportional increase in
recording time. Pipeline creation is the most expensive operation (tens of ms). However, if
the number of invocations reaches unrealistically large values (i.e. thousands of invocation in
a single batch), recording times tend to dominate over pipeline creation.

Our findings show that no matter which submission model is selected for CUDA, Vulkan
bare metal approach manages to minimize and better distribute the CPU overhead, especially
for pathological workloads in which the CPU offloading times tend to dominate over the
actual GPU compute and DMA transfer times.
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8 Conclusion and future work

In this work, we aimed at characterizing and modeling CPU-to-GPU submission latencies for
real-time systems executing on heterogeneous embedded platforms. We compared recently
released CUDA submission models and the novel open standard Vulkan API for GPU
accelerated workloads. In an extensive set of experiments, we considered typical workloads,
consisting of inferencing on a neural network of parameterized topology, to profile GPU
command submission times and total execution times. The results show that CPU offloading
latencies can act as a bottleneck for performance, negatively impacting predictability and
jitter, and making the schedulability analysis significantly more complex due to the large
number of CPU-GPU interactions.

Considering CUDA approaches, recently introduced CUDA submission models can slightly
improve performance (both on submission and execution times) compared to the commonly
utilized baseline approach. However, considering a deeper neural network and buffer data
size, the performance penalties during the actual kernel computations reduce or invalidate
the benefits of a reduced CPU activity gained for submission operations, especially for the
CDP approach.

On the other hand, the Vulkan API was able to minimize and better distribute the CPU
overhead in all the tested configurations. This led to significant improvements, i.e. up to 11×
faster submissions and from 2× to 6× faster GPU operations, with almost negligible jitter.
Moreover, the significant reduction of CPU-GPU interactions significantly simplifies the
topology of the DAG to consider for deriving an end-to-end response-time analysis, allowing
a tighter characterization of the system schedulability. For these reasons, we argue that the
Vulkan API should be seriously considered by real-time systems designers for dispatching
periodic workloads upon predictable heterogeneous SoCs.

Despite the closed nature of the NVIDIA runtime, we traced the relevant GPU driver
kernel module calls to explain the performance gap between CUDA and Vulkan. In this
latter, driver interactions between application and GPU driver are kept to the bare minimum,
hence providing the surprising results we discussed. Moreover, it is worth noticing that
Vulkan is a cross platform API, with no hardware vendor or operating system restrictions and
specified as an open standard, whose importance has been recently stressed [33]. Limitations
for the Vulkan approach, when compared to CUDA, are to be found in the substantially
higher implementation complexity for the developer, in the notable time needed to pre-record
commands/pipelines, and in the lack of an ecosystem of utility libraries (e.g. cuDNN for
Deep Neural Network operations, cuBLAS for linear algebra, etc.)

As a future work, we aim to include OpenCL in this comparison to experiment on
different hardware platforms. We are also in the process of investigating different use cases,
in which multiple concurrent and parallel kernels overlap in time, described by DAGs with
parametrized breadth. This analysis is important when considering recurrent neural network
such as R-FCN [11], which includes loops among different layers. This aspect differs from
the feed-forward networks that inspired the use case in our experiments. Finally, we plan
to benchmark the energy consumption for all the tested approaches. We speculate that the
reduced CPU-GPU interaction might bring substantial benefits to the power consumption, a
crucial aspect for the considered platforms.
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