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BACKGROUND & AIMS: One strategy to treat chronic hepatitis
B virus (HBV) infection could be to increase the functions of
virus-specific T cells. We performed a multicenter phase 2
study to evaluate the safety and efficacy of GS-4774, a
yeast-based therapeutic vaccine engineered to express HBV
antigens, given with tenofovir disoproxil fumarate (TDF) to
untreated patients with chronic HBV infection. METHODS: We
performed an open-label study at 34 sites in Canada, Italy, New
Zealand, Romania, South Korea, and United States from July
2014 to August 2016. Adults who were positive for HB surface
antigen (HBsAg) > 6 months and levels of HBV DNA �2000 IU/
mL who had not received antiviral treatment for HBV within 3
months of screening were randomly assigned (1:2:2:2) to
groups given oral TDF 300 mg daily alone (n ¼ 27; controls) or
FLA 5.6.0 DTD � YGAST62558_proo
with 2, 10, or 40 yeast units GS-4774 (n ¼ 168), administered
subcutaneously every 4 weeks until week 20 for a total of 6
doses. Blood samples were collected and analyzed and patients
received regular physical examinations. Efficacy was measured
by decrease in HBsAg from baseline to week 24. Specific re-
sponses to HBV (production of interferon gamma [IFNG], tumor
necrosis factor [TNF], interleukin 2 [IL2], and degranulation)
were measured in T cells derived from 12 HBeAg-negative
patients with genotype D infections, after overnight or 10
days of stimulation of peripheral blood mononuclear cells with
peptides from the entire HBV proteome. T-regulatory cells were
analyzed for frequency and phenotype. Data from studies of
immune cells were compared with data on reductions in
HBsAg, HBV DNA, and alanine aminotransferase in blood
f � 20 May 2019 � 7:18 pm � ce



WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

One strategy to treat chronic hepatitis B virus (HBV)
infection could be to increase the functions of virus-
specific T cells.

NEW FINDINGS

GS-4774 was well tolerated and induced simultaneous
restoration of multiple T-cell functions in viremic HBeAg-
negative patients with hepatitis B. The largest effects
were on CD8þ T cells, associated with a significant
reduction in T-regulatory cells.

LIMITATIONS

Despite a strong immune modulatory effect, GS-4774 did
not produce clinically significant reductions in HBsAg.

IMPACT

The GS-4774 vaccine can break immune tolerance to
HBV in patients with chronic infections and might be
used in combination with other antiviral agents to boost
the anti-virus immune response.
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samples from patients. RESULTS: GS-4774 was safe and well
tolerated but did not produce significant decreases in levels of
HBsAg. Production of IFNG, TNF, and IL2 increased significantly
at weeks 24 and 48, compared with baseline, in HBV-specific
CD8þ T cells from patients given GS-4774 but not from con-
trols. GS-4774 had greater effects on CD8þ than CD4þ T cells,
which were not affected at all or very weakly by TDF with or
without GS-4774. GS-4774 did not affect responses of T cells to
other viruses tested. HBV core peptides induced the greatest
production of IFNG by T cells following overnight stimulation,
whereas HBV envelope antigens did not induce a response.
Following 10 days of stimulation, production of IFNG and TNF
increased with time of exposure to GS-4774; the greatest levels
of responses were to HBV envelope antigens followed by core
and polymerase peptides. We observed a correlation in patients
given GS-4774 between increased T-cell functions and re-
ductions in numbers of T-regulatory cells. CONCLUSIONS: In a
phase 2 study of patients with chronic HBV infection given TDF
with or without GS-4774, we found that vaccination can in-
crease production of IFNG, TNF, and IL2 by CD8þ T cells
exposed to antigenic peptides, with little effect on CD4þ T cells.
Although GS-4774 did not reduce levels of HBsAg in patients,
its strong immune stimulatory effect on CD8þ T cells might be
used in combination with other antiviral agents to boost the
antivirus immune response. Clinicaltrials.gov no:
NCT02174276.
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hronic hepatitis B virus (HBV) infection represents a
* Authors share co-first authorship.

Abbreviations used in this paper: AE, adverse event; ALT, alanine
aminotransferase; APC, antigen-presenting cells; CHB, chronic hepatitis
B; CMH, Cochran-Mantel-Haenszel; CMV, cytomegalovirus; EBV, Epstein-
Barr virus; ELISpot, enzyme-linked immunosorbent spot assay; HBeAg,
hepatitis B e-antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B
virus; HLA, human leukocyte antigen; IFN, interferon; IL, interleukin; NUC,
nucleos(t)ide analogues; PBMC, peripheral blood mononuclear cells; TDF,
tenofovir disoproxil fumarate; Treg, regulatory T cells; TNF, tumor ne-
crosis factor; ULN, upper limit of normal.
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Cworldwide public health concern with approxi-
mately 250 million people chronically infected and at risk of
developing liver cirrhosis and hepatocellular carcinoma.1

Nucleos(t)ide analogues (NUC), the most widely used ther-
apies for HBV infection, are very effective in reducing HBV
replication, but loss of hepatitis B surface antigen (HBsAg),
which is considered functional cure of HBV infection, is
observed in fewer than 10% of patients even after many
years of therapy.1 This is due to the integration of HBV DNA
sequences in the host genome2,3 and to the persistence of
covalently closed circular DNA, that acts as a reservoir for
viral replication, which are not significantly affected by NUC
therapies.4,5

The host immune response to HBV is a key determinant
of the outcome of infection.6 HBV-specific T cells are deeply
exhausted in untreated patients with chronic hepatitis B
(CHB): reconstitution of their antiviral function represents a
major goal of HBV immune therapies.6 Therapeutic com-
pounds designed to restore an effective HBV-specific T-cell
response represent promising tools for improving the rate
of HBsAg loss and seroconversion in subjects with CHB
compared with what is currently achievable with NUC
alone.7 In particular, stimulation of virus-specific T-cell re-
sponses by specific T-cell vaccines represents a rational
immune modulatory approach for a therapeutic reconsti-
tution of protective immunity.8

GS-4774 is a yeast-based therapeutic vaccine containing
HBV S, X, and core proteins and designed to elicit efficient
FLA 5.6.0 DTD � YGAST62558_proo
HBV-specific immune responses9–11 by promoting antigen
processing and presentation in the context of both major
histocompatibility complex class I and class II pathways.12

The yeast component has also been shown to reduce fre-
quency and inhibitory activity of T-regulatory cells (Tregs),
likely due to its natural ability to elicit interleukin (IL)-1B
production and to favor Th17 over Tregs cell differentia-
tion,13,14 and to act as an adjuvant for HBV-specific immune
responses.13 Induction of HBV-specific T-cell responses with
the oral GS-4774 vaccine has previously been reported in
mouse models and healthy volunteers.9,10

In this phase 2 study, we assessed the efficacy and safety
of GS-4774 in patients with viremic CHB not currently on
oral antiviral therapy. Further, we tested the immune
modulatory effect of treatment on HBV-specific T-cell re-
sponses and Treg cells in a subset of treatment-naïve hep-
atitis B e-antigen (HBeAg)-negative patients with CHB.
Materials and Methods
Patients

This phase 2, multicenter, randomized, controlled open-
label study was conducted at 34 sites in Canada, Italy, New
Zealand, Romania, South Korea, and the United States from
f � 20 May 2019 � 7:18 pm � ce
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July 2014 to August 2016 (clinicaltrials.gov: NCT02174276).
Patients were at least 18 years old with CHB (documented
HBsAg positive > 6 months) with detectable HBV DNA at
screening (�2000 IU/mL) who had not received antiviral
treatment for HBV within 3 months of screening. Major
exclusion criteria included advanced bridging fibrosis and
cirrhosis. Full eligibility criteria are provided in the
Supplementary Materials.

All patients provided written informed consent before
enrollment. The study was approved by the institutional review
boards at participating sites and conducted in compliance with
the Declaration of Helsinki, Good Clinical Practice guidelines,
and local regulatory requirements.
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Study Design and Treatment
Eligible patients were randomized in a 1:2:2:2 ratio to

receive oral tenofovir disoproxil fumarate (TDF) 300 mg daily
only, or along with GS-4774 at doses of 2, 10, or 40 yeast units
(YU). Patients were stratified by HBeAg status (positive vs
negative) and alanine aminotransferase (ALT) level (>19 vs
�19 IU/L for women; >30 vs �30 IU/L for men) according to
American Association for the Study of Liver Diseases
guidelines.15

GS-4774 (Gilead Sciences, Inc., Foster City, CA) was
administered subcutaneously every 4 weeks until week 20 for a
total of 6 doses (GS-4774 2 YU as 1 injection; GS-4774 10 YU as
2 injections; GS-4774 40 YU as 4 injections). All patients
received TDF 300 mg once daily at least until the end of the
study (week 48) after which, on the investigator’s discretion,
patients either entered treatment-free follow-up (24 weeks) or
an optional treatment extension phase with TDF only (144
weeks) (details in Supplementary Materials).
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Study Assessments
Safety was evaluated by assessment of clinical laboratory

tests (including measurements of serum HBsAg, anti-HBs, anti-
HBe, HBV DNA, and human leukocyte antigen [HLA]), physical
examinations, vital signs measurements, and by documentation
of adverse events (AEs) according to the schedule provided in
Supplementary Table 1. All safety data were collected from the
time of first dose of study drug to 30 days after the last dose of
study drug.
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Endpoints
The primary endpoints were safety and tolerability; the

primary efficacy endpoint was the mean change in quantitative
serum HBsAg (log10 IU/mL) from baseline to week 24 by least-
squares mean. Secondary efficacy endpoints included the mean
change in log10 IU/mL from baseline to weeks 12 and 48; the
proportion of patients with HBsAg and/or HBeAg loss and
seroconversion at weeks 24 and 48 (Supplementary Material);
the proportion of patients with �0.5 or �1 log10 decline in
HBsAg at weeks 12, 24, and 48; the proportions of patients with
HBV DNA <LLOQ (<20 IU/mL) at weeks 24 and 48; and the
proportion of patients experiencing viral breakthrough (ie, 2
consecutive occurrences of HBV DNA �69 IU/mL after a HBV
DNA <69 IU/mL or an increase in HBV DNA �1.0 log10 IU/mL
from nadir).
FLA 5.6.0 DTD � YGAST62558_proo
Measurement of HBV-specific T-cell Responses
HBV-specific T-cell responses were measured in a subset of

12 treatment-naïve viremic HBeAg-negative patients infected
with HBV genotype D enrolled in 4 Italian centers
(Supplementary Table 2). Because only 1 patient was ran-
domized to the tenofovir arm, 9 additional patients with CHB
who were not on treatment served as controls and received
NUC only, so that the total number of patients in the control
cohort was equal to 10. Fifteen patients who had spontaneously
recovered from an acute HBV infection who were recruited in
the same Italian geographical areas served as an additional
control population. The demographic, clinical, and virological
characteristics of each individual patient are described in
Supplementary Tables 2 and 3.

In Vitro Expansion and Intracellular Cytokine
Staining of HBV-specific T Cells

Peripheral blood mononuclear cells (PBMCs) were stimu-
lated either with a panel of 315 15-mer peptides, overlapping
by 10 residues, covering the overall HBV genotype D sequence,
pooled in 8 mixtures, as previously described,16 or with a pool
of immunodominant HLA class I and II peptides from cyto-
megalovirus (CMV), Epstein-Barr virus (EBV), and influenza
sequences. Immunological assays were performed on day 10
using anti-interferon (IFN)-g, anti-IL-2 (BD Biosciences, San
Jose, CA) and anti-tumor necrosis factor (TNF)-a (Miltenyi,
Bergisch Gladbach, Germany) conjugated monoclonal anti-
bodies for the detection of intracellular cytokines, and using an
anti-CD107a antibody for the study of the cytotoxic potential.
Cells were acquired on a FACSCANTO II flow cytometer and
were analyzed with the DIVA software (BD Biosciences).

Enzyme-Linked Immunosorbent Spot Assay
Enzyme-linked immunosorbent spot assays (ELISpot) were

performed using the panel of 315 15-mer peptides pooled in 8
mixtures; 2 to 4 � 105 PBMCs per well were seeded in triplicate
and HBV-specific T-cell responses were analyzed after over-
night incubation with individual peptide mixtures (1 mM) for
IFN-g production according to the manufacturer’s instruction
(BD ELISpot, ELISpot Set; Becton Dickinson, Franklin Lakes, NJ).
Spots were counted using an automated ELISpot reader (AID
ELISpot Reader System). IFN-g-secreting cells were expressed
as spot-forming cells per 1 � 106 cells after subtraction of the
background. Positive controls consisted of PBMCs stimulated
with CMV, EBV, and influenza peptides mixture. ELISpot was
considered positive if the number of spots in the stimulated
wells was at least 3 standard deviations above background and
the difference between the number of spots in the stimulated
and unstimulated wells was above 10.

Cell Surface Staining and Flow Cytometry
Analysis

For ex vivo Treg cell phenotypic analysis, PBMCs were
stained with the following antibodies: Live and Dead (Ther-
moFisher, Waltham, MA), CD4 (Miltenyi), FoxP3 (eBioscience,
San Diego, CA), CD45RA (Miltenyi), CD3 and CD25 (both from
BD Biosciences). To assess the proliferation capability, Tregs
were permeabilized and stained with anti-Ki67, whereas to
measure the activation status were stained with anti-HLA-DR
f � 20 May 2019 � 7:18 pm � ce
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(both by BD Biosciences). For the phenotypic analysis of the
CD8 T-cell population, PBMCs were stained with CD8, CD3,
CD127 (all from BD Biosciences), PD-1 (BioLegend, San Diego,
CA), TIGIT (eBioscience), CD39 (Miltenyi). Cells were acquired
on a FACSCANTO II flow cytometer and analyzed with the DIVA
software. For ex vivo analysis of dendritic cells and monocytes,
the following monoclonal antibodies were used: CD3, CD16,
CD80, CD14, CD11c, CD86 (all from BD Biosciences) and
CD123, CD83, CD40, CD56, CD20, HLA-DR (all from eBio-
science). Cells were acquired on a BD FACSLyric flow cytometer
(BD Bioscences) and analyzed with the FlowJo software (Tree
Star, Ashland, OR).
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Statistical Analysis
Clinical study. All patients who received at least 1 dose

of study medication were included in the safety and efficacy
analyses. Safety data were analyzed by treatment group and
included all data collected from the date of first dose of study
drug up to the last dose date (ie, treatment-emergent). Mean
changes in serum HBsAg from baseline were analyzed using
mixed-effect model repeat measurement using unstructured,
within-patient covariance matrix. Estimated least-square means
of treatment effects and differences in treatment effects be-
tween GS-4774 groups and the TDF-only group at week 24
were calculated with 95% confidence intervals and unadjusted
P values. A stratified Cochran-Mantel-Haenszel (CMH) test with
ALT levels (greater than upper limit of normal [ULN] or �ULN)
and HBeAg status (positive or negative) at baseline, as strati-
fication variables, was used to compare the treatment effect
between each of the GS-4774 groups and the TDF-only group
for HBsAg and HBeAg loss and seroconversion and the pro-
portion of patients with a �0.5- or �1-log decline in HBsAg.
Two-sided CMH test and Fisher’s exact P values were pre-
sented. The association of HLA class I and II antigens to clinical
response (�0.5 log10 IU/mL decline in HBsAg at week 24) was
examined using Fisher’s exact test. Bonferroni corrected P
values and false discovery rate–corrected q-values were also
calculated for all HLA types with at least 10 patients. To assess
the relationship between DHBsAg and specific baseline de-
mographic and disease characteristics, univariate and multi-
variate analysis was performed (Supplementary Materials).

Immunological study. Data were analyzed by GraphPad
Prism (GraphPad Software, La Jolla, CA). Statistical significance
was assessed by the Mann-Whitney U test for nonpaired sam-
ples and the Wilcoxon signed rank test for paired data; fre-
quencies were compared by c2 and Fisher F tests. Correlations
were analyzed by the Pearson’s correlation test. Multiple linear
regression analysis was performed by JASP Software to assess
the difference in clinical and virological baseline values in
relation to immunological parameters. Hierarchical-clustering
of T-cell parameters was performed by GeneSpring-GX (Agi-
lent, Santa Clara, CA). Data were median-normalized before
clustering. The clustering was obtained by Canberra Average
similarity measure.
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Results
Baseline Characteristics

Of the 254 patients screened, 195 were randomized to
receive TDF plus GS-4774 (n ¼ 168) or TDF alone (n ¼ 27).
FLA 5.6.0 DTD � YGAST62558_proo
Overall, the mean age (range) of patients was 45 (18–69)
years and most were men (61%), Asian (80%), and HBeAg-
negative (61%) (Table 1). The mean HBsAg baseline titer
range across groups was 3.7 to 3.8 log10 IU/mL with a mean
baseline HBV DNA level of 5.8 to 6.0 log10 IU/mL. At base-
line, 78%, 74%, 63%, and 78% of patients receiving the TDF
only, 2-, 10-, and 40-YU GS-4774 doses, respectively, had
ALT above the ULN (Table 1).

Efficacy
Mean changes in log10 IU/mL serum HBsAg from base-

line through week 48 are shown in Supplementary
Figure 1A. The mean declines at the primary endpoint
(week 24) for the 2-, 10-, and 40-YU GS-4774 groups
were �0.096, �0.016, and �0.135 log10 IU/mL, respec-
tively, and statistically no different from the TDF-only group
(�0.079 log10 IU/mL). Similar results were also observed at
weeks 12 and 48. There were no apparent differences in
HBsAg decline between groups by baseline ALT levels or
HBeAg status. The greatest mean declines occurred in the
patients who were HBeAg-positive and with baseline
ALT>ULN (Supplementary Figure 1B–F).

Although the proportion of patients who experienced
categorical declines never reached statistical significance at
any evaluated week (weeks 12, 24, and 48), at week 24, 11
GS-4774-treated patients had �0.5 log10 reductions in
HBsAg compared with no patients in the TDF-only group. A
trend toward significance (P ¼ .076 by CMH test) can be
observed in the GS-4774 40-YU treatment group compared
with the TDF group after adjusting for the baseline strati-
fication factors (HBeAg status and ALT level)
(Supplementary Figure 1G). No patient achieved HBsAg loss
or anti-HBs seroconversion through week 48. Of the 76
patients who were HBeAg-positive at baseline, 1 (4.3%) in
the GS-4774 10-YU group achieved HBeAg loss and sero-
conversion by week 24. At week 48, 5 patients (1 receiving
GS-4774 2 YU [5%], 2 receiving GS-4774 10 YU [9%], and 2
receiving GS-4774 40 YU [10%]) achieved HBeAg loss, 3 of
whom achieved HBeAg loss and seroconversion (1 in the GS-
4774 10-YU group and 2 in the GS-4774 40-YU group).

HBV DNA suppression and Virologic Resistance Analysis
as well as HLA allele associations with DHBsAg decline are
described in the Supplementary Materials and in
Supplementary Figure 1H and Supplementary Figure 2,
respectively.

Safety
GS-4774 was generally well tolerated. Two (1.0%) pa-

tients did not complete GS-4774 treatment (both withdrew
consent). Five patients did not complete TDF treatment
through week 48 (3 withdrew consent, 1 due to pregnancy
and 1 was lost to follow-up). One patient in the TDF þ GS-
4774 2-YU group interrupted TDF due to pyrexia from days
141 to 147. No serious AEs and no deaths were reported.

In the GS-4774 treatment groups, 40% to 80% of pa-
tients experienced AEs related to GS-4774 treatment; most
were Grade 1 or Grade 2 in severity. Only 5 patients who
received GS-4774 10 YU and 3 patients who received GS-
f � 20 May 2019 � 7:18 pm � ce
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Table 1.Baseline Demographics and Disease Characteristics

TDF,
n ¼ 27

TDF þ GS-4774
2 YU, n ¼ 57

TDF þ GS-4774
10 YU, n ¼ 56

TDF þ GS-4774
40 YU, n ¼ 55

Total,
n ¼ 195

Age, y 44 46 44 43 44
Mean, range (24–67) (18–63) (22–69) (19–62) (18–69)
Male, n (%) 18 (67) 34 (60) 33 (59) 33 (60) 118 (61)
Race, n (%)
Asian 24 (89) 42 (74) 44 (79) 45 (82) 155 (80)
Native Hawaiian or

Pacific Islander
0 0 2 (4) 1 (2) 3 (2)

White 1 (4) 13 (23) 8 (14) 6 (11) 28 (14)
Black 2 (7) 2 (4) 2 (4) 3 (6) 9 (5)
Other 0 0 0 0 0
HBeAg Status Negative,

n (%)
17 (63) 35 (61) 33 (59) 34 (62) 119 (61)

HBV DNA (log10 IU/mL)
Mean (SD)

6.0 (1.64) 5.8(1.99) 5.8 (1.97) 6.0 (1.80) 5.9 (1.88)

HBsAg (log10 IU/ mL)
Mean (SD)

3.8 (0.78) 3.7 (0.82) 3.7 (0.94) 3.7 (0.80) 3.7 (0.84)

ALT (U/L) Mean (SD) 49.7 (44.50) 48.1 (36.39) 38.4 (29.32) 60.7 (62.31) 49.1 (45.21)
Baseline ALT
>ULN (%)

21 (78) 42 (74) 35 (63) 43 (78) 141 (72)

Prior Interferon
Experience

Yes, n (%)

2 (7) 7 (12) 8 (14) 10 (18) 27 (14)
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4774 40 YU experienced Grade 3 AEs related to GS-4774,
including injection site pain (n ¼ 5); fatigue (n ¼ 3); and
nausea, vomiting, myalgia, and headache (n ¼ 1 each).
Overall, the most common treatment-emergent AEs associ-
ated with the injection site were pain (28%–82%), ery-
thema (25%–62%), and swelling (16%–40%) (Table 2). The
most common non–injection site AEs in the GS-4774 groups
were fatigue (18%–38%), headache (16%–35%), and
myalgia (11%–36%). AEs appeared to be directly correlated
with dose level. Fatigue (19%) and cough (11%) were the
most common AEs in the TDF-only treatment group. A total
of 43 treatment-emergent Grade 3 or 4 laboratory abnor-
malities were experienced by 33 patients (1 TDF only, 8
TDF þ GS-4774 2 YU, 5 TDF þ GS-4774 10 YU, and 19
TDF þ GS-4774 40 YU) (Table 2).

Four patients, 2 each in the GS-4774 2-YU and 40-YU
groups, had an ALT flare (ALT >2 � baseline and >5 �
ULN); 3 patients experienced a flare within the first 4 weeks
of treatment and in the fourth patient it occurred at week 8.
ALT levels for all 4 patients subsequently normalized. Of
these 4 patients, only 1 (TDF þ GS-4774 2 YU group) had a
�0.5 log10 decline in HBsAg within 4 weeks after the ALT
flare.
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Univariate and Multivariate Analysis of �0.5 log10
IU/mL HBsAg Decline Association

Univariate analysis showed that significant baseline
predictors of a �0.5 log10 IU/mL decline in HBsAg
observed at week 24 were age, ALT, log10 HBV DNA,
HBeAg status, HBsAg, HLA B*52:01, HLA C*12:02, HLA
DPB*09:01, and HLA DRB1*15:02. Multivariate analysis
FLA 5.6.0 DTD � YGAST62558_proo
was then performed to assess baseline factors associated
with �0.5 log10 IU/mL decline. Higher baseline ALT, HLA
DRB*15:02 allele, and HBeAg positivity were determined
to be associated with a higher probability of DHBsAg
(Supplementary Table 4).
In Vitro Analysis of HBV-specific CD4þ and
CD8þ T-cell Responses

IFN-g, TNF-a, and IL2 production by HBV-specific CD8þ
T cells improved significantly at weeks 24 and 48 (red lines,
Figure 1A) compared with baseline in patients treated with
GS-4774, whereas no significant changes were observed in
the control group of patients receiving NUC alone (green
lines, Figure 1A). The effect of vaccine was significantly
better on CD8- than CD4-mediated responses, which were
not affected at all or very weakly by both therapy regimens
(Figure 1A and B). Moreover, no modulation of CMV/EBV/
Flu-specific T-cell responses was induced by therapy
(Figure 1C and Supplementary Figure 3).

Evolution of T-cell responses in patients treated with
combined GS-4774 and tenofovir is well illustrated by
hierarchical-clustering analysis of all data derived from all
time points of therapy and from the reference acute hepa-
titis B control group for the definition of an efficient immune
response able to control infection spontaneously
(Figure 1D). A progressive functional improvement
involving primarily IFN-g and TNF-a production by CD8
cells was detected also by this analysis, as shown by the
gradual transition from light to dark intensity of color,
indicating progressive changes in quality and intensity of T-
cell responses induced by therapy, which make chronic
f � 20 May 2019 � 7:18 pm � ce
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Table 2.Treatment- Emergent AEs (TEAEs) and Grade 3 or 4 Laboratory Abnormalities

TDF,
n ¼ 27

TDF þ GS-4774
2 YU, n ¼ 57

TDF þ GS-4774
10 YU, n ¼ 56

TDF þ GS-4774
40 YU, n ¼ 55

Any AEs, n (%) 13 (48) 41 (72) 51 (91) 53 (96)
Grade 3 or 4 AEs, n (%) 1 (4) 0 8 (14) 6 (11)
Serious AEs, n (%) 0 0 0 0
TEAEs (any grade) in �10% of patients in any treatment

group, n (%)
Injection site pain 0 16 (28) 32 (57) 45 (82)
Injection site erythema 0 14 (25) 20 (36) 34 (62)
Injection site swelling 0 9 (16) 11 (20) 22 (40)
Injection site pruritus 0 4 (7) 18 (32) 18 (33)
Injection site induration 0 4 (7) 5 (9) 18 (33)
Fatigue 5 (19) 10 (18) 21 (38) 20 (36)
Headache 1 (4) 9 (16) 17 (30) 19 (35)
Myalgia 1 (4) 6 (11) 13 (23) 20 (36)
Nausea 1 (4) 5 (9) 10 (18) 11 (20)
Cough 3 (11) 5 (9) 7 (13) 7 (13)
Chills 0 2 (4) 6 (11) 9 (16)
Pyrexia 1 (4) 3 (5) 1 (2) 7 (13)
Nasopharyngitis 2 (7) 0 2 (4) 6 (11)

Laboratory abnormalities
Hemoglobin Grade 3, 7.0 to <9.0 g/dL or any decrease

�4.5 g/dL from baseline
0 1 (2) 2 (4) 3 (5)

Occult blood Grade 3 0 2 (4) 0 4 (7)
Creatine kinase Grade 3, 10 to <20 � ULN 1 (4) 1 (2) 1 (2) 2 (4)
Urine erythrocytes Grade 3 0 1 (2) 0 4 (7)
Alanine aminotransferase Grade 3, >5 to 10 � ULN 0 1 (2) 0 2 (4)
Aspartate aminotransferase Grade 3, >5 to 10 � ULN 0 1 (2) 0 2 (4)
Creatine kinase Grade 4, �20 � ULN 0 1 (2) 0 2 (4)
Urine glucose Grade 3 0 0 1 (2) 2 (4)
Prothrombin time Grade 3, >1.5 to 3 � ULN 0 0 1 (2) 2 (4)
Alanine aminotransferase Grade 4, >10 � ULN 0 1 (2) 0 1 (2)
Aspartate aminotransferase Grade 4, > 10 � ULN 0 1 (2) 0 0
Bilirubin Grade 3, >2.5 to 5.0 � ULN 0 1 (2) 0 0
Hyperglycemia Grade 3, >250 to 500 mg/dL 0 0 0 1 (2)
Internationalized normalized ratio of prothrombin time

Grade 3, >2.0 to 3 � ULN
0 0 0 1 (2)
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treated patients progressively more similar to acute self-
limited patients.

Because levels of response in individual patients were
widely variable, we then analyzed longitudinally each indi-
vidual CD4 and CD8 T-cell function (IFN-g, TNF-a, IL-2
production, and CD107a degranulation) in all patients.
Notably, in patients receiving GS-4774 and tenofovir, a
simultaneous improvement of multiple functions was
detected in 10 of 11 patients (Figure 2). Improvement of
CD8 responses was significantly better in patients treated
with combined therapy than in patients treated with NUC
alone (P ¼ .0003 by c2 test). In addition, increase of re-
sponses was significantly greater among CD8 compared
with CD4 T-cell subsets in GS-4774 plus TDF-treated pa-
tients (P ¼ .006 by c2 test). This was also confirmed by the
study of double IFN-gþ/TNF-aþ and triple IFN-gþ/TNF-
aþ/IL-2þ HBV-specific CD8 T cells (P ¼ .0009 by c2 test;
Supplementary Figure 4). Although some functional im-
provements were also observed among CD4 cells, they were
less common and no difference was found between patients
FLA 5.6.0 DTD � YGAST62558_proo
receiving GS-4774 plus TDF and those receiving NUC alone
(Figure 2).

The major contribution to the overall HBV-specific T-cell
responses was given by polymerase at all time points and in
both patient cohorts (Supplementary Figure 5), followed by
envelope and core antigens. During vaccine therapy, a pro-
gressive increase of CD8-mediated responses was induced
primarily by envelope followed by core and polymerase;
minor changes were instead observed for CD4-mediated
responses (Figure 3, statistics by Wilcoxon matched-pairs
test). Weaker T-cell modulation was detected during treat-
ment with NUC but only at the CD4 T-cell level (Figure 3,
green bars). Moreover, phenotypic analysis of dendritic cells
and monocytes was performed to assess their activation
state, but no clear modulation of frequency and activation
was detected during therapy (Supplementary Figure 6).
Some baseline differences in age, ALT, and HBV DNA levels
were observed between the 2 groups of vaccinees and
control patients. To clarify whether this baseline difference
may have contributed to the different T-cell responses,
f � 20 May 2019 � 7:18 pm � ce
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Figure 1. Effect of GS-4774 and TDF therapy on virus-specific T-cell responses. (A) Each line shows mean frequency values
plus standard error of CD8 and CD4 T cells able to produce IFN-g, TNF-a, and IL2 following 10 days of stimulation with
overlapping peptides covering the overall HBV genotype D sequence. Statistical significance was assessed by the Wilcoxon
signed rank test for paired data. Dot-plots of IFN-g-positive HBV-specific CD8 T cells from 2 representative patients at
baseline and week 24 are illustrated on the right of the panel. (B) Mean fold-increase plus standard error in the frequency of
HBV-specific CD4þ and CD8þ T cells able to produce the indicated cytokines. Ratio between GS-4774 þ TDF-treated or
NUC-treated patients at weeks 12, 24, and 48 and the corresponding baseline values are illustrated (P values by the Wilcoxon
signed rank test compare the ratio between CD4 and CD8 responses at that indicated time point with baseline). (C) Mean
percentage plus standard error of IFN-g–producing T cells in the global CD8þ T-cell population after 10 days of stimulation
with CMVþEBVþFLU peptides (right) and with HBV peptide pools (left) in chronic naïve patients undergoing GS-4774 þTDF or
NUC treatment (n ¼ 11 and n ¼ 10, respectively). (D) Hierarchical-clustering representation of IFN-g, TNF-a, and IL2-positive
HBV-specific CD3, CD4, and CD8 T-cell responses induced by HBV antigen stimulation in acute (n ¼ 15) and chronic patients
before and during GS-4774 and TDF therapy at sequential time points (Bas, week 12, week 24; week 48; n ¼ 11). Data were
analyzed with the software for gene expression analysis (GeneSpring, Agilent Technologies). Results represented in each row
were first normalized on the median of all sets of data (baseline, each individual GS-4774 treatment time point and acute
patients, the latter tested at a single time point, 3 to 6 months after the ALT peak) for each single function. The color gradation
(from the lightest to the darkest) is proportional to the level of functional down- or up-regulation, respectively.
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clinical and virological parameters at baseline were
assessed by multiple linear regression analysis in relation to
immunological results, showing that HBsAg, ALT, and HBV
DNA titers of the 2 patient cohorts did not significantly in-
fluence their different immunological behaviors, although
age showed a weakly positive correlation with the T-cell
function. Despite a strong immune modulatory effect, GS-
4774 did not result in clinically significant declines in
HBsAg levels in patients with CHB.
FLA 5.6.0 DTD � YGAST62558_proo
Ex Vivo Analysis of HBV-specific T-cell
Responses

To further investigate the effect of therapy on T-cell
responses, additional experiments were performed by
ex vivo IFN-g ELISpot assay following 18 hours of PBMC
incubation with overlapping peptides covering the overall x,
core, polymerase, and envelope sequences. Preliminary ex-
periments were performed to maximally improve the
sensitivity of the assay and define the optimal experimental
f � 20 May 2019 � 7:18 pm � ce
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conditions for a reliable detection of low-frequency T cells.
Combined GS-4774 and TDF therapy significantly improved
T-cell responses at week 48, as compared with baseline
(Figure 4A–C, left graphs). No statistically significant dif-
ference was instead detected in the NUC-treated group
(Figure 4A–C, right graphs). In the vaccine group,
improvement at week 48 was predominantly sustained by
core- (50% responsive patients) followed by polymerase-
specific (30%) responses (Figure 4D and E, left graphs).
Frequencies of peripheral HBV-specific IFN-gþ T cells were
significantly higher and more widely multispecific in the
reference group of patients with self-limited acute hepatitis
B than in chronic naïve viremic patients (P ¼ .004 and P ¼
.0006 for vaccine and control groups, respectively;
Figure 4A). Despite the improvement of the overall T-cell
responsiveness at week 48, ex vivo T-cell reactivity to en-
velope antigens in vaccine-treated patients remained
negative even at the end of therapy, suggesting that
envelope-specific responses are the most exhausted and
more difficult to be restored (Figure 4D and E).

Phenotypic Analysis of the Total CD8 Population
During chronic viral infection, exhausted T cells can

coexpress different inhibitory markers in association with
different levels of memory/differentiation molecules.17–19

Because of the low number of HLA-A*0201þ patients in
the vaccine-treated group, we were unable to perform a
phenotypic analysis on HBV-specific T cells in the pe-
ripheral blood with HBV peptide HLA-A*0201 dextramers.
Therefore, the expression of the inhibitory receptors PD-1,
TIGIT, CD39, and the differentiation marker CD127 was
monitored on total CD8þ T cells throughout the course of
vaccine treatment. Combined GS-4774 and TDF therapy
significantly reduced the frequency of PD-1þ/CD127�
CD8 T cells compared with baseline time point, whereas
no significant modulation was observed in the NUC-
treated control group (Supplementary Figure 7). Expres-
sion of TIGIT and CD39 on CD8 cells was not affected by
treatment (not shown). These data suggest that CD8 T
cells of patients treated with vaccine therapy underwent a
progressive phenotypic modulation leading to the
expression of a less-exhausted T-cell profile as compared
with patients treated with NUC alone.
=
Figure 2. Profiles of HBV-specific CD4þ and CD8þ T-cell respo
GS-4774 þ TDF or NUC alone. Longitudinal analysis (baseline,
and CD107a degranulation by CD4þ and CD8þ T cells after in
functions were assumed to be improved in a given patient when
than baseline in at least 2 time points during therapy and follow-
least one of them. T-cell functions that did or did not meet th
responses are illustrated with the pink and gray background, res
T cells derived from each treated patient able to produce cytok
overlapping peptides. The x-axis indicates the time points o
comparing the following: (a) the numbers of improved T-cell
combined therapy and in patients treated with NUC alone (P ¼ .
treated patients (P ¼ .006). In the green area, improvement of in
change (color bars) between HBV-specific CD8þ and CD4þ T
baseline values (statistical significance between CD8 vs CD4 T
Wilcoxon signed rank test for paired data; P ¼ .037 and P ¼ .019
.0098 and P ¼ .0098 for IFN-g and TNF-a production at week 24
TNF-a, and IL2 production at week 48, respectively).

FLA 5.6.0 DTD � YGAST62558_proo
Impact on Treg Cells
Treg cells can exert a negative regulatory role on HBV-

specific T-cell responses.20,21 Recent work showed that the
yeast-based Tarmogen vector can reduce frequency and
inhibitory function of Tregs.13 Thus, we examined the effect
of GS-4774 and TDF therapy on the Treg population
throughout the course of treatment and the correlation
between Treg and T-cell responses. Vaccine treatment
significantly reduced the frequency of total Tregs, as indi-
cated by the progressive decline of the CD25hiFOXP3þCD4þ
Treg cell percentage during GS-4774 therapy, whereas no
modulation was observed in the control group of NUC-
treated patients (Figure 5A). In addition, when we directly
compared Treg frequency and IFN-g or TNF-a production
by HBV-specific CD8þ T cells throughout the course of
treatment, an inverse significant correlation was observed
in vaccine- but not in NUC-alone–treated patients
(Figure 5B). We then separated the Treg population into 3
phenotypically and functionally distinct T-cell subsets by
the expression of CD45RA, CD25, and FOXP3,22 namely
FoxP3hiCD45RA-CD25hi activated Treg cells, FoxP3lowC-
D45RAþCD25hi resting Treg cells, and FoxP3lowCD45RA-
CD25hi nonsuppressive Treg cells (conv-Treg) (Figure 5C).
Notably, GS-4774 vaccine treatment significantly decreased
the frequency of activated Treg cells; although the decline of
resting Tregs did not reach statistical significance, the
overall phenotypic profile was consistent with a reduced
suppressive Treg function (Figure 5C). Conv-Treg cells
instead remained numerically stable throughout the course
of GS-4774 treatment but up-regulated Ki67 and HLA-DR,
suggesting a predominant stimulation of memory-like non-
Treg cells associated with a contraction of the suppressive
Treg cell component (Figure 5D). Remarkably, no significant
changes were observed in the control group of patients
receiving NUC therapy alone (Figure 5C and D, white dots).
Discussion
In patients with viremic CHB not on oral antiviral ther-

apy, the yeast-based GS-4774 vaccine containing HBV core,
envelope, and x proteins was safe and well tolerated but did
not result in significant reductions in mean HBsAg levels in
any treatment group evaluated through week 48. Only a
nses after in vitro expansion in individual patients treated with
week 12, week 24, week 48) of IFN-g, TNF-a, IL-2 production
vitro expansion in individual treated patients. Individual T-cell
2 criteria were met simultaneously, namely responses higher
up and a fold-increase greater than 2 relative to baseline in at
e previously described criteria for the definition of improved
pectively. The y-axis refers to the percentage of CD8 and CD4
ines and to degranulate following 10 days of stimulation with
f analysis. Statistical significance was assessed by c2 test
functions between CD8 responses in patients treated with
0003); (b) CD8 vs CD4 T-cell responses in GS-4774 plus TDF-
dividual T-cell functions in each patient is represented as fold
-cell functions at weeks 12, 24, 48 and the corresponding
-cell responses in GS-4774 plus TDF-treated patients by the
for IFN-g and TNF-a production at week 12, respectively; P ¼
, respectively; P ¼ .0098, P ¼ .0049 and P ¼ .0186 for IFN-g,

f � 20 May 2019 � 7:18 pm � ce
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Figure 3. HBV-specific CD4þ and CD8þ T-cell responses to individual HBV antigens. Cytokine production was analyzed after
10 days of stimulation with different HBV peptide pools in patients with chronic HBV undergoing GS-4774þTDF (n ¼ 11, red
bar) or NUC treatment (n ¼ 10, green bar). Each bar represents the median percentage plus 5 to 95 percentile of CD4þ (A) and
CD8þ (B) T cells producing IFN-g and TNF-a in response to peptide pools spanning distinct HBV regions. Significant im-
provements at treatment (week 12, week 24) and follow-up (week 48) time points compared with baseline are shown (statistical
significance by the Wilcoxon signed rank test for paired data).

10 Boni et al Gastroenterology Vol. -, No. -

FLA 5.6.0 DTD � YGAST62558_proof � 20 May 2019 � 7:18 pm � ce

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

BASIC
AND

TRANSLATIONAL
LIVER



p
ri
n
t
&

w
e
b
4
C
=
F
P
O

Figure 4. Ex vivo functional profile of HBV-specific T-cell responses. (A) Frequencies of IFN-g secreting cells after 18 hours of
stimulation with the overall HBV peptide panel, assessed by ELISpot assay in patients with acute (n ¼ 15) and chronic HBV
under GS-4774 and TDF therapy (n ¼ 11) or under therapy with NUC alone (n ¼ 9) at sequential time points (Bas, week 12,
week 24; week 48). Each symbol represents the total frequency of IFN-g�secreting cells calculated in each patient by
summing positive responses to individual peptide pools after subtraction of the background; red lines indicate the median
values of IFN-g�secreting cells in the indicated time points. ELISpot was considered positive if the number of spots in the
stimulated wells was at least 3 standard deviations above background and the difference between the number of spots in the
stimulated and unstimulated wells was above 10. Statistical significance was assessed by the Mann-Whitney U test for
nonpaired samples and the Wilcoxon signed rank test for paired data. (B) Longitudinal analysis of IFN-g production in each
treated patient (GS-4774þTDF on the left and NUC alone on the right) represented as line graphs. (C) Percentage of
responsive patients is illustrated; a subject was considered responder when 1 or more peptide pool could elicit a positive
response. Statistical significance was assessed by c2 and Fisher F tests. (D) Percentage of responsive patients to individual
HBV antigens in the indicated populations (acute, GS-4774þTDF-treated and NUC-treated patients). (E) Longitudinal analysis
of IFN-g production to individual HBV antigens in individual treated patients. The x-axis indicates the time points (Bas, week
12, week 24 and, week 48) whereas the y-axis illustrates the spot-forming cells (SFC) per 1 � 106 cells.
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small proportion of patients in our study demonstrated
HBsAg declines of �0.5 log10 IU/mL and no statistical sig-
nificance was reached at any week evaluated (weeks 12, 24,
and 48). However, at the end of GS-4774 therapy (week 24),
the only patients observed to have �0.5 log10 IU/mL re-
ductions in HBsAg were those who received GS-4774.
Furthermore, patients treated with the highest GS-4774
dose showed a trend toward significance in HBsAg decline
compared with the TDF-only group (Supplementary
Figure 1G, P ¼ .076).
FLA 5.6.0 DTD � YGAST62558_proo
GS-4774 in combination with TDF was able to induce a
significant improvement of IFN-g, TNF-a, and IL2 produc-
tion by HBV-specific CD8þ T cells in a subset of treatment-
naïve viremic HBeAg-negative patients, which was not
observed in the control group of patients treated with NUC
alone. This effect was more pronounced on HBV-specific
CD8 than on CD4 T cells. Interestingly, when breadth and
quality of T-cell responses were analyzed in each individual
patient, at least 2 of the analyzed CD4 and CD8 functions
appeared to be always improved by therapy with the single
f � 20 May 2019 � 7:18 pm � ce
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Figure 5. Effect of combined GS-4774 and TDF therapy on Treg cells. (A) CD3, CD4, CD25, and FoxP3 were used to identify
Treg cells. The frequency of CD4þFoxP3þCD25hi Tregs was evaluated in PBMCs by flow cytometry before (baseline), during
(week 12 and week 24) and after (week 48) combined GS-4774þTDF treatment. Results are expressed as median percentage
of Tregs in chronic patients undergoing GS-4774þTDF or NUC treatment (n ¼ 11 and n ¼ 10, respectively) at the indicated
time points. The Wilcoxon signed rank test was used to analyze paired samples. Fluorescence-activated cell sorter (FACS)
plots from 2 representative patients at baseline and week 24 are illustrated on the right. (B) Inverse correlation between mean
Treg frequency and mean IFN-g or TNF-a production by HBV-specific CD8þ T cells in GS-4774 plus TDF-treated patients
throughout the course of therapy by the Pearson’s correlation test. (C) Separation of the FoxP3þCD4þCD25hi T-cell popu-
lation into 3 phenotypically distinct subsets by the expression of CD45RA: FoxP3hiCD45RA-CD25hi activated Treg cells,
FoxP3lowCD45RAþCD25hi resting Treg cells, FoxP3lowCD45RA-CD25hi nonsuppressive Treg cells. The different Treg subsets
were analyzed longitudinally in GS-4774 þ TDF-treated (black dots) or NUC-treated (white dots) patients (n ¼ 9 and n ¼ 10,
respectively); statistics by the Wilcoxon signed rank test. A representative FACS plot is illustrated on the right graph. (D)
Isolated and combined expression of HLA-DR and Ki67 on Treg cells of each subset (activated, resting, nonsuppressive Tregs)
before (baseline) and during (week 24) combined GS-4774þTDF or NUC treatment (n ¼ 9 and n ¼ 10, respectively); each dot
represents the fold change between week 24 of treatment and the corresponding baseline value; statistics by the Wilcoxon
matched-paired test. FACS plots from a representative patient showing HLA-DR and Ki67 expression by Conv-Treg cells at
baseline and week 24 are represented on the right.
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exception of a patient who was totally refractory to the
modulatory effect of GS-4774. Magnitude of T-cell restora-
tion did not correlate with decline of HBsAg levels, which
remained almost totally unchanged in all patients, irre-
spective of the level of their HBV-specific T-cell reactivity. A
delayed effect on HBsAg loss cannot be excluded because
follow-up was limited to 24 weeks. Moreover, better efficacy
should be likely achievable with higher GS-4774 doses, but
safety data from earlier studies limit dosage levels.

HBV polymerase was the predominant specificity among
the circulating T-cell pool detectable following 10 days of
FLA 5.6.0 DTD � YGAST62558_proo
expansion in vitro before and during therapy, whereas in-
crease of T-cell responses induced by vaccine therapy was
sustained by all HBV antigens, with the exception of x, even
if the GS-4774 vaccine does not contain polymerase.
Although we were unable to show a clear modulation of the
activation state of circulating dendritic cell and monocytes
by therapy, the enhancement of polymerase-specific T-cell
responses during therapy may be related to the described
adjuvant effect exerted by the yeast component of the GS-
4774 vaccine12 allowing to improve antigen presentation
by in vivo HBV antigen preloaded dendritic cells.23
f � 20 May 2019 � 7:18 pm � ce
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Moreover, lack of phenotype modulation of peripheral
antigen-presenting cells does not exclude changes in their
activation state within lymph nodes and liver at the site of
antigen presentation.

The increased reactivity of HBV envelope-specific T cells
detected following 10 days of in vitro expansion contrasts
with the lack of response to envelope peptides observed by
ex vivo analysis after a few hours of peptide stimulation.
Because short-term contact with antigen in ex vivo assays is
expected to primarily stimulate in vivo activated effector T
cells, which are ready to express their function, lack of
ex vivo responses may indicate a partial and incomplete
restoration of envelope-specific T-cell functions with a poor
capacity to generate terminally differentiated effectors.
Although conclusions must be drawn carefully because
ex vivo analysis was limited to IFN-g detection, our data are
in line with the concept that envelope-specific responses are
the most exhausted and more difficult to be restored, as a
possible result of the high amounts of envelope antigens
that are constantly present in the circulation and liver of
chronic patients.

Despite the improvement induced by vaccination, the
overall HBV-specific T-cell response only rarely became
comparable to what was observed in acute self-limited in-
fections, which represent the reference for quality and
strength of T-cell reactivity associated with successful con-
trol of infection. This partial T-cell restoration detected both
in vitro and ex vivo may explain the minimal effect on
HBsAg levels observed in treated patients. Intensity and
poly-functionality of T-cell responses, assessed as percent-
age of cytokine-producing T cells and number of improved
functions induced by therapy, were better in a subgroup of
patients, but these differences were not correlated with
baseline levels of serum HBsAg and HBV DNA or with
baseline efficiency of T-cell responses before starting ther-
apy. Interestingly, a decreased frequency of PD-1þ/CD127�
CD8 T cells was detected in patients treated with vaccine
and TDF, suggesting that therapeutic vaccination can induce
a progressive phenotypic modulation toward a less-
exhausted T-cell profile, as compared with patients treated
with NUC alone.

The effect of vaccination on HBV-specific T-cell re-
sponses was associated with a modulation of Tregs. In CHB
infection, a suppressive effect of Tregs on T cells has been
reported; it can be mediated by direct T-cell-cell contact and
by secretion of suppressive cytokines inhibiting the devel-
opment of an efficient HBV-specific T-cell functionality.20,21

As a likely effect of the yeast component of the vaccine, GS-
4774 therapy significantly reduced the frequency of total
Tregs as well as the percentage of activated and resting Treg
cell subpopulations, which was not seen in control patients
treated with NUC alone. Instead, the number of conventional
nonsuppressive Treg cells tended to be constant throughout
the course of treatment. Conventional Treg cells, however,
up-regulated proliferation and activation markers during
GS-4774 therapy, indicating a predominant stimulation of
memory-like non-Treg cells on vaccine therapy. Thus, these
findings demonstrate that the yeast-based GS-4774 T-cell
vaccine can decrease the frequency of Treg subpopulations
FLA 5.6.0 DTD � YGAST62558_proo
that are known to express suppressive activity, while fa-
voring the activation of the nonsuppressive conventional
Treg cell subset.

In summary, our study indicates that although the GS-
4774 vaccine was unable to elicit a significant decline of
HBsAg, it can efficiently induce CD8 T-cell responses. This is
certainly relevant because the CD8-mediated function is
known to be essential for the control of infection. On the
other hand, however, lack of effect on HBV-specific CD4 T
cells may explain why vaccination was ineffective on HBsAg
levels, in view of the essential role played by HBV-specific
CD4 T cells in providing help to B cells and CD8þ T cells.
The improvement of baseline HBV-specific T-cell responses
was sustained by all antigenic specificities. Interestingly,
also HBsAg-specific responses, which are expected to be
profoundly exhausted in chronic patients, were improved by
therapy when assessed after expansion in vitro but not by
ex vivo analysis. This implies that, despite some functional
improvement, frequency of HBsAg-specific T cells remained
quite low in vivo with poor terminal effector differentiation.
Together with the lack of CD4 induction, partial restoration
of envelope-specific T-cell responses, as suggested by their
lack of detection ex vivo, may be another important cause of
the vaccine failure in reducing HBsAg load. This is suggested
by their known association with complete control of infec-
tion and anti-HBs seroconversion,16 although the opposite
possibility that persistent HBsAg may limit functional
restoration of HBV envelope-specific T cells cannot be
totally ruled out.

In conclusion, our study shows that HBV-specific CD8 T
cells of chronic naïve patients are not totally refractory to
an exogenous antigen stimulation even when antigen
administration through vaccination is not preceded by a
prolonged control of virus replication by NUC therapy. If
the conclusions of the present study are interpreted in the
context of our prior results, a first element of the overall
emerging picture is that NUC therapy can induce a pro-
gressive improvement in the efficiency of T-cell responses,
as a function of the time of treatment, and that at least 2 to
3 years of therapy are needed to induce detectable and
durable improvements in HBeAg-negative CHB.16,24 How-
ever, only the limited proportion of NUC-treated patients
who succeed in anti-HBs seroconversion can achieve
optimal levels of T-cell functional restoration, with quality
and strength of responses very similar to what is detect-
able after spontaneous resolution of an acute infection.
Vaccination and TLR7 stimulation can improve the effect
of NUC on T-cell responses but they are not sufficient to
permit the acquisition of an optimal immune reactivity
adequate to provide complete control of infection.24 Alto-
gether, our data suggest that restoration of an efficient T-
cell function may still occur after decades of exposure to
high antigen loads, thereby confirming that immune
modulation can represent a successful approach to cure
HBV infection. However, the way to rapidly reconstitute a
completely protective immune response still needs to be
defined. In particular, future combination therapies
including vaccines should consider the sequential admin-
istration of drugs able to improve T-cell responsiveness to
f � 20 May 2019 � 7:18 pm � ce
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antigen stimulation by lowering the antigen load, such as,
for example, silencing RNA compounds or capsid assembly
inhibitors, or by inhibiting immune checkpoints or
modulating T-cell metabolism, followed by T- and B-cell
boosting through vaccination.19,25
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=
Supplementary Figure 1.GS-4774 Efficacy Assessment. (A) Mean HBsAg (log10 IU/mL) levels were measured for changes in
comparison to baseline at through Study Week 48; (B) Change from baseline to week 24 and 48 in HBsAg (log10 IU/ml) in
patient subgroups stratified by baseline ALT level (>ULN or �ULN) and HBeAg status (positive or negative); (C) Mean (95% CI)
HBsAg (Log10 IU/mL) Change from Baseline by Visit: ALT >ULN and HBeAgþ at Baseline; (D) Mean (95% CI) HBsAg (Log10
IU/mL) Change from Baseline by Visit: ALT >ULN and HBeAg- at Baseline; (E) Mean (95% CI) HBsAg (Log10 IU/mL) Change
from Baseline by Visit: ALT �ULN and HBeAgþ at Baseline; (F) Mean (95% CI) HBsAg (Log10 IU/mL) Change from Baseline by
Visit: ALT �ULN and HBeAg- at Baseline; (G) Categorical percentage decline of HBsAg by treatment after 24 weeks: GS-4774
2 YU vs TDF only (P¼.155), GS4774 10 YU vs TDF only (P¼.408), GS4774 40 YU vs TDF only (P¼.076); (H) HBV DNA levels
<LLOQ by treatment at Study Weeks 24 and 48.
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Supplementary Figure 3. Behaviour of CMV/EBV/FLU-specific CD4þ and CD8þT cells after in vitro expansion in individual
patients treated with GS-4774 þ TDF or NUC alone. Longitudinal analysis (baseline, w12, w24, w48) of IFN-g, TNF-a, IL-2
production and cytotoxic potential (CD107a) of CD4þ and CD8þ T-cells after in vitro expansion in individual treated pa-
tients. Y-axis refers to the percentage of CD8 and CD4 T-cells derived from each treated patient able to produce cytokines and
to degranulate following 10 days stimulation with CMV/EBV/FLU-specific overlapping peptides. The x-axis indicates the time
points of analysis.
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Supplementary Figure 4. Behaviour of multifunctional HBV-specific CD4þ and CD8þT cells in relation to GS-4774þTDF
treatment. Longitudinal analysis (baseline, w12, w24, w48) of double IFN-gþ/TNF-aþ and triple IFNgþ/TNFaþ/IL2þ HBV-
specific CD8þ and CD4þ T cells after in vitro HBV peptide stimulation in individual GS-4774þTDF treated patients. The
definition of improved T cell response in individual patients was based on the simultaneous presence of two criteria: two
multifunctional responses higher than baseline during therapy and follow-up with a fold increase greater than 2 in at least one
of them. Different multifunctionality profiles were identified according to the different numbers of improved multifunctional
responses: one patient able to recover 4 analyzed parameters, four patients able to improve 3 different parameters, three able
to improve 1 or 2 parameters and three with no functional improvement. Statistical significance was assessed by the Chi
Square test and Fisher F tests by comparing the numbers of improved T cell functions between CD8 and CD4 T cell responses
in GS-4774 plus TDF treated patients.
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Supplementary
Figure 5. Contribution of each
HBV antigen to the overall HBV-
specific T cell response. Column
charts represent the stimulatory
activity of each HBV antigen
within the total population of
IFNg (top), TNFa (middle), IL2
(bottom) producing CD8þ T cells
in chronic naïve patients under
combined GS-4774 and Tenofo-
vir therapy (n¼11) and under
NUC therapy alone (n¼10) at
sequential timepoints (Bas, w12,
w24; w48). Columns illustrate the
contribution (expressed as per-
centage) of each antigenic region
to the global HBV-specific cyto-
kine production before, during
and after therapy.
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Supplementary Figure 6. Ex vivo analysis of dendritic cells and monocytes in patients treated with GS-4774þTDF or NUC
alone. (A) Antigen presenting cells (APCs) gating strategy. Lineage-negative (CD3/CD56/CD20) HLA-DRþ APCs were derived
from total live PBMCs and gated by forward and side scatter followed by single-cell using area and height parameters. Three
distinct subsets of monocytes were identified:“classical” CD14þCD16- (cMN), “non classical” CD14lowCD16þ (ncMN), and
“intermediate” CD14þCD16þ (intMN). CD11c myeloid DCs (mDC) and CD123 plasmacytoid DCs (pDC) were instead identified
from the CD14/CD16 double negative population. (B) Graphs show the frequencies of the 5 distinct cell populations before
(baseline) and during (w24) treatment in the indicated patient groups. Each symbol indicates a patient and bar shows mean
value plus standard error; statistics by the Wilcoxon-signed-rank test. (C) Expression of co-stimulatory and activation mole-
cules (CD40, CD80, CD86) as well as maturation markers (CD83) was assessed on each cell populations before (baseline) and
during (w24) treatment (n¼7 patients for both GS-4774þTDF and NUC alone therapy). Results are expressed as mean fre-
quency plus standard error of each markers detected in the overall patient population at the indicated time points; statistics by
the Wilcoxon-signed-rank test.
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Supplementary
Figure 7. T-cell phenotype
in patients treated with GS-
4774þTDF or NUC alone.
(A) Representative plots of
PD-1 and CD127 co-
expression on total CD8 T
cells from chronic HBV pa-
tients under GS-4774 and
Tenofovir therapy (left
panels) or NUC alone (right
panels) at sequential time
points (Bas and w24; n¼10
and n¼9, respectively). (B)
Frequencies of CD127low

PD-1þ CD8þ T cells before
(baseline) and during (w24)
treatment in the indicated
patient groups. Each sym-
bol indicates a patient;
statistics by the Wilcoxon-
signed-rank test. (C) Fold-
change of CD127low PD-1þ
T-cell subsets analyzed in
the global CD8þ T-cell
population, as the ratio be-
tween the frequency of
CD127low PD-1þ T cell in
GS-4774 þ TDF treated or
NUC treated patients at w24
with respect to the corre-
sponding baseline values
(statistics by the Wilcoxon-
signed-rank test).
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