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A B S T R A C T

Near Infrared spectroscopy (NIR), in combination with Chemometrics, has been used for many years in diverse
scenarios, mostly focused on the classification and quantitation of properties in food, pharmaceutical prepara-
tions, artwork material, etc. This success has been possible due to their desirable properties: fast, reliable (under
certain conditions), non-destructive, easy to implement from a hardware perspective, and able to create robust
and transferable multivariate models.

For some years now, another modality has been gaining the attention of NIR users, especially in the Food
sector. That is the plausibility of using NIR in the hyperspectral (HSI) domain. This adds to the previously
mentioned abilities, the benefit of scanning the whole surface of samples, acquiring much richer spatial infor-
mation and, therefore, assuring the quality of the final product more accurately by including parameters that
depend on the surface distribution of certain components. This is especially relevant in heterogeneous samples.
While this statement is generally true, there are certain situations where this oversampling feature is not strictly
needed, and the problem can be easily solved with a classical NIR spectrophotometer. Besides, NIR-hyperspectral
imaging (NIR-HSI), despite the abovementioned advantages, has several drawbacks that must be highlighted as
well, like their measuring speed, instability, or price.

This manuscript will demonstrate that for certain situations, tuning the focal distance of a NIR spectropho-
tometer is a more feasible, reliable, and inexpensive strategy to collect all the needed information of samples
with a certain degree of heterogeneity.

1. Introduction

It is not new to say that Near Infrared Spectroscopy (NIR) and Che-
mometrics have been part of the Food Industry for many years (dos
Santos et al., 2013; Fernández Pierna et al., 2012; Grassi and Alamprese,
2018a; Nobari Moghaddam et al., 2022a; Porep et al., 2015). NIR and
Chemometrics are a perfect combination for the determination of mostly
macro-constituents in food and food products in practically every stage
of the production line (Dixit et al., 2021; França et al., 2021; Grassi et al.,
2023; Grassi and Alamprese, 2018a; Måge et al., 2023; Tanzilli et al.,
2023; van den Berg et al., 2013). When it comes to solid products, the
preferred measurement modality is using diffuse reflectance. This

modality, even providing a less detailed spectrum than other modalities
(like transmittance), has the property of collecting information on the
measured surface (with a certain level of penetration) in questions of
milliseconds. This has promoted its implementation in production lines
to work in real-time, assessing the quality of the products at different
stages of the production lines to determine the level of, for example,
protein or carbohydrates in cereals (Kays et al., 2000; Ozaki et al.,
2006), cheese (Bittante et al., 2022), vegetables and fruits (Sirisomboon,
2018), or to develop classification models to ascertain the origin or level
of adulterations (Nobari Moghaddam et al., 2022b). NIR complies with
the requirements of the well-known Quality By Design concept (QbD),
demonstrating to be a perfect process analytical technology (PAT)

* Corresponding author.
E-mail address: marina.cocchi@unimore.it (M. Cocchi).

Contents lists available at ScienceDirect

Current Research in Food Science

journal homepage: www.sciencedirect.com/journal/current-research-in-food-science

https://doi.org/10.1016/j.crfs.2024.100813
Received 18 March 2024; Received in revised form 4 June 2024; Accepted 18 July 2024

mailto:marina.cocchi@unimore.it
www.sciencedirect.com/science/journal/26659271
https://www.sciencedirect.com/journal/current-research-in-food-science
https://doi.org/10.1016/j.crfs.2024.100813
https://doi.org/10.1016/j.crfs.2024.100813
https://doi.org/10.1016/j.crfs.2024.100813
http://creativecommons.org/licenses/by-nc-nd/4.0/


Current Research in Food Science 9 (2024) 100813

2

(Gorla et al., 2023; Grassi et al., 2022; Grassi and Alamprese, 2018b; Pu
et al., 2020).

In recent years, a new NIR modality has merged as an alternative to
overcome one of the main problems of NIR, which is the need for more
spatial information of the sample. NIR-Hyperspectral Imaging (NIR-HSI)
cameras together with Chemometrics (Amigo, 2019) combine some of
the properties of NIR (fast, non-destructive and reliable) with the major
property of being able to obtain a spectral representation of the surface
of a sample (Alamar et al., 2023). This property is especially welcome
when the sample has a certain level of heterogeneity. Therefore, it is
possible to collect that heterogeneity by measuring the whole sample
and localising the adequate regions of interest (RoI)(Amigo et al., 2023;
Ma et al., 2022; Squeo et al., 2022; Xu et al., 2023) that are more related
to the property that wants to be measured.

Despite this increasing interest, several aspects must be considered
when comparing a NIR-HSI with a more classical single-spot NIR.

1) NIR-HSI cameras are much more affected by environmental condi-
tions: temperature and moisture are two factors that must be
controlled at every moment when dealing with NIR measurements.
While these aspects are more controllable using a classical probe,
even working with optical fibres, this is not the same with NIR-HSI
cameras. They must be normally placed in controlled semi-sealed
chambers that, placed on a conveyor belt, will make their opera-
bility difficult and more expensive.

2) NIR-HSI cameras are much more sensitive to vibrations: as in the
previous case, the working environment largely affects the opera-
bility of the sensors. While NIR probes can also be affected by me-
chanical movement, this effect is much smaller compared to NIR-HSI
cameras.

3) Models Calibration transfer: while there are hundreds of successful
cases for calibration transfer implementations in NIR (Folch-Fortuny
et al., 2017; Fonseca Diaz et al., 2022; Li et al., 2022; Qiao et al.,
2023), it needs to be clarified how to perform this with NIR-HSI
cameras.

4) Speed: while the NIR probes are extremely fast nowadays, the NIR-
HSI still need to reach the same measuring speed with the same
spectral resolution. One of the most common actions in NIR-HSI is to
reduce the number of measured wavelengths and, thus, increasing
the measuring speed. This, obviously, has a special impact in both
the quality of the signal (Signal-to-noise-ratio) in the NIR-HSI sys-
tems and the complexity of the models to be developed.

5) Heterogeneity of the sample: one of the most common arguments for
using a NIR-HSI camera instead of a much simpler NIR probe is the
fact that NIR-HSI is able to measure the surface of the sample and,
thus, collect a larger heterogeneity. While this is generally true, there
are cases where NIR-HSI is not clearly justified as a breakthrough
over NIR probes.

While all the points mentioned above must be carefully considered,
this manuscript deals with the last one. Food samples are, by nature,
heterogeneous at a certain spatial resolution level (da Silva et al., 2018;
de Moura França et al., 2017), which is, in many cases, found at a
microscopic level. Nevertheless, in order to achieve this level of spatial
resolution (Cairós et al., 2009), the measuring speed must be sacrificed.
In production lines, the process speed is at a level where the NIR-HSI
cameras can only operate measuring pixels with a large spatial resolu-
tion, hampering the achievement of the detailed spatial resolution in
mixtures that are heterogeneous at a small scale.

Besides, there is a factor with the classical NIR probes that is always
forgotten (or merely considered). When measuring in diffuse reflectance
and placing the NIR probe at a certain focal distance of the sample, the
measured spectrum does not only capture a specific point of the sample,
but it also contains information about a larger surface. The extent to
which the sample surface is sampled with a single-spot NIR probe might
be enough to give an analytical answer that can solve the analytical

problem at hand. In other words, it is possible to measure heterogeneous
samples as well, up to a certain level, with an NIR probe without
underrepresenting the heterogeneity of the sample and avoiding all the
issues mentioned above of NIR-HSI cameras.

This manuscript will demonstrate this point by comparing the results
obtained in the classification of the origin of heterogeneous samples (at a
macroscopic level) by using a NIR-HSI camera and an NIR probe
working at the same focal distance. The samples are two different types
of Pesto alla Genovese. Pesto is a well-known traditional Italian sauce
consisting primarily of a heterogeneous mixture of fresh basil, pine nuts
or cashew nuts, garlic, Parmesan cheese, and oil. These ingredients are
normally mashed, giving a typical granule texture. The strategy fol-
lowed in this manuscript is based on ascertaining the level of similarity
of the signals collected by the NIR-HSI camera and the NIR probe, with
the aim of classifying both types of Pesto. The amount of spatial infor-
mation collected by the NIR probe will be quantified and compared to
the one collected by the NIR-HSI camera.

2. Materials and methods

2.1. Sample Description

This work has considered jars of Pesto alla Genovese collected during
the 2021 production campaign fromMay to October at the Barilla G. e R.
Fratelli S.p.A. facility near Parma, Italy. Twenty-four samples of com-
mercial jars were taken during the production, collecting two jars for
each sample to ensure representativeness, resulting in a total of forty-
eight samples. The collected Pesto differ in the variety of basil, the
primary ingredient. To safeguard industrial confidentiality, the products
are denoted as Product 1 and Product 2. The analysis examined thirty-
four samples of Product 1 and fourteen samples of Product 2, focusing
on the differences between the two pesto sauces. It is also important to
highlight that this product has been manufactured and it is marketed as
an out-of-fridge stable product.

2.2. NIR and NIR-HSI measurements and analysis

The sample inside each jar was gently stirred to homogenize the
product as much as possible. Besides, the first layer of the sample in
contact with the lid was removed since it has different characteristics
from the rest of the product. After that, a portion of the sample was
transferred to a Petri glass with a diameter of 32 mm. NIR-HSI images
and NIR spectra were then acquired after letting the sample rests for a
couple of minutes. To ensure a more comprehensive analysis, replicates
were analysed for all samples for three days.

2.2.1. HSI-Image
The NIR-HSI images were acquired using a line mapping system

(Headwall Photonics, Inc. Massachusetts. USA, kindly donated by FOSS
Analytics A/S, Denmark) working in the wavelength range of 938–1630
nm with a spectral resolution of 4.85 nm, recording a total of 142
wavelength channels (λ) for each spectrum. The line mapping scanning
system consisted of 320 sensors measuring a 50 mm field-of-view-line
moving the object in one direction, taking steps of 300 μm in each
movement. The camera was placed at a right angle with respect to the
samples, and the samples were illuminated with diffuse white light at an
angle of 45◦ with respect to the samples. The measurements were made
in diffuse reflectance mode. The camera was calibrated using the spectra
obtained from a Spectralon plate (white reference) and the spectra ob-
tained from the camera with the lenses covered by an opaque dark fabric
(dark reference). The diffuse reflectance was transformed into log(1/R)
units following standard procedures (Ozaki et al., 2006).

After the acquisition, different Regions of Interest (ROI), derived
from the initial images of Petri dishes containing the pesto sauce, were
taken, and the mean spectrum was calculated (Fig. 1).

Twenty-five distinct ROIs were considered for each sample, varying

D. Tanzilli et al.



Current Research in Food Science 9 (2024) 100813

3

the area as shown in Fig. 1a. The ROIs were generated by starting from
the central pixel and expanding in squares with dimensions ranging
from 3x3 to 51x51 pixels, incrementing by 2 pixels. For each ROI, we
calculated the mean of the spectra within the ROI. To explore the dif-
ferences between ROIs, the augmented dataset Xaugwas created by row-
wise concatenation of the individual XROIn datasets.

Xaug = [ X3x3; X5x5 …; X51x51] (1)

2.2.2. NIR probe
The Vis-NIR spectrometer used to acquire pesto spectra was the ASD

FieldSpec4 (Analytical Spectral Devices, Inc.), covering a spectral range
from 350 to 2500 nm with a spectral resolution of 1 nm. Prior to
acquisition, the spectrometer was calibrated using a Spectralon reflec-
tance standard. The light source was positioned at an incident angle of
45◦ relative to the sample. Spectra were collected using a fibre optic
positioned at 90◦ relative to the sample. The distance between the fibre
optic and the sample was maintained at a constant 20 cm for each
acquisition. The choice of the distance has been done based on the
following consideration: the longer the focal distance is, the wider the
area scanned. Nevertheless, there is a loss of energy that arrives to the
detector. Therefore, 20 cm was chosen as an ideal distance for a)
capturing the heterogeneity of the current samples, and b) obtaining a
good spectrum in the measurement.

2.3. Data analysis

To study the similarities between both measuring approaches and
the spectral variability found, Principal component analysis (PCA) and
k-Nearest Neighbours (kNN) were used for explorative and classification
purposes, respectively. All the data analysis has been performed using
in-house routines and the PLS_Toolbox (Eigenvector research, WA, USA)
working under Matlab v.2023b (The Mathworks, MA, USA).

2.3.1. Principal Component Analysis
Principal Component Analysis (PCA) is a method to reduce the

dimensionality of the data while retaining the most critical information,
achieving this by a projection of the data from the original variables into
a new set of orthogonal variables, i.e. Principal Components (PC). PCA
allow a better understanding of data structure, simplifying the explo-
ration phase, enhancing visualisation, and aiding pattern recognition.

X = TPT + E (2)

Mathematically, as expressed in equation (2), we have a decompo-
sition of the original matrix X with n row, as the samples, and m col-
umns, as the variables, into scores matrix T, with n rows and p columns
as the number of PC, and into matrix P called loading matrix with p
rows, as PC number, andm columns, as variables number. The scores are
the coordinates of the sample in the new system, and they are useful to
understand the structure of the data, for instance, recognising a pattern.
Meanwhile, the loadings matrix represents the contribution of each
variable to each PC. The analysis of the loadings matrix allowed us to
understand the correlation structure of the variables. Last, the residual
matrix E, obtained by the subtraction of recalculated data from the PCA
model (TPT) from X, represents the unmodeled information.

2.3.2. K-nearest neighbours
k-Nearest Neighbours (kNN) is a non-parametric discriminant clas-

sification algorithm based on the distances between unknown samples
and a set of calibration samples. The first step in assigning a label to a
new sample is to identify its k-nearest neighbours from the calibration
set, determined by their proximity in feature space using, for example,
the Euclidean distance. Once the nearest neighbours have been identi-
fied, the new sample is assigned to the class that prevails among the
majority of its k neighbours in the feature space. The choice of the
parameter k is crucial and requires optimisation. Typically, the optimal
value for k is determined by cross-validation, where the number of
neighbours that results in the lowest classification error is chosen. This
ensures robust and accurate classification performance across different
data sets. To evaluate the classification performance Sensitivity, Speci-
ficity and Efficiency were used as metrics. Sensitivity represents the
proportion of samples from themodelled class correctly identified by the
model. At the same time, Specificity signifies the proportion of samples
not belonging to the modelled class that the model correctly rejects.
Lastly, Efficiency combines Specificity and Sensibility through a geo-
metric mean.

3. Results and discussion

The raw spectra (Fig. 2a) were pre-processed to remove variability
not linked to useful information. In particular, Savitzky–Golay First
derivative (polynomial order= 2 and width= 6) was applied. Moreover,

Fig. 1. a) Pesto in Petri disk with some of the considered ROI highlighted. b)mean spectra of the shown ROI c)mean of pre-processed spectra with first derivative for
each ROI shown.
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to make a fair comparison between the two techniques, only the com-
mon wavelength region, namely 1100–1625 nm, was used.

3.1. Measuring the surface area covered by the NIR spot probe

To calculate the exact region measured from the single-spot NIR, a
template, shown in Fig. 3a, was created and printed on white cellulose
paper. This template consisted of twenty-four paper discs 32 mm in
diameter (the same size as the Petri glass). Each disc was characterised
by a different size of a concentric black circle, from 32 mm in diameter
down to 0.2 mm, with a step of 0.2 mm.

To evaluate the measured area, the reflectance behaviour as a
function of the area of the black area in each spot was inspected at a
fixed spectral wavelength, corresponding to one of the bands in the
spectrum profile of the white paper and to a maximum in the loadings
plots (1420 nm). This procedure was repeated 5 times. Fig. 3b shows
that there is a sudden change in the reflectance value when the black
circle area is lower than 452 mm2 (as highlighted by the red dot in

Fig. 3b), with an increasing slope of the reflectance as a function of the
disc area. This means that at this point, the sensor starts to measure part
of the white area. Thus, the reflectance value increases. Therefore, it can
be concluded that for the considered setup the spatial range measured by
the single-spot NIR is 452 mm2 at 20 cm focal distance.

3.2. PCA on the NIR-HSI data

PCA was conducted on the ROI augmented dataset to explore po-
tential variations across different ROI areas. Fig. 4a reveals a trend in the
dispersion of the score values with the ROI area. Specifically, as the ROI
area expands, reaching approximately 17.3 mm2 (highlighted by the red
circle), there is a discernible decrease in the variability of the scores.

The boxplot shows a consistently stable interquartile range (IQR)
beyond the ROI area of approximately 17.3 mm2, highlighted by the red
circle. These findings demonstrate a strong association between ROI size
and the observed variability, providing valuable insights into the un-
derlying dataset dynamics and implications for subsequent analyses.

Fig. 2. Comparison of mean spectra of ROI 51x51 and Punctual NIR a) raw spectra b) pre-processed. The shaded areas correspond to the standard deviation of
the spectra.

Fig. 3. a) Template of 18 disks used to evaluate Punctual NIR measurement area; b) Reflectance trend (mean and standard deviation) at 1420 nm as a function of the
black area for measurements conducted on the template disks.

D. Tanzilli et al.
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Focusing on the boxplot of PC2 (Fig. 4b), which explains 9.66% of
the variance, it is possible to observe that with increasing the ROI area
the separation between the two different classes of pesto slightly in-
creases, especially promoted by the change in the IQR range of Product
1.

3.3. PCA on the NIR probe data

PCA analysis was performed on the single-spot NIR using the setup
described in section 2.2.2. The scores plot is shown in Fig. 5a, with
scores coloured by the type of Pesto. PC1 did not provide any useful
information for the separation between the classes, while PC2 as for the
HSI case (Fig. 5b), allowed for the differentiation of the two classes of
Pesto. A comparison of the loadings acquired with the two different
instrumental setups, as shown in Fig. 6, reveals that they are very
similar, exhibiting a comparable loadings profile, especially for PC2
loadings. Thus, both techniques are capable of capturing the same in-
formation and highlighting differences between the two types of
products.

3.4. Classification of pesto types

To assess the classification performance of the k-nearest neighbours
(kNN) algorithm, we divided the dataset into calibration and test sets
with a ratio of 70/30. The number of neighbours, k, was established by

Cross-Validation (Venetian blind, 5 splits), maximising Efficiency. In
Fig. 7a are reported, for class 1, the values of Efficiency in Cross-
Validation vs. the number of neighbours, k (varied from 11 to 21 with
step of 2). Whereas in Fig. 7b the median value of the Efficiency
calculated along the ROI dimensions for each k number is shown. From
an overall point of view, the Efficiency in classification is maximised
with 11 neighbours. Consequently, it was selected as a k number to
perform the classification.

kNN classification with 11 neighbours was conducted on both types
of data, NIR-HSI data, considering each Region of Interest (ROI) and the
single-spot NIR data separately.

The analysis of the NIR-HSI dataset, as illustrated in Fig. 8, shows a
consistent and notable trend. Sensitivity and Specificity levels, holding
steadfast at around 100% and 97%, emphasise the critical role of
adequately sized ROIs. This reaffirms earlier observations from the
exploratory survey in Section 3.1, suggesting that, for the considered
case, an optimal ROI should exceed 17 mm2.

Furthermore, the classification performance obtained by using single
NIR data, which for class 1 gives a Sensitivity of 97.5% and a Specificity
of 100 %, is perfectly comparable with the results obtained with an ROI
area over 17.3 mm2. This means that the setup selected to execute the
analysis (described in 2.2.2) is not merely measuring the reflectance
from a coherent narrow area, but instead, the diffuse reflectance con-
tains information of a larger area of the sample, as demonstrated in
Fig. 3. Hence, the distance between the measuring device (fibre optic in
this work) and the sample determines how large this area is.

Fig. 4. Boxplot of Scores of Augmented Dataset. a) PC1 scores. It highlights that
increasing the ROI area reduces the score values spread. b) PC2 scores of augmented
dataset coloured by product type.

Fig. 5. Scores plot of PCA analysis with the scores coloured by the Pesto type. a) Punctual NIR b) HSI Augmented Dataset.

Fig. 6. Loadings plot of PCA analysis on Punctual NIR and HSI Augmented
Dataset. a) PC1 and b) PC2.

D. Tanzilli et al.
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4. Conclusion

This paper aims at presenting a rationale for comparing classical NIR
and NIR-HSI measurements in recording spectra from heterogeneous
samples, establishing a procedure to assess when the analysis of het-
erogeneous samples would benefit from HSI imaging. In the cases where
the sample is heterogeneous, but the focus of the analysis is not on
studying the distribution of the constituents, as it is the case considered,
where the focus was on distinguishing different types of Pesto. The ob-
tained results show that the heterogeneity of the sample could be
handled by the diffusive reflectance of the spot collected by a single-spot
spectrophotometer by carefully planning the acquisition set up.

We suggested an easy setup to numerically assess the single-spot
spectrophotometer collected area, by using a black/white paper tem-
plate of the size of the sampling device, with decreasing black areas. This
procedure can be generalized to different experimental setup.

Thus, there is evidence that a set up with a certain focal distance may
cover a larger area, and actually the acquired area can be large enough
as the ROI area for which homogeneity is reached by using a NIR-HSI
camera.

In the present case, we corroborate this by also comparing the kNN
classification performance obtained with the single-spot NIR with that of
the NIR-HIS, which resulted to be the same.

From a PAT perspective, it could have a huge impact because with a
simple explorative analysis is possible to define which instrument is

better to handle the sample heterogeneity, considering also the different
economic impact of the two instruments. The NIR-HSI Camera is more
expensive than single-spot NIR. In addition, the focal distance at which
to execute the measure with the single-spot NIRmay be tuned depending
on the heterogeneity of the sample at hand.

Furthermore, this work also suggests how to rationally select a
proper ROI size, also in the case where an HSI camera is used. In fact, a
simple PCA analysis conducted on the augmented data set (obtained by
increasing ROI areas) can reveal the minimum area to be taken into
account to handle the sample heterogeneity.

Although this study provides a detailed comparison between clas-
sical near-infrared (NIR) and hyperspectral NIR (HSI-NIR) measure-
ments, it has some limitations that deserve to be discussed for a complete
evaluation of the methodologies used. Firstly, for both techniques, there
is a margin of error in the definition of the measured area, which cannot
be exactly derived just from the focal distance in the case of punctual
NIR, as well as the definition of ROI in HSI is limited by the square shape
of the pixels. Furthermore, for the latter, a more accurate optimisation of
the set-up is required to ensure optimal target focus. The results of this
study clearly indicate that, for heterogeneous samples where the anal-
ysis is not aimed at the distribution of constituents, both NIR and HSI
techniques can be used, but with significant differences in terms of time
and cost. Single point NIR offers a faster and less expensive solution,
making it ideal for rapid and less detailed analysis. Nowadays, it is easy
to find NIR spectrophotometers covering the wavelength range used in
this work for less than 10000 euros. In contrast, even though a great job
is being done in the hardware of HSI-NIR systems in terms of acquisition
speed, they are still expensive (more than 50000 euros). Nevertheless,
the great advantage of HSI-NIR over NIR is its usefulness in cases where
a more in-depth analysis of ingredient distribution is required.
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