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Abstract

The galaxy cluster Zwicky 3146 is a sloshing cool-core cluster at z= 0.291 that in Sunyaev–Zel’dovich (SZ)
imaging does not appear to exhibit significant pressure substructure in the intracluster medium. We perform a
surface brightness fluctuation analysis via Fourier amplitude spectra on SZ (MUSTANG-2) and X-ray (XMM-
Newton) images of this cluster. These surface brightness fluctuations can be deprojected to infer pressure and
density fluctuations from the SZ and X-ray data, respectively. In the central region (Ring 1, r< 100″= 440 kpc, in
our analysis), we find fluctuation spectra that suggest injection scales around 200 kpc (∼140 kpc from pressure
fluctuations and ∼250 kpc from density fluctuations). When comparing the pressure and density fluctuations in the
central region, we observe a change in the effective thermodynamic state from large to small scales, from isobaric
(likely due to the slow sloshing) to adiabatic (due to more vigorous motions). By leveraging scalings from
hydrodynamical simulations, we find an average 3D Mach number ≈0.5. We further compare our results to other
studies of Zwicky 3146 and, more broadly, to other studies of fluctuations in other clusters.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Intracluster medium (858)

1. Introduction

The dominant baryonic component of galaxy clusters is the
hot intracluster medium (ICM), which can be observed via
X-rays and in the millimeter band via the Sunyaev–Zel’dovich
(SZ) effect (Sunyaev & Zel’dovich 1970, 1972). The observed
radiative signatures at the two wavelengthsʼ regimes both
depend on thermodynamic properties integrated along the line
of sight (the gas is optically thin in both regimes), with X-ray
surface brightness being roughly proportional to the square of
gas density integrated along the line of sight and the millimeter
surface brightness being proportional to electron pressure along
the line of sight. Temperatures can then be inferred from X-ray
spectra or by combining pressure constraints from SZ data with
density constraints from X-ray data (e.g., Bourdin et al. 2017;
Romero et al. 2017).

Cluster masses can be estimated assuming hydrostatic
equilibrium from radial profiles of gas density and profiles of
either gas temperature or pressure. The mass inferred under the

assumption of hydrostatic equilibrium is expected to fall below
the true mass of the cluster by 10%–30% (e.g., Hurier &
Angulo 2018). This offset from the true mass is termed
“hydrostatic bias” and is expected to be primarily due to
nonthermal pressure support, in particular turbulent motions
driven by mergers and feedback tied to active galactic nuclei
(AGNs; for a review, see Gaspari et al. 2020).
The extent to which the nonthermal pressure is dominated by

velocity fluctuations of the gas can be revealed through
Doppler broadening of emission lines observed by upcoming
X-ray missions with high spectral resolution such as XRISM
(XRISM Science Team 2020) and Athena (Nandra et al. 2013;
Roncarelli et al. 2018). Fluctuations in thermodynamic
quantities may reveal the nature of hydrostatic bias. In
particular, pressure fluctuations (δP/P) can quantify the relative
nonthermal pressure of the thermal gas.15

To quantify fluctuations as a function of scale, we use
amplitude spectra leveraging in the Fourier domain (e.g.,
Churazov et al. 2012; Gaspari & Churazov 2013; Gaspari et al.
2014). As in previous studies, the amplitude spectrum is
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15 It is often expected that (quasi) turbulent motions dominate the nonthermal
pressure, though cosmic rays and magnetic fields may also contribute to the
nonthermal pressure.
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defined as

( ) ( ) ( )A k P k k4 , 13pº

where k k k kx y z
2 2 2= + + and P(k) is the power spectrum.

Figure 1 has been adapted from Gaspari et al. (2014) to
highlight key features/regions of interest in the amplitude
spectra of thermodynamic fluctuations or velocity fluctuations
(δv/cs, where cs is the sound speed) when considering a single
dominant injection mechanism. In particular, Figure 1
illustrates three important length scales (or range of scales):
an injection scale, linj (e.g., for mergers, expected to be several
hundreds of kiloparsecs), intermediate scales (∼10–100 kpc) at
which the fluctuations are “cascading” toward smaller scales,
and small scales at which the fluctuations are gradually
dissipated, e.g., via Coulomb collisions or Alfvén/whistler
waves (e.g., Drake et al. 2021; Cho et al. 2022). The values in
Figure 1 are suppressed to allow for generalization, i.e., the
injection scale used in the particular simulation(s) may not
match those in a particular cluster, e.g., Zwicky 3146, but we
still expect the same general shape of the amplitude spectra (or
the summation of such spectra if there are multiple injection
mechanisms). The amplitude of the relevant fluctuations is
generally taken as the maximum of the amplitude spectrum,
A3D(kpeak). The scales at which the damping occurs are
generally expected to be smaller than can be (spatially)
resolved for most galaxy clusters.

Most of the previous studies focused on retrieving the amplitude
spectrum of a galaxy cluster using solely X-ray observations (e.g.,
Schuecker et al. 2003; Churazov et al. 2012; Sanders &
Fabian 2012; Gaspari et al. 2013; Zhuravleva et al. 2014;
Arévalo et al. 2016). Similar studies have also targeted the
amplitude/variance of fluctuations (e.g., Hofmann et al. 2016;

Eckert et al. 2017). However, pure X-ray observations are often
limited to less than a decade in spatial scale—and mostly targeting
density fluctuations. To overcome such limitations, a multi-
wavelength approach is required. As a first exploratory study,
Khatri & Gaspari (2016) showed that SZ images (via Planck) are a
key complementary tool to X-ray data sets, in particular expanding
our knowledge of relative ICM fluctuations over the large scales
(low Fourier kmodes) and the pressure variable. Here, we continue
such a multiwavelength approach by leveraging the capabilities of
MUSTANG-2.
In this paper, we present a study of surface brightness

fluctuations of SZ and X-ray maps of Zwicky 3146, also referred
to as ZwCl 1021.0+0426, and associated amplitude spectra
covering a decade in scales. Zwicky 3146 (z= 0.291, Allen et al.
1992) is a massive, relaxed, sloshing cluster with a cool core
(Forman et al. 2002). The relaxed and regular nature of Zwicky
3146 give us the expectation that we will not find large pressure
fluctuations. This work is a follow-up to the study of Zwicky
3146 presented in Romero et al. (2020) (wherein Zwicky 3146 is
also described in more detail). In particular, Romero et al. (2020)
estimated the mass of Zwicky 3146 from pressure profiles
determined from high-resolution SZ data and varying assump-
tions, including hydrostatic equilibrium when combined with
electron density profiles determined from XMM-Newton data.
Masses from Romero et al. (2020) and references therein (e.g.,
Martino et al. 2014; Hilton et al. 2018; Klein et al. 2019) are in
agreement with M500= 8× 1014Me, which corresponds to
R 5500 = ¢ (1.3 Mpc).
The layout of this paper is as follows. Section 2 describes the

data used and fitted surface brightness models. To perform our
fluctuation analysis, detailed in Section 3, we calculate power
spectra on fractional residual maps; that is, residual maps
divided by their respective surface brightness models. We
present the 2D and (deprojected) 3D amplitude spectra in
Section 4, and we discuss them in the context of what is known
about Zwicky 3146 in Section 5. We offer conclusions in
Section 6.
Throughout this paper, we adopt a concordance cosmology:

H0= 70 km s−1 Mpc−1, ΩM= 0.3, and ΩΛ= 0.7. We define
h70≡H0 (70 km s−1 Mpc−1)−1 and ( ) ( )h z H z H0

1º - . At the
redshift of Zwicky 3146 (z = 0.291), one arcsecond
corresponds to 4.36 kpc.

2. Data Products

We make use of MUSTANG-2 data presented in Romero
et al. (2020) and archival XMM-Newton EPIC data. The two
data sets are highly complementary. MUSTANG-2 has a
resolution (full width half maximum; FWHM) of ∼10″. The
point-spread function (PSF) of each of XMM-Newtonʼs
detectors, MOS1, MOS2, and pn, depends on the energy, and
off-axis distance; for a point of rough comparison, we may
consider that the detectors have an effective resolution of ∼5″,
albeit with broad wings.

2.1. MUSTANG-2 Data Products

MUSTANG-2 is a 215 detector array on the 100 m Robert C.
Byrd Green Bank Telescope (GBT) and achieves 10″
resolution (FWHM) with an instantaneous field of view
(FOV) of 4. 2¢ . Observing at 90 GHz, it is sensitive to the SZ

Figure 1. Figure adapted from Gaspari et al. (2014) showing typical ICM
amplitude spectra for the thermodynamic relative fluctuations: density (δρ/ρ),
temperature (δT/T), entropy (δK/K ), pressure (δP/P), and velocity δv/cs.
Smaller scales (distances) are toward the right of the plot; values are suppressed
to allow for generalization, i.e., for an arbitrary injection scale, we expect the
same shape (roughly) for the spectra, with the peak of the spectra at said
injection scale. The red dashed line indicates the injection scale. The shaded
blue region indicates the scales over which the fluctuations “cascade” toward
smaller scales, and the shaded green region is where the fluctuations are finally
dissipated. The dotted black lines help guide the eye as to the (logarithmic)
slope of the various spectra, which again should not be treated as an exact
expectation; the slopes will vary depending on the actual conditions of the ICM
in a given cluster.
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effect, which is often parameterized in terms of Compton y:

( ) ( )y
m c

P z dz, , 2e
T

e
2 ò

s
q=

where σT is the Thomson cross section, me is the electron mass,
c the speed of light, Pe the electron pressure, and z the axis
along the line of sight.

The observations used here are the same as in Romero et al.
(2020), as is the general data reduction. We employ both data
reduction pipelines, MIDAS and Minkasi, in this work. Briefly,
MIDAS follows a more traditional approach in its data
processing (i.e., similar to the processing of many predecessor
multipixel bolometric ground-based measurements); this pro-
cessing typically restricts scales recovered (often characterized
as a transfer function)16 to less than the instrument’s
instantaneous FOV (see Figure 2). Meanwhile, Minkasi fits
the data in the time domain and does not suffer the same loss of
scales as MIDAS; see Romero et al. (2020) for a detailed
comparison of the transfer functions of the two processing
methods.

In this work, we update our pressure profile model from
Romero et al. (2020) with an additional procedure used in
Dicker et al. (2020) and Orlowski-Scherer et al. (2022), which
attempts to further remove atmospheric contributions to our
maps by fitting and subtracting a second-order polynomial with
respect to elevation offset from the scan center. Figure 3
compares the current to the former pressure profile; the two are
fully consistent with each other. As reported in Romero et al.
(2020), the two pressure profile models (fit via MIDAS and
Minkasi) are consistent, except beyond MUSTANG-2ʼs radial
(instantaneous) FOV where our transfer function is poorly
constrained. However, when we subtract the Minkasi model via
the MIDAS pipeline (rather than using a transfer function), we
see that the residual map is consistent with noise at the radii
where the pressure profiles (MIDAS versus Minkasi) differ.

2.2. XMM Data Products and Models

There are four XMM-Newton observations (Obs.IDs) of
Zwicky 3146: 0108670401, 0108670101, 0605540301, and
0605540201. The first does not have usable EPIC data; we use
the remaining three observations (of nominal durations 56, 65,
and 123 ks; see also Table 1).
We use heasoft v6.28 and SAS 19.0 and the Extended

Source Analysis Software (ESAS) data reduction package
(Snowden et al. 2008) to produce event files and eventually
images for the three EPIC detectors: MOS1, MOS2, and pn.
Our data reduction largely follows the ESAS cookbook,17 with
the initial steps being emchain, epchain, and epchain
withoutoftime = true to extract calibrated events files.
Soft proton flares are excised with the tasks mos-filter and
pn-filter. A comparison of IN versus OUT count rates
assesses the amount of residual contamination from soft
protons (De Luca & Molendi 2004). This comparison suggests
that soft protons are not a concern for MOS detectors and that
the pn detectors could suffer slight contamination.
An initial list of point sources is created with the task

cheese on the XMM-Newton data set based on flux with
[0.4–7.2] keV energy band and detection significance. A region
file is generated, excluding a 30″ radius about each point
source.

2.2.1. Image Creation

We choose to extract images in the [0.4–1.25] keV and
[1.25–5.0] keV bands. Images and vignetted exposures are
extracted for each detector over the entire detector area while
masking point sources (see Section 2.2.3 for point-source
identification) via the task mos-spectra or pn-spectra.
Unvignetted exposures are also created with the task eexpmap
withvignetting = no. Wideband (i.e., [0.4–5.0] keV)
images are formed by the simple addition of the count (and

Figure 2. Maps derived from the MUSTANG-2 observations: the residual Minkasi map (right) shows large-scale noise, while the residual MIDAS map (left) has this
filtered out. Given the angular scales of interest, the MIDAS map is preferable. The rings are as in Figure 5. The color scale is shown in units of y × 106; y is defined in
Equation (2).

16 The transfer function as used in Romero et al. (2020) is quantified as the
transmission of the Fourier transform of an input map. 17 https://heasarc.gsfc.nasa.gov/docs/xmm/esas/cookbook/xmm-esas.html
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background) images; these wideband images are used for
consistency checks.

2.2.2. Constrained Background Components

The relevant particle backgrounds are calculated for the
desired energy band via the tasks mos_back and pn_back.
For the pn detector, we extract a separate spectrum (via pn-
spectra) over the cluster region, which we take to be a
radius of 5′ about the cluster center. While we treat the residual
soft proton spectrum as a single power law, we must fit several
other components to the spectrum: a thermal plasma comp-
onent (apec) for each of the local (solar) hot bubble, Galactic
emission, and the ICM in Zwicky 3146. In addition to this, we
also consider Gaussian components for fluorescent lines. A soft
proton background is then made with the task proton and
added to the particle background with the task farith. For
the pn detector, we also consider the out-of-time (OOT)
contribution. Depending on the full-frame mode, we multiply
our resultant pn image with randomized columns by 0.063 or
0.023 for full-frame and extended-frame modes, respectively,
to have an OOT component that we incorporate into the pn
background. These background images will be subtracted from
the respective images when extracting profiles.

2.2.3. Point-source Exclusion

In addition to the list generated from cheese, we make use
of Chandra archival data of Zwicky 3146 and run wavdetect
on its calibrated event files. Finally, we perform a manual
inspection to identify any remaining point sources.

2.2.4. Profile Fitting

We use the Python package pyproffit (Eckert et al.
2017) to extract profiles of our images. Profiles are fit via
emcee (Foreman-Mackey et al. 2013) separately for each
detector, each energy band, and each observation. We fit
profiles to our low-energy ([0.4–1.25] keV) and high-energy
([1.25–5.0] keV) images. As these profiles are fit per detector
and per ObsID, we have 18 profiles in total (with another nine
from the wide-energy-band [0.4–5.0] keV images that are only
used for consistency checks).
Beyond masking the point sources, we also introduce a mask

to exclude pixels of low exposure due to binning near chip
gaps. We allow pyproffit to fit for centroids in the central
5′ of each (masked) image independently. Within a single
observation and energy band, the centroids of each detector
differ by 2″. Given the general agreement, for each
observation and energy band, we adopt circular symmetry
and the centroid as the average centroid of the maps from each
EPIC camera detector when extracting profiles. To be sure, the
centroids determined in this manner differ by ∼3″ relative to
the centroid used with MUSTANG-2 analysis.
We find that a simple β-model does not sufficiently capture

the surface brightness in the core of Zwicky 3146 and at large
radii. We adopt the double β-model as implemented in
pyproffit, which has the form

( ) [( ( ) )
( ( ) ) ] ( )

S r S r r

R r r B

1

1 , 3
c

c

0 ,1
2 3 0.5

,2
2 3 0.5

= +

+ + +

b

b

- +

- +

where r is the radius, rc,1 is the first “core” (scaling) radius, rc,2
is the second “core” (scaling) radius, R is a ratio between the
two β-profile components, S0 is the surface brightness
normalization, and B is the background. We modify the
background component (taken to be uniform in pyproffit)
to be two components: one uniform and one the scaling of
unvignetted-to-vignetted exposure maps. This latter component
allows us to capture the contribution from fluorescent lines,
predominantly the line from aluminum, which is evident in the
extracted profiles seen in Figure 4.
To appropriately constrain these background components,

we find that we should fit (from r= 0) out to at least 10′, but
beyond 10′ the values of the background components do not
change much. We choose 11′ (more than 2R500) as our fitting
region. Across all three observation IDs, detectors, and energy
bands, the profile residuals are quite small, as in Figure 4.
We find that the residuals of the double β-model are

generally very small, with slightly larger residuals toward the
core where known sloshing exists (e.g., Forman et al. 2002).
We find that this is not a shortcoming of the double β-model,
per se, but rather affirmation that the surface brightness of the
cluster, while roughly circular at large radii, is not circular in
the core (see axial ratios found in Romero et al. 2020).

3. Power Spectra Measurements

To quantify the fluctuations in surface brightness, we want to
take the power spectra of residual images divided by the
corresponding ICM surface brightness model as shown in
Figure 5. We term these images “fractional residuals,” and they
are designated by either δS/S for X-ray images or δy/y for SZ
images. In particular, Figure 5 shows fractional residual maps
for MUSTANG-2 and pn images from a single observation in

Figure 3. Our updated profile is consistent with our previously published
profile; we do see the outermost bin has a lower pressure than previously
(Romero et al. 2020).

Table 1
Overview of Imaging XMM-Newton Observations of Zwicky 3146

Obs ID 0108670101 0605540301 0605540201

Date 2000 Dec 5 2009 May 8 2009 Dec 13
Exposure (ks) 56.5 64.9 122.8

Clean Exp (ks) MOS1: 51.2 MOS1: 41.8 MOS1: 101.2
MOS2: 51.7 MOS2: 40.6 MOS2: 102.2
pn: 43.3 pn: 29.6 pn: 73.8

Mode FF eFF eFF
PI R. Mushotzky J. Sanders J. Sanders

Note. Modes FF and eFF are “Full Frame” and “extended Full Frame,”
respectively.
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the 400–1250 and 1250–5000 eV bands. From these (2D)
spectra of the images, we can deproject to spectra of underlying
3D thermodynamical quantities, namely pressure for SZ images
and density for X-ray images (see Section 3.3).

Motivated in part by the data, as well as by the theoretical
expectation for differing levels of fluctuations as a function of
cluster-centric radii, we divide the cluster into three annuli:

1. Ring 1: r< 100″= 440 kpc.
2. Ring 2: 100″< r< 200″.
3. Ring 3: 200″< r< 300″= R500.

We also note that the MUSTANG-2 map has a rapidly
increasing rms beyond 200″, while the rms is nearly uniform
within 100″.

We calculate the power spectra of the fractional residual
images, P2D, at five angular scales spaced logarithmically
between 10″ (the FWHM of MUSTANG-2) and 100″ (the
radial width of our annuli, i.e., rings). Corresponding amplitude
spectra, A2D and A3D, are given as

( ) [ ( )] ( )A k k P 2 , 42D
2

2D
1 2p= *

( ) [ ( )] ( )A k k P 4 . 53D
3

3D
1 2p= *

We use a modified Δ-variance method (Arévalo et al. 2012)
to calculate the power spectra of surface brightness fluctuations.
In particular, this method allows us to recover power spectra of
data with arbitrary gaps (masks) in (of) the data, which suits our
needs well. We do, however, need to be cautious of the bias that
can occur due to steep underlying spectra; this is especially true
given that we will attempt to recover spectra up to scales close to
the FWHM of MUSTANG-2 and XMM. In particular, the
convolution of a moderate slope with the PSF for either
MUSTANG-2 or any of the EPIC cameras will lead to not only a
steep slope but a changing steep slope. The bias for this
changing slope is derived in Appendix B. While we report
spectral values at k = 0.1 arcsec−1 in later figures, this bias and
associated uncertainty reduces the significance of the values at
k = 0.1 arcsec−1 such that none of them is statistically
significant.

3.1. Calculations on MUSTANG-2 Data

As noted in Section 2.1, our MUSTANG-2 residual map is
created by subtracting the best-fit model (from Minkasi) within

Figure 4. Profile fits of circular double β-models to each detector array in our
“high-energy” (1250–5000 eV) band for observation ID 0605540201. The gray
vertical band is between 100″ and 200″, i.e., the region used for Ring 2. The
vertical red line is at 300″ (∼R500 and the outer edge of Ring 3). The dotted and
dashed green curves show the PN profile broken into quadrants (along cardinal
directions). The dotted lines are the two western quadrants, and the dashed lines
are the eastern quadrants. The lines in the residual are a polynomial regression
to indicate large-scale residuals.

Figure 5. Fractional residuals of our MUSTANG-2 data (upper) and XMM-
Newton data (only pn chip from observation 0605540201 shown) in the middle
(400–1250 eV) and bottom (1250–5000 eV). The blue, orange, and green circles
indicate r = 100″, 200″, and 300″, respectively. The purple lines and circles are
masked chip gaps and point sources.
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the MIDAS pipeline. In all, 155 scans on source are used. Maps
are produced for each scan, and the final residual image (see
again Figure 5, top panel) is constructed as the (weighted) sum
of these individual scan maps.

In order to calculate power spectra due to the ICM, we must
account for any power contribution from inherent noise in the
maps. In principle, this can be done by “debiasing” the power
spectrum (as will be described in Section 3.2), but a more direct
method is to “halve” the data and take a cross-spectrum
(e.g., see Khatri & Gaspari 2016). However, instrumental noise
can still “leak” through via such a cross-spectrum. In order to
counter this, we calculate cross-spectra of noise realizations,
which have amplitudes 1/10 the amplitudes of signal cross-
spectra, and in effect, they debias the cross-spectra. We
perform both methods on the SZ data, and present the results of
the cross-spectra calculations in Figure 6. For the cross-spectra
calculation, we take halving to be the generation of two maps
covering the same area, each with half of the weight of a
“full” map.

Division in half is not a trivial endeavor, as these scans were
taken over seven nights of observations, and even the nights
with the best observing conditions had some variation in
weather conditions. As such, we opt to create two halves
randomly, 100 times. Cross-spectra are calculated on these 100
pairs, and the presented values are taken as the mean of the
resultant spectra with their associated standard deviations. The
2D amplitude spectra, A2D, for the MUSTANG-2 data are
shown in Figure 6, and they include corrections for the
MUSTANG-2 beam (PSF; the correction is shown as the
dashed gray line) and MIDAS transfer function, both of which
are characterized in Romero et al. (2020).

As mentioned earlier, we also calculated spectra via the
debiasing route. The spectra in each ring are statistically
consistent between the two calculation methods; however, Ring
2 is statistically consistent with zero, as calculated via

debiasing. Similarly, the spectrum in Ring 3 has negligible
significance, and thus we discard it from further analysis.

3.2. Calculation on XMM Data

In order to calculate the power spectra for our XMM images,
we opt to debias our spectra as calculated directly on maps of
fractional residuals. A noise realization can be generated as
Poisson noise realizations for each pixel, with its expected
value given by a model of expected counts of all relevant
components. To also incorporate uncertainties from the surface
brightness model itself, we take 1000 models from the MCMC
chains well after the burn-in. A single Poisson noise realization
is generated for each of these models. The “raw” and “noise”
spectra are recorded for each, as well as their difference (i.e., a
“debiased” spectrum). The mean and standard deviation of
these debiased spectra are used in reported expected values and
associated uncertainties.
We also consider the potential contribution of faint point

sources below our detection threshold. To account for these, we
quantify the distribution of detected sources in our images. We
normalize a Log N–Log S distribution with an index of −1.6
(Mateos et al. 2008) to our bright sources, where we take our
completeness to be unity. We then randomly generate point
sources of this distribution down to a minimum of one photon
(count) when assuming a uniform (unvignetted) exposure. The
final point-source image, added to a noise realization, accounts
for the proper (vignetted) exposure map. To stay consistent
with total count expectations, we assume that the counts
accumulated from these faint point sources would be equivalent
to the uniform background (in count rates) in our profile fits. As
such, we reduce the uniform background by the equivalent
count rates.
Given the general agreement between energy bands (see

Figure 7), we conclude that it is appropriate to take the
weighted average of the respective power spectra, as shown in
Figure 8. When checking power spectra across individual
observations and detectors, we do not find any spurious spectra.
However, we also note that Figure 7 provides some insights
into data quality, especially suggesting caution when attempt-
ing to interpret the combined amplitude spectrum in Ring 3 as
well as the highest k-mode in all rings.
Both Figures 7 and 8 include corrections for the PSF, which

we estimate per detector, per energy band, and per ring, using
the ELLBETA mode of the task psfgen. In particular, we find
the median photon energies are 800 and 2000 eV for our two
energy bands, and so we estimate the PSF at those energies. For
the rings, we take x= 50″, 150″, and 250″, and y= 0 to be
sufficient estimates of the PSFs for each ring. As in the SZ data,
we see that some rings have (at least a portion of their) spectra
that share the shape of the PSF correction.
To further investigate the quality in Ring 3, we calculate the

radial profile (from the cluster center) of variance in the δS/S
images. We find that the average variance falls below the
standard deviation of the variance (across our 1000 realizations,
three detectors, two energy bands, and three ObsIDs)
beyond 200″.

3.3. 3D Spectra

In this section, we relate projected 2D fluctuations to the
physical 3D fluctuations by following a common formalism (e.g.,
Peacock 1999; Churazov et al. 2012; Zhuravleva et al. 2012;

Figure 6. The amplitude spectrum of the fractional residual ( ¯y yd ) for each
ring. Abscissa values are offset between rings for visual separation. Our best
constraints are in Ring 1, while Ring 2 is already quite noisy.

6

The Astrophysical Journal, 951:41 (17pp), 2023 July 1 Romero et al.



Khatri & Gaspari 2016). The relation is given as

( ) ( )∣ ˜ ( )∣ ( )kP k P W k dk , 6z z2D 3D
2ò=q

where z is the axis along the line of sight, θ2= x2+ y2 is in the
plane of the sky, and ∣ ˜ ( )∣W kz

2 is the 1D power spectrum of the
window function, which normalizes the distribution of the
relevant (unperturbed) 3D signal generation to the (unper-
turbed) 2D surface brightness. Additionally, P2D is as before,
and P3D is the power spectrum of the 3D quantity, which when
integrated along the line of sight yields a surface brightness.

The SZ and X-ray window functions are, respectively:
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where P̄ and ̄ (emissivity) refer to the underlying 3D
(spherical, unperturbed) models, which when integrated along
the line of sight produce ȳ and S̄ , the 2D (circular, unperturbed)
surface brightness models. To be sure, the relation between S̄
and ̄ is given by ¯ ¯S dzò=  .

Above some cutoff wavenumber, kz,cutoff, ∣ ˜ ( )∣W kz
2 will fall

off; in the regime where k? kz,cutoff, we can approximate
Equation (6) as

( ) ( ) ∣ ˜ ( )∣ ( )kP k P W k dk , 9z z2D 3D
2ò»q

where we adopt the notation used in Khatri & Gaspari (2016)
and define

( ) ∣ ˜ ( )∣ ( )N W k dk . 10z z
2òq º

In Appendix C, we verify that this approximation in
Equation (9) is valid.
The dependence of the window function on the cluster-

centric radius, θ, presents an issue of how to deproject over an
area (e.g., over a given annulus). We therefore calculate N(θ)
along many points in the range 0″� θ� 300″ and calculate an
area-weighted average of those values (within a given annulus).
Window functions (and their Fourier transform) are shown in
Figures 9 and 10; the radii chosen are the effective radii for
each annulus (i.e., where N(θeff)= 〈N(θ)〉 for r in a given
annulus.)

Figure 7. The ±1σ interval of amplitude spectra for the low-energy band (red)
and high-energy band (blue). From top to bottom: Rings 1, 2, and 3,
respectively.

Figure 8. Amplitude spectra of X-ray surface brightness fluctuations when
combining both energy bands. Abscissa values are offset between rings for
visual separation. Ring 2 has a spectrum similar to that of Ring 1, but with
larger uncertainties.
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In the SZ case, this deprojection to 3D fluctuations lets us
immediately arrive at pressure fluctuations (δP/P) because it is
the thermal electron pressure that is being integrated along the
line of sight. However, in the X-ray case, we have only derived
a means of converting to fluctuations in emissivity (δò/ò).
Fortunately, for hot enough gas (∼3 keV), the emissivity in soft
bands is weakly sensitive to temperature, and thus it effectively
depends only on the square of gas density, n. The emissivity
can be expressed as Cne

2= , where we include the cooling
function and mean molecular weight in C and note that C is
weakly dependent on temperature at the temperatures of
Zwicky 3146, such that C acts roughly as a constant. The
emissivity can be decomposed into unperturbed and perturbed
terms and is linearly approximated as [ ]Cn 1 2 n

2 d= + , with
δn being the density perturbation. This factor of two associated
with δn ultimately yields a factor of four when relating P2D to
P3D,n. That is, explicitly for SZ and X-ray, we have

( ) ( ) ( )kP k N P , 11y y P P,SZ»d q q d

( ) ( ) ( )kP k N P4 . 12S S n n,X»d q q d

4. 3D Spectra Results

Given our deprojection approximation, the 3D amplitude
spectra, A3D, will simply be the 2D amplitude spectra rescaled
by a scalar and multiplied by another factor of k.
As indicated in Section 3.2, the (2D) amplitude spectrum in

Ring 3 from X-ray data is likely dominated by noise. We
include it in our plot of 3D amplitude spectra (Figure 11) and
tabulation of single spectral indices (Table 2), but do not
include it in further analyses. Similarly, we exclude Rings 2
and 3 of the SZ data from further analysis (as justified in
Section 3.1).
Figure 11 shows the resultant density and pressure

fluctuations.
If a clear peak were present in a given spectrum, we could

take the amplitude at the peak (A3D(kpeak)) to be the amplitude
of the amplitude spectrum. However, as an example, taking the
highest k point for Ring 2 (orange) in Figure 11 is also
problematic, as it is consistent with zero. That is, choosing a
peak is not solely a question of the shape of the spectra, but
also of data quality. We wish to select the highest point with
some threshold significance; in particular, we adopt 3σ as our
threshold significance. The maximum values with at least 3σ
significance are reported in Table 2. With this adopted

Figure 9. The SZ window function in real space and in Fourier space. N4(θ) = N(θ) ∗ 1e4 with units of inverse kiloparsec (see Equation (10)).

Figure 10. The X-ray window function in real space and in Fourier space. N4(θ) = N(θ) ∗ 1e4 with units of inverse kiloparsec (see Equation (10)).
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significance threshold, we find peaks in the range
0.01< k< 0.03, which corresponds to injection scales, ℓinj, of
140 kpc< ℓinj< 440 kpc.

Though we may expect a changing power law (as in
Figure 1), we fit a single power law to our power spectra,
omitting k = 0.01, and we report the (logarithmic) slope, α, in
Table 2, where we use the convention

( ) ( )P k P k , 130= a-

with P0 being a normalization of the fitted slope. We note that,
without a clear indication that we are sampling below an
injection scale, our slopes are not indicative of the cascade of
motions to smaller scales. Moreover, with our best estimate of
the injection scales (140 kpc< ℓinj< 440 kpc), our constraints
on the slope on smaller scales are minimal. These slopes do
permit us to comment on the validity of our deprojection
approximation (see Appendix C). We can additionally integrate

the power spectra to obtain a measure of the variance of
fluctuations; for the 3D spectra, this is given as

( ) ( )P k k dk4 . 143D
2 2òs p=

We report the values of σ3D in Table 2.

5. Discussion

In the context of expected amplitude spectra (see Section 1
and Figure 1), our recovered spectra do not clearly identify an
injection scale and subsequent cascade. From Figure 11, we
may loosely infer an injection scale 100 kpc linj 300 kpc
for Rings 1 and 2. In the core, an injection scale around 50 kpc
could be plausible, as Vantyghem et al. (2021) find evidence in
Chandra data for cavities with diameters 50 kpc in Zwicky
3146. Hydrodynamical simulations of AGN feedback also
support such injection scales (e.g., Wittor & Gaspari 2020).
However, the evidence for these cavities does not extend to
Ring 2. In Ring 1, we see the density fluctuations increase
relative to the pressure fluctuations at the larger scales probed
(∼400 kpc), which is consistent with a sloshing core. This also
highlights that there may be multiple injection mechanisms
(and scales) present in clusters.
In the present study, we refrain from making physical

inferences regarding the slopes of the spectra. We do, however,
compare the pressure and density spectra (in Ring 1; see
Figure 12) as well as infer Mach numbers from our spectra. We
note that Hofmann et al. (2016) have performed a fluctuation
analysis, though not in the Fourier domain, of a sample of
clusters which includes Zwicky 3146. Their analysis probed
Zwicky 3146 using Chandra data out to r 90″, and thus it can
be compared to results from our Ring 1. They derive standard
deviations for δP/P and δρ/ρ of 0.004 and 0.159, respec-
tively.18 Our respective derived quantities (σδP/P and σδρ/ρ) are
0.33 and 0.15. Our integrated density fluctuation is in good
agreement with that from Hofmann et al. (2016); however, our

Figure 11. Amplitude spectra of deprojected quantities. Colors reflect
corresponding rings as in previous plots of spectra; SZ-derived spectra
(δP/P) are shown as dashed lines and shaded regions, while the X-ray-derived
(δn/n) spectra are shown as lines with error bars. The dotted lines show the
spectral indices for the power spectra (following the convention indicated in
Equation (13)).

Table 2
Inferred Spectral Indices (Logarithmic Slope) and Peaks of the Amplitude

Spectra

αk

A3D

(kpeak) σ3D

kpeak
(″−1)

λpeak
(kpc)

Ring 1 δρ/ρ 2.5 ± 0.1 0.13 ± 0.003 0.15 0.02 250
δP/P 0.6 ± 0.8 0.29 ± 0.08 0.33 0.03 140

Ring 2 δρ/ρ 2.2 ± 1.6 0.11 ± 0.03 0.18 0.01 440

Ring 3 δρ/ρ 1.7 ± 1.0 0.67 ± 0.21 0.83 0.02 250

Notes. The spectral indices assume a single power-law across our sampled
range, with the exception of points at k = 0.1 arcsec−1 (we omit points at
k = 0.1 arcsec−1). The peaks of amplitude spectra are taken with a signal-to-
noise cut of 3.

Figure 12. Constraints on the thermodynamical regimes within Ring 1 given
the ratio of the 3D amplitude spectra (pressure relative to density). The
isothermal regime is taken to be between 0.9 and 1.1, with the adiabatic regime
taken to be values above 1.1 and isobaric regime to be values below 0.9.

18 The value for δP/P (dP/P in their notation) that Hofmann et al. (2016)
report in their table is surprisingly low, given the scatter evident in their
pressure profile.
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integrated pressure fluctuation is considerably larger than those
from Hofmann et al. (2016).

5.1. Thermodynamic State

There are three effective thermodynamical regimes to
constrain:

K

K
T

T
P

P

adiabatic: 0,

isothermal: 0,

isobaric: 0,

d

d

d

~

~

~

where K is the gas entropy. With γ being the classic adiabatic
index, we have the following relations between pressure and
density in the respective regimes:

( )P

P

n

n
adiabatic: , 15

d
g

d
=

( )P

P

n

n
isothermal: , 16

d d
=

( )P

P

n

n
isobaric: . 17d d

Assuming γ= 5/3 for a monatomic gas, we can roughly divide
these regimes as shown in Figure 12. The isobaric regime
AδP/P< Aδn/n is only observed at the largest scales. This is
consistent with the slow perturbations driven by sloshing.
Interestingly, we see that the inferred thermodynamical regime
shifts to isothermal and adiabatic toward the intermediate
scales. The transition from isobaric to the adiabatic state is a
sign of more vigorous motions (see Gaspari et al. 2014) as we
approach the potential injection scale peak at a few tens of
kiloparsecs. It is important to note that the isothermal
transitional regime does not necessarily imply strong thermal
conduction or cooling, but it is a sign of a change in the
effective equation of state, likely due to the varying kinematics
at different scales. For instance, Spitzer-like thermal conduc-
tion would also substantially suppress the density fluctuations
up to a scale of hundreds of kpc (Gaspari et al. 2014), thus
generating amplitude spectra with a very steep negative slope
in logarithmic space. Our results are also in line with other
observational studies (Arévalo et al. 2016; Zhuravleva et al.
2018), which find a mixture of gas equations of state, where
Zhuravleva et al. (2018), specifically analyzing a sample of
cool-core clusters, find that the gas tends to be isobaric.

5.2. Mach Numbers

In principle, we can infer nonthermal pressure, PNT, support
and ultimately a hydrostatic bias, usually defined as

( )b M M1 , 18HSE totº -

from our amplitude spectra presented in Section 4, where we
make the assumption that the nonthermal pressure support
comes from (quasi) turbulent gas motions. For a perturbation
with an injection scale of 500 kpc, we have a simple
approximation from Gaspari & Churazov (2013), which gives

the following:

( ) ( ) ( )A k A k4 2.4 . 19P3D peak peak» »r

This can be generalized to ( ) ( )c A k c A k ,P P3D peak peak» »r r
where cρ and cP have a very weak dependence on the injection
scale ( ℓinj

Hµ a- , with 0.2 αH 0.3). For an injection scale of
250 kpc, cρ and cP will be ∼20% greater than their values for
an injection scale of 500 kpc. Other works find similar linear
scalings between fluctuations and Mach numbers; e.g.,
including the 3D correction 33D 1D=  , Zhuravleva
et al. (2023) find a radially averaged relation P P2.43D d» .
We might also consider the impact of the cool core of

Zwicky 3146. Specifically, for a gas of a given Mach number,
we may expect density fluctuations to be significantly higher
than pressure fluctuations when radiative cooling is prominent
(e.g., Mohapatra et al. 2022). It is not clear how strong the
radiative cooling is in Zwicky 3146, as the actual cooling rate
may be quenched to ∼10% of reported cooling flow rates (see
Romero et al. 2020, and references therein). Moreover, the cool
core itself has an extent (width) of roughly 20″ (Forman et al.
2002; Giacintucci et al. 2014), so the impact of the cool core on
the power spectra in Ring 1 should be negligible.
Khatri & Gaspari (2016) provide a relation between the

hydrostatic bias and 3D , which we denote as b when
derived from 3D .
There are several limitations of our data, which inhibit the

goal of inferring b from thermodynamic fluctuations. Given
the commonality of mass estimations at R500, it is desirable to
infer ( )b R500 , but our spectra not being robust in Ring 3
prevents us from being able to do this. Even before then, we
have the problem of estimating 3D and eventually its
(logarithmic) radial slope. As mentioned in Section 4, we
cannot determine the peaks of the spectra well, due both to data
quality and to the scales accessed in this analysis.
Notwithstanding the above caveats, for spectra that we take

to be robust and significant, we calculate Mach numbers and
report them in Table 3. These values are all larger than
expected for a relaxed cluster (e.g., Zhuravleva et al. 2023). We
have deeply explored instrumental systematic errors and biases
in our power spectra analyses (see Appendices B and C). We
may also call into consideration the assumptions made when
modeling our unperturbed cluster, e.g., would an elliptical
surface brightness model be more appropriate?
Khatri & Gaspari (2016) provide a relation between the

hydrostatic bias and 3D (and attach a corresponding subscript
to denote the method of calculation, b):

⎜ ⎟
⎛
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Table 3
Inferred Mach Numbers (1) Based on the Peak of the Magnitude Spectra,
3D,peak and (2) as Inferred from the Integral of the Spectra (i.e., Variance: σ2)
and Radially Averaged Relations in Zhuravleva et al. (2023), 3D,int

3D,peak 3D,int

Ring 1 δρ/ρ 0.53 ± 0.01 0.32
δP/P 0.69 ± 0.19 0.80

Ring 2 δρ/ρ 0.43 ± 0.14 0.38
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where γ is the adiabatic index, taken to be 5/3 for the ICM.
Note that, as defined in Khatri & Gaspari (2016),
b M M b1x totº - = - . Following the recasting performed
in Khatri & Gaspari (2016), we find

( )d P

d P

d P d r

d P d r

d d r

d P d r

ln

ln

ln ln

ln ln
1 2

ln ln

ln ln
. 21NT

th

NT

th

3D

th
= = +



We can employ the above equation with the average
logarithmic pressure slope within Ring 1. Yet, we must also
identify a logarithmic Mach number slope ( ( )d d rln ln3D ).
Taking the weighted average of the 3D,peak values reported in
Ring 1 and the X-ray value in Ring 2, we compute a
logarithmic slope. Using the weighted average of 3D in Ring
1, we obtain b 0.16 0.04- =  . This value thus represents
an estimate of the hydrostatic bias in the central region of the
cluster. We note that most estimates of the hydrostatic bias are
at a canonical radius like R500, where b is expected to be in the
range 0.1< b< 0.3 (e.g., Hurier & Angulo 2018). Given the
sloshing present in the core, it is plausible that the hydrostatic
bias in the central region (r< 100″) is of values similar to those
expected at R500.

5.3. Ellipticity

There is the potential for a spherical model of an ellipsoidal
cluster to impart a bias on the power spectra recovered (e.g.,
Khatri & Gaspari 2016; Zhuravleva et al. 2023, from the
perspectives of observations and simulations, respectively).
Indeed, this could apply to our result, where we should expect
that our results overestimate the fluctuations at larger scales
(i.e., lower k modes). However, the resolution to this problem is
not simple, given that, much like in the Coma cluster, the
ellipticities can differ between SZ and X-ray, and even between
X-ray images, i.e., pn and MOS images (Neumann et al. 2003).
As reported in Romero et al. (2020), the ellipticity also varies
with radius. So a choice of a single ellipticity would be
inherently arbitrary and would itself impart a bias at radii not
matching the ellipticity chosen. By extension, employing
elliptical fits to surface brightness has also been shown to
sufficiently account for substructure such as a shock (e.g., as in
RX J1347.5-1145; Di Mascolo et al. 2019) without explicitly
modeling the shock itself, hence a fluctuation analysis with
such an elliptical model would risk subtracting sought-after
fluctuations. Furthermore, there is no clear choice of ellipticity
that escapes its own biases. Finally, when deprojecting to 3D
quantities, we also introduce a degeneracy in the ellipsoidal
shape and inclination of the ellipsoidal relative to the line of
sight.

In a broader sense, the question can be asked: “what
constitutes the unperturbed cluster model?” It should be a
model that follows the shape of the gravitational potential. This
question has been raised elsewhere. For example, Zhuravleva
et al. (2015) address this by “patching” their β-model of the
Perseus cluster, and Sanders & Fabian (2012) fit ellipses to
surface brightness contours. In either case, this opens the
question of “to what degree of complexity we should go” as
well as complicating the interpretation of the underlying 3D
distribution of the unperturbed thermodynamic quantities. To
answer this accurately requires knowledge about the gravita-
tional potential at a detail that is often not available. We find
ourselves in such a position: while our circular surface
brightness models are likely not fully sufficient to describe
the gravitational potential, we lack the data (or data of sufficient

depth) to motivate another specific model instead of choosing a
rather arbitrary elliptical model.

6. Conclusions

By leveraging our precursory multiwavelength method
(Khatri & Gaspari 2016), in this work we have presented
amplitude spectra of surface brightness fluctuations from δS/S
and δy/y images from the X-ray (XMM-Newton) and SZ
(MUSTANG-2) data, respectively. The two instruments are
well matched in angular resolution, and their sensitivities are
conducive to studying the ICM of galaxy clusters at moderate
redshift—such as Zwicky 3146 at z = 0.29.
Zwicky 3146 is a relaxed, sloshing, cool-core cluster. Our

amplitude spectra reflect the sloshing in the core, as the density
fluctuations are seen to increase relative to pressure fluctuations at
the largest scales in our spectra (∼400 kpc). Our amplitude spectra
suggest an injection scale of 140 kpc< ℓinj< 440 kpc. Our best
constraints are in Ring 1, where the X-ray-derived spectra (δρ/ρ)
suggest an injection scale of ∼250 kpc, while the SZ-derived
spectra (δP/P) suggest an injection scale of ∼140 kpc. The larger
scale from X-rays reflects its sensitivity to a sloshing core. It is
conceivable that the SZ data are more sensitive to fluctuations from
cavities, where Vantyghem et al. (2021) found potential cavities on
the scale of ∼50 kpc; such scales are supported by AGN feedback
simulations (e.g., Wittor & Gaspari 2020). Our comparison of
pressure and density fluctuations in Ring 1 show that, from large to
small scales, the ICM equation of state is transitioning from
isobaric to adiabatic, with a brief transition through the isothermal
regime. This is another sign of increased kinematical motions
(Gaspari et al. 2014), corroborating the approach toward the
turbulence injection peak potentially at a few tens of kiloparsecs.
In Zwicky 3146, there is no evidence that cavities exist at

moderate radii (Ring 2), and in Ring 2, we would expect an
injection scale within the scales probed here. We would
similarly expect an injection scale within the scales probed for
our outermost ring, Ring 3. Unfortunately, neither the X-ray
nor SZ data were of sufficient quality to produce reliable
constraints in Ring 3. We note that, in the case of SZ data, an
instrument with MUSTANG-2 specifications just changing the
instantaneous FOV would greatly improve its ability to probe
the outskirts of clusters.
Finally, we derive Mach numbers from the 3D spectra by

leveraging scalings from hydrodynamical simulations. On
average, we infer a turbulent 3D Mach number ≈0.5, with
the values inferred from pressure fluctuations being relatively
larger than those from density fluctuations. From the Mach
numbers in the center of the cluster, we infer a hydrostatic bias
of b 0.16 0.04- =  . The uncertainty in these measurements
grows rapidly as one probes larger cluster-centric radii. Thus,
future deeper and higher-resolution data sets in both X-ray and
SZ will be instrumental to fully unveil Zwicky 3146ʼs
kinematical state at varying radii and Fourier modes.

Acknowledgments

C.R. is supported by NASA ADAP grant No.
80NSSC19K0574 and Chandra No. grant G08-19117X. C.S.
is supported in part by Chandra grant No. GO7-18122X/GO8-
19106X and XMM-Newton grant No. NNX17AC69G/
80NSSC18K0488. M.G. acknowledges partial support by
HST GO-15890.020/023-A, the BlackHoleWeather program,
and NASA HEC Pleiades (SMD-1726). R.K. acknowledges

11

The Astrophysical Journal, 951:41 (17pp), 2023 July 1 Romero et al.



support by Max Planck Gesellschaft for Max Planck Partner
Group on cosmology with MPA Garching at TIFR and
Department of Atomic Energy, Government of India, under
Project Identification No. RTI 4002. W.F. acknowledges
support from the Smithsonian Institution, the Chandra High
Resolution Camera Project through NASA contract NAS8-
03060, and NASA grant Nos. 80NSSC19K0116, GO1-
22132X, and GO9-20109X. L.D.M. is supported by the
ERC-StG “ClustersXCosmo” grant agreement 716762 and
acknowledges financial contribution from the agreement ASI-
INAF n.2017-14-H.0. The National Radio Astronomy Obser-
vatory is a facility of the National Science Foundation operated
under cooperative agreement by Associated Universities, Inc.
GBT data were taken under the project ID AGBT18A_175. We
would like to thank the anonymous reviewer for providing
helpful and valuable comments.

Facilities: GBT, XMM.
Software: Astropy (Astropy Collaboration et al. 2013; The

Astropy Collaboration 2018), pyproffit (Eckert et al. 2017),
emcee (Foreman-Mackey et al. 2013), ESAS (Snowden et al.
2008).

Appendix A
Nonthermal Pressure Profile

Going beyond simply calculating a hydrostatic mass bias,
Eckert et al. (2019) attempt to characterize the profile on
nonthermal support by assuming a parameterized profile for
PNT/Ptot, the nonthermal pressure divided by the total pressure.
One such profile proposed in Nelson et al. (2014) is given as
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where A, B, and γNT are parameters fitted with respective
values of 0.452± 0.001, 0.841± 0.008, and 1.628± 0.019 in
Nelson et al. (2014). With only R500 as a node to constrain this
profile, we fix B and γNT to the values from Nelson et al.
(2014). For Zwicky 3146, we obtain R200m= 2801 kpc using
the NFW Navarro et al. (1996) parameters cited in Klein et al.
(2019).

From Eckert et al. (2019), their assumptions yield the
following relation:
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If we adopt the recastings α(r)= 1− A ∗ g(r) and

( ) ( )h r
P r

GM
, A3th

2

gas HSEr
=

then we can arrange Equation (A2) to solve for the parameter A
in the nonthermal pressure fraction profile:

⎜ ⎟
⎛
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⎞
⎠
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( )

( )A
f r

f r
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g
, A4

gas

gas,HSE
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=
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where g dg dr¢ = . We find A= 0.48± 0.2.

Appendix B
Checks and Biases with the Δ-variance Method

Given that we wrote our own implementation of the power
spectrum calculation method presented in Arévalo et al. (2012),
we perform several checks to ensure we recover injected
spectra as expected. In particular, we adopt an injection
spectrum, Pinj of the form

( )P P e k , B1k k
inj 0 c= a- -

where kc is a cutoff wavenumber (toward low values), P0 is a
normalization, and α is the power-law index. The value of P0 is
arbitrary for our checks. Similarly, noise realizations are
created as images with more pixels than in our SZ or X-ray
maps, and the units of the pixels is arbitrary. However, we do
check proper handling of the value of the pixel size. We test the
recovery of the injected spectrum within the range of
0� α� 11/3, where α= 11/3 is realistically steeper than
expected in 2D. We find excellent recovery of the shape (see
Figure 13).
From Arévalo et al. (2012), the expected normalization bias

in the recovered spectrum, Pk is

( )
( )

( )P

P

n

n
2

2 2 2

2 2
, B2k

inj

2 a
=

G + -
G +

a

where n is the number of dimensions of the data, which in our
case is 2. As noted in Arévalo et al. (2012), for the 2D (and 3D)
case, the bias is modest in the range 0< α< 3, where this
range encompasses expected slopes of surface brightness
fluctuations. In particular, we note that the expected bias is
exactly unity at α= 0 and α= 2. For α= 3.7, the expected
bias is 1.68 and we find a bias value of 1.66 at the highest k
value sampled. That is, our recovered normalization agrees
very well with expectations.

B.1. Bias for an Image Smoothed by a Multi-Gaussian Kernel

Arévalo et al. (2012) derive their bias by calculating Vkr
, the

variance of the filtered image as properly integrated and
approximately integrated. That is, for ˜ ( )F kkr

as the Fourier
transform of the filter, they evaluate

( )∣ ˜ ( )∣ ( )V P k F k d k, B3k k
n2

r rò=

first with P(k) inside the integral (proper integration) and again
after moving P(k) outside of the integral (approximate
integration), and then find the ratio between the two.
To derive the appropriate bias for a smoothed image, let us

first note that, from the convolution theorem, we have

( ) ( ) ( ) ( ) ( )P k P k P k P k P k , B4u PSF 0 PSF= = a-

where P(k) is the power spectrum of the smoothed image, Pu(k)
is the power spectrum of the unsmoothed image, and PPSF(k) is
the power spectrum of the PSF. In order to retain a similar
ability to integrate the expression in Equation (B3), we opt to
characterize the PSF as the stack of multiple Gaussians. In our
case, we will define a radially symmetric multi-Gaussian,
composed of N Gaussians, as

( )( )G c e , B5x

i

N

imulti
1

2 i
2 2å= s

=

-
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where ci is the normalization of each Gaussian such that the
total normalization is equal to unity, i.e., ∑ci= 1. The Fourier
transform of this multiple Gaussian is itself a multiple
Gaussian:

˜ ( )G G e d x c e , B6xki n

i

N

i
k k

multi multi
2

1

i
2 2

ò å= =p-

=

-

where ( )k 1.0 2i ips= . We can further define ki= xi ∗ kr. If
we then take ( ) ˜P k GPSF multi

2= , Equation (B3) now becomes
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and via the same variable recasting, we derive a new bias
formulation:
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B.1.1. Application to the Point-spread Functions of the EPIC Cameras

In order to infer our induced biases for XMM images, we
will approximate the PSFs of our images as triple Gaussians.

From Section 3.2, we adopt a single PSF for each ring [3], each
detector [3], and each energy band [2]. (Given that the three
observations are well-centered on the cluster, we need not treat
PSFs differently between the three observations, i.e., ObsIDs).
We thus have 3× 3× 2= 18 different PSFs to which we fit
triple Gaussians, where the fit is actually a direct fit to the
power spectra of the PSFs. Figure 14 shows that the triple
Gaussian approximation stays very tight to the measured PSF;
this is true for each of the 18 PSFs and respective
approximations.

Figure 13. The recovered power spectra (denoted “MH PS”) of injected power spectra (blue dots, forming a thick line) with different masks (r < rmax) used. The
color lines in the plots have corresponding circles drawn in the right panel. The MH filter quickly recovers low-k values; the cutoff wavenumber, kc, is indicated by the
vertical dashed line. We find very good agreement with the expected normalization bias of this method (see Appendix B in Arévalo et al. 2012).

Figure 14. Triple Gaussian approximation of the XMM PSF(s). Triple
Gaussians are fit to the appropriate PSF per detector, energy band, and radius;
the fit is over the selected range ( k0.01 arcsec 0.1;< ´ < we need not worry if
the approximation deviates from the true PSF outside of this range.
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For MUSTANG-2, it has been standard to calculate its beam
(PSF) as a double Gaussian (see Romero et al. 2015,
2017, 2020).

We require yet another assumption before estimating our
induced bias, that being the underlying spectral index. One
starting point is that we could assume a Kolmogorov spectrum
of α= 11/3. However, we do not expect a single spectral index
across all scales (e.g., Gaspari et al. 2014). At the scales
probed, we should expect the slopes to only steepen toward
larger k. Thus, we can perform an initial recovery of power
spectra and identify the steepest slope between our nodes. That
is, we will expect our initial spectra to show shallower slopes
toward higher k, due to the increasing bias.

The 2D spectra from MUSTANG-2 are calculated as
outlined in Section 3.1 and for XMM as in Section 3.2, where
we note that the XMM spectra presented in Figure 15 are the
weighted averages of the 18 different images per ring (recall
there are three ObsIDs with usable EPIC data). We find that the
steepest slopes in the X-ray data are steeper than α≈ 3, while

for the SZ data they are just slightly steeper than α≈ 2. We
take a slightly arbitrary uncertainty range of ±1.5 about these
indices, such that for X-rays we consider biases from
α= 3± 1.5, and from SZ we consider biases from
α= 2± 1.5. The inferred biases are shown via solid lines
and shaded regions in Figure 16.

Appendix C
Detailed Power Spectra Implementation

The power spectra in Section 3 focus on the fractional
residual maps ( ¯y yd or ¯S Sd ). However, both the power spectra
from SZ (MUSTANG-2) and X-ray (XMM) data must both
have their noise bias removed. From the auto power spectrum,
this would be achieved as

( )¯ ¯ ¯P P P , or C1y y y y y y,raw ,noise= -d d d

( )¯ ¯ ¯P P P , C2S S S S S S,raw ,noise= -d d d

where the raw spectra are calculated on the fractional residual,
and the noise power spectrum on the associated noise
realization.
An alternative is to take a cross-spectrum. To do this, we

alter the standard calculation of the variance. In the framework
of the delta-variance approach used, an important intermediate
product is the filtered image, Ĩk:

⎜ ⎟
⎛
⎝

⎞
⎠

˜ ( ) ( )I
G I

G M

G I

G M
M, C3k

1

1

2

2

q =
*
*

-
*
*

s

s

s

s

where M is the mask, I is the image, and Gσ are Gaussian
kernels with corresponding widths σ1 and σ2. For n

Figure 15. Initial inference of Pu(k) for XMM (top panel) and MUSTANG-2
(bottom panel) without a bias correction. Dashed red lines show a power-law
slope α = 3 (P ∝ k−α), and dotted red lines correspond to α = 2. The steepest
values we see in the X-ray spectra are α ≈ 3, and for the SZ spectra, α ≈ 2.

Figure 16. The bias induced by PSF convolution (shaded regions and solid
lines) in comparison to the inverse of the power spectra of PSFs (dashed lines)
for XMM and MUSTANG-2. To illustrate the bias for XMM, we have only
plotted the PSF of MOS1 at 800 eV bin at r = 150″. The solid lines indicate the
bias when α = 3 for XMM and α = 2 for MUSTANG-2. The shaded regions
encompass the bias between α = 1.5 and α = 4.5 for XMM, and between
α = 0.5 and α = 3.5 for MUSTANG-2. For a full comparison, the orange
dotted lines show the biases for α = 1.5 and α = 4.5 with the MUSTANG-
2 beam.
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dimensions, the variance is given as

˜ ( )V
N

N
I d x, C4k

M
k

n

1

2ò= ´
=

where N= ∫dnx and NM=1= ∫M(x)dnx. In the case of
calculating a cross-spectrum, we have two images, Ia and Ib,
which when filtered become Ĩa and Ĩb. The variance for the
cross-spectrum term is then

( ˜ ˜ ) ( )V
N

N
I I d x, C5k

M
a b

1

2ò= ´ ´
=

where we explicitly note that we have two-dimensional images
in this work.

The uncertainties in ¯P y yd and ¯P S Sd are calculated in very
similar ways. That is, if noise realizations are made to
determine ¯P y y,noised and ¯P S S,noised , where these quantities are
taken as the mean power spectra across noise realizations, then
the standard deviation of the respective noise power spectra can
be taken as the uncertainty in the noise power spectra. Using x
as a stand-in for y or S, we have

( )¯ ¯ , C6P Px x x x,noises s=d d

( ) ( )¯¯ ¯ A2 . C7A P x xx x x xs s= dd d

C.1. MUSTANG-2 Error Estimation

The MUSTANG-2 map of Zwicky 3146 is comprised of 155
individual scans on source. We reprocess each scan, subtracting
the full model that was fit in Romero et al. (2020). These scans
span seven observing nights. To create 100 realizations of pairs
of half maps, we randomly select half of the 155 scans to assign
to “half 1” and the rest to “half 2.” The cross-spectra are
calculated as noted above. The mean and standard deviation of
power spectra are respectively taken as the expected P2D value
and associated uncertainty.

C.2. XMM Error Estimation

Our XMM noise realizations are fundamentally generated as
Poisson noise with a model of the counts image as the mean
value for each pixel. The simplest model is

¯ ¯ ( )C S E B, C8= * +

where S̄ is our (smooth) ICM model (taken as a circular double
β model; see Equation (3)), E is the exposure map, and B̄ is a
background, which itself has multiple components. We can
separate B̄ as

¯ ¯ ¯ ¯ ¯ ( )B B B B B , C9p FCXB pt. srcs= + + +

where B̄p is a model of the particle background, soft proton,
and for the pn detector, the OOT contribution. B̄CXB is taken to
be the uniform background (when looking at count rates) level
when fitting for the ICM profile. B̄F is the fluorescent
background, which has a profile proportional to the unvignetted
exposure divided by the vignetted exposure. B̄pt. srcs is an
estimate of faint point sources.

Our initial image of Bp is formed by the addition of various
image outputs from the ESAS framework, and itself is subject
to Poisson noise. To lessen this in the model itself, we smooth

it, initially as

⎜ ⎟
⎛
⎝

⎞
⎠

¯ ( )B
G B

G E
E, C10p

2.5 p

2.5
=

*

*
´

where G2.5 is a Gaussian kernel of 2.5 pixels (pixels themselves
are 2 5). This method should account for “losses” in chip gaps.
Though this is likely sufficient, we attempt to fill in chip gaps
with the mean values of neighboring non-gap values. To do
this, we iterate the smoothing; at each iteration, the non-gap
values are restored to their original values, while the gap pixels
are kept from the previous iteration. As the gaps are not wide,
this converges quickly. Our final B̄p image is obtained as

⎜ ⎟
⎛
⎝

⎞
⎠

¯ ( )B
G B

G E
E. C11p

2.5 p,gap filled

2.5
=

*

*
´-

The remaining smooth background components are calcu-
lated as

¯ ( )B E10 , C12b
CXB uni= *

where buni is the parameter fit (in logarithmic space) for the
uniform background, and

¯ ( )B
E

E
E10 , C13f

b unvf= *

where bf is the fitted parameter (in logarithmic space) for the
fluorescent background and Eunv is the unvignetted exposure.
If we include point sources, i.e., B̄pt. srcs, we do so as

indicated in Section 3.2. That is, we match a LogN–Log S
distribution to the distribution calculated (observed) in each
image using bright sources, where the completeness is
approximately unity, and assume an index of −1.6. As we
are taking spectra only within a circle of radius 5′ about the
center of the cluster, we generate model point sources only in
this region, and we assume a uniform PSF for a given detector
and energy band. In particular, we adopt the PSF at x= 150″
and y= 0 generated by psfgen as noted in Section 3. The

Figure 17. There is a negligible difference with respect to our treatment of faint
sources.
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mean photon count rate from the model point sources within 5′
of the cluster center is calculated and then subtracted from the
same region in B̄CXB.

We wish to include covariance of our profile fit in our
estimation of uncertainties in power spectra. Accordingly, we
will have many models C, such that each noise realization is
generated from an instance, Ci, with relevant components being
dictated from chains of the profile fits. Specifically, S̄ , B̄CXB,
and B̄f depend on the chains and change with each realization.

We find that the inclusion of faint point sources barely
affects our power spectra, as evidenced in Figure 17. Even so,
the results presented in this paper include an estimated
contribution from such faint point sources.

C.3. Validation of Deprojection Approximation

With window functions in hand, we can easily validate our
approximate power spectra deprojection (Equation (9)) against
the initial formulation, i.e., Equation (6).

The slopes found in our data (see Table 2) are generally
shallower than expected, with the steepest slope being 2.4 in
Ring 1. From Figure 18, we can conservatively say that we
potentially underestimate the density fluctuation at k = 0.01
arcsecond−1 by ∼1.05 (assuming the slope may be roughly 3
as we approach those scales).

C.4. Correlated Noise on Small Scales

We investigate if the increase in the amplitude spectra
toward higher k may be due to correlated noise on small scales.
One particular investigation is the potential for secondary
particles generated from collisions of cosmic rays and the
telescope. If striking a detector, such secondary particles would
do so effectively simultaneously. Thus, in the X-ray data, this
could be seen as multiple events in a single frame. To avoid
also counting multiple events from bright sources, we mask the
cluster and point sources; we also perform this analysis while
filtering energies in our two adopted bands (400–1250 eV and
1250–5000 eV).

Wanting the shortest frame for this analysis, we analyze the
pn detector from the only full-frame observation (0108670101)
where the time resolution is 73.4 ms. When counting the

number of events per frame, we find at most three events per
frame; in the high-energy band, only 5% of the events in this
observation occur in the same frame as another event. The
distances between these events are then binned as seen in
Figure 19 (blue bars). To compare to what a random
distribution would be (given our mask), we perform the same
calculation but randomly shuffling the events by time (orange
step plot). We consider any events occurring within 50″ to be at
“short distance.” The excess short-distance events account for
9% of the total pairs. We infer that the occurrence of events
from (hypothesized) particle showers accounts for less than
0.4% of high-energy events in the background. Repeating this
analysis for the low-energy band, we find that only 0.2% of
events could be due to such particle showers. Thus, we do not
find evidence that this effect could account for a rise toward
higher k in the recovered amplitude spectra from X-ray surface
brightness fluctuations.

Figure 18. Ratios of power spectra (above) and amplitude spectra (below) when calculated via Equation (6) assuming a power-law distribution as in Equation (B1)
with kc = 1e − 3 kpc−1 and α = 3. Solid lines show the ratios when applying the SZ window function, and dashed lines show the ratios when applying the X-ray
window function. The horizontal (dotted cyan) lines in the above panel show the approximate ratios between the 3D and 2D power spectra as approximated in
Equations (11) and (12). The chosen radii are close to the effective radii (weighted averages) for N of both the SZ and X-ray window functions for Rings 1, 2, and 3,
respectively.

Figure 19. Histogram of distances between pairs of events in the same frame as
seen in our actual data (blue) and averaged over 100 realizations in which the
event times are randomly shuffled.
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