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A B S T R A C T   

While less reliable than authorized air quality stations, low-cost sensors help monitor air quality in areas 
overlooked by traditional devices. A calibration process in the same environment as the sensor is crucial to 
enhance their accuracy. Furthermore, low-cost sensors deteriorate over time, necessitating repeated calibration 
for sustained performance. HypeAIR is a novel open-source framework for the management of sensor calibration 
in real-time. It incorporates two calibration methodologies: a combination of machine learning models (Voting 
Regressor and Support Vector Regression) and the Long Short-Term Memory deep learning model. To evaluate 
the framework, three extensive experiments were conducted over a 2-year period in the city of Modena, Italy, to 
monitor NO, NO2, and O3 gases. Both calibration methodologies outperform the manufacturer calibration and 
our baseline (i.e., a variation of the Random Forest algorithm) and maintain efficiency over time. The availability 
of the source code facilitates customization for monitoring additional pollutants, while shared air quality datasets 
ensure reproducibility.   

1. Introduction 

As reported by WHO (2021), around the world, only 1 in 10 people 
breathe healthy air, while an estimated 4.2 million individuals die each 
year due to exposure to ambient air pollution. Monitoring air quality 
(AQ) is the first step to raising awareness among citizens and promoting 
actions from authorities to reduce pollutant emissions. Conventional 
environmental monitoring, through expensive stations has limited 
coverage and low spatial resolution, therefore it is insufficient to 
quantify hyper-local AQ conditions. Advances in low-cost sensors have 
enabled large-scale AQ monitoring with increased spatiotemporal res
olution; however, low-cost air quality (LCAQ) sensors rarely achieve the 
accuracy required by regulatory standards as they are sensitive to 
environmental conditions, to the presence of other pollutants, and they 
suffer degradation of the quality of measurements over time. 

A calibration model for air quality is a mathematical or statistical 
framework designed to adjust and refine the raw data produced by LCAQ 
sensors. This calibration process involves placing the sensor in close 
proximity to a reference station or instrument for a co-location period, as 
highlighted by Maag et al. (2016)). The co-location period needs to be as 
short as possible to enable quick deployment of sensors in various lo
cations, yet long enough to ensure the reliability of the calibrated data. 

Periodic re-calibration is essential, involving placing the sensor near 
the reference station or instrument for a new co-location period. The 
additional data collected during these calibration processes are inte
grated into the training of the calibration model, preserving the quality 
of measurements. Given that the relation between the raw measure
ments of an LCAQ sensor and pollutant concentration at the legal station 
can vary significantly for each sensor, individual sensors require unique 
calibration models. This complexity underscores the challenging nature 
of sensor calibration, a critical process that commands considerable 
attention and effort from the scientific community. When implementing 
calibration models, several research inquiries arise: 

R1 Can a tool be developed that is not merely an ad hoc calibration 
solution for a specific sensor and pollutant but is adaptable to a variety 
of sensors? 

R2 Can LCAQ sensor measurements achieve the same reliability as 
legal station measurements? 

R3 What is the best solution to ensure that calibration performance is 
maintained over time in a real environment? 

R4 What factors exert the most significant influence on the perfor
mance of calibration models? 

R5 Is it possible to define essential guidelines to be followed by 
scientists embarking on the calibration of low-cost sensors for the first 
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time? 
In this paper, we present HypeAIR, a novel framework for LCAQ 

sensor calibration based on co-location to simplify and automatically 
manage the calibration process; the framework is open-source, easily 
adaptable to different sensors and pollutants, and enables real-time 
hyper-local AQ monitoring. We propose two methodologies for cali
bration embedded in HypeAIR: one based on a combination of machine 
learning algorithms that consider the time dependency of observations, 
and one based on the deep learning algorithm Long Short-Term Memory 
(LSTM) that was not previously employed for LCAQ calibration. We 
define an approach to evaluate the performance of the methodologies 
taking into account the life cycle of sensors and the context (e.g., tem
perature, humidity) in which the observations are collected. Then, we 
compare the two methodologies for real-time sensor calibration to 
discuss their performances in different environmental conditions. Three 
experiments are conducted, each for a precise purpose:  

• Exp.1: to measure the robustness of the methodologies even in the 
presence of few training data,  

• Exp.2: to investigate the performance of the generated models on a 
large dataset where observations are collected under heterogeneous 
weather conditions,  

• Exp.3: to check the reliability of calibration models several months 
after the last training period. 

We deeply discuss the results of the experiments considering several 
factors: the influence of seasons, the presence of out-of-range concen
tration values, the occurrence of big errors (i.e., calibrated data that 
deviate significantly from the correct value), and the presence of 
anomalies in the legal station’s measurements. The outline of the paper 
is the following: Section 2 presents the state of the art, then in Section 3 
background and motivations are reported. Section 4 describes the 
HypeAIR framework, the data structure and the calibration algorithms. 
Section 5 delineates the real case scenario, the sensors’ network, and the 
configuration of the local models; Section 6 outlines the three experi
ments applied to the real case and reports their results. Section 7 dis
cusses the results of the experiments and the behavior of each sensor, 
highlighting the main factors that influence the performance of the 
calibration methodologies. In the end, Section 8 sketches conclusion and 
future work. 

2. Related work 

In the last decade, several projects have demonstrated the validity 
and effectiveness of the widespread use of LCAQ sensors. EuNetAir1 was 
a COST Action focused on developing new sensing technologies for 
affordable AQ control at low cost, and defining innovative approaches to 
AQ modelling. The UrPolSens project (Boubrima et al. (2017)) imple
mented a low-cost, energy-efficient AQ monitoring platform employing 
NO2 sensors. iSCAPE (Improving the Smart Control of Air Pollution in 
Europe)2 was a European research initiative that focused on integrating 
and advancing AQ control and carbon emissions in cities. It aimed to 
provide scientific guidance to end-users for deploying LCAQ sensors to 
monitor AQ and people’s exposure with reasonable data quality. 

Estimating high-quality pollutant concentrations for LCAQ sensors is 
becoming an urgent need in smart cities. Given that chemical sensors 
require calibration algorithms to estimate gas concentrations, various 
approaches have been proposed and tested on a range of proprietary 
devices and datasets in the literature. As described by Concas et al. 
(2021), several issues arise when attempting to calibrate a sensor. 
Firstly, a model needs to operate effectively in different seasons, 
geographic locations, and in the presence of a different combination of 

pollutants. Secondly, calibration models should avoid from making 
strong assumptions about the distribution of input values since air 
quality data are rarely independent and identically distributed. More
over, they generally exhibit significant temporal correlations. Lastly, 
given the relatively short lifespan of a sensor (typically 2 years at most), 
the training period cannot be lengthy. Nevertheless, training data should 
be sufficient to ensure that the model can learn how the cross- 
sensitivities between different pollutants and the impact of weather 
conditions affect the concentration of each pollutant. 

Numerous studies have investigated and compared calibration al
gorithms for LCAQ sensors (De Vito et al. (2018); Motlagh et al. (2020); 
De Vito et al. (2021); Mead et al. (2013)). Vito et al. (2017) conducted a 
comprehensive review and assessment of five machine learning ap
proaches and their dynamic implementations, revealing that SVR tech
niques demonstrated the best performance across most scenarios. In a 
similar vein, Zaytar and Amrani (2020) provided a review of contem
porary machine learning algorithms employed for various AQ moni
toring tasks, emphasizing the widespread use of ensemble learners (e.g., 
random forest, boosted trees, extreme gradient boosting) for shallow 
learning, fully-connected Neural Networks, and Convolutional Neural 
Networks for deep learning. Zimmerman et al. (2018) proposed training 
Random Forest models through three to five days of co-location every 
two months, for a total training period of four weeks, yielding encour
aging results. 

However, findings reported by Sinha et al. (2019) suggested that 
tree-based ensemble regressors among machine learning algorithms 
struggle to predict values outside the training range, particularly for 
seasonal pollutants. Spinelle et al. (2015) applied several field calibra
tion methods to measure nitrogen dioxide (NO2) and ozone (O3) in rural 
areas, with artificial neural networks proving effective in addressing 
cross-sensitivity with other pollutants. The calibration of sensors for 
tropospheric ozone (O3), prevalent in European summers, poses a 
challenge due to the short calibration period, as noted by Ferrer-Cid 
et al. (2019). Furthermore, they compared calibration methods on a 
large and limited training dataset, highlighting their effects on long- 
range predictions. 

In the context of multivariate time series data obtained from sensors, 
LSTM has been recently tested for AQ prediction (Fang et al. (2023); 
Chang et al. (2020); Seng et al. (2021)). 

3. Background and motivation 

This research was prompted by the TRAFAIR3 project (“Under
standing traffic flow to improve air quality”), a European initiative 
aimed at monitoring AQ in six EU cities using LCAQ sensors. The project 
also involved making AQ predictions through simulation models (Po 
et al. (2019a, 2019b)). A significant challenge for the project’s sus
tainability was maintaining sensor calibration months after the co- 
location period. The project underscored the strong need for a frame
work capable of managing different types of LCAQ sensors and auto
mating the creation of calibration models for each sensor and pollutant. 

Multiple LCAQ sensors can be integrated in a single low-cost device 
for monitoring different pollutants. This device is typically housed in a 
box, with sensors placed inside the box (see Fig. 1.a) or connected 
externally to the box through specific sockets (see Fig. 1.b). Each sensor, 
also known as a cell, is dedicated to measuring a specific pollutant with a 
focus on NO, NO2, and O3 in this paper. These sensors detect gases 
through oxidation-reduction reactions using an electrolyte substance 
between electrodes. The working electrode, in contact with both the 
electrolyte and a porous membrane connected to ambient air, measures 
the electrical current produced by the reaction, converting it into ten
sion. Electrochemical cells provide two raw measures in millivolt (mV): 
one through the working (we) electrode and the other through the 

1 http://www.eunetair.it/  
2 https://www.iscapeproject.eu/ 3 https://www.trafair.eu/ 
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auxiliary (aux) electrode. However, this technology has drawbacks, 
including potential interference from other gases in the atmosphere and 
the electrolyte drying out in low humidity and high-temperature con
ditions, leading to sensor cell breakage, as described by Concas et al. 
(2021). 

Typically, the sensor manufacturer provides a formula along with 
specific parameters for each cell to estimate pollutant concentration 
from raw measurements. Alternatively, in some cases, calibrated mea
surements may be directly provided by the manufacturer. These values 
are commonly derived using a multivariate regression model, and in 
certain cases, they can be employed to infer air quality information for a 
broader area based on a limited number of air quality sensors, Hofman 
et al. (2022) details this approach. Nevertheless, these concentrations 
may lack reliability, as they do not stem from a model trained under the 
same environmental conditions as the sensor’s deployment. Demon
strating the significance of developing calibration models that account 
for relevant environmental factors, Miech et al. (2021) highlighted the 
potential unreliability of concentrations derived from models not 
trained in the sensor’s specific conditions. We recommend testing the 
performance of the calibration provided by the manufacturer by 
comparing concentrations with measurements from legal stations in the 
field before assuming their reliability. The assessment of the manufac
turer calibration in our specific use case is discussed in Section 5.1. 

The TRAFAIR project employs a calibration approach that involves a 
co-location period during which the LCAQ sensor is placed near a legal 
station. This period gathers concentrations of pollutants from the legal 
station and raw measurements (in millivolts) from the LCAQ sensor, 
creating two aligned datasets: the raw dataset, comprising aggregated 
raw measurements, and the reference dataset, coupled with concentra
tion values from the legal station. These datasets are then used to train a 
calibration model for each specific pollutant of each sensor. Once 
generated, this calibration model allows the device to estimate pollutant 
concentrations in real time from raw measurements anywhere in the 
city. 

To maintain measurement quality, sensors are periodically moved 
back close to the legal station for a new co-location period to collect 
updated training data for calibration model updates. The calibration 
process, guided by project and environmental expert requirements, must 
adhere to the following criteria:  

(a) the co-location period should be as short as possible to reduce the 
start-up time, enabling quick deployment of sensors across 
different city points. Simultaneously, it must be long enough to 
ensure the reliability of the calibrated data generated by the 
calibration model;  

(b) the model’s performance should remain roughly unchanged over 
a long time, minimizing the need for frequent co-location periods;  

(c) each sensor must undergo individual calibration, considering that 
the relation between raw measurements and the pollutant con
centrations can vary significantly for each sensor cell. 

4. HypeAIR framework 

HypeAIR is a suite of calibration methodologies that can be applied 
to any type of LCAQ sensor, allowing for different approaches: calibra
tion by co-location, calibration in the laboratory, or blind calibration 
(Maag et al. (2018)). 

The main functionalities of HypeAIR are depicted in Fig. 2. After 
ingesting raw data from the LCAQ sensor and the reference pollutant 
concentrations, the framework creates a model for the specific device 
and pollutant (Fig. 2.a). When LCAQ sensors are moved again close to 
legal stations for a new calibration period, the framework collects other 
reference data and refines the calibration model. The calibration model 
is applied to raw data to estimate pollutant concentrations (Fig. 2.b). 
Finally, the performances of the calibration model can be evaluated 
comparing them with target concentrations (Fig. 2.c). 

Two distinct versions of the open source framework are available: 
the file-based HypeAIR framework on Code Ocean4 and the database 
HypeAIR framework on GitHub.5 The file-based version accepts “csv” 
files for raw or reference data as input and produces files as output. This 
version stands out for its versatility, easily adapting to various sensor 
types, gases, and calibration procedures (e.g., in a laboratory); however, 
it does not track the position and status of the sensors. 

The database-oriented variant also includes a robust and efficient 
data management infrastructure designed for handling managing large 
amounts of sensor data streams. It includes several features: collecting 
input data directly from the database, saving all the information related 
to the generated calibration models, and storing the outputs in specific 
tables. Unlike the file-based version, this variant systematically monitors 
the position and status of the sensors. Additionally, data from sensors, 
legal stations, algorithm parameters, and model configurations are 
stored in the database, as detailed in Section 4.1, enabling straightfor
ward comparison and performance evaluation. 

Various machine learning algorithms can be employed to develop an 
effective calibration model. We conducted tests on different solutions, 
and the two most successful methodologies have been integrated into 
the framework. However, the framework offers an interface for defining 
additional methodologies, ensuring its adaptability to diverse calibra
tion solutions. The first methodology included involves a combination of 
tree-based machine learning algorithms with a Voting Regressor (VR) 
associated with Support Vector Regression (SVR) generating a model 
named VR + SVR (explained in detail in Section 4.3). The second 
methodology employs the LSTM deep learning algorithm (further in
formation in Section 4.4). To assess the performance of the calibration 
models, we tested them during a co-location period not included in the 
dataset used for model training. The metrics employed for evaluation are 
detailed in Section 4.2. 

4.1. Database structure 

The structure of the database for storing information related to the 
air quality sensors and the legal stations is shown in Fig. 3. The data 
model was implemented following the standard “ISO 19156:2011 
Geographic information - Observations and Measurements” (ISO 
(2011)) and the TAQE model defined for Traffic and Air Quality Ap
plications in Smart Cities by Martínez et al. (2022). The database is a 
PostgreSQL database with PostGIS extension to handle geospatial data 
and Timescale extension to make SQL scalable for time-series data (i.e., 
sensor measurements). 

At each moment, every device is described by a status and is located 
at a specific point in the city. The status changes when a device is moved 
from one location to another to collect measurements in the new loca

Fig. 1. Two exemplar LCAQ devices: on the left, the sensors are placed inside 
the device and on the right, they are connected externally. 

4 
https://codeocean.com/capsule/0864495/tree  

5 https://github. 

com/ChiaraBachechi/AQCalibrationFramework 
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tion, but also when some problems/failures occur. The device is in 
“running” status when it collects measurements in a location far from a 
legal station; when it is moved near a legal station the status changes to 
“calibration”; “broken” status means that some malfunctions occurred 
causing unreliable measurements, while “offline” indicates that the de
vice is switched off. Moreover, sensor data, legal station data, calibra
tion algorithm parameters, and model configurations are stored in the 
database to facilitate comparison and performance evaluation. In table 
“sensor_low_cost” the identifier of each device is stored along with the 

model name and trademark; while “sensor_low_cost_feature” collects the 
name and the GPS coordinates of all possible locations (features) with 
also the identifier of the legal station if the location is near that legal 
station. Table “sensor_low_cost_status” gives information about where 
each device is located at each moment, which is its status, the timestamp 
of the location change, and the name of the operator who moved the 
device. The measurements are stored in table “sensor_raw_observation”. 
Each record includes 19 measurements: air temperature, humidity, 
battery voltage, and 8 raw measurements (2 measurements per 4 gases: 

Fig. 2. HypeAIR framework functionalities.  

Fig. 3. E/R model of the database to store information related to the air quality sensors, their measurements and calibration and the observations from legal stations.  
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NO, NO2, CO, and Ox). Each record is associated with a timestamp 
(phenomenon_time). Each raw measurement can be calibrated by mul
tiple calibration models. Thus, calibrated data are annotated with the 
date of the measurement, the sensor that has provided it, and the al
gorithm that was used. This structure allows applying multiple cali
bration models and comparing their results. The configuration, the 
hyperparameters, and the training period of each algorithm are stored in 
table “sensor_calibration_algorithm”. The calibration algorithm is asso
ciated with a specific gas by the table “sensor_calibration”. The name 
and position of the legal stations are stored in “aq_legal_station”; while 
“aqls_observation_validated” and “aqls_observation_not_validated” 
collect the measurements of each gas provided by the legal station. The 
distinction between not validated measurements and validated mea
surements is present because the agency that manages the legal stations 
can decide to share firstly not validated data that then undergo a process 
of data repairing and validation. 

4.2. Assessment metrics 

Four metrics are taken into consideration when evaluating the per
formances of the algorithms: Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Mean Relative Error (MRE), and accuracy. 

Given the calibrated value ŷi and the corresponding ground truth 
value yi, RMSE is calculated by the formula: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
Σn

i=1(ŷi − yi)
2

√

where n is the total number of observations. Since the errors are squared 
before they are averaged, the RMSE gives a relatively high weight to 
large errors. On the other hand, MAE measures the average magnitude of 
the errors weighing all the errors in the same way and without consid
ering the error direction, following the formula: 

MAE =
1
n
Σn

i=1∣ŷi − yi∣ 

RMSE and MAE are measured in μg/m3 and can range from 0 to ∞. 
Penalizing large errors has proved to be an effective way to improve the 
performance of calibration models, as reported by Chai and Draxler 
(2014). For this reason, RMSE was selected as the main regression metric 
when evaluating the performances of the methodologies. Moreover, we 
decided to evaluate MRE which is obtained as the mean of the relative 
errors: 

MRE =
1
n
Σn

i=1
|ŷi − yi|

yi 

MRE can be high when the absolute value of the ground truth is low, 
penalizing errors in small values. As suggested by Concas et al. (2021), 
since RMSE, MRE, and MAE are not directly related it can be helpful to 
consider all of them to measure the performances of the algorithms from 
different perspectives. 

Moreover, it is important to take into consideration that indicative 
AQ measures are communicated to citizens through color scale maps 
instead of providing concentrations of pollutants. Several color scales 
with different thresholds are available, we consider the one provided by 
the European Environmental Agency (EEA) (Table 1). Real and pre
dicted values are then associated with the corresponding color in the 
color scale. For each color, a class is created, and we measure the ability 
of our algorithms to correctly predict the right class/color using 

accuracy. Accuracy is widely used in classification problems, and it is the 
ratio between the number of correct predictions and the total number of 
input samples. For multi-label classification, if ŷi is the predicted value 
of the ith sample and yi is the corresponding true value, accuracy is 
defined as: 

accuracy(y, ŷ) =
1

nsamples

∑nsamples − 1

i=0
1(ŷi = yi)

where 1(x) is the indicator function. The value of accuracy can give an 
idea about the significance of the errors in the predicted values. 

For LCAQ sensors, the performances are important to establish the 
application field of the instruments. The two air sensors guidebooks 
(Williams et al. (2014); Clements et al., 2022), published by the United 
States Environmental Protection Agency, propose some guidelines to 
evaluate sensor performances and define their correct use. They also 
suggest considering precision and bias. Precision measures the agree
ment among repeated measurements under identical circumstances or 
substantially similar conditions, and represents the random component 
of the error. It can be estimated as the ratio between the standard de
viation of the raw observations and their average. Precision is calculated 
for each concentration observed by the reference station (rounding to 
the nearest unit). Thus, all the concentrations observed by the reference 
station are rounded to the nearest unit to obtain the expected values (ŷ); 
then, for each concentration ŷc, the precision is evaluated as follows: 

Precisionŷc = σYc

/
Yc  

where σYc is the standard deviation of the Y values that the sensor 
measured for the corresponding concentration ŷc, and the Yc is their 
average. The precision of each class is then evaluated, averaging the 
Precisionc for all the concentrations that belong to the class in the period 
of observation. 

Bias is a systematic error higher or lower than the true value. We 
evaluate the bias for each concentration ŷc rounded to the nearest unit 
as: 

Biasŷc =

(
Yc

ŷc

)

− 1  

where Yc is the average of the calibrated values obtained by the low-cost 
sensors when the legal station measured the reference concentration ŷc. 
Then, the total bias is evaluated as the average of the values of Biasŷc for 
all the concentrations observed by the legal station during the co- 
location period. 

Both precision and bias should be under 0.15 for NO and NO2 and 
under 0.7 for O3 to employ the sensors for regulatory monitoring, based 
on the requirements expressed by Williams et al. (2014). However, if the 
error is lower than 0.20 they can be employed as supplemental moni
toring together with legal stations. 

As recognized by the United States Environmental Protection Agency 
(Clements et al. (2022)), air sensors serve a crucial role in non- 
regulatory supplemental and informational monitoring applications, 
including daily trends, gradient studies, participatory science, educa
tion, hotspot detection. These sensors also contribute to long-term 
changes through epidemiological studies and model verification, 
emphasizing their diverse applications in understanding and addressing 
air quality concerns. 

4.3. VR + SVR calibration methodology 

To define the best-performing algorithms to combine in a Voting 
Regressor (VR), we tested the performances of some well-known ma
chine learning algorithms: Random Forest (RF) (Breiman (2001)), Extra- 
Trees (ET) (Geurts et al. (2006)), Gradient Boosting (GB) (Friedman 
(2002)), Lasso (Tibshirani (1996)), Elastic Net (Zou and Hastie (2005)), 

Table 1 
EEA thresholds.   

C1 C2 C3 C4 C5 

NO, NO2 
(
μg/m3) 0–50 50–100 100–200 200–400 > 400 

O3 
(
μg/m3) 0–80 80–100 100–120 120–140 > 140  
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and Logistic regression (Peng et al. (2002)). The VR takes into consid
eration the three best-performing machine learning models. Each model 
is trained taking in input the whole observation at the current time in
terval t, i.e., the values of air temperature and humidity and the raw 
measurements of the two channels of all the pollutants. In addition, the 
raw observations in the previous time intervals are added to the input. 
Indeed, AQ observations exhibit a temporal nature as time series but the 
above-mentioned machine learning algorithms do not take into account 
the temporal evolution of the data. Their predictions can be improved by 
considering information regarding previous time intervals as supple
mentary features of the algorithm. For instance, to calculate the con
centrations of NO at time t, the algorithms can take as input all the 
features in the current time interval t (i.e., the values of air temperature 
and humidity, the raw measurements NO WEt and NO AUXt, NO2 WEt 

and NO2 AUXt, O3 WEt and O3 AUXt) plus the raw measurements of 
the two electrodes of NO in the previous N time intervals (denoted as 
NO WEt− 1, NO AUXt− 1, NO WEt− 2, NO AUXt− 2, etc.). Features impor
tance (FI) is a built-in property in each employed model and can help to 
define the number of previous measurements to consider and which 
features to take into account (a discussion about the feature importance 
on our specific dataset is reported in Section 5.1). 

The VR is trained through a two steps process. Firstly, the 10-fold 
cross-validation is applied to each regressor to estimate its RMSE. The 
weight wi associated with each regressor depends on its RMSE (RMSEi) 
and is calculated following the formula: 

wi =
RMSEi

RMSEtot
i = 0, 1, 2  

where RMSEtot is the sum of the RMSE values of the three models. Then, 
the entire dataset is used to train the three models separately. Finally, 
the VR model is generated considering the values predicted by each 
model separately and giving them the weight associated with the model 
itself in the first step to evaluate the final result, calculated by the for
mula: 

y =
1
3
∑2

i=0
wi

*yi  

where yi is the value predicted by each model. 
Ensemble regressors are not able to predict values where extrapo

lation is needed, as explained by Hengl et al. (2018); Sinha et al. (2019); 
Meyer and Pebesma (2021). At best, they can predict an average of 
training values seen before, because the regressor assumes that the 
prediction will fall close to the maximum or minimum values in the 
training set. For this reason, we decided to test the performances of 
support vector machines. They construct a hyperplane in a high- 
dimensional feature space and can be used for classification and 
regression problems. In the latter case, they take the name of Support 
Vector Regression (SVR), as described by Basak et al. (2007). SVR at
tempts to minimize the generalized error, rather than minimizing the 
observed training error. This error bound combines the training error 
and a regularization term, that controls the complexity of the space. The 
model only depends on a subset of the training data, since the cost 
function ignores any data that are close (within a threshold ε) to the 
model prediction. To overcome this limitation, we exploited the Radial 
Basis Function kernel that deals with extra range observations. For pa
rameters tuning of SVR, we applied the heuristic presented by Qiujun 
Huang et al. (2012). Input data were pre-processed using a Standard 
Scaler that transforms features by removing the mean and scaling to unit 
variance. 

In our final model, we combine the VR with the SVR algorithm to 
manage out-of-range observations. The SVR algorithm is employed 
when there is at least one feature out of the range of the training set, 
while the VR is used in the other cases. An exemplar demonstration of 
the advantage of using the combination of VR and SVR is reported in 

Fig. 4, where six out-of-range predictions performed by the VR and the 
SVR model are compared. As can be observed, SVR generally predicts a 
value more similar to the actual concentration. However, we conducted 
several tests showing that even if SVR shows better performances for 
out-of-range observations, VR has generally a lower RMSE for all the 
other observations. 

To manage missing values in time series, for each sensor two versions 
of the VR + SVR model are generated: one considering previous obser
vations and another that does not include previous observations as 
additional features, that is used when previous observations are not 
available. 

4.4. LSTM calibration algorithm 

The Long Short-Term Memory (LSTM) architecture, introduced by 
Hochreiter and Schmidhuber (1997), represents a variant of Recurrent 
Neural Networks (RNNs) particularly well-suited for handling temporal 
data sequences. Its distinguishing capability lies in its ability to assimi
late extensive historical sequences to forecast future values. These 
characteristics are achieved through the introduction of a memory cell 
and gating mechanisms into the RNN architecture. This helps to solve 
the vanishing gradient problem commonly encountered during the back- 
propagation process used to update the weights of all the neurons of the 
network. The mathematical mechanism used for this update is multi
plicative, leading to the multiplication of gradients computed in deeper 
layers through earlier network weights. If the multiplication factor is 
small, it results in a vanishing gradient, causing the gradient term to 
approach zero rapidly. This occurrence impedes the network’s ability to 
learn long-term dependencies effectively. 

The input data of the LSTM algorithm include a temporal sequence of 
observations, i.e., the raw measurements of all the pollutants, air tem
perature and humidity of consecutive time intervals. The length of the 
sequence, i.e., the number of consecutive observations, can be fixed 
based on the variability of the data in the use case. 

As shown in Fig. 5, the output of an LSTM cell is based on the cell 
status that keeps a summary of what happened in the past (Previous Cell 
State), the output of the previous element of the sequence (Previous 
Hidden State), and the features of the current observation (Input Data). 
LSTM uses gates (f, i, o) to regulate the amount of past information to 
keep or discard. The forget gate layer is a sigmoid layer that selects the 
information of the current status that needs to be discarded considering 
the hidden state and the current observation. The next step decides 
which new information needs to be stored in the cell state. A tanh layer 
generates a vector that decides how much the cell status components 
will be updated based on the hidden status and the current observation. 
If necessary, the tanh values (that range between − 1 and 1) allow for 
reducing the impact of a component in the cell status. Then, this vector is 
multiplied by the new vector obtained using the input gate layer, a sig
moid layer. This gate identifies which components of the input (the 
current observation) are significant for the cell status. The obtained 
vector is then added to the cell status updating the long-term memory of 
the network (New Cell State). At this point, the updated status is avail
able. To generate the output we need to apply a filter: the output gate 
layer. This gate is a sigmoid layer that generates a filter vector based on 
the hidden state and the current observation. The filter is used to select 
from the updated cell status only the necessary information to generate a 
prevision. The updated status is forced to assume values between − 1 and 
1 through a tanh layer and finally multiplied by the filter vector to 
generate the final output of the model, i.e., the prevision that will be the 
next hidden state (New Hidden Layer). 

When a big amount of data have been collected in co-location with 
the legal station, the LSTM model can be a good method to perform 
calibration. The generated model has the ability to forget a part of the 
past, adapting to changes and drifts in the electrochemical cell. More
over, the capacity to keep a long memory enables to preserve the pat
terns still present in the time series of measurements (e.g., season and 
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weather influence). 
Several configurations of the LSTM architecture were tested and 

compared in Casarotti (2021) showing that a three hidden layer 
configuration of LSTM does not radically improve the performances, and 
with a small training dataset might be affected by overfitting. 

Since the co-location period needs to be as short as possible and deep 
learning models usually need many input data, the implemented solu
tion of LSTM is a trade-off between reaching good performances and 
minimizing the dimension of the training data. 

For this reason, the LSTM model implemented has only one hidden 
layer of y neurons, where y is determined based on the number of 
training observations: 

y =
Ns

α*(Ni + No)

where Ns is the number of samples in the training set, Ni is the number of 
input neurons, No is the number of output neurons, and α is usually a 
value between 5 and 10. 

The LSTM model is trained using the mean squared error (MSE) as 
loss function and the ADAM optimization (Kingma and Ba (2015)). To 
avoid overfitting, a dropout layer is added. The dropout layer, described 
by Özgür and Nar (2020), is a regularization method that randomly 
excludes some inputs from activation and weight updates while training 
a network. Inputs not set to zero are scaled up by 1/(1 − rate) such that 
the sum over all inputs remains the same. The training set is pre
processed using a MinMaxScaler that transforms each feature by scaling 
it to a [0–1] range. The dimension of the temporal window must be 
selected dynamically considering the performance obtained with 
different values on the available dataset. 

5. Real case scenario 

In the specific case of Modena, an Italian city spanning 183 km2, 
there are two legal AQ stations denoted by red dots in Fig. 6. 

Fig. 4. Comparison of extra range predictions of NO obtained by VR and SVR.  

Fig. 5. Structure of the LSTM cell.  

Fig. 6. Points of interest for AQ monitoring (blue dots) and positions of the 
AQM stations (red dots). Map data: Google, 2020. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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One station, situated within a park, serves as the background station, 
measuring ambient pollution levels. The other station, located in close 
proximity to a busy road, functions as the traffic station, specifically 
monitoring the impact of vehicular traffic on pollution. Both stations 
measure NO and NO2 levels every minute, while O3 is exclusively 
observed by the background station. Within the urban area of Modena, 
12 LCAQ sensors are actively monitoring 10 specific locations, as 
depicted by the blue dots in Fig. 6. The location of these sensors has been 
defined by environmental experts. The process of selecting these loca
tions entails a strategic choice of diverse and sparsely distributed points, 
aiming to comprehensively cover the urban area. This placement is 
designed to capture a wide range of pollutant concentrations, contrib
uting to a more thorough and nuanced understanding of air quality 
within the monitored areas. 

From August 2019 to April 2021, we collected 3.3 million records of 
measurements (1.8 GB). For about 20 months, the 12 devices were 
relocated 108 times and 250 status changes (see Section 4.1) were 
recorded. 

The sensors were positioned near legal stations to collect data 
employed in the calibration process (calibration status) and then 
deployed to different points in the city to provide hyper-local AQ 
monitoring (running status). This process of relocating the sensors near 
legal stations is iteratively carried out to collect additional data and 
enhance the calibration. As displayed in Fig. 7, the life cycle is different 
for each sensor. For example, sensor 4006 was located close to the 
background station from August to September 2019. Subsequently, it is 
employed to measure air quality at one designated locations in the city 
in October 2019. Following this, it undergoes another co-location 
period, till the beginning of 2020, but this time in close proximity to 
the traffic station. 

The sensor cells, employed in our use case, are produced by Alpha
sense6 and assembled in a Decentlab Aircube. Fig. 1.a shows the exterior 
(on the left) and interior view of the sensor (on the right). Each device 
provides two raw measures in millivolt (mV) for each pollutant through 
the working (we) electrode and the auxiliary (aux) electrode in addition 
to the air temperature (◦C), the humidity (%) and the battery voltage 
(Rollo and Po (2021)). Inside each AQ box, there are sensors for air 
temperature and humidity monitoring, and 4 AQ electrochemical sen
sors for NO, NO2, CO, and O3. The datasheet of the Decentlab sensors 
(Alphasense (2015)) is tested on a humidity range between 15% and 
85%; thus, observations collected in weather conditions outside that 
range are less reliable. The Modena climate, with the classic continental 
characteristics of the Central Eastern Po Valley, sees particularly hot and 
often muggy summers, and humid climate that often leads to the gen
eration of fog, particularly persistent during the anticyclonic periods, in 
winters. Therefore, between November and March, the humidity is often 
higher than 85%. The percentage of these observations vary according 
to the test season of the experiment: it is less than the 15% of the total 
observations in Exp.2 conducted in summer, and, instead, between 29% 
and 48% for Exp.1, and between 24% and 57% for Exp.3, that are both 
conducted in winter. Indeed, the sensor cells have a noise around 18.75 
μg/m3 for NO and 28.65 μg/m3 for NO2 (Alphasense (2015)); although, 
the mean concentrations observed by the background station are 
generally lower during summer. Since the percentage of observations 
collected in unreliable conditions or underneath the cell noise limit is so 
high, we cannot remove all of them from the input. For this reason, we 
decided to test our models in these critical conditions to verify if our 
calibration methodology can anyway help to provide reliable 
measurements. 

5.1. Calibration algorithms 

The pollutant concentrations provided by the manufacturing com
pany of the low-cost sensors are obtained by the formula: 

Gas concentration =
vGas − vAux − α + β

sensitivity  

where α, β, and sensitivity are parameters specific for each cell, provided 
by the manufacturer, and vGas and vAux are the voltages of the working 
and the auxiliary electrodes, respectively. Considering all the co- 
location periods of each low-cost device in the whole TRAFAIR dataset 
the manufacturer calibration presents an average RMSE of 37 for NO, 53 
for NO2, and 109 for O3, while the accuracy is 0.23 for NO, 0.36 for NO2, 
and 0.44 for O3. The bad performance of the provided calibration 
demonstrates the need for new calibration models trained in the same 
environmental conditions in which the sensors will be used. 

For the configuration of VR + SVR model, we conducted several 
experiments using different regression models. Among them, RF, GB, 
and ET showed the best performances in terms of RMSE and accuracy. 
Since good results were achieved using standard parameters, no tuning 
was required. Therefore, we combine these three models in the VR. Since 
the influence of the previous observations on the actual values can 
depend on the environment and the atmosphere composition, we 
defined the number of previous features to take into account through the 
calculation of the feature importance. Table 2 displays the FI assigned by 
RF to each feature for the prediction of the pollutant indicated in each 
column. It can be observed that, for NO, the most relevant channel is 
NO_AUX, while its past values have decreasing importance: 
FI(no aux) > FI(no auxt− 1) > FI(no auxt− 2). The values of FI highlight 
how NO and NO2 can benefit from a prediction that takes into account 
previous values, proving the validity of our decision to adapt machine 
learning algorithms to handle time series. Similar considerations can be 
extended to ET and GB regressors. Since the importance assigned to past 
features decreases quickly, only the previous two observations were 
taken into account. The feature with the highest value of importance for 
O3 is the temperature. The values of O3 in the previous two observations 
seem to be not significantly correlated to the current value of the 
pollutant. 

For the configuration of LSTM, after evaluating 6, 12, 24, and 48 
previous observations in Casarotti (2021), we decided to fix the tem
poral window to 12 previous observations (i.e., 2 h of observations) for 
our use case. Given the selected dimension of the temporal window (x) 
and the number of features (y), the dataset is reshaped such that each 
observation consists of x rows and y columns. LSTM was also compared 
with different RNN architectures such as Multilayer Perceptron (Marius 
et al. (2009)) and Gate Recurrent Unit (Cho et al. (2014)). LSTM proved 
to have better results than Multilayer Perceptron, reducing RMSE by 
5.70% for NO and by 15.23% for NO2, as shown in Casarotti (2021). 

Before applying our calibration methodologies, both legal station 
data and low-cost sensor data have been aggregated to obtain one value 
every 10 min. Therefore, the calibration process provides one concen
tration value for each device and pollutant every 10 min. 

5.2. Interpolation maps and data visualization 

With the HypeAIR framework, we obtain real-time pollutant con
centrations in each location where sensors are placed. However, to 
perform hyper-local monitoring, we need to generate real-time maps 
showing the air quality in the whole urban area. Interpolation meth
odologies are, therefore, applied for estimating the spatial distribution 
of pollutants to convert spatial discrete information into continuous 
data. We have tried different methodologies (e.g., Nearest Neighbor
hood, Ordinary Kriging, and thin plate spline), and in the end, Inverse 
Distance Weighted shows the best results in predicting the correct values 
in not observed positions (Li and Heap (2014)). The interpolation maps, 6 https://www.alphasense.com/ 
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the time series of calibrated observations, and statistics about historical 
values can be investigated using the Trafair Air Quality Dashboard, 
described in Bachechi et al. (2020, 2022). 

6. Experiments and results 

We conducted three main groups of experiments on the real case 
scenario described in Section 5. The periods during which training and 
testing are performed are co-location periods and they are reported at 
the top of Fig. 7. Due to the very different life cycles, the training and test 
periods of the individual sensors vary a lot. 

The first experiment (Exp.1) evaluates the performances of the 
calibration methodologies in the period that immediately follows the 
training period, therefore all the considered training periods are from 
August to December 2019 and the test periods are from January to 
March 2020. 

In the second experiment (Exp.2), we focus on the impact of the 
duration of the training period on the performance of the two method
ologies to answer the R2 research question; therefore, we considered a 
longer training period w.r.t. Exp.1 (from August 2019 till March 2020) 
while the test period goes from the 15th of June 2020 till the 30th of 
September 2020. 

The purpose of the third and last experiment (Exp.3) was to evaluate 
the performance degradation of calibration methodologies over time, 
answering the R3 research question. In Exp.3, the same calibration 
models of Exp.2 are tested 9 months later, i.e., from the 1st of January 

2021 to the 31st of March 2021. 
All raw and calibrated data, generated in the experiments, are pub

lished as open data and therefore comparable with other calibration 
methodologies: the raw data are available on the regional,7 national, 
and European open data portals; the hourly data of the legal stations are 
available on the Regional Environment Agency (ARPAE) data portal,8 

while, the calibrated observations are published on the project website.9 

Table 3 shows the values of RMSE, MAE, MRE and accuracy derived 
from the averaged performances of sensors within each experiment. 
Each column reports the performances of the two HypeAIR calibration 
methodologies and our baseline, i.e., the methodology employed in the 
TRAFAIR project before the implementation of the HypeAIR framework 
and described by Baruah et al. (2023). The baseline is the RF algorithm, 
a standard methodology presented in the literature, where a linear 
extrapolation function was added to manage out-of-range values. The 
baseline has a training period similar to HypeAIR training period in 
Exp.1 and Exp.2 and longer in Exp.3 (until October 2020). As can be 
seen, in most cases both VR + SVR and LSTM outperform the baseline by 
reducing RMSE. In Exp.3, despite the VR + SVR and LSTM models being 
trained 9 months before the test period, when compared to RF trained up 
to 4 months before, the results indicate that in most cases VR + SVR and 
LSTM achieved superior performance. Moreover, MAE and MRE are 
reduced by at least one of the two HypeAIR methodologies in most cases. 
The accuracy is always improved. 

Since LCAQ sensors are primarily used to gather more information 
about air quality, it is crucial to understand the reliability of their ob
servations, especially as pollutant concentrations increase. To this end, 
we have prepared Table 4, which reports, for the three experiments, 
whether the bias and precision values fall within acceptable limits for 
regulatory monitoring or for supplemental monitoring (as indicated in 
Section 4.2). The bias and precision levels of sensors across the five EEA 
classes are recorded. Dark green indicates high reliability, suitable for 
regulatory monitoring. Light green signifies good reliability for supple
mental monitoring, while white indicates insufficient reliability for 
supplemental monitoring (typically adequate for informative or 

Fig. 7. Experimental periods and sensor status timeline.  

Table 2 
Example of feature importance in Random Forest calibration for each pollutant.  

Feature NO NO2 O3 

NO_WE 0.0170 0.0113 0.0100 
NO_AUX 0.6371 0.0100 0.0138 
NO2_WE 0.0240 0.4838 0.0440 
NO2_AUX 0.0031 0.0748 0.0125 
O3_WE 0.0049 0.0221 0.0130 
O3_AUX 0.0025 0.0096 0.0333 
humidity 0.0187 0.0191 0.0563 
temperature 0.0444 0.0501 0.7460 
pollutant_WEt− 1 0.0037 0.1414 0.0073 
pollutant_AUXt− 1 0.1507 0.0601 0.0058 
pollutant_WEt− 2 0.0029 0.009 0.010 
pollutant_AUXt− 2 0.0110 0.0135 0.0072  

7 https://dati.emilia-romagna.it/  
8 https://dati.arpae. 

it/dataset/qualita-dell-aria-rete-di-monitoraggio  
9 https://trafair. 

eu/datasets/modena_airquality_calibration 
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educational purposes). Gray cells denote that no value is available in the 
experiment. 

The following subsections deepen and detail the results of each 
experiment for individual sensors in order to compare sensor behaviors 

and understand in which context each methodology provides the best 
results. Tables 5, 6 and 7 report the performances obtained in the three 
experiments by each device with superior performances highlighted in 
green and inferior ones in red. In particular, we colored in red the values 

Table 3 
Evaluation of experiments comparing the 10-min predicted concentrations with the non-validated data of legal stations.    

RMSE MAE MRE ACCURACY  

Gas VR + SVR LSTM baseline VR + SVR LSTM baseline VR + SVR LSTM baseline VR + SVR LSTM baseline 

Exp.1 
NO 19.07 15.30 36.64 12.04 9.22 22.08 1.16 1.02 0.90 0.87 0.90 0.78 
NO2 13.52 12.70 19.38 10.46 10.04 12.61 0.45 0.47 0.55 0.76 0.81 0.72 
O3 22.91 21.19 19.66 17.98 14.84 10.83 3.09 2.25 1.25 0.96 0.95 0.89 

Exp.2 
NO 3.76 3.09 7.12 2.15 1.62 4.19 1.16 0.68 0.50 1.00 1.00 0.98 
NO2 9.51 10.25 9.57 6.85 7.55 6.73 0.53 0.54 0.54 0.97 0.98 0.96 
O3 20.66 22.19 26.86 16.08 17.75 22.49 3.05 1.81 2.38 0.91 0.89 0.56 

Exp.3 
NO 13.93 13.39 10.67 7.35 7.45 7.14 1.22 0.91 2.07 0.93 0.93 0.93 
NO2 14.64 13.45 16.35 11.49 10.55 12.63 0.53 0.45 0.50 0.81 0.82 0.74 
O3 19.99 20.37 21.31 15.62 12.27 17.64 1.54 0.71 2.08 0.91 0.91 0.91  

Table 4 
Sensor precision with respect to each EEA class and bias: light green background means the value meets the requirements for 
supplemental monitoring, dark green background for regulatory monitoring. 
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of RMSE and MAE higher than 20 and in green the values lower than 8; 
while the values of MRE are in green if lower than 0.4 and in red if 
higher than 1. In the end, we used green for accuracy higher than 0.9 
and red for values lower than 0.75. In addition, the number of obser
vations in the training set is reported in the column “train size”, while 
the column “% out of range” shows the number of observations in the 
test set with the value of at least one of the two channels out of the range 
between the minimum and the maximum values of the training set. 

6.1. Exp.1 

For this experiment, the training period comprises summer days near 
the background station and autumn days near the traffic station (which 
lacks a reference value for O3) for all sensors. The test periods primarily 
align with the background station during winter, except for sensors 4006 
and 4008, which are in co-location with the traffic station (for these 
sensors, O3 evaluation is not possible as the reference station does not 
measure this gas). Testing the algorithm in winter when the training 
mainly occurs in summer poses a particular challenge for O3 calibration. 
This is due to the gas being highly influenced by radiation, resulting in 
high concentrations during summer and low concentrations during 
winter. In contrast, NO and NO2 concentrations are higher in winter. 

Focusing on NO and NO2, sensors 4006 and 4008 exhibit the most 
promising performances. Both sensors undergo an extensive training 
period near both the background station and the traffic station, followed 
by an immediate test period. The results indicate a very low MRE and 
over 80% of observations with a relative error below 0.20. For these 
sensors, LSTM and VR + SVR are both performing well, the difference is 

negligible. 
Considering O3, the sensors are trained during summer. Conse

quently, during the test period, the predicted values tend to over
estimate O3 concentrations, leading to a decline in performance 
compared to NO and NO2.The top-performing sensors, 4010 and 4011, 
share the same calibration and testing periods, along with a larger 
training dataset. Furthermore, both sensors exhibit very similar distri
butions in O3 concentrations observed during both the training and test 
periods. Conversely, sensors 4004, 4007, and 4012 exhibit the poorest 
performances. Notably, these sensors have smaller training datasets. 
Additionally, sensors 4004 and 4012 were flagged by environmental 
experts during the test period for cell malfunctions. 

The bias values for Exp.1, as presented in Table 4, adhere to regu
latory monitoring standards for the majority of sensors. Additionally, 
the precision for the highest EEA classes of NO and NO2 (indicative of 
high concentrations) is notably good and aligns with regulatory moni
toring criteria for several sensors. This holds true not only for sensors 
like 4006 and 4008, which exhibit good performances in terms of RAE 
and MAE, but also for several others. 

6.2. Exp.2 

In Exp.2 the training period is longer than in Exp.1 and covers 
summer, autumn and winter, while the test period is mainly in summer. 

The performance of NO and NO2 predictions is significantly 
enhanced for all sensors w.r.t. Exp.1. It can be inferred that this is the 
result of conducting tests during the same season (i.e., the same envi
ronmental conditions) of a portion of the training data. Also, for this 

Table 5 
Exp.1 results. 
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reason, there are just 14 “out-of-range” values in this experiment. For 
NO, the high values of MRE (higher than 1) depend on the very low 
concentration of these pollutants during summer. Indeed, the mean 
concentration observed by the legal station during summer is 3.95 
μg/m3 for NO and lower than 25 μg/m3 for NO2. The LCAQ sensors have 
noise around 18.75 μg/m3 for NO and 28.65 μg/m3 for NO2, as reported 
in Alphasense (2015). This explains the high precision errors of NO and 
NO2, which does not allow reaching the requirements for supplemental 
monitoring in most cases, as reported in Table 4. In most cases, VR +
SVR and LSTM have comparable performances. If we consider NO, we 
can notice that VR + SVR always obtained higher values of MRE 
compared to LSTM. 

The prediction of O3 has worse performance w.r.t. NO and NO2. 
However, also for O3 the performances in terms of MRE are better in this 
experiment than Exp.1. On the other hand, the values of accuracy are 
very low. The concentration values of O3 are higher (80.45 μg/m3 on 
average) in the test periods of this experiment compared with the ones of 
Exp.1 (25.28 μg/m3 on average). Fig. 8 shows the distribution of O3 
concentrations of the exemplar sensor 4007 during the training and test 
period in the two experiments. In Exp.2 the distribution of the values 
observed during the test period and the training are more similar. 

Focusing on some particular device, we can report that sensors 4003 
and 4013 were not able to correctly measure humidity and were set to 
broken status during the autumn of 2019 (as can be seen in Fig. 7); thus, 
the data used for calibration were collected before the maintenance and 

the sensors were tested after. This can explain the bad performance of 
these sensors. The NO2 sensor of the device 4004 broke after the cali
bration and was changed on the 17th of June 2020, before the test 
period. Since each cell must be calibrated separately, this experiment 
demonstrates that using a model calibrated on a different cell on the data 
collected by a new cell generates erroneous predictions. 

In contrast to Exp.1 and Exp.3, which underwent a testing period in 
winter and spring where low concentrations of O3 were measured, in 
Exp.2, the values of O3 span a broad range encompassing all five EEA 
classes, as presented in Table 4. It is noteworthy that the precision meets 
supplementary or regulatory monitoring standards, particularly for the 
four highest classes, despite all sensors registered bad performance in 
terms of RAE, MAE, MRE, and accuracy. 

6.3. Exp.3 

In Exp.3, we tested the same calibration models of Exp.2 > 9 months 
later, during the winter of 2021. 

For both NO and NO2, LSTM shows better predictions for sensors 
4005, 4010, 4011, and 4013; while VR + SVR has better performances 
for sensors 4004, 4007, 4009, 4012, and 4014. Analyzing the distribu
tion of the pollutant concentrations registered by the legal station during 
the co-location periods, we observed that the difference between the 
mean values in the training and the test period is lower for sensors 4007, 
4009, 4012 and 4014. Thus, VR + SVR has better performances when 

Table 6 
Results of Exp.2. 
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the distribution of values in the training is more similar to the one of the 
test period. However, when LSTM is performing better than VR + SVR, 
the gain in performance is more significant. 

In terms of bias, the results are good for both NO and NO2. The 
precision of sensors 4005, 4007, 4009, and 4012 is very low for both NO 
and NO2. Sensor 4006 shows a high precision error only for NO. The 
other sensors have very good performances, even reaching the regula
tory monitoring required performances. This is an important result, 
considering that the mean value of the NO concentrations during the test 
period (17.22 μg/m3) was beyond the noise limit of the cell (18.75 
μg/m3). The mean concentration of NO is low because the test periods 
are during the co-location near the background station which is located 
in a green area far away from the most relevant source of pollution, such 
as road traffic. 

For O3 predictions, even if the mean value of RMSE is slightly lower 
for VR + SVR, according to the other metrics the LSTM algorithm per
forms better for the majority of sensors, in particular sensors 4005 and 
4013. A unique exception is represented by sensor 4006, in this case, due 
to the small dimension of the training data for O3, VR + SVR out
performed the LSTM model. The performances of O3 prediction are 
ameliorated for both models compared with previous experiments. In 
Fig. 9, a comparison between the predicted curves for sensor 4012 in 
Exp.1 (March 2020) and Exp.3 (March 2021) is displayed; we can 
observe that in Exp.1 the models were not even able to predict the 
correct trend. In Exp.3, the model has a very similar trend to the ground 
truth curve. These improvements in the results are a consequence of the 

Table 7 
Results of Exp.3. 

Fig. 8. Comparison of distribution ranges of O3 concentrations in the train 
(blue) and test (orange) datasets for Exp.1 (on the left) and Exp.2 (on the 
right). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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inclusion of a winter period in the data used to train the model. 
Exp.3 underwent a test period similar to Exp.1. In terms of bias and 

precision, similar performances can be observed as reported in Table 4. 

7. Discussion 

This section is devoted to answering to R4 research question, i.e. 
exploring what are the factors that most influence the performance of 
the calibration models. Firstly, we discuss the results of the three ex
periments in terms of performances (i.e., assessment metrics) w.r.t. the 
whole test datasets (Section 7.1) and the percentage of “out-of-range” 
values (Section 7.2). Then, we study the dependency of the perfor
mances on the weather conditions (Section 7.3) and try to identify the 
cause of “big errors” (Section 7.4). Finally, we compare the concentra
tions obtained by our algorithms to the validated observations from the 
legal stations (Section 7.5). 

7.1. Performance 

Comparing the results of VR + SVR and LSTM, we can observe that, 
even if in some cases VR + SVR is performing better than LSTM, the 
increase in performance is usually less significant. Instead, in most cases 
where LSTM shows better results it significantly increases accuracy and 
reduces RMSE, MAE and MRE. Nevertheless, in cases where the size of 
the training dataset is restricted, the performance of LSTM models may 
prove to be inadequate. In these cases, the VR + SVR can provide better 
performance than the LSTM. From our experiments, we observed that a 
training period with <4000 observations generates a model unable to 
achieve satisfactory performance levels. 

Moreover, the LSTM model was not able to predict the values of 
concentration in the 13% of test observations due to the absence of a 
long enough sequence of previous observations without missing values 
in the input features. VR + SVR instead is always able to provide a 
prediction, satisfying the requirement of data completeness reported in 
Williams et al. (2014). Therefore, VR + SVR is a good alternative to 
LSTM when there are frequent holes in the time series of measurements 
and when there are not enough past observations to successfully employ 
LSTM. 

With VR + SVR we demonstrated how to overcome the problem of 

tree-based ensemble regressors unable to predict the values whose fea
tures are outside the training range. However, the VR + SVR model is 
affected by a more evident degradation of performance through time 
and may need more frequent re-calibrations. 

7.2. Out-of-range values 

The presence of “out-of-range” inputs during the test period can in
fluence the performances of the models. We evaluate separately the 
performances for “in-range” values and “out-of-range” values. 

Due to the limited dimension of the training dataset and the fact that 
the test period is in a different season w.r.t. the training, Exp.1 is the one 
with the highest concentration of “out-of-range” observations. When 
using the VR + SVR, the MAE on “out-of-range” observations is 
increased by 115% on average, the MRE by 27%, and the RMSE by 80%; 
although, the value of accuracy is decreased by 18%. The degradation in 
performance associated with “out-of-range” values is mitigated through 
the utilization of LSTM. The MAE is increased by 94%, the MRE by 62%, 
and the RMSE by 69%, while accuracy undergoes a reduction of 13%. 

When the “out-of-range” values are only a few percentages of all the 
observed values for a certain sensor, we can assume they are anomalous; 
however, when the percentage of “out-of-range” values is significant (as 
shown in Fig. 10) it means that we are testing on a period where the 
distribution of input features is different from the one on which the 
model is trained; therefore, the model is no more reliable under these 
new conditions. In Exp.1, sensors 4009, 4011, and 4012 have a very 
high percentage of “out-of-range” values for the NO pollutant (26%, 
28%, and 46% respectively). For these sensors, the values of MAE and 
RMSE are lower and the accuracy is higher in “out-of-range” values than 
in “in-range” values, and, in all cases, LSTM performs better than VR +
SVR. Indeed, the iterative nature of the LSTM models allows learning a 
new distribution on the fly; even if VR + SVR can learn the relation 
between a concentration and the features of the current and the two 
previous observations during training, once the model is trained this 
relation cannot be updated. As a consequence, the LSTM performs better 
on “out-of-range” values in 79% of cases. 

In Exp.3, the percentage of “out-of-range” values notably reduced, 
suggesting that, in most cases, these deviations can be regarded as 
anomalies. Evaluating the LSTM model on the “out-of-range” values 
shows a 32% increase in MAE, a 22% rise in RMSE, more than doubling 
the MRE by 105%, and a 3% decrease in accuracy. Conversely, when 
utilizing VR + SVR, there is a 22% increase in MAE, only a 5% rise in 
RMSE, a 92% spike in MRE, and a decrease in accuracy of <1%. In this 
case, the VR + SVR models outperform the LSTM model. 

7.3. Dependency on weather conditions 

Weather conditions (temperature and humidity) strongly influence 
the pollutant concentrations. Nevertheless, in some cases, due to the lack 
of appropriate data, it could be necessary to apply the calibration models 
in a different season w.r.t. the training period. Considering Exp.1, sen
sors 4004, 4007, 4009, and 4014 have a very high percentage of test 
observations whose weather conditions have not been observed during 
the training period (65%, 84%, 85%, and 82% respectively). In these 
cases, the VR + SVR had the worst performances regardless of the pol
lutants. The LSTM learns the relation between weather conditions and 
the pollutant concentration dynamically; thus, if the observations have 
been performed under different weather conditions, the LSTM will have 
better performances than VR + SVR. 

Other important observations need to be made regarding humidity. 
In Exp.1, several observations have been collected with humidity higher 
than 85%, which is the maximum limit for reliable measurements 
indicated in Alphasense (2015). We evaluated the assessment metrics of 
NO prediction considering only reliable observations and observed that 
the MAE and RMSE values for devices 4007, 4009, and 4014 were 
halved. Inconsistent weather conditions primarily affect the 

Fig. 9. Calibrated data of Exp.1 (at the top) and Exp.3 (at the bottom) for 
device 4012. The results refer to the same month (March) of two consecutive 
years (2020 and 2021). 
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performance of NO. The VR + SVR model appears to be particularly 
sensitive to unreliable humidity values, as it demonstrates a noticeable 
performance improvement when excluding these data points. 

Similarly, as reported in Alphasense (2015), the sensors have been 
tested by the manufacturer only for temperature values below 40 ◦C. 
While, in our case, in Exp.2, the percentage of observations with the 
value of temperature higher than 40 ◦C is between 1% and 3%. The 
sensors with the highest percentage are 4004 and 4005. When evalu
ating the performance obtained by removing these observations, the 
errors are significantly reduced. In the case of the NO sensor of the de
vice 4005, the MAE is reduced by >89% by both models. On average, the 
NO2’s MAE is reduced by 21% for LSTM and by 36% for the VR + SVR. 
In the case of O3, the two models behave very differently: LSTM’s MAE is 
worsened by 34%, and VR + SVR’s is increased by 19%. As a conse
quence, it seems to be quite important to remove the observations that 
have a temperature above the reliable condition of 40 ◦C, as the mea
surements performed by the sensors appear to be erroneous. 

In Exp.3 sensor 4005 has the worst performance for O3. A possible 
reason could be that more than half of the observations in the test 
dataset exhibit temperatures and humidity values exceeding the 
maximum or falling below the minimum values observed during the 
model’s training phase. Weather conditions hold particular significance 
for O3 since the ground-level ozone is generated primarily by photo
chemical reactions caused by solar radiations. These reactions occur in 
the presence of precursor pollutants such as volatile organic compounds 
(VOCs) or nitrogen oxides (NOx). 

7.4. Big errors 

We evaluated the absolute error for each observation comparing the 
predicted value and the reference concentration value. Then, we iden
tified “big errors” as those whose absolute value is higher or equal to the 
MAE plus 5 times the standard deviation of the absolute errors. Our 
analysis revealed that a majority of these big errors occur concurrently 
across multiple sensors of different devices. Additionally, some of these 
errors are consistent across both methodologies. 

In the case of Exp.2, on the 27th of July 2020, the VR + SVR and 
LSTM models had very high prediction errors between 2 and 3 p.m.. 
Looking at the weather conditions, we noticed that the temperature 
surpassed the reliable threshold of 40 ◦C, while the humidity was rela
tively low (around 40%). Low humidity at high temperatures can dry out 
the dielectric of the sensor, significantly affecting sensor performance 
(Concas et al. (2021)). 

The big errors for NO2 are very similar for VR + SVR and LSTM; 

mostly during early morning hours and evening. The majority of the 
observations corresponding to these big errors had a very high humidity 
(above 90%) and temperature values significantly lower compared with 
daily values. 

Focusing on NO prediction, the VR + SVR shows big errors that do 
not occur in the LSTM predictions. These big errors occur when the 
difference between the observed NO working channel value and the 
mean of the training observations is high. 

7.5. Validated values 

The reference values of the legal stations collected every minute may 
contain anomalies due to malfunctions. The environmental agency in 
charge of their maintenance applies a data validation process to the one- 
minute data and aggregates them to obtain hourly validated data. 
During this process, anomalies are identified and removed. The valida
tion is not performed in real-time, i.e., at the same time the observation 
is obtained, but it requires some time. Therefore, validated data may be 
available after some days or months. The number of anomalies in the 
legal station data is quite low due to the high precision of the instrument, 
however, in some cases, there is an evident difference between the 
validated value and the hourly average of the corresponding non- 
validated values. In the experiments of Section 6, we compared the 
concentrations predicted by our models with the non-validated values. 
Now, we aim to compare them w.r.t. the validated data. In our experi
ments, the period in which the difference between validated and non- 
validated values is more evident is the second half of January 2020 
(Fig. 11) for both NO and NO2. This period corresponds to the test period 
of Exp.1 for all sensors excluding 4010, 4011 and 4012. Since validated 
values are more reliable, we decided to compare the hourly average 
concentration predicted by the models with the validated concentra
tions. The experiment evaluation obtained considering the hourly vali
dated data of the legal stations is reported in Table 8 and can be 
compared with the values in Table 3. 

The errors in Exp.1 are reduced in all cases except for MRE in NO2 
prediction and the accuracy always increased. We can assume that the 
high errors of the majority of sensors in NO and NO2 prediction are 
caused by the presence of incorrect values in the non-validated data used 
as ground truth. In Exp.2, compared with Exp.1, the errors are 
considerably reduced for all pollutants except for O3. Observing the 
performances of each sensor one at a time, we notice that sensors 4003, 
4004, and 4013 had very bad performances (their MAE was higher than 
55 μg/m3 for both models), the other sensors instead have better per
formances (their average MAE is 14.57 for LSTM and 13.38 μg/m3 for 

Fig. 10. Comparison of predicted and real concentrations of NO pollutant of the device 4009 in Exp.1.  
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VR + SVR). As already discussed in Section 6.2, 4004 is a special case 
employed to demonstrate that calibration needs to be repeated when a 
cell is changed, and 4003 and 4013 both had a broken humidity sensor; 
thus, bad performances were expected. In the end, the hourly results of 
Exp.3 suggest that LSTM is able to reach better performances than VR +
SVR for all pollutants. 

8. Conclusion 

This paper introduced HypeAIR, a new open-source framework 
designed for real-time low-cost sensor calibration. This framework 
demonstrates its capability to handle the entire calibration process for 
any low-cost air quality sensor (LCAQ) and pollutant. Currently inte
grating two effective methodologies, VR + SVR and LSTM, HypeAIR is 
designed to be flexible and customizable, allowing for the incorporation 
of new methodologies. 

Through extensive testing with 12 LCAQ sensors, for NO, NO2, and 
O3 monitoring over 21 months, this study reveals that the two meth
odologies, VR + SVR and LSTM, consistently outperform both the 
original manufacturer calibration technique and the baseline approach 
(i.e., a variation of the Random Forest algorithm). Importantly, these 
methodologies maintain their efficiency over time. 

Furthermore, the paper successfully addresses all the research 
questions initially defined in the Introduction, as reported in the sum
mary boxes below. 

Looking ahead, the exploration of innovative sensor calibration 
methodologies, including the application of neural network Casari et al. 
(2023) and transfer learning techniques, holds promise. We aim to 
investigate and leverage cross-dependencies among LCAQ sensors 
located in different areas within the city. 

R1 Can a tool be developed that is not merely an ad hoc calibration 
solution for a specific sensor and pollutant but is adaptable to a variety of 
sensors? 

Yes, HypeAir has been demonstrated to be a versatile framework and 
can effectively manage the calibration process, making it adaptable to a 
variety of sensors and pollutants. 

R2 Can LCAQ sensor measurements achieve the same reliability as legal 
station measurements? 

Yes, with adequate training data and consideration of different sea
sons, LCAQ sensor measurements can achieve the required reliability for 
supplemental or even regulatory monitoring. 

R3 What is the best solution to ensure that calibration performance is 
maintained over time in a real environment? 

To ensure the consistency of calibration performance over time, it is 
crucial to prevent drifts or substitutions of the sensor cell, as such 
changes would require the generation of a new model. Specifically, the 
LSTM methodology demonstrates greater resistance to drifts, as it can 
dynamically adapt and learn the relationship between evolving envi
ronmental conditions and pollutant concentrations. 

R4 What factors exert the most significant influence on the performance 
of calibration models? 

The primary factors influencing the performance of calibration 
models are changes in weather conditions (seasonality) and the presence 
of out-of-range values in measurements. Performances are generally 
better when pollutant concentrations are high, particularly in winter for 
NO and NO2, and in summer for O3. 

R5 Is it possible to define essential guidelines to be followed by scientists 
embarking on the calibration of low-cost sensors for the first time? 

The essential guidelines for scientists embarking on the calibration of 
LCAQ sensors, as outlined in this study, can be summarized in the 
following key steps:  

• Study AQ observations and gas range values: Begin by examining 
air quality observations gathered at reference stations. Understand 
the range values for the gases intended for monitoring and their 
seasonality. 

Fig. 11. Comparison between validated values (red) and not validated values (green) of NO2 concentrations on January 2020. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Table 8 
Evaluation of experiments comparing the hourly averaged predicted concentrations with the hourly validated data of legal stations.    

RMSE MAE MRE ACCURACY  

Gas VR + SVR LSTM VR + SVR LSTM VR + SVR LSTM VR + SVR LSTM 

Exp.1 NO 15.48 10.87 9.24 6.65 1.02 0.95 0.90 0.92 
NO2 13.07 11.01 10.34 8.50 0.58 0.52 0.83 0.84 
O3 22.10 20.65 17.53 14.51 3.04 2.22 0.97 0.96 

Exp.2 NO 3.55 3.02 2.14 1.62 1.29 0.71 1.00 0.92 
NO2 8.95 9.84 6.49 7.41 0.49 0.52 0.98 0.95 
O3 40.68 43.67 34.07 36.79 24.88 26.40 0.47 0.46 

Exp.3 NO 13.18 12.59 8.12 7.12 1.47 1.02 0.92 0.92 
NO2 14.69 13.39 11.42 10.45 1.06 0.80 0.81 0.82 
O3 21.13 19.03 15.89 12.31 2.64 1.59 0.89 0.89  
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• Consider temperature and humidity variability: Investigate the 
variability of temperature and humidity in your city, as these factors 
significantly impact the performance of LCAQ sensors.  

• Collect adequate training data: Ensure a prolonged co-location 
period, that couples raw measurements from sensors with observa
tions from legal stations, with a substantial number of measure
ments. Aim for a minimum of 10,000 observations for robust 
reliability suitable for regulatory monitoring, or at least 5000 for 
supplementary monitoring.  

• Diversify training periods and stations: Conduct training in 
different periods and at various stations, if available. Prefer seasons 
characterized by higher pollutant levels and stations with elevated 
concentrations.  

• Implement data cleaning process: Apply a data cleaning process to 
identify and rectify anomalies. Address anomalies in both legal sta
tion measurements and LCAQ raw observations to enhance the 
overall calibration results. 
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Tarkoma, S., 2021. Low-cost outdoor air quality monitoring and sensor calibration: a 
survey and critical analysis. ACM Trans. Sen. Netw. 17 https://doi.org/10.1145/ 
3446005. 

De Vito, S., Esposito, E., Salvato, M., Popoola, O., Formisano, F., Jones, R., Di Francia, G., 
2018. Calibrating chemical multisensory devices for real world applications: an in- 
depth comparison of quantitative machine learning approaches. Sensors Actuators B 
Chem. 255, 1191–1210. URL. https://www.sciencedirect.com/science/article/pii/ 
S0925400517313692. https://doi.org/10.1016/j.snb.2017.07.155. 

De Vito, S., Esposito, E., Massera, E., Formisano, F., Fattoruso, G., Ferlito, S., Del 
Giudice, A., D’Elia, G., Salvato, M., Polichetti, T., D’Auria, P., Ionescu, A.M., Di 
Francia, G., 2021. Crowdsensing iot architecture for pervasive air quality and 
exposome monitoring: design, development, calibration, and long-term validation. 
Sensors 21. URL. https://www.mdpi.com/1424-8220/21/15/5219. https://doi.org/ 
10.3390/s21155219. 

Fang, W., Zhu, R., Lin, J.C.W., 2023. An air quality prediction model based on improved 
vanilla lstm with multichannel input and multiroute output. Expert Syst. Appl. 211, 
118422. URL: https://www.sciencedirect.com/science/article/pii/S0957417 
422015263 https://doi.org/10.1016/j.eswa.2022.118422. 
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