
Bird’s–Eye View Image for the Localization

of a Mobile Robot by Means of

Trilateration

Lorenzo Sabattini ∗ Cristian Secchi ∗∗ Cesare Fantuzzi ∗∗

Alessandro Stefani ∗∗

∗ Department of Electronics, Computer Sciences and Systems (DEIS),
University of Bologna, Italy.

e–mail: lorenzo.sabattini2@unibo.it
∗∗ Department of Sciences and Methods of Engineering (DISMI),

University of Modena and Reggio Emilia, Italy.
e–mail: {cristian.secchi, cesare.fantuzzi}@unimore.it

Abstract: In this paper we introduce a method for the localization of a low–cost mobile robot,
based on the use of a monocular camera. We consider a robot moving in a bi–dimensional
environment, where some landmarks are placed in known positions. The acquired image of the
environment is converted into a bird’s–eye view image, used to measure the distance of the robot
from the landmarks, to compute the robot’s position by means of trilateration. The proposed
strategy is able to compute both the position and the orientation of the robot.
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1. INTRODUCTION

In this paper we introduce a method for the self localiza-
tion of low–cost autonomous mobile robots moving in a
bi–dimensional environment. This method is based on the
use of a monocular camera to measure the distances from
some known landmarks. We consider a bi–dimensional en-
vironment because our aim is to develop a visual localiza-
tion system for low–cost wheeled mobile robots, moving on
the ground floor. Our objective is to make the robot able
to estimate its current position and orientation, starting
from completely arbitrary and unknown initial conditions.

Since localization is a fundamental issue in the mobile
robotics field, several strategies have been developed to
solve it. Our method is based on the principle of trilatera-
tion, which is widely adopted in mobile robots localization.
Using trilateration, the position of the mobile robot is
computed based on the measurement of the distances from
three (or more) landmarks, whose positions are known
in advance. One of the most used techniques based on
trilateration is the Global Positioning System (GPS), that
is trilateration using satellites as landmarks. As is well
known, this technique is very effective for outdoor local-
ization, but is not suitable for indoor scenarios (Jin et al.,
2006).

The use of vision sensors to solve the localization problem
is motivated by the the fact that cameras are cheap sensors
(if compared for example with laser scanners), but the
acquired information is very rich. In fact, characteristics
like colors and shapes can be easily extracted by images.
By the way, the acquisition of images can be affected
by changing in the light sources, or by the unexpected

appearance of shadows. These problems must be taken into
account during the image processing.

Most of the visual localization techniques are based on
the use of multiple views, obtained by means of multiple
cameras, or by means of multiple acquisitions of the
same scene from different points of view (see for example
(Davison et al., 2007) and references therein). The main
drawback of this kind of techniques is in the fact that
the elaboration of multiple images is computationally
heavy, making it not suitable for obtaining good real–time
performances on low–cost robots.

Our main idea is to use landmarks placed on the ground
floor. This choice allows us to exploit some existing land-
marks that are almost always present on the floor in
industrial environment, like colored stripes. Furthermore,
if there are not enough features that can be used as
landmarks, it’s easy to add some colored landmarks on
the floor, without creating obstacles for the movement of
the vehicles.

As described for example in (Calabrese and Indiveri, 2005),
omnidirectional cameras can be used to acquire the posi-
tions of known landmarks. Omnidirectional cameras are
obtained exploiting a camera facing a curved mirror, that
gives the camera a 360–degree field of view. In order to
obtain a simpler and cheaper system, our interest is in
localization techniques based on the use of single (monoc-
ular) cameras. In (Betke and Gurvits, 1997) a powerful
strategy for landmark–based localization of mobile robots
has been introduced. This strategy can compute the po-
sition of the robot measuring the bearing of some known
landmarks, given that they are not in some singularity
configurations. In (Leung et al., 2008) the authors describe



a localization method that exploits the prior knowledge of
aerial images of an area, to compute the position of the
robot. More specifically, the camera acquires the images,
and landmarks (in this case, landmarks are the buildings’
boundaries) are recognized. The current position of the
robot is computed by means of particle filters, exploited
to associate the acquired landmarks to the landmarks of
the aerial image.

To avoid dealing with full aerial images of the environment,
our localization strategy is based only on the knowledge
of the position of a certain number (at least three) of
small colored landmarks, placed on the ground floor. Their
positions can be completely arbitrary, but must be known
in advance, and stored in a look–up table. By means of a
simple calibration procedure, it is possible to obtain the
matrix that defines the planar homography that allows
the system to convert the acquired image into a bird’s–eye
view image of the environment, that is a top–down image,
equivalent to an aerial one. Once obtained the bird’s–eye
view image of the environment containing the landmarks,
the position of the robot can be computed by means of
the trilateration technique. By means of simple geomet-
rical considerations, the orientation of the robot can be
computed as well.

The paper is organized as follows. In Section 2 the method
to obtain the bird’s–eye view image is described. In
Section 3 the bird’s–eye view image of the environment
is exploited to compute the position and orientation of
the robot. In Section 4 we describe the implementation of
the localization strategy on real low–cost robots, and we
present some experimental tests. Some concluding remarks
are given in Section 5.

2. BIRD’S–EYE VIEW

To acquire an image of the environment, the robot is
equipped with a monocular camera. The camera is in the
front of the robot, opportunely inclined to be able to frame
a significant portion of the floor. Since the camera is not
on the ceiling, the floor is not acquired from a top–down
perspective: thus, the ground floor appears deformed in
the acquired image.

To measure the horizontal distance of the robot from
some landmarks placed on the floor, we need a top–down
image, which we define a bird’s–eye view image of the
environment. In fact, in a bird’s–eye view image, the
horizontal distance between two points can be directly
measured, as in a map.

Thus, in this section we describe how to convert the robot’s
view of a scene into a bird’s–eye view. What we need is
the matrix that defines the planar homography that relates
the ground plane with the camera plane. To do this, we
refer to the procedure described in (Bradski and Kaehler,
2008).

Let Q be a point in the real reference frame, and q be the
corresponding point in the camera reference frame. The
real reference frame is three–dimensional, while the camera
reference frame is bi–dimensional. More specifically, we can
express Q and q as

Q = [X Y Z]T (1)

q = [x y]T (2)

Expressing these point into homogeneous coordinates, i.e.:

Q̃ = [QT 1]T

q̃ = [qT 1]T
(3)

the homography that relates Q̃ to q̃ can be represented by
the matrix H :

q̃ = HQ̃ (4)

This matrix H defines a rotation and a translation that,
in our case, relate the ground plane to the camera plane.
Thus, in order to define H , we need six parameters: three
to define the rotation, and three to define the translation.
Since our aim is to localize a robot moving on a plane,
without loss of generality we can define this plane as the
one with Z = 0. On this plane, each point is defined by
a couple (X, Y ). Acquiring three point, whose positions is
known a priori, gives us six equations, that enable us to
find the parameters that define the matrix H . Thus, the
procedure to obtain matrix H is the following:

• placing on the ground plane (at least) three points in
known positions;

• acquiring the image of the scene;
• solving the system of equations, to compute the

parameters that define H .

In principle, three points are enough. In practice, due to
the errors in the acquisition system, it’s better to acquire
several points, and find out statistically the matrix H
that best fits the observations. Chessboards are often used
to compute these matrices: in fact, they provide several
points that are easy to acquire (the corners), and they are
described by a simple regular pattern, which is quite easy
to deal with.

The procedure described so far to define the matrix
H is quite elaborate, and requires heavy computation.
Nevertheless, since the matrix H is constant once the
camera is fixed on the robot, it doesn’t need to be
computed at runtime. More specifically, the computation
of the matrix H is performed only once, during the initial
calibration procedure.

In Fig. 1 an example of the computation of a bird’s–eye
view image is shown. Fig. 1(a) shows the image of the en-
vironment that has been acquired by the camera. Fig. 1(b)
shows the corresponding bird’s–eye view, computed by
means of the application of the homography defined by
the matrix H .

We want to remark that in the bird’s–eye view image
only the objects that are on the ground floor are correctly
represented. An example can be seen in Fig. 1: the red
object in the top right–hand corner of Fig. 1(a) is on the
wall, and it is heavily deformed in Fig. 1(b). Thus, to have
meaningful measurements, all the reference points must be
placed on the ground floor.

Fig. 1(c) shows the bird’s–eye view image of the ground
floor. It can be noted that, as desired, straight and parallel
lines on the ground floor are represented as straight
and parallel lines on the image. This means that the
real distance between two objects is proportional to the
distance between the same two objects in the image.
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Fig. 1. Camera–view image and bird’s–eye view image

Fig. 2. Estimation of the position of the robot by means
of trilateration

3. POSE ESTIMATION

In this section we will describe how to estimate the
pose of the robot, by means of the measurement of its
distances from some landmarks whose positions are known
in advance. With the term pose we mean both the position
and the orientation of the robot.

The position of the robot is estimated by means of the
trilateration principle (Thomas and Ros, 2005), described
in Fig. 2. The robot (the black star in the picture) mea-
sures its distance from three landmarks (the colored dots
in the picture) whose positions are known in advance,
with respect to some absolute reference frame. Let Ri be
the distance of the robot from the i–th landmark, whose
position is xi ∈ R

2: the robot is on a circumference with
radius Ri and center xi. Thus, acquiring the distance from

three landmarks, the position of the robot is computed as
the geometrical intersection of three circumferences with
radius Ri and center xi, with i = 1, 2, 3.

Since we assume that the camera is fixed on the robot,
finding the orientation of the robot is equivalent to finding
the orientation of the camera, as it is shown for example
in Fig. 3, where θ is the orientation of the robot.
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y

θ

Fig. 3. Finding the orientation of the robot is equivalent
to finding the orientation of the camera

We compute the orientation θ by means of the computa-
tion of the positions of two auxiliary points, namely p1

and p2. As shown in Fig. 4, p1 and p2 are the intersections
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Fig. 4. Computation of the orientation

of the camera axis with the bounding of the bird’s–eye
view image. Once estimated the positions of p1 and p2 by
means of the trilateration principle, the orientation θ can
be computed as follows:

θ = atan2 ((xp1
− xp2

) , (yp1
− yp2

)) (5)



Fig. 5. iRobot Roomba mobile robot equipped with Gum-
stix computer and Linksys IPCamera

where atan2 is the two–arguments four quadrants arctan-
gent, p1 = (xp1

, yp1
), and p2 = (xp2

, yp2
).

4. IMPLEMENTATION AND EXPERIMENTS

4.1 Experimental setup

To validate our localization strategy, we developed some
experimental tests on a low–cost mobile robot. The total
cost of our experimental setup is approximately 600 euros:
thus, this is quite appropriate for educational purposes.
Inspired by (Matarić et al., 2007), our mobile robot is
based on an iRobot Roomba vacuum cleaner 1 , controlled
by means of a Gumstix Connex board 2 . Gumstix is a
miniaturized Linux computer, that can be connected to
the Roomba via serial port, controlling the wheels’ motors
and reading data from the sensors. Furthermore, it is
equipped with an expansion board that provides WiFi
connectivity. As shown in Fig. 5, we equipped our mobile
robot with a camera. More specifically, we used a Linksys
WiFi IP–Camera, generally used for video surveillance
purposes.

The robot is controlled by means of the Player Robot
Device Interface 3 , while the acquisition and elaboration of
the images is developed by means of the OpenCV libraries
(Bradski and Kaehler, 2008). The Gumstix computer runs
the Player server, while the control strategy and the
elaboration of the images are implemented on a remote
personal computer, which controls the robot exploiting
a WiFi network. We want to remark that the use of a
remote personal computer is motivated only by the limited
computational resources of the Gumstix board.

In our implementation, the landmarks are identified by
means of small–size colored dots. A look–up table is stored
into the memory of the robot that allows the software to
associate the color of each landmark with the position of
its barycenter. To find the position of the barycenter on
the bird’s–eye view image, a filter is applied for each color
that defines a landmark, to find the pixels in the image
that match each landmark’s color. Then, the barycenter is
computed averaging the coordinates of these pixels.
1 http://www.irobot.com
2 http://www.gumstix.com
3 http://playerstage.sourceforge.net

The position of the barycenter of the robot is defined as
the position of the point p2 in Fig. 4 plus an offset. This

p2 p1

b
robot

offset

camera

Fig. 6. The position of the barycenter b of the robot is
defined as the position of point p2 plus a constant
offset

offset (Fig. 6) is constant, once the camera is fixed on the
robot, and is measurable during the calibration procedure.
Thus, once computed the position of the each landmark,
the distances of the robot from each landmark can be
easily computed. The distances are computed in pixels, but
can be converted into meters by means of an appropriate
scale factor. Even this scale factor is constant once the
camera is fixed on the robot, and is measurable during the
calibration procedure.

4.2 Measurement errors

The measurement of the distances is affected by an error.
This error is caused by many factors, like imprecisions
during the computation of the homography matrix H ,
shadows due to imperfect light conditions, or imperfection
of the camera lenses.

As described before, the trilateration principle describes
the position of the robot as the geometrical intersection
of three circles (Fig. 2). With real measurements, the sit-
uation will be similar to the one described in Fig. 7: due
to the errors in the measurements of the distances, the
circumferences do not intersect in one point. As described
for example in (Menegatti et al., 2006), one way to deal

p1

p2

p3

p′
1

Fig. 7. Errors in the measurements of the distances



with uncertain measurement is to use optimization tech-
niques like Monte Carlo algorithm. Another strategy to
deal with these uncertainties is to compute the intersection
of probabilistic (Gaussian) distribution, as described for
example in (Liu and Zhou, 2007). Since these methods are
computationally heavy, we describe a simplified method to
find the position with uncertain measurements:

• We compute the geometrical intersection of two cir-
cumferences, namely the first one and the second one
(e.g. the red one and the blue one in Fig. 7), thus
finding two points (p1 and p′1 in Fig. 7).

• We search which one of the previously defined two
points best fits the third circumference (p1 in Fig. 7).

• We iterate the procedure, exchanging the role of the
circumferences. This allow us to find two other points
(p2 and p3 in Fig. 7).

• The position of the robot is computed as the average
of the positions of these three points (p1, p2 and p3

in Fig. 7).

This technique is quite easy to implement, and is quite fast
even on low–performance devices.

4.3 Experimental tests

The experimental test we developed aims at highlighting
the improvement in the localization accuracy of a mobile
robot using this visual localization technique based on tri-
lateration on a bird’s–eye view image of the environment.

More specifically, we want to compare the accuracy in the
localization using pure odometry, and using the method
described in this paper. Regarding the localization using
the odometry, we compensated the systematic errors by
means of the strategy described in (Borenstein and Feng,
1996). Nevertheless, as well known, odometry is affected
by accidental errors (e.g. due to wheels slippage) that ac-
cumulate during the movement of the robot, thus making
the localization error diverge.

Another problem of the localization using pure odometry
is in the setting of the initial pose: in fact, the initial pose
must be exactly known, and small errors in the initial pose
(in particular in the initial orientation) generate big errors
in the localization. Conversely, using the trilateration, the
initial pose can be completely arbitrary and unknown,
since the robot can compute its pose using an image of
the environment.

The experimental test we have developed is quite sim-
ple (Fig. 8). The task of the robot is to reach a goal
position. The robot’s initial pose is completely arbitrary
and unknown in advance. Thus, the robot first localizes
itself looking for the landmarks (turning around itself),
to compute it’s initial pose. Then, using odometry, it
moves to the goal position. When the position computed
by the odometry is equal to the goal position, the robot
localizes itself with the trilateration, looking again for the
landmarks (turning around itself).

We repeated our experimental test several times, always
using different arbitrary initial positions (and orienta-
tions), chosen randomly inside a circle with radius equal to
2 meters, centered in the goal position. From the analysis
of the results, it turned out that the localization error
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Fig. 8. Experimental tests: starting from unknown initial
position, the robot has to localize itself and reach a
given goal position
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Fig. 9. The localization algorithm has been tested for
different positions of the robot: the red crosses cor-
respond to the real positions of the robot, the blue
dots correspond to the positions estimated by the
localization algorithm

decreased by approximately 20% with respect to the pure
odometry localization.

At a first glance, the improvement appears not to be much
relevant. But we want to remark that the distance traveled
using only the odometry for localization is really short: as
is well known, on short distances the odometry performs
quite good.

We chose not to make the robot travel a longer path
because otherwise the odometry measurement would have
been almost completely meaningless, due to the error ac-
cumulation. Conversely, the trilateration on the bird’s–eye
view image of the environment is not affected by the
traveled distance. From our experimental tests, it turns
out that the mean error in the measurement of the position
is approximately 7cm, with a standard deviation of 3cm.
Some of the data collected during our experimental tests
are shown in Fig. 9, while some statistics about the same
data are shown in Fig. 10

5. CONCLUSIONS

In this paper we have described a strategy for the self
localization of an autonomous mobile robot, based on the
use of a monocular camera. The key point of the strategy
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Fig. 10. Frequency of the estimation errors (in blue, solid
line) and approximated normal distribution (in red,
dashed line)

is to convert the image of the environment acquired by
the camera into a top–down bird’s–eye view, to be used to
measure the distance of the robot from some landmarks.
The landmarks are placed on the ground floor, and their
positions are known in advance, and recorded into a
look–up table. By means of a simple geometrical analysis
of the bird’s–eye view image, it is also possible to compute
the orientation of the robot.

To validate our strategy, we developed several experimen-
tal tests, to highlight the improvement in the localization
accuracy with respect to the use of pure odometry. The
main advantage in using a localization technique based on
the vision is the fact that the initial pose can be completely
arbitrary and unknown in advance. Furthermore, we found
out that, as expected, our strategy does not accumulate
error while the mobile robot travels, which is one of the
main problems with the odometry.

The aim of this paper is to describe a low–cost vision based
localization strategy for mobile robots. This objective is
obtained simplifying the online computation as more as
possible. In fact, the matrix that defines the projection
is to be computed only once, during the initial calibration
phase. After that, once obtained the bird’s–eye view of the
environment, the measurement of the distances is trivial,
and computationally simple. Despite this computational
simplicity, with this localization strategy the robot is able
to autonomously find its position and orientation with
respect to a given reference frame.

Regarding the localization accuracy, we obtained that the
mean error in the measurement of the position is approxi-
mately 7cm, with a standard deviation of 3cm. To improve
this result, it is possible to use a camera with better per-
formances, which introduces less deformations, and which
is less sensitive to changes in the light conditions of the en-
vironment. Another point to improve the performances is
to refine the strategy to deal with the measurement errors,
described in Section 4.2. In fact, to avoid heavy computa-
tion we have introduced a simplified averaging strategy,
but probably considering the composition of probability
distributions could improve the accuracy.

Current work aims at implementing this localization strat-
egy in cluttered environment, where several landmarks are

placed on the ground floor, but only a reduced number of
them are visible at each time.

Furthermore, we are studying how to reduce the influence
of the light conditions, to be able to use this localization
strategy also in outdoor environment.
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