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Abstract

ARIAC is a robotic simulation competition promoted by NIST annually since 2017, aiming to present competitors’ with
contemporary industry problems to be solved using agile robotics. For the 2023 competition, ARIAC competitors must
perform assembly and kitting tasks by controlling four autonomous ground vehicles (AGVs), one floor-based robot, and one
ceiling-based (Gantry) robot in an attempt to overcome a range of agility challenges in the supplied simulated environment,
itself based on the Robot Operating System (ROS 2) and Gazebo. The 2023 competition also included a “human” agility
challenge, comprising a (simulated) human operator working among robots on the factory floor. This development was
motivated by the fact that, while robots and automation play an increasingly significant role in modern manufacturing, there
still remains a close relationship between machines and humans. They should complement each other’s strengths and cover
each other’s limitations while also observing any required safety rules. For example, the ISO standard “Robots and Robotic
Devices — Collaborative robots” (ISO 15066:2016) prescribes the distances required between humans and robots. Within the
ARIAC simulation environment, each human operator is controlled using autonomous Belief-Desire-Intention (BDI) agents.
At the same time, competitors can monitor the position of each human operator at any time by subscribing to the relevant
ROS topic. In this article, we analyse the effects of this (simulated) human presence in the 2023 ARIAC competition and
perform a detailed analysis of how the three different human personalities that were implemented affect the assembly tasks
undertaken at the four different locations of the assembly stations. Given how the system is currently implemented, it appears
that the influence of each encoded personality on the competitors is not as predictable as anticipated. We expand on why this
may be a problem when addressing real collaborative spaces involving humans and industrial robots and the improvements
that can be undertaken to mitigate the ensuing problems.

Keywords Human-robot collaboration - Intelligent systems - BDI agents - Robot motion planning

1 Introduction

The US National Institute of Standards and Technology
(NIST) has been organising the “Agile Robotics for Indus-
trial Automation Competition” (ARIAC)' annually since
2017 [1]. The ARIAC competition brings together researchers
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and industry professionals to address challenges in agile
robotics that the industrial sector is now encountering. The
primary goal of ARIAC is to provide real-life manufactur-
ing scenarios in which humans and robots collaborate in a
low-volume, high-mix workload in a shared environment. As
highlighted in [2], the synergy of skills of both robots and
humans will be essential in the smart factories of the future.
For example, humans can carry out regular inspection visits
to look for subtle defects or inconsistencies that our machines
might miss. They can also reach every spot of the work-cell
relatively quickly to intervene, for instance, in case of mal-
function or unexpected behaviour. Humans can also perform
periodic maintenance and occasional repairs and, not least,
a human presence can also benefit the wider workforce’s
morale.
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The importance of human involvement in automation has
led to a new human-related challenge being introduced in the
ARIAC 2023 competition. This challenge involves a (sim-
ulated) human operator moving along the factory floor to
supervise four workstations. In addition to controlling a ceil-
ing robot® to perform the assembly tasks, competitors must
also, for safety reasons, avoid close contact between such
a Gantry robot and the human operator patrolling the fac-
tory floor. The Gantry robot is required not to get any closer
to the human operator than the distances established in the
ISO 15066:2016 standard (“Robots and robotic devices —
Collaborative robots”), which addresses safety issues around
robot speed and separation [3]. Following these safety rules
is paramount, as having humans and robots share a collabo-
rative space can be dangerous. Recently, in South Korea, a
robotics company employee was killed by a robot while per-
forming an inspection procedure [4]. The same news item
states that, some months before, another worker was injured
by a robot in an automobile manufacturing plant. Conse-
quently, in ARTAC 2023, competitors’ are penalised if these
ISO restrictions are violated.

ARIAC’s environment is based on the Robot Operating
System (ROS 23) [5], an open-source framework that pro-
vides a wide variety of libraries and tools for creating robot
software, complemented by Gazebo* [6], a 3D physics-based
simulator. The combination of ROS-2 and Gazebo provides a
versatile and practical platform for the development, testing,

and refinement of robotics applications’.

1.1 Representing Humans via Cognitive Agents

As described by Wooldridge [7], an agent is an abstrac-
tion developed in order to capture autonomous behaviour in
complex and dynamic systems. An agent is also defined by
Russell and Norvig [8] as an entity that “‘can be viewed as per-
ceiving its environment through sensors and acting upon that
environment through effectors”. In agent architectures for
autonomous systems, decision-making is encapsulated as a
component programmed as an agent within a more extensive
system. Since decision-making is encapsulated within these
components then they are required to be, as much as possible,

2 Ceiling robots are also referred to as Cartesian or Linear robots. When
the horizontal member is supported at both ends, as in the current work,
they may also be called ‘Gantry’ robots. This terminology is provided
by the ARIAC 2023 documentation and used throughout this paper.

3 https://github.com/ros2
4 http://gazebosim.org/

3 Certain commercial products or company names are identified here
to describe our competition. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply
that the products or names identified are necessarily the best available
for the purpose.
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rational agents. These are loosely described as agents that
will try to “do the right thing” [8].

Since the 1980s, this agent approach, and the con-
cept of rational agents in particular, has spawned a vast
range of research [9—14], not only regarding the philosophy
behind autonomous decision-making but also around pro-
gramming frameworks and practical industrial exploitation.
Among these, the Beliefs-Desires-Intentions (BDI) model of
agency [15], inspired by Bratman’s theory of human practical
reasoning [16], has emerged as the predominant mechanism
for implementing rational decision-making. (Agents follow-
ing this approach are alternatively referred to as cognitive
agents.) As highlighted in [17], using rational agents with
deliberative capabilities allows us to reduce development
time, create programs with reduced descriptive complexity,
and capture some basic “human-like” behaviours. A further
aspect that motivates this use of BDI agents is that they ensure
both transparency and verifiability (and, therefore, high lev-
els of explainability and trustworthiness) [18].

Following the principles described in [19], we here assume
the use of a hybrid agent architecture, with a BDI agent simu-
lating the high-level decisions of the simulated human. More
specifically, the implementation of the “human-like” agent
was provided in Jason [20], a well-known BDI programming
language [21]. (The details of our BDI agent implementa-
tion of humans in ARIAC was initially presented in [22].)
Even though the simulated human always undertook the same
inspection task, we designed the agent so that it could assume
different behaviour types — from now on we refer to these
types as “personalities”. Our aim in having different person-
alities is to allow varying levels of interference to the Gantry
caused by the human operator. Three different personalities
were developed, termed: helpful, indifferent, and antagonis-
tic.

1.2 Paper Contributions and Outline

This paper is devoted to discussing the results of the 2023
ARIAC competition and how the human agent presence
impacts competitor behaviour. More specifically, examine
evidence highlighting whether the different human person-
alities have the expected impact. We analysed two trials
executed by ARTAC 2023 finalist teams and also conducted a
more detailed analysis around how the three different human
personalities affected assembly tasks conducted at the differ-
ent locations (workstations) on the factory floor. Our results
allow critical reflection on how humans and robots should
coexist and collaborate in a shared space. They also open
new perspectives on how the simulation scenario for future
ARIAC editions could be improved.

A further contribution from this paper involves providing
additional details about the ROS 2 components developed to
allow the use of BDI agents within ARIAC 2023. This should
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be of broader interest not only for future ARIAC competitors,
but also for research groups that reuse our simulation scenario
for their own research.

The paper is organised as follows. Section 2 describes the
ARIAC competition, including the human agility challenge,
and the different personalities that were implemented for the
simulated human operator. Section 3 presents the software
architecture for the overall ARIAC simulation environment,
explaining how we integrate the synthetic humans in to it. The
cognitive agent developed for controlling the human opera-
tor is further detailed in Section 4. We evaluate the influence
of the different human personalities on the competitor scores
in ARIAC 2023 in Section 5. Finally, we present our conclu-
sions in Section 6.

2 The ARIAC Competition

As indicated above, ARIAC is an annual simulation-based
competition that seeks to overcome the challenges currently
confronting the industry around agile robotics. ARIAC’s pri-
mary objective is to evaluate the “intelligence” of industrial
robotic systems using agility metrics, ultimately enhancing
both the autonomy and the productivity of these robots once
deployed in manufacturing environments. This reduces the
need for human workers to spend excess time on the, poten-
tially hazardous, factory floor. Competition participants must
develop control systems for both a floor robot and a ceil-
ing robot (also termed a “Gantry robot”). The floor robot is
used for ‘kitting’ tasks, while the Gantry robot supports both
‘assembly’ and kitting tasks.

Assembly is a manufacturing process during which inter-
changeable parts are (usually sequentially) added to an
artefact to create the “end product”. In ARIAC, assembly
is simplified by allowing competitors to place parts in any
order. For an assembly task, competitors are expected to use
parts located on an AGV and to assemble those parts at one
of the four “assembly stations”. Kitting is a manufacturing
process that groups together separate but related parts as one
unit. For a kitting task, ARIAC competitors are expected to
(a) place a kit tray onto one of the four AGVs, (b) place parts
onto that kit tray in a specific quadrant, (c) direct the AGV to
the warehouse, and (d) evaluate the submitted kit for scoring.

The ARIAC 2023 simulation and control environment
uses Gazebo and ROS 2. The elements of this environment
required to enable competitors to execute it and to develop
and test their robotic control solutions are freely available for
download®. The simulation environment (the Gazebo world)
in which the ARIAC 2023 competition occurs is shown in
Fig. 1. This image shows the Gantry robot performing an

6 https://github.com/usnistgov/ARIAC

assembly task at assembly station AS #1, with support from
AGV-2.

Previous to designing ARIAC in 2017, NIST analyzed
other robotics competitions to ensure that they needed to
further address industrial robotic agility. An example of ana-
lyzed competition was the Amazon Picking Challenge [23],
which assessed the capability of robots to perform some of the
everyday pick-and-place operations that humans currently
perform. The Robot Perception Challenge [24] was another
competition relevant to our agility challenges; the objective
of this competition was to stimulate advancements in sens-
ing and perception technologies for the next generation of
robots. ARTAC was explicitly created to assess and evaluate
the realm of Industrial Robot Agility comprehensively, as no
other competitions effectively tackled this particular niche.

Agility challenges are broadly framed in ARIAC to
encompass a range of issues and considerations, such as
(i) task failure identification and robot recovery, (ii) auto-
mated planning to reduce (or eliminate) the time required
for robot re-programming when introducing a new task, and
(iii) operation in fluid environments, where robots can sense
their environment and perform tasks anywhere in the work-
shop floor. ARIAC 2023 has eight “agility challenges™”, each
representing additional difficulties that competitors may face
when performing kitting tasks. For example, competitors
may encounter defective or inverted parts that may need to
be discarded instead of used for assembly. The challenges
are combined in a range of trials or competition runs, which
competitors must successfully navigate in both the qualifica-
tion and the final stages of the competition. In this paper, our
particular emphasis is on the “human operator” agility chal-
lenge, that specifically examines the interactions between the
Gantry robot and the human operator, as described below.

2.1 Human Operator Agility Challenge

In this challenge, a simulated human operator is introduced
into the workcell. The main objective of this challenge is
to assess the competitors’ gantry robot control system and
specifically its capacity for preventing collisions with the
human operator. If the competitor team fails in this, a penalty
results. (The human operator can be seen on the left-hand side
of Fig. 1, while the gantry robot is located on the right-hand
side.)

The simulated human operator assumes one of the three
personalities in a trial. Once a personality has been selected
for a trial, it remains constant throughout that trial. Although
it is technically feasible to develop and implement dynamic
personality changes during ARIAC, for the sake of simplify-
ing evaluation, a decision was taken to use a static personality
for the agent.

7 https://ariac.readthedocs.io/en/latest/competition/challenges.htm]
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Fig.1 A visualization of the
ARIAC 2023 scenario. Here, the
top left red square is the human
operator initial position (also
representing a “safe zone”). The
Assembly Stations to be visited
(numbered AS #1-4 in the
paper) are the blue squares
below the tables

kitting
station 1

Regardless of the personality adopted, the agent is pro-
grammed to avoid random movements and instead follows
straightforward, pre-defined movement patterns across four
workstations; this movement is meant to simulate everyday
working and inspection tasks typically performed by humans
in a factory setting. The human operator agent will continu-
ously travel to these workstations and perform tasks until the
trial completes.

In case the human operator and any of the robots come

within a minimum safety distance of each other (calculation
details are provided in the next section), the human operator
is instantaneously transported (teleported) to a “safe zone”,
specifically the top-left position marked by a red rectangle in
Fig. 1. The human operator is not transported if it gets close
to a static AGV. In case the teleport operation is caused by
being too close to the Gantry robot, the competitor team is
penalised, and the Gantry robot is disabled for 15 seconds.
After this period, regular operation is resumed. In these cases,
the human operator is transported away purely to provide
time for the competitors to recover, avoiding scenarios where
the human could behave aggressively and force the Gantry
robot into a deadlock.
The three agent personalities start with a plan to follow a
predetermined path. However, this plan can be modified, as
described below, providing a range of behaviours from non-
intrusive to very intrusive:

1. helpful — Once the Gantry robot is within the human’s
line-of-sight®, a helpful human operator will turn around,
i.e., change its movement direction from clockwise to
counter-clockwise or vice-versa.

2. indifferent — An indifferent human operator will always
follow its predetermined path and directions, regardless
of the location of the Gantry robot in its environment.

3. antagonistic — Once the Gantry robot is within the
human’s line-of-sight, an antagonistic agent will pur-

8 The line-of-sight is a parameter, and here we fix it as being
(safety distance x 2).
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posefully move towards the Gantry robot, aiming to
interfere with the robot’s current task.

The idea behind the helpful agent was that it behave in a
non-intrusive manner, so that it would rarely interfere with
robots. At the other extreme, the antagonistic agent was
intended to be very intrusive and is likely to cause the most
difficulties (and penalties) for competitors’. Given the more
neutral characteristics of the indifferent agent, we expect this
to be the one that best exposes the competitors’ skills in avoid-
ing contact with the human operator.

2.2 Calculation of Safety Distance

The “safety distance” between the human operator and any
active robot (which state is on) is derived from the ISO/TS
15066:2016 standard (“Robots and robotic devices - Collabo-
rative robots”) that addresses safe robot speed and separation
monitoring [3]. ISO/TS 15066:2016 specifies that the mini-
mum allowable distance between a human and an active robot
should be

dpin = kgt + 1) +kgpt; + B+ 6
where

t1 is the maximum time between actuation of the sensing
function and the signal switching robotic devices to their
off state,

tp is the maximum response time of the robot (i.e., the time
required to stop the robot),

& isan additional distance, based on the expected intrusion
toward the critical zone before actuation of any protec-
tive equipment,

ky is the speed of the intruding human,
kg is the speed of the robot, and

B is the Euclidean distance required to bring the robot to
a safe, controlled stop.
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Fig.2 Examples of ARIAC 2023 sensors: proximity sensor (left) and RGB camera (right)

Itis important to highlight that for ARTAC 2023, the robots
we are concerned about for the safety distance calculation are
the Gantry and the four AGVs.

3 Gazebo Simulation Environment and
ROS 2 Control Software

As previously stated, ARIAC 2023 requires two main soft-
ware tools: the Robot Operating System (ROS 2) and the
Gazebo simulation environment. They are typically used in
conjunction for simulating robotic applications.

Gazebo is used to represent the virtual world where
ARIAC takes place (depicted in Figs. 1 and 2). It contains
both passive and active graphical elements as well as simu-
lated sensors. The passive elements are the static ones, those
graphical objects that do not move. On the other hand, the
active elements represent those objects that can move and
perform some action, such as the AGVs, the conveyor belt,
the Gantry, and the human operator. Several sensors and cam-
eras support monitoring both passive and active objects along
the simulation. Competitors can select which sensors they
wish to use, but each sensor has an associated cost that will
be deducted from their final score. Figure 2 illustrates two
typical sensors, a proximity sensor (on the left) and a RGB
camera (on the right). The proximity sensor outputs how far
an object is from the sensor and the RGB camera provides
a RGB image. There are also more complex camera types
available, including some giving depth information and even
a camera that can provide a list of kit tray poses and part
poses. The list of all available sensors is given in ARIAC
documentation®. The information about the human operator
(position and velocity) is, however, given for free to com-
petitors. All competitors can easily access this information
by subscribing to the appropriate ROS topic.

The control software is developed using ROS 2 compo-
nents and represents the core element of ARIAC. It is in

9 Sensors: https://ariac.readthedocs.io/en/latest/competition/sensors.
html

charge of most functionalities the simulation requires and
manages the competition. For instance, it launches the sim-
ulation and the ARTAC Manager (AM) interface. The AM is
used by competitors to interact with the simulation. The Com-
petitor Control System (CCS) is the software that is provided
by the competitors and that is responsible for communicating
with the AM and executing the required tasks. Figure 3 illus-
trates the interactions among the CCS and the AM, which
should be started using different Linux terminals.

In the first terminal, the ROS 2/Gazebo simulation envi-
ronment is started with the AM. The latter manages the
communications between the CCS and the ARIAC software.
The competition’s status undergoes several changes through-
out a trial, and it is permanently published to the ROS-topic
/ariac/competition_state. To implement the pro-
gramming logic correctly, the CCS must subscribe to this
topic.

As the trial begins, competitors should initiate the CCS
from a second terminal. The initial task of the CCS is to
launch the competition using the /ariac/start_com
petition service. It is important to note that the competi-
tion’s status must be in the READY state before this service
can be invoked. This service call initiates various actions,
including the activation of robot controllers, sensor activa-
tion, commencement of the conveyor belt (if it is part of the
trial), and the initiation of global challenges (if applicable
in the trial). Instructions for kitting tasks will be communi-
cated via the ROS-topic /ariac/orders. The outcome
of this service call will transition the competition’s status to
STARTED.

After introducing new tasks, the CCS strives to fulfil
and present orders using the robots. Order announcements
can be based on timing, part placements, or the submis-
sion of previous orders. The CCS must use the /ariac/
submit_order service to submit these orders, providing
the order’s ID as an argument.

Upon successfully submitting all orders, the CCS calls
service /ariac/end_competition. This action transi-
tions the competition’s status to ENDED. Subsequently, the
AM (ARIAC Manager) calculates the trial’s scoring, con-

@ Springer
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Fig.3 ARIAC 2023 flowchart showing the interactions between the Competitor Control System (CCS) and the ARIAC Manager (AM)

cludes the trial, and stores the results. Before invoking the
service to end the competition, the CCS must ensure that all
orders have been announced. Finally, the competition’s sta-
tus is adjusted to ORDER_ANNOUNCEMENTS_DONE once
all orders for the trial have been announced.

Presenting the ROS graph diagram — depicting the pro-
gram’s nodes, topics, and their interconnections — generated
during ARIAC 2023 execution is impossible because of the
high volume of nodes. There are circa 90 ROS nodes run-
ning while executing a trial. Performance tests conducted
in [22] using a 24 cores Intel 19-10920X workstation show
that 27 Linux processes are related to ROS 2/Gazebo. These
processes required an average CPU utilisation of 510% (five
cores entirely plus 10% of a sixth core).

@ Springer

3.1 Support for the Human Operator

In [22] we described all the ROS 2 elements (nodes, topics,
services, actions, plugins) developed to support adding the
human operator into the ARIAC 2023 environment. In the
present paper, we restrict the discussion to the most impor-
tant ones. A diagram containing a simplified view of such
elements is presented in Fig. 4.

The task_manager Gazebo plugin, on the left side of the
diagram, relates to the previously presented Ariac Manager
(AM). It was coded in the CPP programming language.
Among other things, it publishes the /ariac/start_human
ROS topic, which serves to start a Java process containing
our (Jason) human—agent, detailed in the next section. Such
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Fig.4 Main ROS elements in
ARIAC 2023 devoted for
supporting the human—agent.
Arrows represent the flow of
information between different

HumanState

geometry_msgs/Point human_position

geometry_msgs/Point robot_position

geometry_msgs/Vector3 human_velocity

geometry_msgs/Vector3 robot_velocity

lariac_human/state

ariac_msgs/HumanState

/ariac_human/unsafe_distance
std_msgs/Bool

—

components

task_manager

plugin (cpp) std_msgs/Bool

[ Key |
ROS topic
ROS node

gazebo plugin

java process

an agent can publish the four ROS topics on its right side
(bottom) and subscribe to the three ROS topics also on its
right (top). The topics that it subscribes to come from the
human_control node. The human_control was programmed
in Python and served to perform two main tasks: (i) navigate
the human through the workcell; and (ii) teleport the human
to the safe zone whenever necessary.

One last but important observation is that only one of
these topics was explicitly informed to the competitors in
the ARIAC 2023 documentation: /ariac/ariac_human/state.
By subscribing to this topic, competitors could identify the
human’s position and velocity. The output from such a topic
is presented in Listing 1 for illustration purposes.

Listing 1 Output example from topic /ariac/ariac_human/state

human_position:
x: -14.99392<NL> vy:
NL> z: 0.01002
robot_position:
Xx: -7.000000<NL> vy:
NL> z: 0.70000
human_velocity:
x: 5.658e-05<NL> y:

-9.9999866<

8.445e-08<

-1.167e-06<

NL> z: 2.8776e-05
robot_velocity:
X: -9.607e-10<NL> y: 1.325e-10<
NL> z: 0.0

4 Cognitive Agent Controlling the Human
Operator

This section provides an overview of our human—agent,
which, as previously mentioned, is responsible for control-

/ari:«zc/start_human_> agent

/ariac/agv{n}_status

— ariac_msgs/msg/AGVStatus

human_control
node (Python)

human-

/ariac_human/go_home
std_msgs/Bool

(Jason) ——————>

/ariac_human/go_home_agv
std_msgs/Bool

/ariac_human/stop
std_msgs/Bool

/ariac_human/goal_position
geometry_msgs/Point

ling (taking the movement’s decision) of the human operator.
Readers interested in more details about the agent implemen-
tation and performance should refer to [22].

As introduced in Section 2.1, the human operator’s pri-
mary job is making inspections in the four workstations
present at the workcell. From a broad perspective, what the
human operator does is to move along four predefined way-
points within the virtual factory’s shop floor. The human will
always start moving in a clockwise basis, starting at work-
station 4 (AS #4) and continuing in the following order:
“4 >2>1>3>4 > .." Since this is the first edi-
tion of ARIAC that incorporated the presence of humans
with an impact in the score of the competitors, the human
operator behaviour should not incorporate complex, random
movements, aiming for predictability. The goal here was that
ARIAC 2023 competitors’ would not need very complex
strategies to avoid close contact with the human operator.

The elements within the ARIAC 2023 scenario that inter-
est the BDI agent are the following: the human operator,
the four AGVs, and the Gantry. The relevant movement data
(speed and location) about these elements are periodically
updated within the agent’s “memory” (belief base) through
subscribing to the respective ROS topics. All ARIAC-related
actions performed by the BDI agent are also sent to the
human_control ROS node employing ROS topics. All these
ROS topics are depicted in Fig. 4.

The behaviour of the human operator is illustrated in the
flowcharts shown in Fig. 5. The flowchart on the left relates to
the human operator with the indifferent personality, but it is a
common aspect among the three different personalities. This
can be observed by comparing it with the flowchart on the
right, containing the antagonistic personality. The main task
in both cases is to follow the predefined trajectory regardless
of the position of the Gantry (left-side loop). Whenever the

@ Springer
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human operator is not within a safe distance of the Gantry,
it is teleported to the safe zone (right-side loop). The differ-
ence in the antagonistic personality is that the human should
start moving towards the Gantry when it sees it at a certain
distance. The helpful personality is quite similar. The only
difference is that when the Gantry is seen, then the human
should move in the opposite direction of the Gantry.

4.1 The Jason Code

Agents programmed in Jason consist of: initial beliefs
and rules; initial goals; and plans. Plans are written using
the AgentSpeak(L) syntax [25] triggering_event
context <- body. whereinthe triggering_event
can be the addition/deletion of a belief or a goal, the
context represents the preconditions of the plan, and the
body relates with the sequence of operations (actions or
addition/deletion of beliefs/goals). For the remainder
of this section, we describe the most relevant plans in Jason
for controlling the human.'”

The main responsibility of the agent is to let human
making the inspection procedures, that is, to let it move
through the predefined waypoints. Therefore two differ-
ent plans are used, with triggering events +!work and
+work_completed, as presented in Listing 2. This code
is, in fact, the same for the three agents’ personalities.
The +work_completed event is triggered when the
human reaches its final position, fact that is reported by
the human_control ROS node. There is one precondition for
the related plan to be executed: the counterClockWise

belief must be TRUE. The elements remaining within
this plan’s context, working (Loc) & next_loc (Loc,
Next), are used by the agent to determine which location
should be visited next. A similar version of this plan exists
for the case of the human performing a counterclockwise
movement.

Listing 2 Plans related to visiting the workstations

l+!'work (Loc) location (Loc, X,

2 Y, Z) <-

3 -working (_) ;

4 +working (Loc) ;

5 move (X, Y, Z).

6

7+work_completed (_)

8: working (Loc) & next_loc (Loc,

Next) & counterClockWise
'work (Next) .

10 The complete code can be found in the ARIAC’s official repository
2023 release: https://github.com/usnistgov/ARIAC/releases/tag/v1.5-
2023

@ Springer

The plan on Listing 3 represents the right-side loop of the
previous flowcharts. The triggering event +gantry_dis-
abled(_) happens when the gantry and the human oper-
ator are not at a safe distance. In this case, the agent must
drop all its desires (In.2) and also stop all the goals being
executed, like for example moving to the target workstation.
Then, it calls the releport_safe external action, allowing to
“teleport” the human to the predefined safe location (In.3).
Finally, the plan is concluded by invoking the ! work plan in
order to restore the default movement of the human operator
by requesting it to the initial workstation. The ‘! !’ operator
is the addition of a goal that will be created as a separate
intention stack as opposed to using a single ‘!’ which would
generate an intention in the same intention stack as the plan
that added the goal.

Listing 3 Plan for when the Gantry and the human operator are not at a
safe distance

l+gantry_disabled (_)

firstStation (ST) <-
2 .drop_all_desires;
3 teleport_safe; // stop +
teleport to safe zone
4 .wait (8000) ;
5 '1Twork (ST) .

The code portion related with the antagonistic personality
(yellow part on the right flowchart in Fig. 5) is shown in List-
ing 4. Its context clause serves to identify the current human
destination (In.2). Regarding the plan itself, it first stops and
aborts any navigation goal (In.3), then it leaves behind all
desires (In.4) and triggers the action that requests the human
to start moving in direction of the Gantry (In.5). Towards the
end the plan it keeps the agent blocked waiting it to reach
its target target position (In.6). As this becomes true, it then
starts moving to the next station (In.7).

Listing 4 Antagonistic personality: Plan for when the human-operator
and the Gantry get within sight-of-vision triggering a new behaviour in
the human
l+gantry_detected (_)
2 working (Loc)
Loc , Next)
stop_movement;
.drop_all_desires;
move_to_gantry;
.wait ("+work_completed (_)") ;
'Twork (Next) .

& next_loc (
<_

~N N L bW

5 Evaluation

In the first part of this section, we present the results related
with the ARIAC 2023 human challenge. Afterwards, we per-
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Fig.5 Behaviour of two distinct
human operator personalities:
indifferent (left) and
antagonistic (right). While the
former always follow the

ination)

predefined trajectory, the latter
might change its movement
pattern

Reached
destination?

No (loop)

Set new destination

form a more general evaluation concerning how the three
different conceived human “personalities” influence the best
scoring team of ARIAC 2023. We conclude this section by
presenting some lessons learned and a discussion on future
steps.

5.1 Results from the ARIAC 2023 Human Challenge

ARIAC 2023 finals consisted of ten different challenges (tri-
als), named finall...final10. The last two, £inal9
and £inallO0 are related with the human challenge. They
consist of two distinct assembly tasks (adding interchange-
able parts to a product). The Competitor Control System
(CCS) can place parts and insert them in any order. For a
trial where assembly tasks are required, the ARIAC environ-
ment starts with parts already placed on AGVs. The CCS is
expected to:

Lock the AGV trays.

Move the AGVs to the correct assembly station.
Assemble the parts into a kit.

Submit the assembly task for scoring.

R

Both £inal9 and £inall0 trials consist of one assem-
bly task announced at the beginning of the competition.
The £inal9 trial requires AGVs #1&2 to transport parts,
so that assembly can occur at AS #1. The £inall0 trial
only requires parts from AGV #1 and assembly occurs at

Goto safe-zone

Delay(8 s)

Delay(8 s)

Ata
afe-distance?.
Yes
Within
ight-of-vision?

Set Gantry location
as new destination

AS #2. Trial £inal?9 uses the antagonistic personality and
trial £inall0 uses the indifferent personality. Recalling
Section 4, while the antagonistic human will try to get as
close as possible to the Gantry, the indifferent human will
follow a scripted path which may interfere with the Gantry’s
path.

Only two teams managed to submit the assembly trials,
which for anonymity purposes we will name Team #I and
Team #2. While the Team #1 successfully finished both trials,
the Team #2 did not successfully complete either of them.
The reason for this failure is not related with the humans but
with the solution’s inability to properly handle the parts to
be assembled.

The results collected from executing these two trials are
presented in Table 1. The first column represents the time
needed to complete the trial, with o representing infinite time
(it does not complete). The second column represents the
quantity of penalties (Qtt-P) received by the Gantry due to
the proximity to the human. For the Team #2, in the first trial
the simulation crashed even before the first penalty. In the
second trial, it crashed shortly after the fourth penalty, in the
very last action before completing the assembly task, after
about 120 s of simulation time.

Analysing the simulation videos, it is clear that none of
the teams had developed any strategy for the Gantry to avoid
contact with the human operator. Therefore, the following
questions emerged:

Table 1 Performance of the
teams in the two humans-related

final9: (AS #1) - Antagonistic

finallO0: (AS #2) - Indifferent

trials in ARTAC 2023 Time(s) Qu-C Time(s) Qit-C
Team #1 60.4 76.8 2
Team #2 o 0 o 4
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Contacts per workstation Total contacts distribution

W As#1 W As#2 ASH3

Fig.6 Contact from the human

personalities on the different
trials: left chart shows the
number of contacts per station
and the right chart shows the
total contacts distribution

Helpful

Antagonistic

Indifferent

Antagonistic Indifferent

e Do the antagonistic and the indifferent humans person-
alities always affect the robots similarly?

e Does the helper personality always prevent contact with
the robot?

To explore these questions, we created and executed a new
set of trials, as detailed in the next section.

5.2 Evaluating the Effects of the Three Different
Human Personalities

To properly evaluate the effects of the three different human
personalities and to be able to answer the questions previ-
ously presented, a new set of trials was orchestrated and
performed after the competition. These trials were executed
for Team #1, the only team that could complete the trials when
the human operator was present. We used the same assem-
bly task from trial £inall0 at all four assembly stations
(AS #1-4). Each new test trial was executed four times, one
time for each of the three different human personalities and
a fourth time without human presence. This fourth execution
served as a time baseline, representing the fastest possible
time for the team to complete the task without a human pres-
ence.

We analyse the results from the three human personalities
on the first three stations (AS #1-3). The assembly station
AS #4 is left out because the system entered a deadlock situa-
tion when it was used. This was because the human presence,
regardless of the personality, caused too much contact with
the robots. This kept the robot disabled for most of the sim-
ulation, and consequently, the assembly tasks could not be
completed. This problem occurred due to the proximity of
AS #4 to the safe zone. The charts in Fig. 6 depict the results

Helpful

related to the number of contacts. Table 2 summarises all
obtained results.

Our first remark from the results obtained comes from
the fact that performing assembly at the odd-numbered sta-
tions is faster than at the even-numbered ones — see the faster
times from the “no-human” experiments in AS #1&3 vs. AS
#2&4. This occurs because in AS #1&3 the AGV travels for
a smaller distance to get into position, allowing the Gantry
to start earlier. Next we discuss each of the trials presented
in Table 2.

The first trial (AS #2) is basically the same as trial
finallO0, therefore the results from the indifferent human
execution are almost the same as those presented in the right
columns from Table 1. These results reflect exactly what was
expected for the three human personalities: the antagonistic
is the one that causes more interference to the robot, which
requires more time to complete the experiment, followed by
the indifferent and finally by the helper, which did not cause
any disturbance to the Gantry — it finishes its assembly job in
the same time as if there were no humans present. Another
interesting aspect that can be observed in this trial is that it
highlights the more aggressive behaviour from the antagonis-
tic human when moving towards the Gantry in comparison
with the indifferent human. Even though, in this case, both
antagonistic and indifferent humans follow the same path,
the former approaches the Gantry faster than the latter and,
as a consequence, causes more contacts (3 instead of 2).

Moving to the second trial (AS #1), the first observation
is that the antagonistic human finishes the assembly slightly
faster when compared with trial £inal9, where the Gantry
is working at the same station. The reason here is that taking
all four parts from the same AGV — which is the case in
this trial — makes things faster than if taking the parts from

Table 2 Results from Team #1

performing assembly at the four AS #2 AS #1 AS#3 AS #
different stations and Team Time(s) Qtt-C Time(s) Qtt-C Time(s) Qtt-C Time(s) Qtt-C
considering all possible Antagonistic  92.7 3 576 1 86.8
human-operator configurations .
Indifferent 77.4 2 56.1 1 70.9
Helpful 45.2 0 42.1 0 85.2
No-human! 45.3 - 41.8 - 40.9 - 474 -

'No human-operator was present in this trial
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two different AGVs, such as it was done in trial final9. A
surprising result from this trial was the fact that the indifferent
human, using the path AS #4-2—-1, caused the same level of
interference as the antagonistic one, which was following
the path AS #4-1. The indifferent human got too close to the
Gantry when approaching AS #2. Although such behaviour
is in accordance with our original specification, it leads to the
following question: should the Gantry be penalised in case
the human is transposing an area that is beyond the safety
distance, but where the Gantry is not programmed to go to?

Analysing the results from AS #3 trial it is possible
to observe the most unexpected result. The helpful human
caused as many approximations to the Gantry as the antago-
nistic did. This is explained by the fact that no matter what is
the path selected by the human, either AS #4-2 or AS #4-3,
both will cause approximation. The path AS #4-2 will be
similar to the previously provided explanation for the indif-
ferent human in trial AS #1, leading to the same question.

Finally, in regards to the last trial (AS #4), the team was
unable to successfully complete the task when there is a
human present in the workcell. This comes from the fact
that, by default, the human initially moves to AS #4. Conse-
quently, the agent often comes into contact with the Gantry,
causing the Gantry to be blocked on every attempt. There-
fore the Gantry is unable to complete the assembly task. We
decided to repeat this experiment changing the initial station
for the human to visit, so that it starts the visits at AS #3.
These results are shown in Table 3.

The numbers in Table 3 revealed a situation similar to
the one present in the experiment AS #3, where the helpful
agent performed worse (caused more approximations) than
the indifferent one. The only difference here is that the help-
ful agent did not perform as bad as the antagonistic agent.
Regardless, this is still an interesting result, as the helpful
agent was designed to avoid contact with the Gantry.

By the end of these experiments we are able to answer the
questions presented earlier, as follows.

1. Do the antagonistic and the indifferent humans person-
alities always affect the robots in the same way?
Rpl.1: Not always. The antagonistic agent normally
causes more contact, as observed in 3 out of 5 experi-

Table3 Modified AS #4 experiment: assembly task is still performed at
station AS #4 but now the human operator is initially moving to station
AS #3

Modified AS #4

Time(s) Qtt-C
Antagonistic 105.0 4
Indifferent 60.9 1
Helpful 74.0 2

ments (60%). There were 2 experiments where they were
even (caused the same number of contacts). But there
was never a case where the indifferent agent caused more
contacts than the antagonistic one.

2. Does the helper personality always prevent contact with
the robot?
Rpl.2: Not always. The helpful agent had contact with the
Gantry in 3 out of 5 experiments. Clearly, having contact
in 60% of the experiments means that the current strategy
for the helpful agent must be modified if the intention for
this personality is trying to avoid contact with the Gantry.

5.3 Learned Lessons

The first learned lesson is about the fact that it proved to
be difficult to properly characterise how the different human
personalities will perform in respect to the amount of contacts
with the Gantry that they will cause. This comes from the fact
that the current planning for human movement ignores the
task that is given to the Gantry. This would be improved if, at
least, the human is conscious about the workstation where the
Gantry is currently working on. Recalling the two different
AS #4 experiments performed, if the human was aware that
the Gantry would work at AS #4, then it should not head
straight to AS #4 — which causes a deadlock — but instead
would go to AS #3, as in the modified to AS #3 experiment.

Moreover, concerning whether the Gantry should be
penalised in case the human is transposing an area that is
beyond the safety distance, but where the Gantry is not pro-
grammed to go to, our view is that the answer should be not
always. Of course we put safety as the top priority, so neither
the Gantry nor any other robot should be operating beyond
their safety distance to the human. But what if the robot stops,
i.e., enters a standby mode? Then we suggest that it would be
better to have no penalty applied to the Gantry. This would
also open space for competitors to perform a “self-stop” in
the Gantry, just like the “freeze” action that is currently per-
formed by the CCS. However, such a self-stop would last
less time then the current 15 s penalty time.

Finally, another aspect worthy of reflection is the fact that,
currently, the human operator does not expose its intentions
to the robots by means of interactions protocols (although the
human’s path was let clear to ARTAC 2023 competitors). Our
view is that this would be an interesting action to be taken
by the humans, because this would create conditions for the
system planner to better schedule the robots’ movements and
ultimately cause fewer unplanned stops. As highlighted by
Tausch and Kluge in [26], communication is important for
humans and robots to share tasks and decide who will be in
charge of task allocation.
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5.4 Harmonious Coexistence in Future
Human-Robot Interactions

In the experiments conducted we incorporated a single
human operator in charge of inspection tasks. But what if we
have more humans on the scene, in charge of different tasks?
Let us suppose an additional human operator in charge of
performing periodic maintenance procedures, and a further
one is responsible for handling unexpected situations. How
do we expect the robots to behave when these humans come
into action? Do the humans need to approach their destination
as-soon-as-possible (ASAP), or they could wait for a while?
We start with the case of an unexpected situation. When
this happens, the goal is that it should be handled ASAP. This
means that the human operator in charge should not lose a
second and move towards the desired destination, as the indif-
ferent agent does. For this to happen, the robots should “clear
the path”, so that the human can promptly reach the desired
destination. Communicating with the robots about the situa-
tion and, more importantly, communicating the path that the
human intend to take would give extra time for the robots to
stop what they are doing and to position itself adequately. For
instance, this would be really important if a global planning
system is adopted, like in [27] where multi-agents are used.
Considering the human in charge of periodic maintenance,
it does not really need to rush towards the destination. As
the maintenance procedure is normally something that takes
a relatively long time, then if the human looses a couple
seconds waiting for a robot to finish its task it should not
cause a large impact. This human would not behave like the
any of the three personalities we have at the moment, we
would require a different type of personality to represent
such human behaviour. In any case, communicating the path
that the human would take to the robot and vice-versa could
be helpful in this situation. Alternatively, having the robot
informing a “clear-to-go” message could also be helpful.

6 Conclusions

This paper was mainly intended to analyse the effects of the
human presence in ARITAC 2023. Two competitors’ teams
managed to perform the trials related with the human agility
challenge. Unfortunately, neither of these teams developed
any kind of strategy to avoid close contact between the human
operator and the Gantry. And this happened considering the
fact that competitor’s did not need to allocate any special sen-
sor to find the human’s location, it was available as a ROS
topic.

Analysing this fact from the perspective of the winning
team, our suspicion was that the penalty for such close con-
tact was too “soft” and not worth it for the team to implement
contact-avoidance strategies. In this respect, the competi-
tors handled such a situation more like they were in a game
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environment than if they were in a real automated factory,
with life-risky threats involved. While in a game they would
win the “points” even without avoiding close contact, in a
real factory, the violation of this safety rule is unacceptable.
Our first conclusion is that more severe penalties should
be applied in future ARIAC editions for trials that include
human operators, such as attributing a score of zero to the trial
in case of close contact between humans and active robots.

From the perspective of the different personalities that we
crafted, it was possible to observe that the helpful personal-
ity did not behave as expected. While it was designed to be
minimally intrusive, depending on the workstation that the
Gantry had to work on the human was just as intrusive as the
indifferent personality. And there was a situation where the
helpful agent was as intrusive as the antagonistic agent. As
discussed in the paper, changing such misleading behaviour
involves several modifications, including the agent, the sim-
ulation scenario, and the simulation control.

A simple adjustment that could be adopted for future ARIAC
editions is expanding the workcell, giving more free space
between the workstations. Thereby the problems observed in
experiments AS # 3-4-5 would likely not occur. As discussed
in the previous section, defining communication procedures
from both humans and robots might also be beneficial.

Finally, it should be clear that real collaborative scenarios
should involve different human personalities, doing various
tasks. For this to work in an optimised manner, itis essential to
establish proper interaction protocols and resilient planning
procedures in human-robot collaboration. This should also
be taken into account in future ARIAC editions.
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