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Michela Eleuteri†and Jana Kopfová‡
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Abstract

We deal with a one-dimensional temperature dependent model for fatigue accumulation
in a moving visco-elasto-plastic material in contact with an elasto-plastic obstacle. The prob-
lem for the unknown displacement and temperature is formulated using hysteresis operators
as solution operators of the underlying variational inequalities. The existence result for this
problem, consisting of the momentum and energy balance equations and an evolution equa-
tion for the fatigue, is obtained using a priori estimates established for the space discretized
problem. The uniqueness result follows from the Lipschitz continuity of the nonlinearities.

Key words. Elasto-plasticity, hysteresis operators, material fatigue, contact boundary condi-
tions.

AMS Subject Classification. 74M15, 74C05, 47J40, 35L86, 74N30

1 Introduction

The aim of this paper is to present a new model accounting for the fatigue accumulation in a
moving inhomogeneous visco-elasto-plastic bar with contact boundary conditions and its mathe-
matical analysis. The main novelty is the combination of fatigue accumulation in (visco-)elasto-
plastic structures with a contact boundary condition, that (at least from the mathematical point
of view) is generally a challenging problem (see for instance [16]).

Concerning the problem of fatigue accumulation in oscillating visco-elasto-plastic beams and
plates, our basic modeling idea is the assumption that the fatigue accumulation is proportional
to the dissipated energy. This is motivated by the so-called rainflow method for cycling fatigue
accumulation in uniaxial processes, where damage is assumed to be proportional to the total
area of closed hysteresis loops, which can in turn be interpreted as energy dissipation (see [11]).
As we already mentioned in our previous contributions, this viewpoint is new in the literature,
either because our focus is related to the dynamics of the processes (compared, for instance,
with [26], [40], [49] that go into the direction of rate-independent damage processes in nonlinear
elasticity) and also because the approach used in other papers, that interpret damage processes
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as a kind of phase transition in the material, (see for instance [4], [8], [9], [42]) is based on the
idea that damage processes are driven by large deformations. We presented our main modelling
ideas in [17], where also the thermodynamic consistency of the model was shown. Mathematical
analysis of fatigue problems started in [18], where we dealt with the case of an oscillating elasto-
plastic plate under the simplified situation of given temperature history. We obtained existence
and uniqueness of a solution locally in time; according to the model indeed, material softening
takes place under increasing fatigue and material failure is manifested in finite time. From [18],
we started dealing with the non-isothermal case. We first treated the 1D case (beam), showing
existence and uniqueness of a strong solution in the simplified setting where only the elastic
component of the model depends on the fatigue. The extension to the 2D case (plate) has been
considered in [20], where we proved existence of solutions for the whole time interval, assuming
that the fatigue accumulation rate is proportional only to the plastic part of the dissipation
rate. Finally in [10], [21], [22] we pursued the study of fatigue accumulation in oscillating visco-
elasto-plastic structures by presenting a new phase field model under the additional hypothesis
that the material can partially recover by the effect of local melting. We were able to treat both
the 1D (beam) case and the 2D case (plate), showing global existence in time of a solution of
the underlying system of momentum and energy balances coupled with the evolution equation
for the fatigue rate and a differential inclusion for the phase dynamics. In the 1D case also
uniqueness was obtained, in 2D it remains an open problem.

In the present paper unlike [18] and similarly to [24], we assume that out of all dissipative
components in the energy balance, only the purely plastic dissipation produces damage. This
different perspective is usually considered in engineering literature. From the mathematical
viewpoint, the problem does not exhibit singularities and the expected solutions are global in
time. On the other hand we consider here an additional difficulty that the weight function ϕ
in the definition of the Prandtl-Ishlinskii operator depends also on the fatigue parameter m ;
this creates nontrivial mathematical complications when dealing with the fatigue terms in the
estimates.

Concerning the contact problem, this is classically described by the so-called Signorini bound-
ary conditions where the obstacle is assumed to be rigid. The original problem - modelling of
an anisotropic non-homogeneous elastic body, resting on a rigid frictionless surface and subject
only to its mass forces - was posed by A. Signorini during a course taught in 1959: he explicitly
invited young analysts to study the problem and to determine if it is well-posed in a physical
sense, i.e. if its solution exists and is unique or not. The Signorini problem was then solved by
G. Fichera [23] and later interpreted as a free boundary problem [37]; a weak formulation of the
problem can be given in terms of variational inequalities, after the fundamental work by J.L.
Lions and G. Stampacchia [39].

The general problem is very complicated and attempts in many directions have been made.
Problem was considered with or without friction, the obstacle was supposed to be non-deformable
or moving, material to be elastic or viscoelastic, viscoelasticity has been often considered as a
way to overcome the difficulty of the original problem.

We refer to [16] together with the references therein for a general and wide survey for the
mathematical analysis of contact problems with friction and a major part of the analysis for
contact problems without friction.

There are several different ways how to deal with the non-smoothness of the problem: the
most classical approach is the penalization method (see for instance [25], [16], [34]): it consists in
penalizing the obstacle constraint with elasticity modulus considered as penalty parameter, and
then solving the penalized problem; among the other methods we mention also the characteristic
method (see [47], [14] and references therein), valid only for 1D problems.

Models for contact, delamination and damage in elastic media are recently becoming very
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popular. In [5], [6], [7] and related references, contact problems between a viscoelastic body
and a rigid support were considered, and the effects due to adhesion, friction and the evolution
of temperature were taken into account. In [33] a quasi-static approach to delamination and
adhesive contact was considered, see also delamination and contact problems in [43], [44], [45],
[46].

It is physically more reasonable to consider dynamic contact problems, but its mathematical
analysis is even more complicated. The first construction of a solution to a physically well
posed dynamic problem was obtained in [1] for a vibrating string. No significant results have
been obtained for elastic materials in dimension greater than 1, despite considerable efforts
by mathematicians; we quote for instance the contributions of [2], [47], [48]. In higher space
dimensions, in [25] the existence of a weak solution to the wave equation with contact at the
boundary was proved. In [41] the existence result for unilateral contact problems where the
space of admissible functions is a subset of the space of continuous functions was presented and
finally in [36] the existence of a strong solution to the wave equation in a halfspace with contact
at the boundary and conservation of energy was considered; this result essentially depends on
this special geometric assumption.

From more recent years we can quote the paper [35], where a dynamic point of view was taken
into account; the authors consider a visco-elastic rod and a deformable obstacle. This modeling
situation is also the point of view of the new approach suggested in recent papers [30] and [31],
where the authors dealt with the more complicated setting of (visco)-elasto-plasticity. In [30] the
modeling of the contact boundary condition using hysteresis operators was presented and it was
combined with an elasto-plastic dynamical problem. In [31] a full thermomechanical 1D model
taking into account the exchange between different types of energy in an oscillating visco-elasto-
plastic body in contact with an elasto-plastic obstacle is considered and analyzed. These two
papers constitute also a novelty because they consider elasto-plastic dynamical contact problems
which have not been considered in literature so far (if we exclude some results already presented
in [15]). Indeed, while in the classical approach such kinds of problems are solved by means of
the idea to penalize the constraints, derive energy estimates independent of the penalty and let
the penalty parameter tend to 1, by the hysteresis approach variational inequalities are solved
independently of the momentum balance equation, finer analytical properties of the solution
operators are derived and the momentum balance equation is solved as an operator-differential
equation. The advantage of the hysteresis method is that hysteresis operators in mechanics
are typically (almost) monotone, Lipschitz continuous, and satisfy two-level energy inequalities.
PDEs with hysteresis can thus be solved by standard techniques (Galerkin, discretization, ...).

In the present paper, we combine the mathematical difficulties coming from modelling the
dynamic contact problem and the material fatigue. The result is an involved model formulated
using hysteresis operators as solution operators of the underlying variational inequalities to
control the contact boundary conditions, where the unknown functions are displacement, tem-
perature and material fatigue. We take into account irreversible deformations both of the body
and of the obstacle, as well as the fact that the plastic deformation of elasto-plastic bodies in
contact dissipates energy which is transformed into heat. This in turn increases the temperature
of the body and by thermal expansion, the motion of the body is affected. The existence result
for this problem, consisting of the momentum and energy balance equations and an evolution
equation for the fatigue is obtained using a priori estimates established for the space discretized
problem. The uniqueness result follows from the Lipschitz continuity of the nonlinearities. We
refer in particular to Section 4.1 for a detailed description of the main mathematical difficulties
(related to hysteresis, material fatigue and contact boundary conditions) together with the main
novelty of our contribution.

Our model is described in detail in Section 2. The main result is stated in Section 3, together
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with the Hypotheses on the data. We introduce the space discretization of the problem in Section
4 and derive suitable a priori estimates needed to show the convergence of the approximated
solutions to the original problem. We perform this limit procedure in Section 4, which therefore
also contains the proof of the existence of solutions to our problem. Then, in Section 5, a
continuous dependence of the solutions on the data is proved, which implies uniqueness. The
Appendix is devoted to Sobolev interpolation inequalities, (for more details see [31]), which are
used in the proof of the main result.

2 Description of the model

We consider an inhomogeneous elasto-plastic bar of length L which vibrates longitudinally. The
bar is free to move on one end as long as it does not hit a material obstacle, while on the other
end a force is applied. Let u(x, t) be the displacement at time t of the material point of spatial
coordinate x ∈ Ω with Ω := (0, L) , and let σ be the σ11 component of the stress tensor. The
motion is governed by the equation

ρutt − σx = 0, (2.1)

where ρ denotes the mass density (see (H6) below). Here and in the sequel, we denote with

(·)x := ∂(·)
∂x and (·)t := ∂(·)

∂t the partial derivatives; when dealing with ODEs (see for instance

Definition 2.1), we will use instead the notation ˙(·) (except for operators, for which we will
always use the notation (·)t ), to indicate the time derivative. The stress σ is assumed to satisfy
the constitutive equation

σ := Bε+ P[m, ε] + νεt − β(θ − θref) and ε := ux, (2.2)

where B is a constant hardening modulus, ε is the ε11 component of the strain tensor,
θ(x, t) > 0 is the absolute temperature which is one of the unknowns of the problem, ν is
the viscosity modulus, β is the thermal expansion coefficient, θref is a given referential temper-
ature, m(x, t) ≥ 0 is a scalar time and space dependent parameter describing the accumulation
of fatigue, where m = 0 corresponds to zero fatigue and P [m, ε] is a fatigue dependent Prandtl-
Ishlinskii constitutive operator of elasto-plasticity defined below. (see also (H6) below for the
assumptions on the parameters).

The Prandtl-Ishlinskii model is constructed as a linear combination of basic stops operators
sr[ε](t) with all possible yield points r > 0. Given a measurable function ϕ : [0,∞)× (0,∞) →
[0,∞) satisfying Hypothesis (H1) below, we define the fatigue dependent Prandtl-Ishlinskii
operator P : (W 1,1(0, T ))2 → W 1,1(0, T ) by the integral

P [m, ε](t) =

∫ ∞

0
ϕ(m(t), r) sr[ε](t) dr . (2.3)

Let us recall the definition of the stop operator sr[ε](t) .

Definition 2.1 Let ε ∈ W 1,1(0, T ) and r > 0 be given. The variational inequality

ε(t) = σ(t) + ξ(t), ∀t ∈ [0, T ],

|σ(t)| ≤ r, ∀t ∈ [0, T ],

ξ̇(t)(σ(t)− z) ≥ 0, a.e. ∀|z| ≤ r ,

σ(0) = Qr(ε(0)),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.4)

where Qr is the projection of R onto the interval [−r, r] , defines the stop and play operators sr
and pr by the formula

σ(t) = sr[ε](t) , ξ(t) = pr[ε](t) . (2.5)
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The stop and play operators were introduced in [27]. The parameter r is the memory
variable, and for each given time t0 , the functions r 	→ pr[ε](t0) , r 	→ sr[ε](t0) represent the
memory state of the system.

Let us list here some basic properties of the play and stop operators. The proofs are elemen-
tary and can be found e.g. in [28].

Proposition 2.2 Let ε1, ε2 ∈ W 1,1(0, T ) , r > 0 and data σ0
1, σ

0
2 ∈ [−r, r] be given, σi = sr[εi] ,

ξi = εi − σi= pr[εi] , i = 1, 2 . Then

(i) (σ1(t)− σ2(t))(ε̇1(t)− ε̇2(t)) ≥ 1

2

d

dt
(σ1(t)− σ2(t))

2 a. e. in [0, T ] ;

(ii) |ξ̇1(t)− ξ̇2(t)|+ d

dt
|σ1(t)− σ2(t)| ≤ |ε̇1(t)− ε̇2(t)| a.e. in [0, T ] ;

(iii) |σ1(t)− σ2(t)| ≤ |σ0
1 − σ0

2|+ 2 max
0≤τ≤t

|ε1(τ)− ε2(τ)| ∀t ∈ [0, T ] ;

(iv) ξ̇i(t)ε̇i(t) = ξ̇i(t)
2 a.e. in [0, T ] .

We can rewrite (2.4) equivalently in “energetic” form

ε̇(t)σr(t) =
d

dt

(
1

2
σ2
r (t)

)
+ r|ξ̇(t)|. (2.6)

Indeed, ε̇(t)σr(t) is the power supplied to the system, part of it is used for the increase of the
potential 1

2σ
2
r (t) , and the rest r|ξ̇(t)| is dissipated.

We extend Prandtl-Ishlinskii operator (2.3) for space dependent inputs in the following way

P [m, ε](x, t) := P [m(x, ·), ε(x, ·)]
and similarly for the other operators we will deal with later.

Equation (2.6) enables us to establish the energy balance for the Prandtl-Ishlinskii operator
(2.3). Indeed, if we define the Prandtl-Ishlinskii potential

V [m, ε](t) =
1

2

∫ ∞

0
ϕ(m, r)s2r [ε](t) dr , (2.7)

and the dissipation operator

D[m, ε](t) =

∫ ∞

0
rϕ(m, r)|pr[ε]t(t)| dr , (2.8)

we can write the Prandtl-Ishlinskii energy balance in the form

εt(t)P [m, ε](t) = V [m, ε]t(t) +D[m, ε](t)− 1

2
mt

∫ ∞

0
ϕm(m, r)s2r [ε](t) dr a.e. in Ω. (2.9)

As a consequence of Proposition 2.2 (iv), we have

D[m, ε](t) ≤ |εt(t)|
∫ ∞

0
rϕ(m, r) dr a.e. in Ω. (2.10)

The analysis of the so-called rainflow method of cyclic fatigue accumulation in elasto-plastic
materials carried out in [11] has shown a close relation between accumulated fatigue and dissi-
pated energy, similarly as in [24]. Mathematically, this is expressed in terms of the evolution
equation for the fatigue variable m

mt(x, t) =

∫ L

0
λ(x− y)D[m, ε](y, t) dy, (2.11)
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where λ is a nonnegative smooth function with (small) compact support and D[m, ε] is the
fatigue dependent dissipation operator, see (2.8).

The meaning of (2.11) is simple: the fatigue at a point x increases proportionally to the energy
dissipated in a neighborhood of the point x ; this is our main assumption.

We define the free energy F associated with the constitutive law (2.2) in the form

F := F [θ, ε,m] := cθ

(
1− log

(
θ

θref

))
+

B

2
ε2 + V [m, ε]− β(θ − θref)ε, (2.12)

where the specific heat capacity c is assumed to be constant (see (H6) below). The corresponding
entropy S and internal energy U are then given by the following formulas

S = S [θ, ε] = − ∂

∂θ
F [θ, ε] = c log

(
θ

θref

)
+ βε, (2.13)

U = U [θ, ε.m] = F [θ, ε,m] + θS [θ, ε] = cθ +
B

2
ε2 + V [m, ε] + βθrefε. (2.14)

We require the first and the second principle of thermodynamics to hold in the form

U [θ, ε,m]t + qx = σεt (energy conservation), (2.15)

S [θ, ε]t +
(q
θ

)
x
≥ 0 (Clausius-Duhem inequality), (2.16)

where q is the heat flux that is assumed to be in the form of Fourier law

q = −κθx, (2.17)

with a constant heat conductivity κ (see (H6) below).

In terms of the variables θ , ε and m the energy balance (2.15) then reads

cθt − κθxx = νε2t +D[m, ε]− βθεt − 1

2
mt

∫ ∞

0
ϕm(m, r)s2r [ε] dr, (2.18)

where we also used (2.9).

On the other hand, we note that (2.16) formally follows from (2.13), (2.17), (2.18): indeed
we have

S [θ, ε]t +
(q
θ

)
x
=

κθ2x
θ2

+
νε2t
θ

+
1

θ

(
D[m, ε](t)− 1

2
mt

∫ ∞

0
ϕm(m, r)s2r [ε](t) dr

)
≥ 0,

provided Hypothesis (H1) given in Section 3 for ϕm and (2.11) hold, and we check that the abso-
lute temperature θ stays positive. Concerning this last point, we will find below a positive lower
bound for the discrete approximations of the temperature, independent of the discretization pa-
rameter, which therefore is preserved in the limit and implies the positivity of the temperature.

We prescribe Cauchy initial data

u(x, 0) = u0(x), ut(x, 0) = v0(x), θ(x, 0) = θ0(x), m(x, 0) = 0 (2.19)

and boundary conditions at x = 0 and x = L , t > 0, given by

σ(0, t) = −p(t) and σ(L, t) = −f [u(L, ·)](t), (2.20)

κθx(0, t) = 0 and κθx(L, t) = α(θext − θ(L, t)) + cbdyθt(L, t)− |d[u(L, ·)]t(t)|, (2.21)
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with constants (see (H6) below) α (a boundary heat transfer coefficient), cbdy (specific heat
capacity of the boundary), and θext (external temperature); moreover p(t) is a given time
dependent external force and f is a boundary contact hysteresis operator satisfying an energy
balance equation analogous to (2.6), namely (3.2). For the contact boundary operator f we
will assume moreover that Hypotheses (H2)–(H4) below are satisfied. As an example, we may
consider, similarly to [30], an operator f in the form f [u] = g(S[u]) , where S is the solution
operator S : u 	→ w = S[u] to the variational inequality⎧⎪⎨⎪⎩

w(t)− au(t) ≤ ĉ for every t ∈ [0, T ],

w(0) = min{au(0) + ĉ, bu(0)},
(but(t)− wt(t))(w(t)− au(t)− z) ≥ 0 a.e. for every z ≤ ĉ,

(2.22)

with constants a > b > 0, ĉ > 0; here a is the elasticity modulus of the obstacle, b is its
hardening modulus, ĉ is its yield point, and g is a twice continuously differentiable nondecreasing
function with uniformly bounded derivative vanishing for negative arguments. It is shown in
[30] that for this operator the Hypothesis (H2)–(H4) hold. In particular, see [30], the energy
balance (3.2) holds provided we choose

e[u] :=
1

b

(
G(w) +

b− a

a
G

(
a

b− a
(bu− w)

))
,

d[u] :=
b− a

ab

(
G

(
a

b− a
(bu− w) +

bĉ

b− a

)
−G

(
a

b− a
(bu− w)

))
,

where G(z) :=
∫ z
0 g(s) ds . Identity (3.2) can be easily checked by a straightforward differenti-

ation, taking into account the fact that but − vt ≥ 0 almost everywhere, and if but − vt > 0,
then w = au + ĉ . The boundary condition (2.21) for x = L has to be understood as follows:
the terms α(θext − θ(L, t)) and |d[u(L, ·)]t| represent heat sources. They partially contribute to
the inflow −q of heat, and partially to the boundary temperature increase cbdyθt(L, t) .

We consider the problem in the following weak form∫ 1

0
(ρuttφ+ σφx) dx = −f [u(L, ·)](t)φ(L) + p(t)φ(0), ∀φ ∈ W 1,2(Ω), (2.23)∫ 1

0
(cθtψ + κθxψx) dx =

∫ 1

0

(
νε2t +D[m, ε]− βθεt − 1

2
mt

∫ ∞

0
ϕm(m, r)s2r [ε](t) dr

)
ψ dx

(2.24)

+|d[u(L, ·)]t(t)|ψ(L) + (α(θext − θ(L, t))− cbdyθt(L, t))ψ(L), ∀ψ ∈ W 1,2(Ω),

together with (2.11). The value of L is not relevant for the subsequent mathematical analysis,
therefore we assume from now on that L = 1.

3 Existence and uniqueness results

We begin this section by introducing some hypotheses on the data f , ϕ , e and d as well as
obvious consequences following from these hypotheses, which we will use later on in this work.

(H1) The Prandtl-Ishlinskii density function ϕ satisfies the following assumptions:

ϕ is a measurable distribution function: ϕ : [0,∞) × (0,∞) → [0,∞) , locally Lipschitz
continuous in the first variable, and there exist ϕ̃, ϕ∗ ∈ L1(0,∞) such that ϕ(m, r) ≤
ϕ̃(r) , 0 ≤ −ϕm(m, r) ≤ ϕ∗(r) , |ϕmm(m, r)| ≤ ϕ∗(r) a.e., and M̃ :=

∫∞
0 rϕ̃(r) dr < ∞ ,

M :=
∫∞
0 r2ϕ∗(r) dr < ∞ .
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(H2) The operator f : C0([0, T ]) → C0([0, T ]) is Lipschitz continuous in the following sense

|f [u1]− f [u2]|(t) ≤ Lf |u1 − u2|[0,t] , (3.1)

for every t ∈ [0, T ] and every u1, u2 ∈ C0([0, T ]) , where Lf is a positive constant and
where we denote with |w|[0,t] := max{|w(t)| : t ∈ [0, t]} the norm of w ∈ C0([0, T ]) .

(H3) The operator f maps W 1,1(0, T ) into W 1,1(0, T ) , and there exist a potential energy oper-
ator e : W 1,1(0, T ) → W 1,1(0, T ) and a dissipation operator d : W 1,1(0, T ) → W 1,1(0, T ) ,
both locally Lipschitz continuous, such that for all u ∈ W 1,1(0, T ) we have

e[u](t) ≥ c0|f [u](t)|2, e[u](0) ≤ c1|u(0)|2,
|d[u]t(t)| ≤ c1|ut(t)|,

for all t ∈ [0, T ] , with constants c0, c1 > 0, and the identity

ω̇f [ω]− e[ω]t = |d[ω]t| a.e. in [0, T ], (3.2)

holds for almost every t ∈ (0, T ) , for every absolutely continuous input ω, with potential
energy operator e[ω] and dissipation operator d[ω] .

(H4) For u ∈ W 2,1(0, T ) we have f [u] ∈ W 1,∞(0, T ) , and the “second order energy inequality”∫ t

0
f [u]tutt dt ≥ −c2|ut(0)|2 − c3

∫ t

0
|ut|3 dt (3.3)

holds for all t ∈ [0, T ] with some constants ci > 0, i = 2, 3.

(H5) The data have the regularity p ∈ W 2,2(0, T ) , u0 ∈ W 2,2(Ω), v0 ∈ W 2,2(Ω), θ0 ∈ W 1,2(Ω),
and there exists a constant θ∗ > 0 such that θ0(x) ≥ θ∗ almost everywhere. Furthermore,
the compatibility conditions

p(0) = β(θ0(0)− θref)−Bu0x(0)− P̂ (u0x(0))− νv0x(0), (3.4)

f̂(u0(1)) = β(θ0(1)− θext)−Bu0x(1)− P̂ (u0x(1))− νv0x(1), (3.5)

hold, where P̂ and f̂ are the initial value mappings f [u](0) = f̂(u(0)) and P[m, ε](0) =
P̂ (ε(0)) . (Note that m satisfies the zero initial condition, (2.19)).

(H6) ρ,B, β, ν, c, κ, α, θref, θext and cbdy are given positive constants.

(H7) λ : R → [0,∞) is a C1 function with compact support, Λ := max{λ(x)+ |λ′(x)| , x ∈ R} .
Remark 3.1 The assumption that ϕ(m, r) decreases with increasing m corresponds to the ob-
servation that the stress of the material decreases with increeasing fatigue m . Moreover, it
follows from (3.1) and Proposition 2.2 part (iii), that the initial value functions f̂ , P̂ : R → R

are well defined and Lipschitz continuous.

For simplicity we set from now on

K[m, ε](x, t) := −1

2

∫ ∞

0
ϕm(m, r)s2r [ε](x, t) dr. (3.6)

We denote here and in the sequel the set Qt := (0, 1)× (0, t) , for t ∈ [0, T ] .
The main result of this paper reads as follows.

Theorem 3.2 Assume that (H1)–(H7) hold. Then the system (2.2), (2.23)–(2.24) and (2.11)
with L = 1 has a unique solution (u, θ,m) such that u, ux, uxt, θ,mt ∈ C0(QT ) , uxxt, θx ∈
L∞(0, T ;L2(0, 1)) , uxtt, θt ∈ L2(QT ) , and θt(1, ·) ∈ L2(0, T ) .
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4 Proof of Theorem 3.2: Existence

4.1 Strategy of the proof: novelties and main difficulties

The strategy of the existence proof is classical (see for instance [38]): discretization, a-priori
estimates and passage to the limit by compactness. The presence of the beam equation suggests
to use a space discretization scheme which turns to be more convenient to deal with space
derivatives instead of other kind of discretization schemes (like e.g. [50, Chapter IX]).
The main goal when dealing with hysteresis problems is to get enough regularity to pass to
the limit in the discrete equations, in particular with respect to the nonlinear terms. We recall
indeed that non-differentiability and non-locality in time of hysteresis operators entail a loss of
compactness, so that standard techniques for the derivation of a priori estimates do not apply,
and for limit processes with hysteresis nonlinearities the usual approach using weak convergence
in Lp spaces does not work; instead, uniform convergence with respect to the time variable is
mandatory. As a consequence, new techniques have to be designed to recover the compactness
necessary for the existence proofs, which is a challenging mathematical task (see for instance
[27], [12], [28], [50]).
In the particular case of the present paper, we need to retrieve uniform convergence both in the
fatigue and in the strain terms. The strong convergence in the fatigue term (4.66) constitutes
the main novelty (and also the principal difficulty) of the paper; it is performed through a
complicated procedure based essentially on the properties of the fatigue equation (see Section
4.5). Concerning the strain terms, higher order estimates (4.54)–(4.55) are required; it turns
out indeed that the energy estimate (4.25) (which is important because it allows us to deduce
that u̇k and θk remain globally bounded, so that the existence of solutions in the whole interval
[0, T ] can be deduced) is not enough to perform the limit procedure.
Note the role of the temperature: a key estimate is (4.48), but to be able to test the equation
for the temperature by θ̇k , it is necessary to achieve more regularity than the one obtained by
the energy estimate (which gives only L1−estimate in the space variable). Here the Dafermos
estimate (see Section 4.4.2) comes into play and gives more regularity in the space variable;
more in details (4.28) provides space regularity in a Lq space with an exponent sufficiently large
(i.e. q > 2). It is worth noticing that the Dafermos estimate is a useful trick that can be
applied because the model is one-dimensional. In other situations where the model studied was
multi-dimensional, more complicated procedures have been performed to achieve the necessary
regularity for the temperature (see for instance [20]).

Let us note that compared to the computations performed in [31], we have to deal here with
additional terms coming from the presence of fatigue in the model, and we use Hypothesis (H1)
and (H6) to estimate these terms.

4.2 Discretization

We fix a discretization parameter n ∈ N and consider the following system

ρ ük = n(σk − σk−1), k = 1, . . . , n, (4.1)

c θ̇k = n2κ(θk+1 − 2θk + θk−1) + ν ε̇2k + ṁk Kk +Dk − βθk ε̇k , k = 1, . . . , n− 1, (4.2)

σk = Bεk + P[mk, εk] + ν ε̇k − β(θk − θref) , k = 1, . . . , n− 1, (4.3)

εk = n(uk+1 − uk), k = 1, . . . , n− 1, (4.4)

mk =

∫ t

0
D∗

k(τ) dτ, (4.5)
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where

P[mk, εk](t) =

∫ ∞

0
ϕ(mk(t), r)sr[εk](t) dr,

Kk[mk, εk](t) = −1

2

∫ ∞

0
ϕm(mk(t), r)s

2
r [εk](t) dr ∈

[
0,

M

2

]
,

Dk[mk, εk](t) =

∫ ∞

0
ϕ(mk(t), r) sr[εk](t)(εk − sr[εk])t(t) dr ≥ 0,

D∗
k(t) =

1

n

n−1∑
j=1

λk−jDj(t) ≥ 0 λi = λ(i/n),

with “boundary conditions”

σ0(t) = −p(t) and σn(t) = −f [un](t), (4.6)

θ0(t) = θ1(t) and nκ(θn(t)− θn−1(t)) = α(θext − θn(t))− cbdyθ̇n(t) + |d[un]t(t)|, (4.7)

as a discrete counterpart of (2.20)–(2.21). The second equation in (4.7) is the definition of θn
as a solution of the differential equation

cbdy

α+ nκ
θ̇n + θn =

1

α+ nκ
(nκθn−1 + αθext + |d[un]t|) . (4.8)

Furthermore, we define ε0(t) and εn(t) as solutions to the differential equation (4.3) for k = 0
and k = n , with σ0, σn, θ0, θn,m0,mn given by (4.5)–(4.7), and with initial conditions ε0(0) =
u0x(0) and εn(0) = u0x(1) .

Observe that (4.1)–(4.5) is a system of ordinary differential equations with a locally Lipschitz
continuous right hand side. Hence, for every choice of initial conditions

uk(0) = u0k , u̇k(0) = v0k , θk(0) = θ0k, mk(0) = 0, for k = 1, . . . , n, (4.9)

it admits a unique absolutely continuous solution on a maximal interval [0, Tn) , Tn ≤ T . In
view of (2.19), we choose the initial data (k = 1, . . . , n− 1) as

u0k = n

∫ k/n

(k−1)/n
u0(x) dx, v0k = n

∫ k/n

(k−1)/n
v0(x) dx, θ0k = n

∫ k/n

(k−1)/n
θ0(x) dx. (4.10)

Using the summation by parts formulas for arbitrary test sequences φ1, . . . , φn and ψ1, . . . , ψn ,

n∑
k=1

(σk − σk−1)φk = σnφn − σ0φ1 −
n−1∑
k=1

(φk+1 − φk)σk, (4.11)

n−1∑
k=1

(θk+1 − 2θk + θk−1)ψk = (θn − θn−1)ψn − (θ1 − θ0)ψ1 −
n−1∑
k=1

(θk+1 − θk)(ψk+1 − ψk), (4.12)

taking into account (4.6)–(4.7), we may rewrite (4.1)–(4.2) in a variational form as

ρ

n

n∑
k=1

ükφk +
n−1∑
k=1

(φk+1 − φk)σk + f [un]φn = pφ1 , (4.13)

c

n

n−1∑
k=1

θ̇kψk + nκ

n−1∑
k=1

(θk+1 − θk)(ψk+1 − ψk) (4.14)

=
1

n

n−1∑
k=1

(
νε̇2k + ṁk Kk +Dk − βθkε̇k

)
ψk +

(
α(θext − θn)− cbdyθ̇n + |d[un]t|

)
ψn,

with σk εk and mk defined by (4.3)–(4.5).
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4.3 Positivity of the temperature

We first check that on [0, Tn) , all θk remain strictly positive. To prove this, we first choose in
(4.14) all ψk nonnegative. Then it easily follows from the Hypotheses that the right hand side
of (4.14) is bounded from below by

−γ
1

n

n−1∑
k=1

θ2kψk + (α(θext − θn)− cbdyθ̇n)ψn (4.15)

with γ = β2/(4ν) . This is the essential estimate and the rest of the proof of the positivity of the
temperature follows the lines of [31] and we can show that for the solution v : [0,∞) → (0,∞)
to the differential equation {

cv̇(t) = −γv2(t),

v(0) = min{θ∗, θext}.
(4.16)

we get

d

dt

(
c

n

n−1∑
k=1

(v − θk)
+ + cbdy(v − θn)

+

)
≤ −γ

1

n

n−1∑
k=1

(v − θk)
+(v + θk)− α(v − θn)

+, (4.17)

where r+ := max(r, 0). According to Hypothesis (H5) and (4.10), we may infer that there exists
tn ∈ (0, Tn) such that θk(t) > 0 for t ∈ [0, tn) . Let us set

tn := inf{t ∈ [0, Tn) : ∃k : θk(t) ≤ 0} ≥ tn.

By (4.17), we have d
dt

(
c
n

∑n
k=1(v − θk)

+
) ≤ 0 for almost every t ∈ (0, tn) and θk(0) ≥ v(0) for

all k , hence θk(tn) ≥ v(tn) > 0 for all k , which is a contradiction. We conclude that

θk(t) ≥ v(t) > 0 for all k = 1, . . . , n in (0, Tn). (4.18)

4.4 A priori estimates

Here we denote by C > 0 suitable constants depending on the data and independent of n .

4.4.1 Estimate 1: Energy estimate

We derive now the first energy estimate similarly as in [31], we additionally have to deal with
the terms entering the equation in connection with fatigue. On the one hand, we test (4.13)
with φk = u̇k and we use (4.3) and (4.4) to get

ρ

n

n∑
k=1

üku̇k +
1

n

n−1∑
k=1

(Bεk + P[mk, εk] + νε̇k − β(θk − θref))ε̇k + f [un]u̇n = p u̇1,

which, by employing (2.9) and (3.2), gives

d

dt

(
ρ

2n

n∑
k=1

|u̇k|2 + 1

n

n−1∑
k=1

(
Bε2k + V [mk, εk] + βθrefεk

)
+ e[un]

)

+
1

n

n−1∑
k=1

(ν|ε̇t|2 +Dk + ṁkKk + |d[un]t| = p u̇1 +
1

n

n−1∑
k=1

βθkε̇k.

(4.19)



12

On the other hand, we test (4.14) with ψk = 1 and we find

d

dt

(
c

n

n−1∑
k=1

θk + cbdyθn

)
=

1

n

n−1∑
k=1

(ν|ε̇k|2 +Dk + ṁkKk) + α(θext − θn) + |d[un]t| − 1

n

n−1∑
k=1

βθkε̇k.

(4.20)
Therefore, adding (4.19) and (4.20) some terms cancel out and we obtain

d

dt

(
ρ

2n

n∑
k=1

|u̇k|2 + 1

n

n−1∑
k=1

(
Bε2k + V [mk, εk] + βθrefεk + cθk

)
+ e[un] + cbdyθn

)
+ α(θn − θext) = pu̇1.

(4.21)

Notice that the term

En(t) := ρ

2n

n∑
k=1

|u̇k(t)|2+1

n

n−1∑
k=1

(
Bε2k(t) + V [mk, εk](t) + βθrefεk(t) + cθk(t)

)
+e[un](t)+cbdyθn(t)

(4.22)
under the time derivative in (4.21) represents the total energy of the system; we also observe that
we already know that all θk are positive. Hence, by using Hypothesis (H1) (and in particular
its consequence that V [mk, εk](t) ≥ 0 for all t ∈ [0, Tn] ), (H3) and (2.7) it follows that En(t) is
bounded from below by a constant.
At this point, we integrate (4.21) over (0, t) and after integration by parts, we get (recall that
Tn ≤ T )

∀t ∈ [0, Tn) : En(t) ≤ En(0) + Tαθext + |p(t)u1(t)− p(0)u1(0)|+
∫ t

0
|pt(τ)||u1(τ)| dτ. (4.23)

By virtue of Hypotheses (H1), (H3), (H5) and Proposition 2.2 (iii), using the same idea as in
[31] for the bound of the term u1(0) , we estimate the initial energy as

En(0) ≤C

(
1 +

1

n

n∑
k=1

|u̇k(0)|2 + 1

n

n−1∑
k=1

|εk(0)|2 + ‖θ0‖L∞(0,1)

)
≤C

(
1 + ‖v0‖2L2(0,1) + ‖u0x‖2L2(0,1) + ‖θ0‖L∞(0,1)

)
,

(4.24)

and we obtain from (4.23), (4.24), the discrete Hölder inequality and the discrete Gronwall’s
lemma that

∀t ∈ [0, Tn) :
1

n

n∑
k=1

|u̇k(t)|2 + 1

n

n−1∑
k=1

(|εk(t)|2 + θk(t)
)
+ e[un](t) + θn(t) ≤ C. (4.25)

As a consequence of (4.25), u̇k and θk for each k remain globally bounded in (0, Tn), and we
can extend it to the whole interval [0, T ] by classical results of ODEs theory. The final bound is
independent of n and the system (4.1)–(4.7) with initial conditions (4.9) admits for an arbitrary
n ∈ N a unique absolutely continuous solution in the whole interval [0, T ] .

4.4.2 Estimate 2: The Dafermos estimate

Following the idea developed in [13], we take in (4.14) ψk = −θ
−1/3
k and similarly as in [31] we

obtain for all t ∈ [0, T ] , after integrating over (0, t) , and estimating the non-positive terms by
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0 from above, the following inequality

∫ t

0

(
ν

n

n−1∑
k=1

θ
−1/3
k (τ)ε̇2k(τ) + 3nκ

n−1∑
k=1

|θ1/3k+1(τ)− θ
1/3
k (τ)|2

)
dτ

≤
∫ t

0

β

n

n−1∑
k=1

θ
2/3
k (τ)|ε̇k(τ)| dτ +

3c

2n

n−1∑
k=1

θ
2/3
k (t) + α

∫ τ

0
θ2/3n (τ) dτ + cbdyθ2/3n (t).

(4.26)

On the other hand, we may deduce from (4.25) that the last three terms on the right hand
side of (4.26) are bounded by a constant. Using the Hölder’s inequality, (6.4) applied to the

particular case where vk = θ
1/3
k for k = 1, . . . , n − 1, with the choice s = 3, p = 2 and q = 5

and consequently by (6.1) with γ = 4/25, we deduce (for more details see [31])

∫ t

0

(
1

n

n−1∑
k=1

θ
−1/3
k (τ)|ε̇k(τ)|2 + n

n−1∑
k=1

|θ1/3k+1(τ)− θ
1/3
k (τ)|2

)
dτ ≤ C. (4.27)

Using once again (6.4) for vk = θ
1/3
k for k = 1, . . . , n − 1, with the choice s = 3, p = 2 and

q = 8, and consequently by (6.1) γ = 1/4, we may deduce that

∫ t

0

1

n

n−1∑
k=1

θ
8/3
k (τ) dτ ≤ C. (4.28)

On the other hand, we integrate (4.19) over (0, t) and thanks to assumptions (H1), (H3) and
(2.7), we find that

∫ t

0

1

n

n−1∑
k=1

ν|ε̇k(τ)|2 dτ ≤ C + |β|
(∫ t

0

1

n

n−1∑
k=1

θ
7/3
k (τ) dτ

)1/2(∫ t

0

1

n

n−1∑
k=1

θ
−1/3
k (τ)|ε̇k(τ)|2 dτ

)1/2

which according to (4.27) and (4.28) leads to

∫ t

0

1

n

n−1∑
k=1

|ε̇k(τ)|2 dτ ≤ C. (4.29)

4.4.3 Estimate 3: Higher order estimates

• First higher order estimate: First of all we differentiate (4.1) with respect to time and
consider the corresponding variational formulation,

ρ

n

n∑
k=1

...
u kφk +

n−1∑
k=1

(φk+1 − φk)σ̇k + f [un]tφn = ṗφ1, (4.30)

where we used (4.4) and the formula of summation by parts (4.11). We take φk = ük , use (4.3)
and we obtain

ρ

n

n∑
k=1

...
u kük +

1

n

n−1∑
k=1

ε̈k(Bε̇k + P[mk, εk]t + νε̈k − βθ̇k) + f [un]tün = (ṗ u̇1)t − p̈ u̇1. (4.31)
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We integrate now (4.31) over (0, t) and using Hypotheses (H1), (H3), (H4) and (H5) we obtain

1

n

n∑
k=1

|ük(t)|2 + 1

n

n−1∑
k=1

|ε̇k(t)|2 + 1

n

n−1∑
k=1

∫ t

0
|ε̈k(τ)|2 dτ ≤ C

(
1 +

1

n

n∑
k=1

|ük(0)|2

+ |u̇1(t)|+
∫ t

0
(|u̇1(τ)|2 + |u̇n(τ)|3) dτ +

1

n

n−1∑
k=1

∫ t

0
|θ̇k(τ)|2 dτ

)
.

(4.32)

Notice that we used here the direct estimate for P [mk, εk]t.

The initial acceleration term 1
n

∑n
k=1|ük(0)|2 is estimated by using the compatibility condi-

tions (3.4)–(3.5). We distinguish two situations: the case k = 2, . . . , n− 1 and the cases k = 1,
k = n .

� Estimate of the initial acceleration term for k = 2, . . . , n − 1 : To this aim, we first observe
that (4.1) and (4.3) imply

|ük(0)| ≤ C n (|εk(0)− εk−1(0)|+ |ε̇k(0)− ε̇k−1(0)|+ |θk(0)− θk−1(0)|) (4.33)

for all k = 2, . . . , n− 1. Indeed, to estimate the term P[mk, εk](0)−P[mk−1, εk−1](0) , we used
the following estimate, which we evaluate at t = 0

|P [mk, εk](t)− P[mk−1, εk−1](t)| (4.34)

=

∣∣∣∣∫ ∞

0
ϕ(mk, r)sr[εk]− ϕ(mk−1, r)sr[εk−1] dr

∣∣∣∣
=

∣∣∣∣∫ ∞

0
(ϕ(mk, r)− ϕ(mk−1, r))sr[εk] dr +

∫ ∞

0
ϕ(mk−1, r)(sr[εk]− sr[εk−1]) dr

∣∣∣∣
≤ C

∫ ∞

0
|mk −mk−1|(t) r dr +

(
|εk(0)− εk−1(0)|+ C max

k
|εk − εk−1|

)∫ ∞

0
ϕ̃(r) dr

and we use the fact that, from (4.9), mk(0) = 0 for k = 1, . . . , n. At this point, we deduce from
(4.4), (4.9), (4.10) and from the Cauchy-Schwarz inequality that

|εk(0)− εk−1(0)| =n2

∣∣∣∣∣
∫ k/n

(k−1)/n
u0

(
x+

1

n

)
− 2u0(x) + u0

(
x− 1

n

)
dx

∣∣∣∣∣
≤ C√

n

(∫ (k+1)/n

(k−2)/n
|u0xx|2 dx

)1/2

for all k = 2, . . . , n− 1. Hence, it follows that

n
n−1∑
k=2

|εk(0)− εk−1(0)|2 ≤ C

∫ 1

0
|u0xx|2 dx. (4.35)

The other terms in (4.33) are treated similarly, so we may conclude that

1

n

n−1∑
k=2

|ük(0)|2 ≤ C

(∫ 1

0

(|u0xx|2 + |v0xx|2 + |θ0x|2
)
dx

)
. (4.36)



15

� Estimate of the initial acceleration term for k = 1 and k = n : On the other hand, (4.1),
(4.3), (4.6) together with (3.4)–(3.5) give

ρü1(0) =n
(
B(ε1(0)− u0x(0)) + P̂ (ε1(0))− P̂ (u0x(0)) + ν(ε̇1(0)− v0x(0))− β(θ1(0)− θ0(0))

)
,

(4.37)

ρün(0) =− n
(
B(εn−1(0)− u0x(1)) + P̂ (εn−1(0))− P̂ (u0x(1)) + ν(ε̇n−1(0)− v0x(1))

− β(θn−1(0)− θ0(1)) + f̂(un−1(0))− f̂(u0(1))
)
. (4.38)

We may observe that, by virtue of Proposition 2.2 (iii) and (2.19),

n|P̂ (εn−1(0))− P̂ (u0x(1))| ≤ Cn|εn−1(0)− u0x(1)|.

Once again using (4.4), (4.9), (4.10) and the Cauchy-Schwarz inequality, it comes that (for more
details, see [31])

n|εn−1(0)− u0x(1)| ≤ 2
√
2n

(∫ 1

1−(2/n)
|u0xx(z)|2 dz

)1/2

.

All the other differences appearing in (4.37)–(4.38) are treated similarly, and in combination
with (4.36), we find

1

n

n∑
k=1

|ük(0)|2 ≤ C

(∫ 1

0
|u0xx|2 + |v0xx|2 + |θ0x|2 dx

)
≤ C. (4.39)

� Estimate of the boundary terms: We estimate the boundary terms in (4.32) involving u̇1 and
u̇n using (6.4) with q = ∞ , p = s = 2. Then γ = 1/2 and we see by virtue of (4.25) that they
are absorbed by the left hand side. We may conclude that

1

n

n∑
k=1

|ük(t)|2 + 1

n

n−1∑
k=1

|ε̇k(t)|2 + 1

n

n−1∑
k=1

∫ t

0
|ε̈k(τ)|2 dτ ≤ C

(
1 +

1

n

n−1∑
k=1

∫ t

0
|θ̇k(τ)|2 dτ

)
. (4.40)

• Second higher order estimate: First of all we have by (4.3) that

|ε̇k − ε̇k−1| ≤ 1

ν
(B(εk − εk−1) + |P [mk, εk]− P[mk−1, εk−1]|+ |β||θk − θk−1|+ |σk − σk−1|) .

We square this inequality, sum over k and substitute from (4.1) to obtain for all t ∈ [0, T ] that

n

n∑
k=1

|ε̇k − ε̇k−1|2(t) (4.41)

≤ C

n

n∑
k=1

(
|ük|2 + n2(εk − εk−1)

2 + n2|P [mk, εk]− P[mk−1, εk−1]|2 + n2|θk − θk−1|2
)
(t).

We estimate now the right hand side. The following estimate holds because of (4.5), (2.10) and
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(4.29)

|mk −mk−1|(t) ≤ C

∫ t

0

⎛⎝ 1

n

n∑
j=1

|λk−j − λk−j−1|Dj(τ)

⎞⎠ dτ

≤ C

∫ t

0

⎛⎝ 1

n

n∑
j=1

|ε̇j(τ)||λk−j − λk−j−1|
⎞⎠ dτ

≤ C

⎛⎝ 1

n2

∫ t

0

n∑
j=1

|ε̇j(τ)| dτ
⎞⎠ ≤ C

n
. (4.42)

Note that by (4.34) and (4.42) we have

|P [mk, εk](t)− P [mk−1, εk−1](t)|2 ≤ C

(
1

n2
+ |εk(0)− εk−1(0)|2 +

∫ t

0
|ε̇k(τ)− ε̇k−1(τ)|2 dτ

)
.

(4.43)
Therefore using (4.43) in (4.41), we find

n
n∑

k=1

|ε̇k(t)− ε̇k−1(t)|2 ≤ C

(
1 + n

n∑
k=1

|εk(0)− εk−1(0)|2 + 1

n

n∑
k=1

|ük(t)|2

+ n
n∑

k=1

|θk(t)− θk−1(t)|2 +
∫ t

0
n

n∑
k=1

|ε̇k(τ)− ε̇k−1(τ)|2 dτ
)
.

(4.44)

We deal now with the last term on the right hand side of (4.44). To this aim, let us introduce

w(t) :=

∫ t

0
n

n∑
k=1

|ε̇k(τ)− ε̇k−1(τ)|2 dτ

and

g(t) := 1 + n

n∑
k=1

|εk(0)− εk−1(0)|2 + 1

n

n∑
k=1

|ük(t)|2 + n
n∑

k=1

|θk(t)− θk−1(t)|2.

Clearly with these notations, (4.44) can be rewritten as a differential inequality

ẇ(t)− Cw(t) ≤ Cg(t). (4.45)

Multiplying (4.45) by exp(−C t) , we get

w(t) ≤
∫ t

0
Cg(τ) exp(−C(t− τ)) dτ,

which gives, using (4.35),

∫ t

0
n

n∑
k=1

|ε̇k(τ)− ε̇k−1(τ)|2 dτ ≤ C

(
1 +

∫ t

0

(
1

n

n∑
k=1

|ük(τ)|2 + n
n∑

k=1

|θk(τ)− θk−1(τ)|2
)

dτ

)
.

(4.46)
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We may conclude by combining (4.46) with (4.44) and (4.35) to get

n
n∑

k=1

|ε̇k(t)− ε̇k−1(t)|2 ≤ C

(
1 +

1

n

n∑
k=1

|ük(t)|2 + n
n∑

k=1

|θk(t)− θk−1(t)|2

+

∫ t

0

(
1

n

n∑
k=1

|ük(τ)|2 + n
n∑

k=1

|θk(τ)− θk−1(τ)|2
)

dτ

)

≤C

(
1 + n

n∑
k=1

|θk(t)− θk−1(t)|2 +
∫ t

0

(
1

n

n−1∑
k=1

|θ̇k(τ)|2 + n
n∑

k=1

|θk(τ)− θk−1(τ)|2
)

dτ

)
,

(4.47)

where in the last line we used (4.40).

• Estimate for the temperature: We take ψk = θ̇k in (4.14). The right hand side is
estimated via Hölder’s inequality, we integrate the equation over (0, t) , note that the last term
on the right hand side is bounded after integration by virtue of (H3) and (4.29) and we get∫ t

0

(
1

n

n−1∑
k=1

|θ̇k(τ)|2 + |θ̇n(τ)|2
)

dτ + n

n−1∑
k=1

|θk+1(t)− θk(t)|2

≤ C

(
1 +

1

n

∫ t

0

n−1∑
k=1

(|ε̇k(τ)|4 + |θk(τ)|4)
)

dτ.

(4.48)

• Final estimates and conclusion: For later purposes we define for a generic sequence {ϕk :
k = 0, 1, . . . , n} with the notations Δkϕ = n(ϕk − ϕk−1) , and Δ2

kϕ = n2(ϕk+1 − 2ϕk + ϕk−1) ,
piecewise constant and piecewise linear interpolations

ϕ(n)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕk for x ∈

[
k − 1

n
,
k

n

)
, k = 1, . . . , n− 1 ,

ϕn−1 for x ∈
[
n− 1

n
, 1

]
,

(4.49)

ϕ(n)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕk−1 for x ∈

[
k − 1

n
,
k

n

)
, k = 1, . . . , n− 1 ,

ϕn−1 for x ∈
[
n− 1

n
, 1

]
,

(4.50)

ϕ̂(n)(x) = ϕk−1 +

(
x− k − 1

n

)
Δkϕ for x ∈

[
k − 1

n
,
k

n

)
, k = 1, . . . , n . (4.51)

We also define

λ(n)(x, y) = λk−j for (x, y) ∈
[
k − 1

n
,
k

n

)
×
[
j − 1

n
,
j

n

)
. (4.52)

At this point, we consider piecewise linear interpolations û(n)(x, t) , ε̂(n)(x, t) and θ̂(n)(x, t)
constructed from the sequences uk , εk and θk by the formula (4.51). We conclude in the same
way as in [31] that
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‖ε̂(n)t ‖2W 1,P(QT ) + ‖θ̂(n)‖2W 1,P(QT ) +

∫ T

0
|θ̂(n)t (1, t)|2 dt ≤ C, (4.53)

or, in terms of series, we have for all t ∈ [0, T ] that

1

n

n∑
k=1

|ük(t)|2 + 1

n

n∑
k=0

|ε̇k(t)|2 + n
n∑

k=1

|ε̇k(t)−ε̇k−1(t)|2 + n
n∑

k=1

|θk(t)−θk−1(t)|2 ≤ C, (4.54)

∫ t

0

(
1

n

n−1∑
k=1

|θ̇k(τ)|2 + |θ̇n(τ)|2 + 1

n

n∑
k=0

|ε̈k(τ)|2
)

dτ ≤ C. (4.55)

We also get as a consequence of (4.5) and the above estimates together with (6.12) that

max
t∈[0,T ]

max
i=1,...,n

|ṁi(t)| ≤ C. (4.56)

4.5 Passage to the limit

With the notation introduced in (4.49)-(4.51), passing to a subsequence, if necessary, we find
functions ε, θ, u such that εt, θ ∈ W 1,P(QT ) , θt(1, ·) ∈ L2(0, T ) , utt ∈ L2(QT ) and such that

û
(n)
tt ⇀ utt, ε̂

(n)
xt ⇀ εxt, θ̂(n)x ⇀ θx weakly* in L∞((0, T ), L2(0, 1)), (4.57a)

ε̂
(n)
tt ⇀ εtt, θ̂

(n)
t ⇀ θt weakly in L2(QT ), (4.57b)

ε̂
(n)
t → εt, θ̂(n) → θ uniformly in C0(QT ), (4.57c)

θ̂
(n)
t (1, ·) ⇀ θt(1, ·) weakly in L2(0, T ). (4.57d)

We have for x ∈ [(k − 1)/n, k/n)

|ε (n)t (x, t)− ε̂
(n)
t (x, t)|2 ≤ |εk,t(t)− εk−1,t(t)|2 ≤ 1

n

(
n

n∑
k=1

|εk,t(t)− εk−1,t(t)|2
)

≤ C

n
, (4.58)

with some suitable C > 0. Hence ε
(n)
t → εt uniformly in L∞(QT ) , and similarly ε (n) → ε ,

ε
(n)
t → εt , ε(n) → ε , θ (n) → θ , θ

(n) → θ uniformly in L∞(QT ) . We have indeed û
(n)
x = ε (n)

and û
(n)
xt = ε

(n)
t , hence û

(n)
x → ε = ux , û

(n)
xt → εt = uxt uniformly in L∞(QT ) .

To check that the limit functions satisfy the initial conditions we proceed in the same way
as in [31].

To prove the existence of solutions, we check that the limit functions satisfy (2.23)–(2.24).
Let φ ∈ W 1,2(0, 1) be an arbitrary test function, and let us define

δn(t) :=

∫ 1

0
(u

(n)
tt (t)φ(x) + σ (n)(t)φx(x)) dx+ f [u(n)(1, ·)](t)φ(1)− p(t)φ(0).

We now use (4.1) and (4.6) to rewrite δn in the form

δn(t) =
n∑

k=1

ük(t)

∫ k/n

(k−1)/n
φ(x) dx+

n∑
k=1

σk−1(t)(φ(k/n)− φ((k−1)/n))

+ f [un](t)φ(1)− p(t)φ(0)

=

n∑
k=1

ük(t)

∫ k/n

(k−1)/n
φ(x) dx−

n∑
k=1

(σk − σk−1)φ(k/n)

=

n∑
k=1

ük(t)

∫ k/n

(k−1)/n
(φ(x)− φ(k/n)) dx.

(4.59)
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Clearly, there exists C > 0 such that

|δn(t)| ≤
(
1

n

n∑
k=1

|ük(t)|2
)1/2(

1

n2

n∑
k=1

∫ k/n

(k−1)/n
|φx(x)|2 dx

)1/2

≤ C

n
|φx|2.

In the identity

0 =

∫ 1

0
(u

(n)
tt φ+ σ (n)φx)(x, t) dx+ f [u(n)(1, ·)](t)φ(1)− p(t)φ(0)− δn(t) (4.60)

we now pass to the limit as n → ∞ . First of all we have for all x ∈ (0, 1) by Proposition 2.2 (ii)
that ∫ t

0

∣∣∣m(n)
t −m

(l)
t

∣∣∣ (x, τ) dτ (4.61)

≤ C

∫ t

0

∫ 1

0

∫ ∞

0

∣∣∣λ(n)(x, y)ϕ(m(n), r)δ(n)(y, τ, r)− λ(l)(x, y)ϕ(m(l), r)δ(l)(y, τ, r)
∣∣∣ dr dy dτ,

where we denote

δ(n) = δ(n)(y, t, r) = sr[ε
(n)](ε(n) − sr[ε

(n)])t(y, t)= r|pr[ε(n)]t(y, t)|.
By Proposition 2.2 (ii) we have (note that ||a| − |b|| ≤ |a− b| for a, b ∈ R)∫ t

0
|δ(n) − δ(l)|(y, τ) dτ ≤ r

∫ t

0
|ε(n)t − ε

(l)
t |(y, τ) dτ,

hence, by Hypothesis (H1) and (H7)∫ t

0

∫ 1

0

∫ ∞

0
λ(n)(x, y)ϕ(m(n), r)|δ(n) − δ(l)| dr dy dτ (4.62)

≤ C

∫ t

0

∫ 1

0
|ε(n)t − ε

(l)
t |(y, τ) dy dτ.

Similarly, by Hypothesis (H1),∫ t

0

∫ 1

0

∫ ∞

0
δ(l)λ(n)(x, y)|ϕ(m(n), r)− ϕ(m(l), r)| dr dy dτ

≤ C

∫ t

0

(∫ 1

0
|ε(l)t (y, τ)| dy

)
max
x∈(0,1)

|m(n)(x, τ)−m(l)(x, τ)| dτ. (4.63)

Finally, we have the pointwise bound

|λ(n)(x, y)− λ(l)(x, y)| ≤ 4Λ

min{n, l} , (4.64)

where Λ has been introduced in (H7). Combining (4.61)–(4.64) gives the estimate

max
x∈(0,1)

|m(n) −m(l)|(x, t)

≤ max
x∈(0,1)

∫ t

0

∣∣∣m(n)
t −m

(l)
t

∣∣∣ (x, τ) dτ
≤ qnl + C

∫ t

0

(∫ 1

0
|ε(l)t (y, τ)| dy

)
max
x∈(0,1)

|m(n) −m(l)|(x, τ) dτ, (4.65)
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with

qnl = C

(
1

min{n, l} + ‖ε(n)t − ε
(l)
t ‖1

)
.

Inequality (4.65) can be interpreted as an inequality of the form

q(t) ≤ qnl +

∫ t

0
s(l)(τ)q(τ) dτ,

with q(t) = maxx∈(0,1) |m(n) − m(l)|(x, t) , s(l)(t) = C
∫ 1
0 |ε(l)t (y, t)| dy , with s(l) uniformly

bounded in L1(0, T ) . We obtain using Gronwall’s lemma that

q(t) ≤ qnle
∫ t
0 s(l)(τ) dτ ≤ Cqnl.

The convergences established at the beginning of this section imply that qnl is small if n, l are
large. Hence, m(n) is a Cauchy sequence, so that

m(n) → m strongly in L∞(QT ), (4.66)

and, by (4.65),

m
(n)
t → mt strongly in L∞(0, 1;L1(0, T )).

Furthermore, by virtue of (4.56) m
(n)
t are uniformly bounded in L∞(QT ) , hence m

(n)
t → mt

in L∞(QT ) weakly star. Using the convergences established at the beginning of this section

and Proposition 2.2, we conclude that D
(n)

(x, ·) , K
(n)

(x, ·) converge for all x ∈ (0, 1) to
D[m, ε](x, ·) , K[m, ε](x, ·) , respectively, strongly in L∞(0, T ) .

By continuity of the operator P[m, ε] , we have that σ (n) converge to σ = Bε + P[m, ε] +
νεt − β(θ − θref) uniformly in L∞(QT ) . Similarly, the boundary term f [u(n)(1, ·)] converges

uniformly in C0([0, T ]) to f [u(1, ·)] . The sequence u
(n)
tt converges weakly in L2(QT ) and δn

converge uniformly to 0, hence the limit functions satisfy (2.2) and (2.23).
Similarly, with the intention to prove that (2.24) holds, we consider now an arbitrary test

function ψ ∈ W 1,2(0, 1) and define the quantity

Δn(t) :=

∫ 1

0
(cθ

(n)
t (x, t)ψ(x) + κθ̂(n)x (x, t)ψx(x)− |ν(ε(n)t (x, t)|2 +m

(n)
t (x, t)K

(n)
(x, t) +D

(n)
(x, t)

− βθ
(n)

(x, t)ε
(n)
t (x, t))ψ(x)) dx

− (|d[û(n)(1, ·)]t(t)|+ α(θref − θ̂(n)(1, t))− cbdyθ̂
(n)
t (1, t))ψ(1),

(4.67)
where

m(n)(x, t) =

∫ t

0

(∫ 1

0
λ(n)(x, y)D

(n)
(y, τ) dy

)
dτ, (4.68)

D
(n)

(x, t) =

∫ ∞

0
ϕ(m(n), r) sr[ε

(n)](ε(n) − sr[ε
(n)])t(x, t) dr, (4.69)

K
(n)

(x, t) = −1

2

∫ ∞

0
ϕm(m(n), r)s2r [ε

(n)](x, t) dr, (4.70)

Notice that we have∫ 1

0
θ̂(n)x ψx dx = n

n∑
k=1

(θk(t)− θk−1(t))(ψ(k/n)− ψ((k − 1)/n))

= n

n−1∑
k=1

(θk+1(t)− θk(t))(ψ((k + 1)/n)− ψ(k/n)).
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We use (4.14) with ψk = ψ(k/n) to obtain

Δn(t) =
n∑

k=1

(
cθ̇k(t)− ν|ε̇k(t)|2 − ṁk Kk −Dk + βθk(t)ε̇k(t)

)∫ k/n

(k−1)/n
ψ(x) dx

+ κn

n−1∑
k=1

(θk+1(t)− θk(t))(ψ((k + 1)/n)− ψ(k/n))

− (|d[un]t|+ α(θext − θn)− cbdyθ̇n)(t)ψ(1)

=

n∑
k=1

(
cθ̇k − νε̇2k − ṁk Kk −Dk + βθkε̇k

)
(t)

∫ k/n

(k−1)/n
(ψ(x)− ψ(k/n)) dx,

hence, arguing as in the estimate of δn , we may infer that there exists C > 0 such that

|Δn(t)| ≤ C

n

(
n∑

k=1

∫ k/n

(k−1)/n
ψ2
x(x) dx

)1/2(
1

n

n∑
k=1

(θ̇2k + ε̇4k + θ4k)(t)

)1/2

.

hence Δn converge to 0 strongly in L2(0, T ) . Passing to the weak limit in L2(0, T ) in (4.67)
we check that (2.24) holds, so that (u, θ,m) is a desired solution from Theorem 3.2.

5 Proof of Theorem 3.2: Uniqueness

It remains to prove uniqueness. Instead, we prove here a stronger continuous data dependence
result which implies uniqueness if the data coincide. Here we follow the ideas from [31], but we
have to face additionally many technical difficulties caused with the presence of fatigue.

Theorem 5.1 Let pi, u
0
i , v

0
i , θ

0
i and θexti , i = 1, 2 , be sets of data satisfying Hypotheses (H5)

and (H6) (recall that, by (2.19) m(x, 0) = 0 a.e. in (0, 1)), and let (ui, θi,mi) , i = 1, 2 , be the
corresponding solutions as in Theorem 3.2. Set p∗ := p1 − p2 , u0∗ := u01 − u02 , v0∗ := v01 − v02 ,
θ0∗ := θ01 − θ02 , u∗ := u1 − u2 , θ∗ := θ1 − θ2 , m∗ := m1 −m2 and θext∗ := θext1 − θext2 . Then
there exists C > 0 depending only on the norms of the data in their respective spaces such that
for all t ∈ [0, T ] , the following inequality holds∫ 1

0
|u∗t (x, t)|2 dx+

∫
Qt

(|u∗xt(x, τ)|2 + |θ∗(x, τ)|2) dx dτ +

∫ t

0
|θ∗(1, τ)|2 dτ

≤ C

(
|θ0∗(1)|2 + |θext∗|2 +

∫ t

0
|p∗(τ)|2 dτ +

∫ 1

0
(|u0∗|2 + |u0∗x |2 + |v0∗|2 + |θ0∗|2)(x) dx

)
.

Proof. First of all, integrating the difference of (2.24) for the two solutions in time from 0 to t ,
for all t ∈ [0, T ] , for all ψ ∈ W 1,2(0, 1), we obtain∫ 1

0
c(θ∗(x, t)− θ0∗(x))ψ(x) dx+ κ

∫
Qt

θ∗x(x, τ)ψx(x) dx dτ + cbdy(θ∗(1, t)− θ0∗(1))ψ(1)

= ν

∫
Qt

(ε21,t − ε22,t)(x, τ)ψ(x) dx dτ +

∫
Qt

(D[m1, ε1](x, τ)−D[m2, ε2](x, τ))ψ(x) dx dτ

− β

∫
Qt

(θ1ε1,t − θ2ε2,t)(x, τ)ψ(x) dx dτ −
∫
Qt

(m1,tK[m1, ε1](x, τ)−m2,tK[m2, ε2](x, τ))ψ(x) dx dτ

+

∫ t

0
(|d[u1(1, ·)]t(τ)| − |d[u2(1, ·)]t(τ)|)ψ(1) dτ + α

∫ t

0
(θext∗ − θ∗(1, τ))ψ(1) dτ.
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We test now by ψ(x) = θ∗(x, t) . We observe that εi,t , ui,t , θi and mi are bounded in L∞(QT ) ,
i = 1, 2, and the dissipation operators are Lipschitz continuous in W 1,1(0, T ) by Proposition
2.2 (ii) and Hypothesis (H2) that is,∫ t

0
|(D[m1, ε1]−D[m2, ε2)(x, τ)]| dτ ≤ C

(
|u0∗x (x)|+

∫ t

0
(|(m1 −m2)(x, τ)||ε1,t(x, τ)|+ |ε∗t (x, τ)|) dτ

)
,

(5.1)∫ t

0
(|d[u1(1, ·)]t(τ)| − |d[u2(1, ·)]t(τ)|) dτ ≤ C

(
|u0∗(1)|+

∫ t

0
|u∗t (1, τ)| dτ

)
, (5.2)

for all x ∈ (0, 1) and t ∈ [0, T ] , with some C > 0. The fatigue term is estimated using (H1) as∫ t

0
|(m1,tK[m1, ε1]−m2,tK[m2, ε2])(x, τ)| dτ (5.3)

≤ C

∫ t

0

(
|(m1,t −m2,t)(x, τ)|+ |m1,t(x, τ)|

(
|(m1 −m2)(x, τ)|+ |u0∗x (x)|+

∫ τ

0
|ε∗t (y, τ)| dy

))
dτ.

Now, |m1,t(x, t)| ≤ C by the existence part of Theorem 3.2, and∫ t

0
|m1,t −m2,t|(x, τ) dτ ≤ C

∫ t

0

∫ 1

0
|u0∗x (y)|2 dy dτ (5.4)

+C

∫ t

0

(∫ 1

0

(
|m1 −m2||ε1,t|+

∫ τ

0
|ε∗t | ds

)
(y, τ) dy

)
dτ

by Proposition 2.2 (ii), together with (2.11) and (5.1); moreover∫ t

0

∫ 1

0
(|m1 −m2| |ε1,t|)(y, τ) dy dτ ≤ C

∫ t

0

(∫ 1

0
|m1 −m2|2(y, τ) dy

)1/2

dτ (5.5)

by (4.54). On the other hand,

|m1 −m2|(x, t) ≤
∫ t

0
|m1,t −m2,t|(x, τ) dτ

for almost every x , hence, using (5.4) and (5.5) we have

|m1 −m2|2(x, t) ≤ C

(∫ 1

0
|u0∗x (x)|2 dx+

∫ t

0

∫ 1

0
(|m1 −m2|2 + |ε∗t |2)(y, t) dy dτ

)
.

Integrating in space and using Gronwall’s argument, we obtain from (5.4) that∫ t

0
|m1,t −m2,t|(x, τ) dτ ≤ C

((∫ 1

0
|u0∗x (x)|2 dx

)1/2

+

(∫ t

0

∫ 1

0
|ε∗t (y, τ)|2 dy dτ

)1/2
)
. (5.6)

Using the L∞ bounds for θi and εi,t and the inequalities (5.1)–(5.2), we may infer that there
exists C > 0 such that∫ 1

0
c θ∗(x, t)(θ∗(x, t)− θ0∗(x)) dx+

κ

2

d

dt

∫ 1

0

(∫ t

0
θ∗x(x, s) ds

)2

dx+ cbdyθ∗(1, t)(θ∗(1, t)− θ0∗(1))

≤ C

(∫ 1

0
|θ∗(x, t)|

(
|u0∗x (x)|+

∫ t

0
(|ε∗t (x, s)|+ |θ∗(x, s)|) ds+

(∫ 1

0
|u0∗x (x)|2 dx

)1/2

+

(∫ t

0

∫ 1

0
|ε∗t |2(y, s) dy ds

)1/2
)
dx+ |θ∗(1, t)|

(
|u0∗(1)|+ |θext∗|+

∫ t

0
(|θ∗(1, s)|+ |u∗t (1, s)|) ds

))
.
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Hence, also by virtue of (5.15), it follows that there exist constants C, κ∗ > 0 such that∫ 1

0
|θ∗(x, τ)|2 dx+ κ∗

d

dt

∫ 1

0

(∫ t

0
θ∗x(x, s) ds

)2

dx+ |θ∗(1, t)|2

≤ C

(
|θext*|2 + |θ0∗(1)|2 +

∫ 1

0
(|u0∗|2 + |u0∗x |2 + |θ0∗|2)(x) dx

+

∫
Qt

(|u∗t |2 + |ε∗t |2 + |θ∗|2)(x, s) dx ds+
∫ t

0
|θ∗(1, s)|2 ds

)
.

(5.7)

Integrating (5.7) in time over (0, t) we obtain that∫
Qt

|θ∗(x, τ)|2 dx dτ +

∫ t

0
|θ∗(1, τ)|2 dτ

≤ C T

(
|θext*|2 + |θ0∗(1)|2 +

∫ 1

0
(|u0∗|2 + |u0∗x |2 + |θ0∗|2)(x) dx

)
+ C

(∫ t

0

∫
Qt

(|u∗t |2 + |ε∗t |2 + |θ∗|2)(x, t) dx ds dτ +

∫ t

0

∫ τ

0
|θ∗(1, s)|2 ds dτ

)
.

(5.8)

We now consider the difference of (2.23) taken for the two solutions (u1, θ1,m1) , (u2, θ2,m2) ,
tested by φ = u∗t , then we use (2.2) and finally we integrate this expression over (0, t) to get

ρ

2

∫ 1

0
|u∗t (x, t)|2 dx+ ν

∫
Qt

|ε∗t (x, τ)|2 dx dτ =
ρ

2

∫ 1

0
|v0∗(x)|2 dx

+ β

∫
Qt

θ∗(x, τ)ε∗t (x, t) dx dτ −
∫
Qt

(Bε∗(x, τ) + P[m1, ε1](x, τ)− P [m2, ε2](x, τ))ε
∗
t (x, τ) dx dτ

−
∫ t

0
(f [u1](1, τ)− f [u2](1, τ))u

∗
t (1, τ) dτ +

∫ t

0
p∗(τ)u∗t (0, τ) dτ.

(5.9)
The terms on the right hand side of (5.9) will be estimated using a suitable constant μ > 0 that
will be specified later. We have

β

∫
Qt

θ∗(x, τ)ε∗t (x, τ) dx dτ ≤ β2

2μ

∫
Qt

|θ∗(x, τ)|2 dx dτ +
μ

2

∫
Qt

|ε∗t (x, τ)|2 dx dτ, (5.10)

−
∫
Qt

Bε∗(x, τ) ε∗t (x, τ) dx dτ ≤ B2

2μ

∫
Qt

|ε∗(x, τ)|2 dx dτ +
μ

2

∫
Qt

|ε∗t (x, τ)|2 dx dτ, (5.11)

−
∫
Qt

(P[m1, ε1](x, τ)− P[m2, ε2](x, τ))ε
∗
t (x, τ) dx dτ (5.12)

≤ 1

2μ

∫
Qt

|P [m1, ε1](x, τ)− P[m2, ε2](x, τ)|2 dx dτ +
μ

2

∫
Qt

|ε∗t (x, τ)|2 dx dτ,

−
∫ t

0
(f [u1](1, τ)− f [u2](1, τ))u

∗
t (1, τ) dτ (5.13)

≤ 1

2μ

∫ t

0
|f [u1](1, τ)− f [u2](1, τ)|2 dτ +

μ

2

∫ t

0
|u∗t (1, τ)|2 dτ,
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∫ t

0
p∗(τ)u∗t (0, τ) dτ ≤ 1

2μ

∫ t

0
|p∗|2(τ) dτ +

μ

2

∫ t

0
|u∗t (0, τ)|2 dτ. (5.14)

By (6.2) for r = s = p = 2 we have for all (y, τ) ∈ QT that

|u∗t (y, τ)|2 ≤
∫ 1

0
|u∗t (x, τ)|2 dx+

√
2

(∫ 1

0
|u∗t (x, τ)|2 dx

)1/2(∫ 1

0
|ε∗t (x, τ)|2 dx

)1/2

,

hence, by Hölder’s inequality,

∫ t

0
|u∗t (y, τ)|2 dτ ≤ 3

2

∫
Qt

|u∗t (x, τ)|2 dx dτ +

∫
Qt

|ε∗t (x, τ)|2 dx dτ. (5.15)

Furthermore,

∫
Qt

|P [m1, ε1](x, τ)− P [m2, ε2](x, τ)|2 dx dτ ≤ C

(∫ 1

0
|u∗0x (x)|2 dx+

∫ t

0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ
)
,

(5.16)∫ t

0
|f [u1](1, τ)− f [u2](1, τ)|2 dτ ≤ 2L2

f

(
|u∗0(1)|2 +

∫ t

0

∫ τ

0
|u∗t (1, s)|2 ds dτ

)
(5.17)

≤ 2L2
f

(
|u∗0(1)|2 + 3T

2

∫
Qt

|u∗t (x, t)|2 dt+
∫ t

0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ
)
.

Similarly we have

∫
Qt

|ε∗(x, τ)|2 dx dτ ≤ C

(∫ 1

0
|u∗0x (x)|2 dx+

∫ t

0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ
)
. (5.18)

Choosing now μ = ν/4 and inserting the estimates (5.10)–(5.17) into (5.9), we conclude that
there exists a constant C∗ > 0 depending only on the physical constants of the problem such
that

∫ 1

0
|u∗t (x, t)|2 dx+

∫
Qt

|ε∗t (x, τ)|2 dx dτ ≤ C∗
(∫ 1

0

(|v0∗|2 + |u0∗|2 + |u0∗x |2) (x) dx
+

∫ t

0
|p∗(τ)|2 dτ +

∫
Qt

|θ∗(x, τ)|2 dx dτ +

∫
Qt

|u∗t (x, τ)|2 dx dτ

+

∫ t

0

∫
Qτ

|ε∗t (x, s)|2 dx ds dτ
)
.

(5.19)

We now multiply (5.8) by 2C∗ and add the result to (5.19), apply the Gronwall’s argument and
complete the proof in the same way as in [31].

�
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6 Appendix: Sobolev interpolation inequalities

Let p, q, s ∈ [1,∞] be such that q > s , and let | · |p denote the norm in Lp(0, 1). The
Gagliardo-Nirenberg inequality states that there exists a constant CGN > 0 such that for every
v ∈ W 1,p(0, 1) we have

|v|q ≤ CGN
(|v|s + |v|1−γ

s |v′|γp
)
) with γ :=

1
s − 1

q

1 + 1
s − 1

p

. (6.1)

Note that (6.1) is straightforward. Indeed if we introduce an auxiliary parameter r := 1+s(1− 1
p)

and use the chain rule d
dx |v(x)|r ≤ r|v(x)|r−1|v′(x)| almost everywhere, we obtain from Hölder’s

inequality that

|v|∞ ≤ |v|r + C|v|1−(1/r)
s |v′|1/rp with C := r1/r. (6.2)

Combined with the obvious interpolation inequality |v|h ≤ |v|1−(s/h)
∞ |v|s/hs for h = q if r ≥ s ,

and for both h = q and h = r if r > s , this yields (6.1).

Let now v := (v0, v1, . . . , vn)
T be a vector, and let us denote

|v|p :=
(
1

n

n∑
k=0

|vk|p
)1/p

and |Dv|p :=
(
np−1

n∑
k=1

|vk − vk−1|p
)1/p

. (6.3)

The discrete counterpart of (6.1) reads

|v|q ≤ CGND
(|v|s + |v|1−γ

s |Dv|γp
)
, (6.4)

where CGND > 0 is a constant depending on the data and independent of n .

Let us recall here the following embedding formula for anisotropic Sobolev spaces from [29,
Theorem A.1]. For a vector p := (p1, . . . , pN )T , 1 ≤ pi < ∞ , we define the space Lp(RN ) as
the subspace of L1(RN ) of functions v such that the norm

‖v‖p :=

⎛⎝∫
R

(
. . .

∫
R

(∫
R

|v(x)|p1 dx1

)p2/p1

dx2 . . .

)pN/pN−1

dxN

⎞⎠1/pN

(6.5)

is finite, with obvious modifications if pi = ∞ . If p1 = p2 = · · · = pN , we write simply ‖v‖p .
For a matrix P := (Pij)

N
i,j=1 with Pij := 1/pij , 1 ≤ pij ≤ ∞ , we define the anisotropic Sobolev

space

W 1,P(RN ) :=

{
v ∈ L1(RN ) :

∂v

∂xi
∈ Lpi(RN ), i = 1, . . . , N

}
, (6.6)

where pi := (pi1, . . . , piN ) . The proof in [29] is carried out explicitly only for pij < ∞ using the
methods of [3], but the case pij = ∞ works exactly in the same way.

We denote by I the identity N × N matrix, and by 1 the vector 1 := (1, 1, . . . , 1)T . The
spectral radius �(P) of P is defined as

�(P) := max{|λ| : λ ∈ C, det(P− λI) = 0} = lim sup
n→∞

|Pn|1/n. (6.7)

Theorem 6.1 Let �(P) < 1 , and let

(I−P)−11 := b := (b1, . . . , bN ). (6.8)
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Then W 1,P(RN ) is embedded in L∞(RN ) , and there exists a constant CP > 0 such that each
v ∈ W 1,P(RN ) has for all x, z ∈ R

N the Hölder property

|v(z)− v(x)| ≤ CP‖v‖W 1,P(RN )

N∑
i=1

|zi − xi|1/bi , (6.9)

and putting |b| := ∑N
i=1 bi , we have for every δ ∈ (0, 1] and every q ∈ [1,∞) that

∀x ∈ R
N : |v(x)| ≤ CP

(
δ−|b|/q‖v‖q + δ‖v‖W 1,P(RN )

)
. (6.10)

Corollary 6.2 In the situation of the previous Theorem for r > q the following interpolation
inequality holds:

‖v‖r ≤ CP
(
‖v‖q + ‖v‖1−γ∗

q ‖v‖γ∗
W 1,P(RN )

)
, (6.11)

with γ∗ := |b|(1− (q/r))/(q + |b|) .

For a detailed proof see [31].

This result will be applied to our situation in the following particular case.

Corollary 6.3 Let P be the matrix

P :=

(
1/2 0
1/2 1/2

)
. (6.12)

Then the space W 1,P(QT ) defined as in (6.6) with x1 = x and x2 = t , is compactly embedded
in C0(QT ) .
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[21] M. Eleuteri, J. Kopfová, P. Krejč́ı: A new phase field model for material fatigue in
oscillating elastoplastic beam, Discrete Cont. Dynam. Syst., 35 No. 6 (2015), 2465-2495.
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