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Abstract: The knowledge of comparative and developmental immunobiology has grown over the
years and has been strengthened by the contributions of multi-omics research. High-performance
microscopy, flow cytometry, scRNA sequencing, and the increased capacity to handle complex data
introduced by machine learning have allowed the uncovering of aspects of great complexity and
diversity in invertebrate immunocytes, i.e., immune-related circulating cells, which until a few years
ago could only be described in terms of morphology and basic cellular functions, such as phagocytosis
or enzymatic activity. Today, invertebrate immunocytes are recognized as sophisticated biological
entities, involved in host defense, stress response, wound healing, organ regeneration, but also in
numerous functional aspects of organismal life not directly related to host defense, such as embryonic
development, metamorphosis, and tissue homeostasis. The multiple functions of immunocytes do
not always fit the description of invertebrate organisms as simplified biological systems compared
to those represented by vertebrates. However, precisely the increasing complexity revealed by
immunocytes makes invertebrate organisms increasingly suitable models for addressing biologically
significant and specific questions, while continuing to present the undeniable advantages associated
with their ethical and economic sustainability.
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1. Introduction

Thanks to significant advances in immunological knowledge and experimental datasets,
boosted by NGS technologies and deep learning-driven multi-omics analyses [1], the hu-
man immune system is now appreciated in its great complexity, and the challenges of
developing adequate mathematical and experimental models to describe the intricate
functions of the immune system, especially in organisms with adaptive immunity, are
still ongoing [2]. This immune complexity, initially ascribed only to vertebrates, or more
commonly, mammalian organisms, is also present in invertebrates, presenting new and
unforeseen challenges in terms of the translation of knowledge gained from simpler mod-
els. The present review, while discouraging a perspective that describes the invertebrate
immune system as a simplified model of vertebrate immunity, aims to summarize the evi-
dence showing that even in anatomically simple organisms, the immune system is reliant
on cells, i.e., immunocytes, that exhibit a previously unexpected functional complexity. It
also aims to highlight the considerable benefits that can be derived from understanding
this complexity.

2. Invertebrate Circulating Immune Cells: From Phagocytes to Immunocytes

From the early experiments on phagocytosis by Metchnikoff to the present day, a
substantial portion of studies on the immune system of invertebrates has centered on the
circulating phagocytic cell. Depending on its location and origin, this cell is commonly
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referred to as hemocyte [3] or coelomocyte [4–6]. These circulating cells have been classi-
fied and named in various ways, with terminologies and classification differing among
the major taxa, including insects, crustaceans, mollusks, echinoderms, and tunicates, to
name just a few examples [3]. Because invertebrates lack adaptive immunity based on
lymphocyte-based processes such as affinity maturation and the presence of memory cells,
invertebrate circulating cells have long been considered simpler versions of vertebrate
phagocytes and, after the first hints of their complexity were observed, to the mammalian
macrophage [7]. The expected roles of invertebrate hemocytes were primarily limited to
defense against invading unicellular pathogens or multicellular parasites, before a broader
immuno-neuroendocrine role was proposed [8]. This perspective has driven research in the
direction of seeking conserved phenomena between invertebrate and vertebrate organisms
to enhance our understanding of the innate component of the human immune system.
The seminal studies that emerged from this perspective have significantly enhanced our
understanding of the functioning of the human immune system and made a fundamental
contribution to the discovery of the cooperation between innate and adaptive components
of vertebrate immunity. This culminated in the co-award of the Nobel Prize in Physiology
or Medicine for studies on innate immunity in Drosophila melanogaster [9].

More recently, morphological, functional, and molecular evidence has revealed an
unexpected complexity of the immune system, and the term immunocyte has been widely
used [7,10–14], to refer to circulating and immune-related hemocytes, to emphasize the
awareness that circulating hemocytes play numerous roles related to immunity and de-
velopment, and are not limited to the phagocytic response against microbial pathogens
(Figure 1). Immunocyte complexity encompasses the diverse array of immune-associated
molecular mediators and receptors produced by immunocytes, as well as the involvement
of immunocytes in numerous biological processes, such as development, regeneration, and
environmental stress response, that are not related to pathogen-mediated challenges.
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Figure 1. The functional complexity of circulating invertebrate immunocytes. Morphological and
molecular evidence has revealed that circulating hemocytes play numerous roles related to immu-
nity and of non-immune-related processes, including development, stress response, wound repair,
and regeneration.



Cells 2024, 13, 2106 3 of 15

3. The Functional Diversity of Immunocytes

An important aspect that has emerged in the last decade is the limitation of morpho-
logical classification of immunocytes. Indeed, cells with similar morphology may express
specific subsets of mediators, suggesting that immunocyte specialization is more refined
than initially thought. As mentioned above, the morphological characterization of immuno-
cytes is the subject of extensive literature [3,15] and will not be repeated here. However,
it is important to note that morphological classification usually refers to size, shape, and
cytoplasmic granularity. In some cases, the natural color of the immunocyte may also be
taken into account.

In the model insect D. melanogaster, a highly migratory population of immunocytes
was identified in the metamorphosing pupa by combining single-cell transcriptomics and
high-resolution microscopy. This population of immunocytes is restricted to the abdominal
segments of the pupa and shows distinct morphological features with respect to typical
phagocytic immunocytes (i.e., plasmatocytes) of the fruit fly [16]. Other undifferentiated
pupal immunocytes were also observed, but these expressed a number of mediators in-
volved in the response to various pathogens, such as bacteria and fungi [16]. In adult flies,
plasmatocyte subpopulations, identified by an unsupervised algorithm, drive the systemic
response to oxidative stress by activating the Jak/STAT pathway and inducing the cytokine
Upd-3 [17]. scRNA-sequencing has also been successfully used to reveal distinct clusters
of hemocytes (subpopulations) in several crustacean models. In the shrimps Litopenaeus
vannamei [18] and Marsupenaeus japonicus [19] and in the freshwater crabs Procambarus
clarkii [20], Cherax quadricarinatus [21], and Pacifastacus leniusculus [22], this method, which
allows the expression analysis of thousands of transcripts, has led to the identification
of several marker genes that are expressed specifically in single hemocyte or individual
hematopoietic cell types. In this context, in the freshwater crayfish P. leniusculus, two differ-
ent transglutaminases (TGase 1 and 2) are expressed in different hemocyte types, namely
TGase 1 in semigranular immunocytes and TGase 2 in granular immunocytes. Notably,
only a subset of each immunocyte type expressed the respective TGase [23], suggesting
the possibility that the same morphology may mask the existence of cells with different
functions and roles [24,25]. Recent studies in M. japonicus and P. clarkii have shown that in
response to viral or bacterial infections, different types of immune-active hemocytes could
be observed in relation to specific immune functions. Importantly, only a subpopulation of
cells within a group presenting comparable morphology, e.g., macrophage-like hemocytes,
could be associated with the expression of specific cell markers and a specific activity (e.g.,
encapsulation), suggesting that morphological classification alone may be reductive in
representing the functional diversity of hemocytes [20].

Further studies in mollusks have confirmed that the complexity observed in Pan-
crustaceans is not exceptional and should be considered a basic feature of invertebrate
immunocytes. Recent experiments using advanced image-based classification have shown
that, even in the absence of specific markers, circulating immunocytes of the freshwater
gastropod Pomacea canaliculata can be grouped into seven clusters [26]. Although consistent
with a previous histological classification [27] of immunocytes into two major groups
[Group I (GI) and Group II (GII) cells], further subdivided into four major microscopi-
cally recognizable populations (blast-like GI cells, intermediate GI cells, agranular GII
cells, and granular GII cells), this in-depth analysis revealed the limitations of the usual
microscopy-based classification, demonstrated the dynamism of immunocytes, associated
morphological features with specific functions (e.g., phagocytosis), and suggested potential
differences between P. canaliculata immunocyte populations of male and female individu-
als [26]. Repeated hemolymph withdrawals at 24 h intervals did not significantly alter the
balance between immunocyte populations [28], suggesting the existence of mechanisms
capable of maintaining a balance between different immunocyte populations. This equilib-
rium may be fundamental in view of the specific functions that immunocytes may perform
outside the circulation. P. canaliculata GII granular immunocytes were detected in regen-
erating tentacle blastema using a specific computer-assisted image analysis protocol [29].
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The importance of phagocytic immunocytes for tentacle regeneration was highlighted
by the use of clodronate liposomes, which target and temporarily eliminate phagocytic
cells. Injection of clodronate delayed tentacle regeneration at a time consistent with the
depletion of phagocytic immunocytes. This evidence further suggests that specific im-
munocyte populations may be associated with different functions, including wound repair
and regeneration [30].

4. The Molecular Diversity of Immunocytes

As knowledge of the functional complexity of immunocytes has gradually gained
acceptance in the scientific community, so too has knowledge of the humoral component of
immunity, which has made tremendous progress in recent decades, driven by the increasing
accessibility of sequencing methods and the interpretation of sequenced data. Pioneering
studies using immunocytochemical and immunohistochemical techniques, which had the
great merit of demonstrating the existence of conserved molecules [31], have gradually been
replaced by studies using genome and transcriptome sequences, the latter now feasible
at the level of single cells. Some of these latter studies have revealed an extraordinary
diversity of molecules and mediators, not necessarily conserved during evolution, and
have confirmed the existence of an anticipatory immune system also in invertebrates [32].
In bivalves, for example, the diversity of antimicrobial peptides within the same class
reaches extremely high levels, raising the hypothesis that these molecules may not only
play a role in the aggression of potential pathogens and the control of the microbiota [33]
but also may act as cytokine-like mediators [34].

Examples of some of the best-studied immunocyte-related hypervariable molecules
include Down syndrome cell adhesion molecules (Dscams) in insects and crustaceans,
fibrinogen-related proteins (FREPs) in mollusks, and Transformer (formerly known as
183-555) in echinoderms. Although evolutionarily unrelated, these hypervariable molecules
allow us to define the invertebrate immune system as anticipatory, though not adaptive [32].

The high molecular diversity of the invertebrate immune system was first discovered
in Drosophila melanogaster [35,36], where the hemocyte-specific loss of Dscam reduced the
cell’s ability to phagocytose bacteria, suggesting a potential opsonic role for this hypervari-
able mediator, for which tens of thousands of isoforms have been reported. The observation
that mutually exclusive alternative splicing could generate some 18,000 extracellular re-
ceptor isoforms in the larval fat body and hemocytes provided further evidence for the
potential of this receptor for immune recognition. Nevertheless, in D. melanogaster, Dscam
was shown to be a fundamental receptor for sensory neuron branching and connectivity,
linking its isoform diversity to neural development rather than immune response [36].
Recent observations have suggested that the functions of Dscam1 isoforms in determining
the pattern of axonal branches cannot be fully accommodated within the best-known devel-
opmental mechanism based on self-recognition and self-avoidance [37]. Dscam molecules
have been discovered and implicated in the immune response in other insects [38], in
crustaceans [39–42] and, more generally, in arthropods [43]; the number of isoforms has
led comparative immunologists to hypothesize that Dscam may be involved in immune
priming and immune memory [44,45], but to date no conclusive evidence has been re-
ported. One intriguing aspect that remains to be elucidated is whether the presence of
hemocyte-specific Dscam isoforms may mask a role for immune-related cells in the devel-
opment of neural components. In gnathostome vertebrates, the key components of the
complement cascade, C1q, C3, and C4, known to be mediators of a fundamental innate
immune response, have been implicated in brain development and disease through their
role in synapse elimination by marking inappropriate synaptic connections for removal by
phagocytic microglia [46–49]. It would be of great interest to determine whether hemocytes
can participate in neural branching in D. melanogaster, adding their contribution to the
already described mechanisms of neural self-recognition and self-avoidance [37].

First discovered in the freshwater snail Biomphalaria glabrata [50], FREPs belong to the
class of molecules containing fibrinogen-related domains (FReDs) and are highly diverse
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lectins [51] that are fundamental to the resistance of the snail in its role of intermediate
host of the human parasite, Schistosoma mansoni [52]. FREPs molecules contain one or
two N-terminal immunoglobulin superfamily (IgSF) domains and a C-terminal FBG-like
domain. As a consequence of their structure, different FREPs can bind to different pathogen-
associated molecular patterns, or PAMPs [50,53], and one of their fundamental features is
that FREPs molecules from different hemocytes of the same individual can differ in their
sequence as a consequence of gene conversion and point mutation [54]. In combination with
other humoral factors [55–57], FREPs diversity is associated with the snail susceptibility to
S. mansoni infection, as specific FREPs are upregulated only in those strains of snails that are
resistant to the Schistosoma infection [52]. While the challenge of Biomphalaria sp. snails with
S. mansoni has provided a fundamental system for modeling trematode–snail interactions
and for exploring the basis for specific and hemocyte-mediated immune responses [58–62]
in invertebrates, FREPs molecules have also been recovered in other classes of mollusks,
such as bivalves [63–67]. In the Pacific oyster, Crassostrea gigas, FREPs were among the
most up-regulated protein families after exposure for 12 h to different PAMPs, namely
lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU), and poly I:C (IC), and were
involved in the specific response that varied with time and stimulus applied [63]. The
recombinant form of C. gigas FREP1 (CgFREP1), designed from a sequence expressed in
several tissues, was able to enhance the phagocytic activity of C. gigas circulating hemocytes
towards the Gram-negative bacterium Vibrio splendidus, suggesting a role for this specific
isoform in mediating phagocytosis and not only agglutination. Similar to the gastropod B.
glabrata, the existence of an individual-specific set of FREP sequences has also been reported
in bivalves [64,68].

While Dscam and FREPs are representative of molecules diffused in vertebrates and
invertebrates, the Transformer (Trf) family, formerly known as 185-333, refers to highly
diverse and intrinsically disordered molecules, found only in echinoderms [69–72]. The
restricted diffusion of this family of membrane and soluble receptors has been interpreted
as a marker of the dynamism of the invertebrate immune system which may rely on group-
specific families of mediators [73]. In this respect, the combined availability of a highly
diverse set of immune-related receptors with specific metabolic properties, e.g., anti-oxidant
capabilities, may represent an important eco-immunological advantage [74] for maintaining
adaptation to different environments, including the adaptation to potential commensals
and pathogens. Trf is detectable in both larval and adult sea urchins, and in adults is mainly
expressed in specific subsets of coelomocytes, namely polygonal cells and small phagocytes.
Each individual contains different Trf molecules [70] and similar to Dscam and FREPs,
members of the Trf gene family undergo somatic diversification in single coelomocytes,
so that single coelomocytes exhibit significant variation in the Trf gene repertoires [75].
Recombinant forms of Trf exhibited specific binding capabilities, leading to the hypothesis
that these molecules underpin the capability of specifically recognizing multiple potential
pathogens [72,76], once again defining an immune system with anticipatory features.

Hypervariable molecules seem to confer specific identity and recognition capabilities
to individual cells in individual organisms, challenging the notion of a priori excluding the
existence of adaptive immunity outside of vertebrates [45,77].

5. Immunocytes, Immune Priming, and Trained Immunity

The concept of immune memory in invertebrates, long considered implausible due to
the lack of an adaptive immune system, has only recently been confirmed scientifically [78].
Early studies, such as those on D. melanogaster, suggested a form of enhanced protection
upon re-exposure to pathogens, but it was not until the early 2000s that the phenomenon
of immune priming was formally recognized. Landmark works in Tenebrio molitor and
other insects showed that immunocytes could be primed to mount faster and more robust
responses to repeated infections. This discovery shifted the paradigm, suggesting that
immune priming may represent an ancient evolutionary strategy to counter pathogenic
threats [79,80].
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In addition to individual immune priming, which confers cell-specific responses
based on previous encounters with pathogens, invertebrates also exhibit transgenerational
immune priming (TGIP), a process by which maternal immunocytes transfer immune
protection to offspring. In shrimp (P. monodon), for example, maternal hemocytes deposit
immune signals in the eggs, priming the offspring to resist pathogens encountered by the
parent and thus more likely to be present in the environment in which the eggs will hatch.
This process gives offspring an immediate advantage in pathogen-rich environments, even
in the absence of direct exposure [81]. TGIP has also been documented in insects such as
T. molitor, where maternal immune priming ensures that larval hemocytes have enhanced
antimicrobial activity, particularly against pathogens that posed significant challenges to
the previous generation [82].

These findings reveal a fascinating evolutionary continuity. In vertebrates, trained
immunity, mediated by innate immune cells such as macrophages and monocytes, repre-
sents a functional parallel to immune priming in invertebrates. Trained immunity involves
epigenetic and metabolic reprogramming of cells after initial exposure to a pathogen, en-
abling an enhanced response to subsequent infections. This suggests that the ability of
immune cells to take advantage of past encounters may have emerged early in evolutionary
history, long before the advent of adaptive immunity. While vertebrates eventually evolved
a more specialized adaptive immune system based on antibody-mediated immunological
memory, the presence of immune priming and trained immunity in both vertebrates and
invertebrates underlines its fundamental importance in survival strategies [83].

From an evolutionary perspective, TGIP in invertebrates and trained immunity in
vertebrates may represent complementary solutions to the same problem: ensuring rapid
and efficient immune responses in unpredictable and pathogen-dense environments. The
conservation of immune priming mechanisms across diverse taxa suggests that this strategy
is not merely a substitute for adaptive immunity in invertebrates but an essential and
ancient feature of immune defense systems. This evolutionary link emphasizes the shared
foundations of immunity across the animal kingdom, providing insights into how immune
systems and immunocytes have diversified while retaining core functionalities [81]. In
this context, the growing recognition of immune priming and TGIP in invertebrates as
forms of innate immune memory broadens our understanding of their immunobiology,
and suggests that invertebrate models can provide unique insights into evolutionary and
functional aspects of immunity, complementing vertebrate-based studies.

6. Non-Immune Roles of Immunocytes: Tissue Regeneration, Development,
Homeostasis, and Neuron Turnover

Studies on the immune functions of immunocytes have progressively unveiled their
biological complexity, and parallel research on other biological phenomena has demon-
strated their profound involvement beyond the recognition and aggression of potential
pathogens. Immunocytes are indeed also pivotal in processes such as regeneration, embry-
onic development, and neurogenesis (Figure 2).

In Anemonia viridis, amoebocytes play a crucial role by migrating to injury sites,
releasing antimicrobial compounds, and facilitating the removal of debris, thus ensuring
both protection and efficient tissue regeneration [84]. Regarding regeneration, fundamental
studies in the leech Hirudo medicinalis have shown that the dialogue between the damaged
neural component and microglial cells is at the core of the regenerative process [85]. This
dialogue is based on evolutionarily conserved neuro-immune molecules, demonstrating
how nerve cells can produce mediators normally associated with immune responses to
recruit microglial cells, which, in turn, are essential in promoting the regenerative process.
The importance of the immune system in the process of neural regeneration in leeches is
evidenced by the observations that an experimentally impaired accumulation of microglial
cells at the lesion sites resulted in reduced axon sprouting [86]. In addition, microbial
challenge can accelerate neural regeneration after axotomy, a process that would involve
antimicrobial peptides released by both immune and nervous cells [87].
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Figure 2. Immune-related molecules involved in homeostasis on neurons and nervous tissue. In
phylogenetically distant models, immune-related cells and neurons have been shown to interact
via common mediators. Originally discovered for their role in the pathogen-associated immune
response, these soluble factors and cell-membrane receptors have subsequently been implicated in
neuronal development (e.g., Dscam), synaptic pruning (e.g., complement system components), and
immunocyte–neuron interactions (e.g., cytokines).

Data from leeches show that immunocytes do not only play a role in nervous system
regeneration. In Hirudo verbana, a specific cell type known as telocytes [88] actively con-
tributes to tissue repair by remodeling the extracellular matrix and guiding cell migration
through the secretion of HvRNASET2, which also supports fibroblast activation [89]. In
addition, the stiffness of the extracellular matrix, which is dynamically modulated during
development, has been shown to guide the migration and differentiation of circulating
immunocytes, ensuring proper tissue architecture [90]. In the earthworm Eisenia andrei,
specific immunocyte subsets have been shown to be involved in the regeneration of body
segments using specific monoclonal antibodies. Experimental immunocyte depletion in
earthworms resulted in a reduced cell proliferation rate in the blastema, confirming the
positive role of immunocytes in the regeneration process [91]. As mentioned above, a
role for immunocytes in tentacle regeneration has also been hypothesized in the mollusk
P. canaliculata [29] and has also been proposed in other snails, i.e., Lymnaea stagnalis [92] and
Aplysia californica [93], confirming that the link between immune functions and regenerative
processes, known in vertebrates [94–96], is widespread in the animal kingdom. In the
crayfish P. clarkii, the regeneration of the amputated antenna is supported by granular and
semigranular immunocytes, whose granules are the source of new cellular organelles (e.g.,
mitochondria) in the regenerating antenna [97].

Immunocytes are also involved in development and in normal tissue homeostasis and
remodeling. In D. melanogaster, hemocyte ablation experiments have shown that phagocytic
cells are required for the morphogenesis of the central nervous system in embryos [98]. The
third hematopoietic wave, which occurs in the larval lymph gland, produces cells that can
be involved in immune defense if necessary, but even in the absence of aggression from
pathogens or parasitoid wasps, these larval immunocytes may intervene in the removal of
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obsolete larval components during metamorphosis [99], although the biological relevance
of this aspect is debated [24,98,100]. Single-cell RNA sequencing experiments performed
on immunocytes from unchallenged Drosophila larvae identified cell clusters associated
with immune-related processes, such as proliferation, phagocytosis, and humoral response,
but also with metabolic homeostasis. Furthermore, the role of immunocytes in tissue
development is more relevant in Drosophila embryos than in larvae, when the animals
are more likely to be exposed to pathogens, confirming the plasticity in the role of these
circulating cells [25].

Another example of the great plasticity of the roles of invertebrate immunocytes is the
evidence that, in the crustacean P. clarkii, first-generation neurons are unable to self-renew
and the population of obsolete olfactory neurons is therefore replaced by differentiated
hemocytes, that lose their hemocytic properties to become full-fledged olfactory neurons,
providing compelling evidence in support of the definition of invertebrate immunocytes
as immuno-neuroendocrine cells [101,102]. The production of new neurons is mainly
maintained by hyalinocytes, i.e., immunocytes with a hyaline, agranular cytoplasm, and
can be influenced by changes in environmental parameters that affect the number of the
circulating immunocytes [103,104].

7. From the Complexity of the Single Cell to the Development of New Models of
Environmental Effects on Immunity

The increased awareness of the complexity of immune cells and their role in immune
responses and physiological processes allows the development of invertebrate models for
multi-level and transdisciplinary studies, such as the evaluation of the potential impact
of the environment on immune functions in animals and humans. Invertebrate models
have been proposed for studying the accumulation of micro- and nanomaterials, their
cellular-level toxicity, and the interference these xenobiotics can determine with complex
processes [105], such as regeneration or wound repair [106–108], or gametogenesis [109,110].
This type of study actually offers valuable insights for various research fields including
environmental and basic biological research and can find application also to human stud-
ies. Recently, the eco-immunological perspective has also been applied for analyzing the
possible causes of human illness [111]. The need for an interdisciplinary approach that
assesses the impact of pollution on wildlife as well as human health has been identified,
but research in this area is still in its infancy [112].

Eco-immunology has been described and summarized [113,114] in different ways
because it is a discipline that can be approached from different perspectives [74,83,115–117].
On the one hand, the eco-immunological perspective is used to understand how immune
functions interact with other bodily functions in order to be balanced in terms of energy effi-
ciency; on the other hand, eco-immunology has also been seen as a translation of laboratory
reality into an open field, making variability a point of advantage and study, rather than a
parameter to be minimized, as is usually performed in laboratory studies. Eco-immunology
has contributed to the understanding of the importance of co-infections in the context of
immune response and individual life [118,119], and has gradually made the scientific com-
munity more aware of how environmental influences can modify the immune responses of
an individual or a population. Many studies in eco-immunology have focused on vertebrate
models, but increased understanding of the immune response in invertebrates has led to
their adoption for eco-immunological studies. In the bivalve mollusk Venerupis (Ruditapes)
philippinarum, it has been observed that immune parameters and biological responses to
contaminants are influenced by the sampling site [120]. These observations were made after
placing the mollusks in experimental aquaria and controlling the conditions for a period of
time, thus demonstrating the importance of environmental imprinting in the context of the
immune response. The study of the effects of pollutants on the health status of invertebrate
organisms has been applied on many occasions, particularly to cultured mollusks, to moni-
tor the effects of pollution on growth performance and to use the same species as sentinels
to assess the pollution status of water. The potential long-term mechanisms of action
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of high doses of microplastics as carriers of chemical pollutants have been investigated,
with microplastic concentrations two orders of magnitude higher than those observed
in the Mediterranean Sea and more similar to those of the Californian Current System
and the North Pacific Central Gyre [121]. Immunocytes were assessed for immunological
changes (lysosomal membrane stability, phagocytosis activity, and granular/agranular cell
ratio) and neurotoxic response (enzymatic activity of acetylcholinesterase). The hemocyte
immune parameters of lysosomal membrane stability and phagocytosis were both signifi-
cantly affected by the pollutants, although to different extents depending on the days of
exposure. Phagocytosis showed an initial increase as a consequence of exposure to two of
the investigated pollutants, whereas it was significantly reduced by long-term exposure
(i.e., up to 28 days) to all pollutants investigated. The granular/agranular immunocyte
ratio was modified by short-term exposure (7–14 days) to some of the pollutants, whereas
no effects were observed at long-term exposure, regardless of the pollutant considered. The
multi-variate PCA analysis of the data made it possible to distinguish between physical
and chemical effects of the treatments, and although the effects of the treatments were not
considered to be pronounced, the sensitivity of the immune system allowed to conclude
that they were not negligible. The effects of polystyrene nanoplastics on the lipidomics of
mussel immunocytes were also investigated [122]. FIA — (+/− H-ESI) Orbitrap —Exactive
analysis of lipid extracts from cultured immunocytes showed that the original lipid compo-
sition of the cells was significantly affected by polystyrene nanoparticles, especially those of
lower dimensions (50 nm). The changes in the lipid profile indicate a rearrangement of the
cell membrane and the oxidation of lipid molecules with a high number of double bonds,
which would possibly lead to a reduction in the fluidity of the cell membrane. Although the
relationship between this observation and the ability of immunocytes to fight pathogens,
as well as the specific susceptibility of immunocyte subsets, remains to be determined,
these studies once again demonstrate the level of detail that can now be used to investigate
the effects of elusive pollutants, such as micro- and nanoplastics, using immunocytes as a
cellular model [123].

8. Concluding Remarks

The ensemble of evidence here summarized identifies the immune system of inverte-
brates as a highly complex biological system with diverse functions, pervasive in numerous
aspects of non-pathogen-related organismal life, including development, stress response,
wound repair and regeneration. This great complexity, associated with the considerable
species-specificity observed for certain molecules or biological functions, might raise the
question of whether invertebrates can be a valid alternative to vertebrates in basic studies of
immune functions, as widely recommended by animal experimentation regulations. These
regulations, starting from the principle of the 3Rs (Replacement, Reduction, Refinement)
proposed in 1959 [124], ask researchers to identify research methods that are increasingly
ethically less impactful while ensuring effectiveness [125–128]. In addition, criticisms and
perplexities have also been raised regarding the actual utility of mammalian models for
immune studies, in the sense that the main mammalian models, such as rodents and lago-
morphs, are not always completely reliable in reproducing human disease conditions [129].
In the context of therapeutic development, it should not be overlooked how some recent
advancements have been made by bypassing animal experimentation, as the development
of personalized therapies in the fight against cancer did not allow for an effective approach
to the animal model [130].

While it is undeniable that the increased biological fascination exerted by the com-
plexity of invertebrate immune cells and functions is associated with an understandable
difficulty for researchers to obtain data easily translatable from the animal model to our
species [131], it is worth noting how increased knowledge of invertebrate immunobiology
allows them to be used as comprehensive models for highly diversified research today. The
increased understanding of the immunobiological complexity of organisms once considered
simple actually allows researchers to identify the most suitable model for the biological
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question posed by the scientist and has over time contributed to an increase in the number
of laboratories using lesser-known organisms as models to study specific biological func-
tions such as hematopoiesis or organ regeneration [132]. This is actually a valuable aspect
in the context of animal experimentation because it allows for more complex questions to be
asked and for the ethically acceptable and economically sustainable model to be identified
to obtain the sought-after answers.
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