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Abstract 

Fatigue life prediction for machine components is a key factor in the industrial world and several methods can be traced in 
technical literature to estimate life of notched components. The paper correlates the classical stress-gradient approach, here after 
called support factor (SF) method, proposed by Siebel, Neuber and Petersen with the modern theory of critical distance (TCD) 
approach by Tanaka and Taylor. On the one hand, the main asset of the SF method is that it relies only on the knowledge of the 
maximum stress and stress gradient in the hot spot. By contrast, the TCD needs the calculation of the stress distribution for a 
finite depth inside the material. On the other hand, the main drawback of the SF method is that the material parameter * is 
available only for a limited collection of materials and moreover the experimental procedure to retrieve this parameter is not 
clearly defined in the technical literature. In order to overcome this limitation, the paper investigates the correlation between the 
material parameter * and the critical distance L of the TCD by relying on a specific stress function. A comparison between the 
SF method and the TCD is then performed by considering three different benchmark geometries: a general V-notch in a plate, a 
pressure vessel and an industrial oleo-hydraulic distributor. Effective stresses are analytically retrieved and compared using both 
methods for the first two benchmarks and with the help of an elastic finite element analysis for the last one. The resus appear 
good in terms of fatigue life prediction, especially for the industrial case study. 
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Nomenclature 

a  Hole radius 

A  First constant of the homographic function 

B  Second constant of the homographic function 

C  Third constant of the homographic function 

E  Young’s Modulus 

G  Stress gradient at the hot spot 

L  Taylor’s critical distance 

 

sR  Yield strength 

s   Normalized stress gradient 

NS '  Fatigue limit for smooth specimens 

x  Linear coordinate 

thK  Threshold stress intensity factor 

 Opening angle 
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k  Parameter of the stress function 

fK  Fatigue notch factor 

tK  Stress concentration factor 

n  Exponent of the Basquin equation  
SN  Cycles to failure according to SF method 

TN  Cycles to failure according to Taylor’s method 

q  Notch sensitivity 

p   Parameter used in elastic analysis [19] 

r  Radial coordinate of the pressure vessel 

0r  Notch tip radius 

er  Outer radius of the pressure vessel 

ir  Inner radius of the pressure vessel 

R  Fatigue ratio

mR  Maximum tensile strength 

d  Support factor 

 Polar coordinate 

 Notch radius 

*  Siebel material parameter 

a  Fatigue strength in Basquin equation 

f  Maximum stress in Basquin equation 

S
eff  SF effective stress 

T
eff  TCD effective stress 

max  Maximum principal stress 

1. Introduction 

The work deals with a comparison between two fatigue life prediction theories: the recent Theory of Critical 
Distance (TCD) from Tanaka [1] and Taylor [2]-[6] and the classic local stress-gradient approach from Peterson [7], 
Siebel and Steiler [8] and Neuber [9], hereafter called support factor method (SF). Since the earlier works on fatigue 
in the middle of the 19th century, several methods for fatigue life prediction have been proposed. Two parameters 
can be used in the classic approach to fatigue in mechanical components: the first one called stress concentration 
factor (Kt) takes into account the effect of the notch geometry on the stress field. The second one, called notch 
sensitivity (q) measures how sensitive a material is to notches or geometric discontinuities. These two parameters 
are combined in order to obtain the fatigue notch factor, (Kf), widely used and tabulated in technical literature [10] 

 

)1(1 tf KqK  (1) 

Unfortunately, this simple approach cannot be applied to notched components of many real applications due to 
their complex geometry which prevents the calculation of a nominal stress and consequently the stress intensity 
factor (Kt). 

A number of different approaches have been proposed to solve this problem. Most of them rely on the idea that 
the stress level must be high enough, not only at the hot spot, but also for some distance around the hot spot [3] in 
order to produce fatigue failure. Initially proposed by [7]-[9], this approach (called “process zone” method) is based 
on a support factor d and has the peculiarity that the fatigue limit prediction relies on elastic analyses. In particular, 
an effective stress is calculated by combining the stress gradient at the hot spot with the support factor which 
depends on a characteristic length *. This parameter is a property of the material and is often found through 
empirical laws linked to the mechanical, tensile properties and microstructure of the material. The support factor is 
also defined as Kt /Kf the ratio between the fatigue limit in presence of stress gradient and the fatigue limit without 
gradients [11], thus being always greater than one. Other formulas were proposed by Bollenrath [13] and Troost [14] 
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that start from the plasticization of the material around the notch and elaborate expressions for the support factor. 
Eichlseder [15]-[16] and Reggiani [11] proposed refined formulas for the support factor which start from FE 
analysis data. The limit of this method is that the characteristic length * is hard to find in technical literature and 
available only for some specific classes of material [17]. 

More recently Tanaka [1] and Taylor [2]-[6] independently proposed the TCD, which again belongs to the 
category of “process zone” methods. The stress distribution originated by the notch is investigated by applying the 
linear elastic fracture mechanics (LEFM) in order to find the stress life prediction. Hence, through the LEFM, the 
method can efficiently deal with stress concentrations or singularities originated by the notches, but still needs a 
parameter to address the sensitivity of the material to the notches. This parameter, called critical distance L, can be 
calculated using El Haddad’s equation [18] and is used to find the effective stress in the component on the basis of 
the stress field which is mainly retrieved from FE analyses. The parameters needed to define the critical distance, in 
particular the threshold stress intensity factor [18], can be retrieved from simple experimental tests on a notched 
compact tension (CT) specimen. In technical literature, the critical distance for a large class of engineering materials 
is currently available [6]. The TCD is a quite general approach and eliminates the uncertainty of the previous 
methods. The application of the TCD to different components [2]-[6] compared to experimental tests, has shown a 
good prediction of the fatigue life. 

The aim of this paper is to revaluate the SF method which is not easy to apply due to the difficulty in the estimate 
of the characteristic length of the material [19]. This reassessment relies on finding a relationship between the 
critical distance L and the characteristic length * used in the support factor formula given by Siebel [8] and 
expanded by Neuber [9]. This approach aims to transfer all the data available in the literature for the critical distance 
L to the calculation of *, for which scanty and uncertain data exist. Moreover, the procedure to assess the critical 
distance L is clearly defined in the technical literature; hence it can be applied also to new materials. The motivation 
of the work is that the classic local gradient approach could still represent a reliable alternative to the TCD in the 
prediction of the fatigue life of machine components, gone out of fashion mainly due to the scarce information about 

*. In particular, it is highlighted that the SF method relies simply on the knowledge of the stress value and its 
gradient at the hot spot. By contrast, the TCD needs to know the stress distribution for a finite length inside the 
component. Therefore, the SF method requires less information and leads to simpler computational procedures to 
gather the needed data than the TCD. 

The work is organized as follows. First, given a plausible stress gradient curve, the analytical relationship 
between the critical distance L and the characteristic length * is retrieved. The underlying hypothesis of the same 
fatigue life prediction between the two methods, thus meaning the same effective stress is forced in the stress curve 
adopted. Second, by relying on this analytical relationship, the methods are compared, taking the Taylor’s one as 
reference on three different benchmark geometries. First, it is analyzed an open V-notch deeply discussed in [20]. 
Second, the stress state in a thick walled vessel is considered. Third, the fatigue life of a real application of a 
complex oleo-hydraulic distributor under internal pressure, provided by Galtech Srl, is estimated. 

 In the first two cases, being available a closed form analytical solution for the stress field, a systematic 
comparison was performed. In the first case there is a difference between TCD and SF effective stress, while in the 
second one the two methods produce a similar prediction. In the third case, two critical hot spots were investigated 
and the methods produce almost the same prediction for the first hot spot while the difference in terms of effective 
stress for the second one is lower than 30%. 

2. Materials and Methods 

2.1. Support factor method 

The support factor (SF) method, considering for instance the formulation of Siebel [4], can be summarized in the 
following procedure. From the linear elastic stress analysis, the stress gradient G  is calculated as: 

 

0xdx
dG  (2) 
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being  the elastic stress (equivalent or principal stress) at the hot spot (Figure 1), and x the coordinate axis starting 
at the hot spot and normal to the surface. The ratio between the stress gradient G  and the maximum stress max 
gives the normalized stress ratio as: 

max

Gs
 

(3) 

Hence, the support factor d is calculated as: 
 

d s*1  (4) 
 
where * is the characteristic length, a material constant which was seen as an indicator of the sliding layer of the 
plastic deformation by Siebel [8] or as a substitution internal notch radius by Peterson [7]. A common finding is that 
* depends on the chemical composition, the technological process and the microstructure of the material [2] which 

can be evaluated through experimental tests on the material. 
The SF method calculates the effective stress S

eff  to be used in the S-N curve as: 

d

S
eff

max  (5) 

 

2.2. Theory of Critical Distance 

Similarly to the SF method, the TCD proposed by Tanaka and Taylor [1-2] relies on a linear elastic stress 
analysis to calculate the stress field in the component. Once the peak elastic stress max is identified, the effective 
stress T

eff  is calculated as the stress value occurring at a critical distance L from the peak stress, along the same 
direction as in the SF method. Among the several proposals found in literature, the critical distance L is here 
calculated using El Haddad’s equation [16]: 

 
2

'
1

n

th

S
KL

 
(6) 

 
where Kth is the threshold stress intensity factor, and S’n, the fatigue limit for a smooth specimen. This critical 
distance corresponds to the maximum acceptable length of an equivalent defect or crack that does not undergo 
propagation. Values of critical distance are in the range from 50 m for some high strength steels to near 4 mm for 
gray cast iron. Once the critical distance is found the effective stress is calculated from the principal stress 
distribution as shown in Fig. 1. 

 

 

x

eff 

L

princ(x) 

 

Fig. 1. Typical stress distribution along the direction normal to the surface 
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2.3. Material parameter correlation 

The idea proposed in this paper is to correlate the characteristic length * of the SF method (section 2.1) with the 
critical distance L of the TCD (section 2.2). In order to find a correlation, an analytical test curve for the stress 
distribution is built. The function must comply with the following three constraints. First, the maximum stress max 
occurs at x = 0 in accordance with the typical stress distribution provided by notches. Second, at x = 0 the stress 
gradient is known. Third, the stress monotonically goes to a fraction of the maximum stress max as x tends to 
infinite, as typically occurs, for example, for elastic plane with a hole under uniform tension. The simpler curve 
which complies with the above constraints is the homographic function, which can be generally written as: 

 

Cx
BAxx  (7) 

 
 The three constants A, B and C can be easily calculated by applying the above constraints: 
 

max0   G
dx
d

x 0

  maxlim kx
x

 (8) 

 
By solving the relationships (8) the unknown constants are calculated and yield the following expression of the 

homographic function: 
 

1
1)( max kxs

kkxsx  (9) 

 
It is possible to apply the TCD to the stress function (9) and hence the effective stress according to the TCD is 

obtained: 
 

)(LT
eff (10)

 
Enforcing the equivalence of the two methods means to have the same cycles to failure:  
 

TS NN (11) 
 
and considering an arbitrary material with a certain Wohler curve implies the equality of the effective stresses given 
by the two methods. 
 

eff
T
eff

S
eff (12) 

 
This leads to the following relationship between the material parameters L and *. 
 

L
kLks

kLs
2

2

)1(
)1(* (13) 

 
Equation (13) represents the link between * and L, obtained for the stress distribution given in (9) and can be 

applied to any geometry in order to compare the prediction of the two methods. Finally, the following expression is 
obtained for the support factor d: 

 

1
1

kLks
kLs

d (14) 
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The general expression given by equation (13) and (14) for * and d respectively, are dependent on the 
parameter k, which is defined in the third of (8). Even though the value of this parameter is arbitrary, as a general 
rule it can be assumed that the stress falls to zero at infinite, thus leading to k = 0. This condition is analitically true 
for example in case of a vessel under internal pressure. Hence, the following simplified formuas are obtained for * 
and d respectively: 

 
sL2*  (15) 

 
1d Ls  

(16) 

Using the above design formulas it is possibile to sum up the values of * (Table 1) and d (Table 2) as function 
only of the critical distance L and the normalized stress gradient s  . In particular, the support factor d gives an 
immediate information to the designer about the fatigue life prediction of the component based simply on three 
parameters: maximum elastic stress, stress gradient at the hot spot and critical distance of the material. 

3. Results and Discussion 

Three benchmark geometries were considered in this section, in order to assess the proposed procedure for applying 
the SF method. The first and second one were two problems retrieved from literature and having an analytical 
solution, so direct relationships can be found between the geometric parameters and the critical distance of the 
material. The last one was an industrial problem of a complex oleo-hydraulic distributor under internal pressure, 
where the maximum principal stress field was derived by a finite element analysis. 

3.1. Open V-notch in a plate 

Fig. 2a shows the first benchmark geometry, a general open notch with tip radius in a plate, deeply analyzed by 
Lazzarin et al [20].  

The general expression for the stress in mode I calculated along the principal direction is found to be: 
 

111111

1110111
1

0
max0 )1()1(4/)1()1(

)1()/()1(4/)1()1( 111

cdb

cdb

pp
rrpp

r
r  (17) 

 
 
where r0 represents the tip radius of the V-notch r is the radial coordinate starting from the root of the notch and p is 
a non dimensional group given by 
 

p 22
(18) 

 
The other parameters in the equation are constants which depend only on the opening angle  and are deeply 
described and provided in [20]. Although this equation is valid only in stress concentration regions and for notches 
in wide plates (theoretically the width and the notch depth can be regarded as infinite), the accuracy of the equation 
remains good along the axis of symmetry also for plates of finite width. 

Since a closed form solution for the stress distribution is available (17), the effective stress can be calculated both 
according to the TCD (section 2.2) and according to the SF method through the support factor of equation (16) . In 
particular, relationship (17) is assumed in order to define the critical length * as a function of the critical distance 
L. For the sake of brevity the analytical calculation are not reported here. 
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Table 1. Characteristic length * 

* Normalized stress gradient s (mm-1) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 

Ta
yl

or
 c

rit
ic

al
 d

is
ta

nc
e 

L 
(m

m
) 

0.1 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.100 0.225 

0.25 0.003 0.010 0.023 0.040 0.063 0.090 0.123 0.160 0.203 0.250 0.563 

0.5 0.005 0.020 0.045 0.080 0.125 0.180 0.245 0.320 0.405 0.500 1.125 

0.75 0.008 0.030 0.068 0.120 0.188 0.270 0.368 0.480 0.608 0.750 1.688 

1 0.010 0.040 0.090 0.160 0.250 0.360 0.490 0.640 0.810 1.000 2.250 

1.25 0.013 0.050 0.113 0.200 0.313 0.450 0.613 0.800 1.013 1.250 2.813 

1.5 0.015 0.060 0.135 0.240 0.375 0.540 0.735 0.960 1.215 1.500 3.375 

1.75 0.018 0.070 0.158 0.280 0.438 0.630 0.858 1.120 1.418 1.750 3.938 

2 0.020 0.080 0.180 0.320 0.500 0.720 0.980 1.280 1.620 2.000 4.500 

2.25 0.023 0.090 0.203 0.360 0.563 0.810 1.103 1.440 1.823 2.250 5.063 

2.5 0.025 0.100 0.225 0.400 0.625 0.900 1.225 1.600 2.025 2.500 5.625 

2.75 0.028 0.110 0.248 0.440 0.688 0.990 1.348 1.760 2.228 2.750 6.188 

3 0.030 0.120 0.270 0.480 0.750 1.080 1.470 1.920 2.430 3.000 6.750 

3.25 0.033 0.130 0.293 0.520 0.813 1.170 1.593 2.080 2.633 3.250 7.313 

3.5 0.035 0.140 0.315 0.560 0.875 1.260 1.715 2.240 2.835 3.500 7.875 

Table 2. Support factor d 

d 
Normalized stress gradient s (mm-1) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 

Ta
yl

or
 c

rit
ic

al
 d

is
ta

nc
e 

L 
(m

m
) 

0.1 1.010 1.020 1.030 1.040 1.050 1.060 1.070 1.080 1.090 1.100 1.150 

0.25 1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.375 

0.5 1.050 1.100 1.150 1.200 1.250 1.300 1.350 1.400 1.450 1.500 1.750 

0.75 1.075 1.150 1.225 1.300 1.375 1.450 1.525 1.600 1.675 1.750 2.125 

1 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 2.500 

1.25 1.125 1.250 1.375 1.500 1.625 1.750 1.875 2.000 2.125 2.250 2.875 

1.5 1.150 1.300 1.450 1.600 1.750 1.900 2.050 2.200 2.350 2.500 3.250 

1.75 1.175 1.350 1.525 1.700 1.875 2.050 2.225 2.400 2.575 2.750 3.625 

2 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000 4.000 

2.25 1.225 1.450 1.675 1.900 2.125 2.350 2.575 2.800 3.025 3.250 4.375 

2.5 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 4.750 

2.75 1.275 1.550 1.825 2.100 2.375 2.650 2.925 3.200 3.475 3.750 5.125 

3 1.300 1.600 1.900 2.200 2.500 2.800 3.100 3.400 3.700 4.000 5.500 

3.25 1.325 1.650 1.975 2.300 2.625 2.950 3.275 3.600 3.925 4.250 5.875 

3.5 1.350 1.700 2.050 2.400 2.750 3.100 3.450 3.800 4.150 4.500 6.250 
 
Fig. 3 compares the effective stresses from both methods as a function of the ratio between L and r0 for three 

different values of the opening angle . Both the curves of the effective stress are normalized over the maximum 
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stress max (17) in order to provide a more general comparison. It appears that the effective stress provided by the SF 
method is always lower than the one provided by the TCD, in particular as the ratio between the critical distance L 
and the geometric dimension r0 increases. A good agreement between the methods is obtained when the ratio L/r0 is 
below 1, i.e. when the critical distance is comparable with the notch tip radius dimension. A difference up to 50% is 
registered as the ratio L/r0 equals five, corresponding to sharp notches in conjunction with a material which is not 
much sensible to notches (like cast iron). 

This significant difference as the critical length increases or the tip radius decreases is due to the assumption of k 
= 0 which make function (9) go to zero as x tends to infinite. By contrast, this notched plate is under uniform tension 
and hence the stress cannot fall to zero. 

 

Fig. 2. Coordinates system used for the elastic analysis in [19]  

 

Fig. 3. Hoop effective stress calculated with TCD approach (solid line) and SF approach (dashed line) for three opening angles  
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3.2. Thick-walled vessels under internal pressure 

The well known elastic problem of a thick walled vessel under pressure is used as a second benchmark. The 
solution of a thick vessel of internal radius ri, external radius re under internal pressure pi can be solved using the 
Lamè equations [21] for the radial stress r:  

 

2r
BAr  (19) 

 
and for the hoop stress : 
 

2r
BA  (20) 

 
where the constants A and B are determined from the boundary conditions. 

Focusing on the hoop stress, its explicit expression considering the boundary conditions pi  0 and pe=0 is: 
 

1222

2

r
r

rr
rp e

ie

i
i  (21) 

 
From this closed form solution for the principal stress distribution, the effective stress can be calculated both 

according to the TCD (section 2.2) and according to the SF method considering the support factor of equation (16). 
Fig. 4 compares the effective stresses from both methods as a function of the ratio between L and ri. The effective 
stress is normalized over the maximum effective stress obtained with the TCD method in order to give more a 
general comparison. 

 

Fig. 4. Thick walled vessel under internal pressure. Comparison of TCD and SF effective stresses as a function of the ratio between critical 
distance L and internal radius ri 

It appears that the effective stress provided by the SF method is higher than the one provided by the TCD, in 
particular as the ratio between the critical distance L and the geometric dimension ri increases. However, the trend 
between the methods is the same, due to the peculiarity of the benchmark in which hoop stresses decrease to zero as 
the wall thickness increases. This is consistent with the assumption of k = 0 adopted for the homographic function. 
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The non dimensional ratio L/ri gives an indication about the combined action of notches and type of material 
considered. High values of L/ri can be found with sharp notches or cracks combined with materials with low 
sensibility to the notches (like cast iron). On the contrary, low values of L/ri can be found with blunt notches and 
materials such as high strength steels, which exhibit very high sensitivity to notches. 

3.3. Case study: hydraulic distributor 

Fig. 5a shows the third benchmark examined in this work: an industrial hydraulic multistage distributor taken 
from the fluid power industrial field, usually equipping off-highway vehicles and excavators. The valve body was 
produced by casting in a sand mold with an internal sand core to realize a complex channels system. During the 
manufacturing, some of the ducts were machined to achieve a very refined and smooth surface condition and thus 
the nominal geometry was really close to the real geometry. The material was a gray cast iron (GJL-300) commonly 
used in fluid power applications due to its very good forming and cost-effectiveness. This is a very challenging field 
for the design and the prediction of the fatigue life of a notched component, because they have to operate for very 
long lives, under very high internal pressure. The analysis is organized in two steps. First, a linear elastic FE 
analysis was performed on a section of the component since the geometry was too complex and no analytical 
approaches were applicable. Second, the fatigue life prediction provided by the TCD and SF method is compared in 
some critical points (called hot-spots). 

The component under study is a part of more complex system obtained by stacking several of these valves body 
and tightening up with some tie rods (Fig. 5a). The linear elastic FE analysis was focused on a module of the 
hydraulic distributor, crossed by several internal channels distributing pressurized oil to the outlets.  

Table 3 collects the material characteristics in terms of mechanical and fatigue behaviour as reported by Baicchi 
et al. [22]. The Wohler S/N curve of the material was approximated from the experimental results through the 
Basquin equation [23]: 

 
n

fa N  (22) 

 

Table 3. Mechanical and fatigue properties of GJL-300 [17] 

E(GPa) Rs (MPa) Rm (MPa) f (MPa) n S’n (MPa) Kth (MPa m^1/2) L (mm) 

109 200 230 695 -0.814 101 
R = 0.1 8 

2.4 
R = 0.5 5.7 

 
Since stress concentrations are sought, a very refined mesh was performed on the three-dimensional model. In 

particular, where the critical features like inner ducts, notches, changes of sections and channels intersections occurs 
the average size of the element was between 0.4 mm up to 0.2 mm (Fig. 5b). Linear tetrahedral elements were used 
and the material was described as linear elastic. This mesh refinement was obtained after a convergence procedure 
on the model. The boundary conditions applied reproduced both the force exerted by the tie rods and the symmetry 
plane which allow only one half of the body to be modelled. More specifically, assembly of the system constraints 
the external faces of the valve to remain plane. This was described through internal kinematic constraints on the 
nodes lying on the external faces. A pressure equal to 40 MPa was applied to the inner pressurized channels. The 
analysis was implemented using a commercial FE Software, ABAQUS 6.9 [24]. Approximate real dimensions of the 
cast are (175x160x60 mm). 
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(a) (b) 

Fig. 5. Modular architecture of the system (a), mesh of the model (b) 

 
The analyses were performed on a workstation equipped with a quadcore processor i7 and 12 GB of RAM. Table 

4 reports detailed information about the mesh and the model. 
Fig. 6a shows the distribution of the maximum principal stress on the whole model while Fig. 6b focuses on the 

two most critical points (hot spots), which occur at the inlet channel of the distributor. The comparision between the 
two method for fatigue life prediction is thus performed in this two hot spots. 

Table 4. Detailed mesh information 

Mesh type Average element size Elements Nodes D.o.F. 

Refined 0.3 4412982 8140252 2444589 

 

(a) (b) 

Fig. 6. Maximum principal stresses on the valve body (a), and detail of the two critical hot spots (in gray) considered in the analysis (b). 

Fig. 7 shows the distributions of the maximum principal stress (solid line), obtained through a subroutine 
specifically implemented, starting from the hot spots and extending inside the component along the maximum 
principal direction. These distributions were retrieved from the results of the FE model through an ad hoc 
computational procedure. In particular, Fig. 7a refers to the hot spot number 1 (Fig. 6b) while of Fig. 7b refers to the 
hot spot number 2 (Fig. 6b). 
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 The TCD effective stress was calculated from Fig. 7 at the intersection of the critical distance of EN-GJL 300 ( 
Table 3) and represented with a dotted line. The SF effective stress was calculated, for both the hot spots, 

applying numerically the procedure of section 2.3 to the stress curves reported in Fig. 7. The characteristic length * 
through of equation (15) is found equal to 3.88 mm and 4.96 mm respectively for the curve of Fig. 7a and b. This 
corresponds to an effective stress equal to 84.02 MPa and 108.01 MPa (dashed line) respectively. 

It appears that with regard to the hot spot number 1 (Fig. 7a) the two methods provide exactly the same value of 
the effective stress. On the contrary, Fig. 7b highlights that for the hot spot number 2 the SF effective stress is lower 
than 29% than the TCD effective stress (119.3 MPa).  
 

(a) (b) 

Fig. 7. Stress distribution at the hot spot 1 and correspondent effective stresses (a) and stress distribution at the hot spot 2 and correspondent 
effective stresses (b) calculated with both methods 

4. Conclusions 

Among the number of methods for fatigue life prediction of machine components the support factor method 
proposed by Siebel, Neuber and Peterson can still represent a reliable approach. A peculiarity of the method is that it 
relies only on the knowledge of the maximum stress and stress gradient in the hot spot. Its main drawback is the 
need of a material parameter *, which is known only for a few materials. A correlation between * and the critical 
distance L of the TCD is proposed in this paper. This correlation allow * to be calculated for the same materials 
whose critical distance value is known. Relying on a specific stress function, the same fatigue life prediction 
between the SF method and the TCD is forced, obtaining a material parameter * which depends only on critical 
distance L and on local stress gradient s . The proposed procedure is validated against two theoretical and one 
industrial benchmark. A systematic comparison is performed for a V-notch in a plate and a pressure vessel (first two 
benchmarks) showing a fair agreement between the methods over a wide range of ratios of critical length L to a 
peculiar geometric dimension. Also in the case of the oleo-hydraulic distributor (third benchmark), where the 
comparison was focused on two hot spots given by an elastic finite element analysis, both the SF method and the 
TCD provide similar results. 
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