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Abstract: Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in
mediating emotional information processing. In particular, negative allosteric modulators (NAMs)
of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric
diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre-
and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity
during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1
administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted
in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training
were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC)
and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity
(4–12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of
mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network
underlying a reduced response to a predicted threat.

Keywords: metabotropic glutamate receptors; fear conditioning; theta rhythm; ventral hippocampus;
medial prefrontal cortex

1. Introduction

Group I metabotropic glutamate receptors (mGlus), namely mGlu1 and mGlu5, have
recently been suggested to contribute to affective behavior [1–4]. They display a largely
complementary distribution [5] with mGlu5 most abundantly expressed in telencephalic
regions, such as the hippocampus, neocortex and striatum [6,7]. Numerous studies have
implicated mGlu5 in neuropsychiatric disorders including autism, schizophrenia, depres-
sion and anxiety disorders [8–12]. Several imaging studies in humans have shown a close
relationship between mGlu5 levels and symptom severity in patients suffering from post-
traumatic stress disorder and major depression [13,14]. In preclinical studies, antagonists
and negative allosteric modulators (NAMs) of mGlu5 were consistently found to exert
anxiolytic-like effects in a broad variety of tests including conflict tasks, such as the ele-
vated plus maze (EPM), and the light dark box, as well as in fear conditioning [9,15–25].
Impaired acquisition of fear responses has been described in mice carrying the deletion
of the mGlu5 gene (Grm5-KO) [26,27]. Moreover, the administration of mGlu5 antagonists
or NAMs before fear conditioning hampered the conditioned threat response, pointing
towards a critical role of mGlu5 signaling during CS–US associations [20–23,28]. However,
the mechanisms by which mGlu5 NAMs affect the principal components of the fear brain
network remained unaddressed so far.
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Considerable evidence supports a link between emotional states and oscillatory ac-
tivity in the brain. Previous studies have shown that the initiation and expression of
defensive behavior in rodents, such as freezing, is characterized by enhanced rhythmicity
in the theta range in the medial prefrontal cortex (mPFC), ventral hippocampus (vHPC)
and basolateral amygdala (BLA) [29–39]. Theta rhythm is a highly synchronous pattern
of neuronal oscillations, with high voltage and frequency range of 4–12 Hz [29,30,40–43].
Theta oscillations reflect synchronized neural firing and are believed to facilitate long-range
communication between brain areas involved in the processing and expression of anxi-
ety and fear [30,31,34,36,44,45]. However, no studies have addressed whether the potent
anxiolytic-like and fear-reducing action of mGlu5 NAMs is accompanied or mediated by
changes in theta oscillatory activity in the fear network during aversive state processing.

In this study, we have characterized the effects of the systemic administration during
fear conditioning of the novel mGlu5 NAM Alloswitch-1 [46] on the oscillatory activity in
principal hubs of the fear and anxiety brain network during the retrieval of fear memory
in male mice. Our data show that Alloswitch-1, when given pre- but not post-training,
alters theta (4–12 Hz) activity in the mPFC and vHPC underlying a reduced response to a
predicted threat.

2. Materials and Methods
2.1. Implantations

Male mice (C57BL/6j, 8–12 week-old) were stereotactically (Kopf Instruments,
Tujunga, CA, USA) implanted under sevoflurane (Sevorane, AbbVie GmbH, Vienna, Aus-
tria) anesthesia combined with ketamine/xylazine (i.p.), with recording electrodes made of
twisted 76,2 µm teflon coated, stainless steel wires (Science Products, Hofheim, Germany)
into the mPFC (at a 3◦ angle, AP: +1.8, L: +0.5, D: −1.7 mm) and vHPC (AP: −3.2, L: +3.3,
D: −2.8 mm). The stereotaxic coordinates were based on the Franklin and Paxinos Mouse
Brain Atlas [47]. A silver wire (Science Products, Hofheim, Germany) connected to a screw
mounted posteriorly to the bregma was used as ground/reference electrode. Two small
screws were also mounted to the skull for additional support. All electrodes were con-
nected to a 10-pin PCB connector and cemented to the skull with dental acrylic (Paladur,
Heraeus Kulzer GmbH, Hanau, Germany). During the surgery, ophthalmic ointment and
an analgesic-meloxicam (Metacam, Boehringer Ingelheim; 0.01 mg/kg subcutaneously)
were applied. After 7–10 days of recovery, animals were habituated for nearly a week to the
experimenter (handling) and to the recording setup (2–3 sessions, lasting approximately
10 min). In one set of experiments (1st Set), animals were blindly assigned to two groups:
one (n = 14) receiving Alloswitch-1 (10 mg/kg) and the other (control; n = 13) receiving the
drug vehicle (Saline + 5% DMSO + 1% TWIN80), injected i.p. in a volume of 0.20–0.23 mL
(depending on the animal’s body weight), 15 min before the fear acquisition session. In an
independent 2nd set of experiments, unimplanted, naïve mice were injected with either
Alloswitch-1 (10 mg/kg, n = 6) or drug vehicle (Saline + 5% DMSO + 1% TWIN80, n = 6),
immediately after the fear acquisition session.

Alloswitch-1 is an azobenzene derivative of VU0415374 (MW 381), which has been
shown to display good brain penetrance at 10 mg/kg when administered systemically [48]
and in vivo actions following intracerebral administration at doses similar to those used for
MPEP [49]. We and others have previously shown behavioral effects of conventional mGlu5
NAMs at doses between 3 and 30 mg/kg when administered systemically, within a time
range of 15 min to 1 h [25,50–52]. Therefore, based on the structural similarity to VU0415374,
known potency in vivo of other brain penetrant mGlu5 NAMs and own experience, we
considered the i.p. administration of 10 mg/kg given 15 min before behavioral testing as a
suitable experimental condition for this study.

All procedures involving animals were approved by the Austrian Animal Experimen-
tation Ethics Board and were performed in compliance with the European Convention for
the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes
(ETS no. 123).
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2.2. Fear Conditioning and Retrieval Protocol

Fear conditioning and retrieval were performed in a 27 cm × 27 cm × 40 cm chamber
with transparent walls and a metal grid on the floor for foot-shock delivery (Ugo Basile,
Comerio, Italy). Mice were placed in the conditioning chamber for a 60 sec baseline period
and then subjected five times to a 15 sec-long 60 dB white noise conditioned stimulus
(CS) followed by a foot-shock (0.5 mA) unconditioned stimulus (US) lasting 1 sec and
with a 1 min inter-trial interval between each CS-US presentation. Freezing (%) during
the CS presentations was taken as a measure of fear conditioning/learning. Twenty-
four hours later, animals were exposed to the fear retrieval session in the same context
(recording chamber) and were presented 5 times with the CS (with 1 min interval) without
the reinforcing US. The same context was used in order to induce stronger theta activity.
The chamber was cleaned with 70% EtOH between subjects. Mice were tracked using
contour tracking and center of mass via ANY-maze (Stoelting Europe, Dublin, Ireland),
using a video camera mounted on top of the fear conditioning/retrieval chamber. The
automatic freezing assessment was inaccurate due to cable movements; therefore, freezing
was manually scored by a trained experimenter blind to the treatment. The freezing score
is expressed as percentage of immobility/freezing time during the CS presentations.

2.3. LFP Signal Acquisition and Analysis

During each fear retrieval session, local field potential (LFP) signals from mPFC
and vHPC were recorded. LFP signals were recorded on an EXT-9 recording system
using a headstage-commutator assembly (NPI electronic GmbH, Tamm, Germany) al-
lowing animals to move freely inside the fear conditioning chamber. The raw signal
was amplified ×1000, filtered from 0.1 to 1000 Hz, digitized at 1 kHz (Power 1401, CED,
Cambridge, UK) and stored on a PC by means of the Spike 2 (version 8.08) software (CED,
Cambridge, UK). Only animals that were positively verified regarding the LFP signal
quality (appropriate signal amplitude, no movement artefacts) during the recording session
were used for further off-line signal analysis. Artefacts-free 15 sec LFP signal epochs from
the CS presentation periods during the fear retrieval session were taken and analyzed
using the MATLAB software (version 2020b, Mathworks, CA, USA). The spectral analysis
of the recorded LFP signal was calculated using the Welch’s power spectral density (PSD)
estimate method (pwelch.m MATLAB function), computing 1 s signal segments with a
1000 Hz sampling rate and a 50% overlap. Afterwards, data points were transformed into
Z-scores (range 1–48 Hz). The correlation between the amount of freezing (%) and the
mean signal power (expressed as Z-score) of the dominant frequency (frequency with the
highest Z-scored signal power) within the theta band (4–12 Hz) during CS presentations of
the fear retrieval session was analyzed using Pearson’s r.

2.4. Histology

At the end of the behavioral experiments, mice were perfused with a fixative to
confirm the correct location of the LFP recording electrodes in the brain. Mice were
subjected to a non-recovery anesthesia with thiopental sodium (150 mg/kg, i.p.) and
perfused transcardially at first with saline (0.9% NaCl), followed by a fixative made of 4%
paraformaldehyde in 0.1 M phosphate-buffer (PB), pH 7.2–7.4, for 12 min. Immediately after
the perfusion, brains were removed from the skull and stored in 4% PFA solution at 6 ◦C
until further use. Brains were cut with a vibratome (Leica VT1000S; Leica Microsystems,
Vienna, Austria) into 50 µm thick coronal slices that were collected in six wells Petri-
dishes filled with 0.1 M PB + 0.05% NaN3. Sections containing the mPFC and vHPC were
mounted on gelatin-coated glass slides (Thermo Scientific) and stained with Cresyl Violet
(Nissl staining). Implantation sites (Supplementary Figure S1) were assessed using a Zeiss
AxioImager Z1 microscope (Carl Zeiss Microimaging GmbH, Göttingen, Germany) by an
experimenter blinded to the treatment condition.
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2.5. Statistics

Sample size was predetermined based on published studies, experimental pilots, and
in-house expertise. All statistical analyses were performed on GraphPad Prism (ver. 9.0.1).
Following normality checks, all data were analyzed using unpaired two-tailed t-test or
two-way RM ANOVA with Bonferroni’s multiple comparison test (following significant
ANOVA). In each case, * p < 0.05 was considered as the significance threshold.

3. Results
3.1. Inhibition of mGlu5 during Fear Conditioning Reduces CS-US Association

Mice were subjected to cued fear conditioning, in which they were exposed five
times to a neutral auditory CS terminating with a mild foot shock (US), followed by fear
retrieval 24 h later, where only the CS was presented in the same context (Figure 1A).
Alloswitch-1 or vehicle (control group) was injected i.p. before (Figure 1B) or right after
the fear acquisition session (Figure 1C). Mice treated before fear conditioning were also
implanted with recording electrodes in the vHPC and mPFC (Supplementary Figure S1).
They showed a progressive increase in freezing upon subsequent CS presentations, demon-
strating a successful acquisition of a conditioned response, whereas Alloswitch-1 did not
significantly influence the amount of freezing compared to the control group (Figure 1B;
left panel: 2-way RM ANOVA: drug F(1,25) = 2.537, p = 0.1237; time F(4,100) = 55.45,
p < 0.0001; drug × time F(4,100) = 1.658, p = 0.1659). However, we could observe a ten-
dency towards a reduced or delayed conditioned response in the Alloswitch-1 injected
mice, consistent with previous studies [23]. During the fear retrieval session, 24 h later,
Alloswitch-1-treated mice exhibited a profound reduction in freezing in comparison to con-
trol animals (Figure 1B; central panel: 2-way RM ANOVA: drug F(1,25) = 10.15, p = 0.0038;
time F(4,100) = 2.686, p = 0.0356; drug × time F(4,100) = 0.4520, p = 0.7707. right panel:
two-tailed t-test: t(25) = 3.187, p = 0.004).
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(SET 2), not implanted with microelectrodes, received the i.p. injection of Alloswitch-1 (n = 6) or
vehicle (n = 6) right after the end of the fear acquisition session. (B,C) Freezing levels during
consecutive CS-US presentations in the course of fear acquisition (left panels) or CS presentations
during fear retrieval (central panels). Data were analyzed by two-way repeated measures ANOVA.
Right panels depict the mean % freezing across all 5 CS presentations during the fear retrieval session.
Data are presented as mean ± SEM, including individual values, and analyzed by the unpaired
two-tailed t-test, ** p ≤ 0.01.

Mice that received Alloswitch-1 right after fear conditioning showed no differences
in the amount of freezing either in the fear acquisition (Figure 1C; left panel: 2-way RM
ANOVA: drug F(1,10) = 0.4765, p = 0.5057; time F(4,40) = 29.89, p < 0.0001; drug × time
F (4,40) = 1.614, p = 0.1897) or in the fear retrieval session (Figure 1C; central panel: 2-way
RM ANOVA: drug F(1,10) = 0.00971, p = 0.9234; time F(4,40) = 1.916, p = 0.1265; drug × time
F(4,40) = 1.249, p = 0.3059. right panel: two-tailed t-test: t(10) = 0.09856, p = 0.9234).

Overall, these results suggest that mGlu5 inhibition during fear conditioning reduces
the CS-US association strength, whereas post-conditioning inhibition has no effects on fear
memory, indicating that mGlu5 signaling is not critical for the consolidation of conditioned
fear, fully consistent with previous studies using other mGlu5 NAMs [21,23,53].

3.2. Analysis of mPFC and vHPC Local Neuronal Oscillatory Activity during Fear Retrieval
3.2.1. Signal Power Spectrum

Next, we sought to explore whether the reduced freezing observed upon fear retrieval
in mice, that received Alloswitch-1 before fear acquisition, was accompanied by changes in
neuronal oscillatory activity in the mPFC and vHPC (Figure 2). The analysis of LFP signals
recorded during the CS presentations in the fear retrieval session revealed large differences
in the signal power spectra between mice injected with Alloswitch-1 or vehicle (Figure 3).
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Figure 2. (A) Representative fragments of recorded LFPs from the mPFC and vHPC during a CS
presentation in the course of the fear retrieval session. (B) Examples of LFPs expressed as sonograms
recorded from the mPFC of a vehicle- (control) or Alloswitch-1 injected animal (prior to the fear
acquisition session) at the time of a CS presentation (CS 3). The dotted line defines the time of the
CS presentation. A distinct increase in the signal power at 4–6 Hz within the theta frequency band
(4–12 Hz) can be observed concomitant with the beginning of the CS in the control animal, but not in
the Alloswitch-1 injected mouse, which, however, showed some bouts of theta activity demonstrating
an intact ability to induce it.
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Figure 3. Power spectra (Z-scored) of the LFP signal recorded from the mPFC (n = 10) or vHPC
(n = 10) during consecutive CS presentations (CS1-CS5) in the course of the fear retrieval session in
animals that were injected with Alloswitch-1 or vehicle before fear conditioning. Data are shown as
mean ± SEM and were analyzed by two-way RM ANOVA followed by Bonferroni’s multiple com-
parison test to compare Z-scores between animals treated with Alloswitch-1 and controls, * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001. In case of significant differences within multiple subsequent frequencies
(1 Hz bins), only the lowest level of significance is shown.

In particular, we observed a marked reduction in the theta frequency band (4–12 Hz)
of the spectral content in the mPFC (Figure 3, left panels) in Alloswitch-1-treated an-
imals (CS1: 2-way RM ANOVA: drug × frequency F(46,828) = 6.906, p < 0.0001; fre-
quency F(46,828) = 135.7, p ≤ 0.0001; drug F(1,18) = 9.499, p = 0.0064; CS2: 2-way RM
ANOVA: drug × frequency F(46,828) = 6.109, p < 0.0001; frequency F(46,828) = 120.1,
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p ≤ 0.0001; drug F(1,18) = 8.820, p = 0.0082; CS3 2-way RM ANOVA: drug × frequency
F(46,828) = 7.015, p < 0.0001; frequency F(46,828) = 101.3, p ≤ 0.0001; drug F(1,18) = 10.35,
p = 0.0048; CS4: 2-way RM ANOVA: drug × frequency F(46,828) = 7.708, p < 0.0001; fre-
quency F(46,828) = 126.2, p ≤ 0.0001; drug F(1,18) = 3.247, p = 0.0883; CS5: 2-way RM
ANOVA: drug × frequency F(46,828) = 3.845, p < 0.0001; frequency F(46,828) = 113.3,
p ≤ 0.0001; drug F(1,18) = 5.866, p = 0.0262). Similarly, analysis of the LFP signals recorded
from the vHPC (Figure 3, right panels) also revealed significant differences in the average
power spectra of the LFP signals between mice injected with Alloswitch-1 and vehicle before
the fear acquisition session (CS1: 2-way RM ANOVA: drug × frequency F(46,828) = 2.075,
p < 0.0001; frequency F(46,828) = 113.8, p ≤ 0.0001; drug F(1,18) = 4.691, p = 0.0440);
CS2: 2-way RM ANOVA: drug × frequency F(46,828) = 4.419, p < 0.0001; frequency
F(46,828) = 82.65, p ≤ 0.0001; drug F(1,18) = 8.804, p = 0.0083; CS3: 2-way RM ANOVA:
drug × frequency F(46,828) = 2.284, p < 0.0001; frequency F(46,828) = 84.80, p ≤ 0.0001;
drug F(1,18) = 1.784, p = 0.1983; during CS4: 2-way RM ANOVA: drug × frequency
F(46,828) = 2.890, p < 0.0001; frequency F(46,828) = 101.9, p ≤ 0.0001; drug F(1,18) = 6.919,
p = 0.0170; CS5: 2-way RM ANOVA: drug × frequency F(46,828) = 1.056, p = 0.3749; fre-
quency F(46,828) = 93.78, p ≤ 0.0001; drug F(1,18) = 3.795, p = 0.999).

Taken together, these results show that upon fear retrieval, the CS presentations were
accompanied by the induction of theta oscillations with a distinct peak in the 4–6 Hz
frequency range in both the mPFC and vHPC, although in the latter one, the average
power of the signal was weaker. Treatment with the mGlu5 NAM Alloswitch-1 during fear
conditioning produced a shift in the peak power towards lower frequencies in both brain
structures (Figure 3).

3.2.2. Alloswitch-1-Treatment Influences the Power of the 4–12 Hz Frequency Band

Since low theta oscillations in the mPFC and vHPC have been previously linked
to negatively valenced emotional states [29,30,40,42,43,46], we next sought to character-
ize whether the reduced expression of fear during fear retrieval in mice injected with
Alloswitch-1 before fear acquisition coincide with a shift in the dominant frequency (DF)
of theta oscillations in the mPFC and vHPC, and found no significant differences be-
tween Alloswitch-1-injected and control animals, the mean being DF ≈ 4 Hz in the mPFC
(Figure 4A, left panel: two-tailed t-test: t(18) = 0.1705, p = 0.8665) and ≈5 Hz in the vHPC
(Figure 4B, left panel: two-tailed t-test: t(18) = 0.735, p = 0.4609).

Since 4–6 Hz oscillations in the mPFC have been recently shown to be mechanistically
different from theta oscillations and to be highly predictive of freezing behavior [54],
we next sought to elucidate whether this behavioral expression within CS presentations
correlated with the LFP signal power in the mPFC and vHPC at the DF (4 Hz and 5 Hz
respectively). Indeed, a robust positive correlation was observed between the amount of
freezing and the signal power of the DF in both the mPFC (Figure 4A, right panel: Pearson’s
r = 0.825, p < 0.0001) and the vHPC (Figure 4B, right panel: Pearson’s r = 0.6079, p = 0.0045).

Further analysis of the signal power in the theta frequency range (4–12 Hz) revealed
a pronounced decrease in the peak power (Pmax) signal in Alloswitch-1-injected mice in
comparison to controls during consecutive CS stimuli in the mPFC (Figure 5A, one-way
ANOVA: F(9,90) = 6.292, p < 0.0001) and vHPC (Figure 5A, one-way ANOVA: F(9,90) = 2.847,
p = 0.0054), as well as in the Pmax value expressed as an average of all CS presentations
in the mPFC (Figure 5B, two-tailed t-test: t(18) = 5.192, p < 0.0001) and vHPC (Figure 5B,
two-tailed t-test: t(18) = 2.724, p = 0.0139).

Altogether these findings suggest that mGlu5 inhibition results in a decrease in the
Pmax, rather than in a shift of the DF within the theta range in both the mPFC and vHPC,
which parallels a reduced conditioned response upon fear retrieval.
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presentations (CS1-CS5). Two-way RM ANOVA (for mPFC drug effect p = 0.001, for vHPC p = 0.014).
(B) Mean Pmax value from all CS presentations. Unpaired two-tailed t-test, * p ≤ 0.05, *** p ≤ 0.001.
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4. Discussion

A large body of evidence shows that inhibition of mGlu5 signaling during associative
fear learning disrupts conditioned threat responses. This was shown using both genetic and
pharmacological approaches, as well as a variety of tests including contextual and cued fear
conditioning [21,23,55] and fear-potentiated startle [20,28,56–58]. The effect of the reduction
in mGlu5 activity was mostly observed after conditioning upon fear memory retrieval, with
the exception of Grm5-KO or the use of high doses of mGlu5 antagonists, which attenuated
also the acquisition of conditioned fear [22,23,26,27]. Our findings using a different mGlu5
NAM, namely, Alloswitch-1 [46], that was never tested in these paradigms before, are
fully in line with these studies and further corroborate the view that reduction in mGlu5
signaling affects the association between neutral and negatively valenced stimuli. We also
observed that pharmacological blockade of mGlu5 immediately after fear conditioning,
hence, once the stimulus-shock association has already occurred, did not disrupt fear
memory consolidation. This is also fully consistent with previous studies showing no
effects of mGlu5 inactivation following fear conditioning [21,23,53]. We, thus, specifically
characterized LFP brain oscillatory activity only in mice that received Alloswitch-1 before
the fear acquisition session.

The main finding of our study shows that blockade of mGlu5 during fear conditioning
resulted in a marked reduction in rhythmic theta-range oscillatory activity (4–12 Hz)
during CS presentations upon fear retrieval in both the mPFC and the vHPC. Robust
theta activity is known to be associated with high fear states and an enhanced theta
synchrony among amygdala–hippocampal–prefrontal cortical circuits was observed during
retrieval of conditioned fear [29–32,36,45,59,60]. Interestingly, activation of mGlu5 in the
CA3 network in slices was shown to evoke theta frequency oscillations [61], whereas
mGlu5 inhibition suppressed hippocampal theta activity in dentate gyrus induced by high-
frequency tetanization (200 Hz) of the medial perforant path [62]. These data support a
direct involvement of mGlu5 in the process of generation of neuronal synchronous activity
in the theta range.

Arousal states and expression of fear-induced behaviors, such as freezing, are prefer-
entially characterized by a theta oscillation with a frequency range between 4 and 8 Hz,
known as type 2 or low theta [37,63–65]. Recent studies have also described that follow-
ing fear conditioning freezing is characterized by a specific oscillatory activity at 4 Hz in
the mPFC [54,66], which, in turn, is orchestrated by a 4 Hz breathing frequency [67,68].
Similarly, our study shows that in fear retrieval, during CS presentations, the Pmax was
between 4 and 8 Hz and revealed that the administration of Alloswitch-1 before fear
conditioning predominantly affected power in this theta frequency range. Moreover, we
confirmed that the dominant frequency in the mPFC was at 4 Hz, and that it was highly
correlated with freezing, regardless of whether the mice were treated with vehicle or
Alloswitch-1. Thus, in mice treated with Alloswitch-1, although we observed reduced
signal power throughout type 2 theta, we cannot exclude that the main change affected the
4 Hz respiration-coupled oscillations.

It is worth noting that in the vHPC, we observed a marked reduction in signal power
in mice injected with Alloswitch-1 in the high values of type 2 theta (6–10 Hz) during the
CS presentations in fear retrieval. This in part overlaps with the 8–12 Hz frequency range
also referred to as alpha band. Interestingly, higher values of type 2 theta in the vHPC
have been linked to immobility and emotional states such as anxiety and innate fear [69],
consistent with our observations.

Memories are thought to be formed and stored by long-term changes in the strength
of synaptic connections, a process known as synaptic plasticity [70]. Long-term increases
or decreases of synaptic strength have been termed long-term potentiation (LTP) and
long-term depression (LTD), respectively [71–73]. Learning a CS–US association likely
requires the induction of LTP at pathways relaying associative cues [74]. These forms of
synaptic plasticity appear to be highly dependent on mGlu5 [75–82]. Therefore, the phar-
macological inhibition of mGlu5 may influence emotional learning and memory retrieval
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via complex mechanisms occurring at multiple levels, which involve both the induction
and maintenance of synaptic plasticity as well as synaptic excitability and synchrony in
network activity.

Anxiety disorders in humans are more prevalent in females than males [83] and sex-
specific mechanisms are likely to underlie this difference. The effects of mGlu5 modulation
on fear learning, however, including our study, have been investigated only in male
mice, so far. Emerging evidence indicates that the estrous cycle in female rodents exerts
a strong influence on fear conditioned responses (e.g., [84–86]). Group I mGlus were
shown to interact with estrogen receptors (ERs) in females but not in males [87,88] and this
interaction was found to produce sex-dependent responses on conflict-based anxiety-like
behavior [89,90]. This highlights the likelihood of a complex interaction between mGlu5
and ERs during the estrous cycle and in turn an influence on learned fear. Future research
should explore in female mice how mGlu5 pharmacological inhibition affects fear learning
and brain oscillatory activity.

In our study, we used Alloswitch-1, a recently developed and photoswitchable mGlu5
NAM [46]. Alloswitch-1 is active as an mGlu5 NAM under dark conditions, while under
violet light illumination (380–390 nm) its azobenzene group photoisomerizes from trans
to cis configuration, losing its NAM activity; it can, however, quickly re-gain activity
under green light (490–500 nm) illumination through a back-photisomerisation to the
active trans configuration [46]. Alloswitch-1 binds to an allosteric pocket in a similar
fashion to other mGlu5 NAMs [91,92]. Intra-amygdala injection of Alloswitch-1 in a
mouse model of inflammatory pain rapidly and reversibly improved the mechanical
pain hypersensitivity, with an efficacy similar to other mGlu5 NAMs, such as 2-Methyl-
6-(phenylethynyl)pyridine (MPEP) [91]. This compound was also shown to reversibly
modulate the behavior of freely moving Xenopus tropicalis tadpoles and zebrafish larvae,
suggesting that it crosses membranes [46,93]. So far, however, it is still unclear whether
Alloswitch-1 can cross the blood–brain barrier. Our work shows, for the first time, a
behavioral effect mediated by Alloswitch-1 when administered systemically in mice, that
closely reproduces what observed with 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP)
in a highly similar behavioral paradigm [23]. In addition, given that Alloswitch-1 is a
derivative of VU0415374, and that the latter compound was shown to display good brain
penetrance at 10 mg/kg when administered systemically [48], it is plausible that Alloswitch-
1 also penetrates and acts in the brain. However, we cannot exclude that the effects that
we have observed may be mediated entirely or in part through peripheral mechanisms,
also in view of the fact that mGlu5 were reported to be expressed in peripheral vagal
afferents [94]. Similarly, the assumptions about the mechanisms underlying the influence
on Pavlovian fear conditioning mediated by other mGlu5 NAMs, resulted from studies
that also applied them systemically, may have to be adjusted to keep into consideration
this possibility. Future studies taking advantage of the photoswitchable properties of
Alloswitch-1 will allow to address this issue through the implantation of optic fibers in
specific brain areas, e.g., the vHPC, mPFC or BLA, and the local light inactivation of the
drug, after its systemic administration.

In conclusion, our study shows that the pre-training, but not post-training, systemic
pharmacological blockade of mGlu5 leads to the reduction of type 2 theta rhythms during
fear retrieval in the vHPC and mPFC, two of the main hubs of the fear network in the
brain, which strongly correlated with reduced expression or recall of fear memories. This
emphasizes the contribution of mGlu5 activation to associative fear learning and the
generation of rhythmic activity in different brain areas related to the emotional state of the
animal. Our work informs about new mechanisms by which mGlu5 regulate emotional
behavior and may participate in anxiety and stress-related disorders.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells11223555/s1, Figure S1: Histological verification of LFP recording
electrode implantation sites in the mPFC and vHPC.
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16. Chojnacka-Wójcik, E.; Tatarczyńska, E.; Pilc, A. The anxiolytic-like effect of metabotropic glutamate receptor antagonists after
intrahippocampal injection in rats. Eur. J. Pharmacol. 1997, 319, 153–156. [CrossRef]

17. Spooren, W.P.; Vassout, A.; Neijt, H.C.; Kuhn, R.; Gasparini, F.; Roux, S.; Porsolt, R.D.; Gentsch, C. Anxiolytic-like effects of the
prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J. Pharmacol. Exp. Ther.
2000, 295, 1267–1275.
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Anxiolytic-like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur. J. Pharmacol. 2005, 514, 25–34. [CrossRef]

58. Zou, D.; Huang, J.; Wu, X.; Li, L. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement
of prepulse inhibition in rats. Neuropharmacology 2007, 52, 476–486. [CrossRef]

59. Paré, D.; Collins, D.R.; Pelletier, J.G. Amygdala oscillations and the consolidation of emotional memories. Trends Cogn. Sci. 2002,
6, 306–314. [CrossRef]

60. Pape, H.C.; Narayanan, R.T.; Smid, J.; Stork, O.; Seidenbecher, T. Theta activity in neurons and networks of the amygdala related
to long-term fear memory. Hippocampus 2005, 15, 874–880. [CrossRef]

61. Cobb, S.R.; Bulters, D.O.; Davies, C.H. Coincident activation of mGluRs and mAChRs imposes theta frequency patterning on
synchronised network activity in the hippocampal CA3 region. Neuropharmacology 2000, 39, 1933–1942. [CrossRef]

62. Bikbaev, A.; Neyman, S.; Ngomba, R.T.; Conn, P.J.; Conn, J.; Nicoletti, F.; Manahan-Vaughan, D. MGluR5 mediates the interaction
between late-LTP, network activity, and learning. PLoS ONE 2008, 3, e2155. [CrossRef]

63. Bland, B.H.; Oddie, S.D. Theta band oscillation and synchrony in the hippocampal formation and associated structures: The case
for its role in sensorimotor integration. Behav. Brain Res. 2001, 127, 119–136. [CrossRef]

64. Bland, B.H.; Jackson, J.; Derrie-Gillespie, D.; Azad, T.; Rickhi, A.; Abriam, J. Amplitude, frequency, and phase analysis of
hippocampal theta during sensorimotor processing in a jump avoidance task. Hippocampus 2006, 16, 673–681. [CrossRef]
[PubMed]
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