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Abstract
Misfit-layered compounds (MLCs) are formed by the combination of different lattices and exhibit intriguing structural and morpho-

logical characteristics. MLC SrxLa1−xS–TaS2 nanotubes with varying Sr composition (10, 20, 40, and 60 Sr atom %, corresponding

to x = 0.1, 0.2, 0.4 and 0.6, respectively) were prepared in the present study and systematically investigated using a combination of

high-resolution electron microscopy and spectroscopy. These studies enable detailed insight into the structural aspects of these

phases to be gained at the atomic scale. The addition of Sr had a significant impact on the formation of the nanotubes with higher Sr

content, leading to a decrease in the yield of the nanotubes. This trend can be attributed to the reduced charge transfer between the

rare earth/S unit (LaxSr1−xS) and the TaS2 layer in the MLC which destabilizes the MLC lattice. The influence of varying the Sr

content in the nanotubes was systematically studied using Raman spectroscopy. Density functional theory calculations were carried

out to support the experimental observations.
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Introduction
Since their discovery in 1992 [1], inorganic nanotubes (INTs)

have attracted the interest of many researchers due to their elec-

trical, optical, mechanical and thermoelectric properties [2]

derived from their unique structure. WS2 nanotubes are nano-

structures originating from the bending of a single layer of the

2D material tungsten disulfide along one axis, resulting in the

characteristic high-aspect-ratio morphology typical of these

species [1]. The formation of WS2 nanotubes is attributed to the

instability of the dangling bonds at the periphery of nanometric

WS2 sheets forcing it to fold into a seamless hollow structure

under appropriate conditions [2]. Their morphology permits dif-

ferent functionalities to be combined and is characterized by the

presence of different regions corresponding to the inner and

outer surfaces (e.g., for adsorption and catalysis), the interstitial

galleries (for intercalation), and the tube termination, which

could be either opened or capped [3]. Typically, these nano-

structures are synthesized by means of high-temperature reac-

tions that allow the formation of different metal sulfide nano-

tubes [4,5]. Another type of hollow nanostructure, inorganic

fullerene-like structures (IFs), is the result of bending of a 2D

layer of WS2 or any other 2D material along two directions, re-

sulting in a closed-cage quasi-spherical nanostructure [6]. Once

available in large quantities [7,8], different electrical devices

based on single WS2 and MoS2 nanotubes could be realized, in-

cluding high-performance field effect transistors (FETs) [9,10]

and electromechanical resonators [11-13]. Using ionic liquid

gating, ambipolar p–n junctions led to high-performance light-

emitting diodes (LEDs) and photovoltaic devices [14]. Most

interesting, however, was the demonstration of quasi-1D super-

conductivity, which reflected the non-centrosymmetric struc-

ture of the chiral WS2 nanotubes [15,16]. Remarkably, also

IF–WS2 NPs were found to be an excellent solid-state lubricant

with numerous lubricating and metal-working fluids commer-

cially available with rapidly expanding markets.

More recently, nanotubes of misfit-layered compounds (MLCs)

formed by the association of layers from two different kinds of

lattices were reported. Numerous MLCs from 2D oxide and

chalcogenide compounds were reported in the past. Chalco-

genide-based MLCs have the chemical formula (MX)1+y(TX2)m

(where M = Sn, Pb, Bi, Sb, rare earth elements; T = Ti, V, Cr,

Nb, Ta; X = S, Se; 0.08 < y < 0.28, m = 1–3) [17-32], denoted

for simplicity as MX–TX2. The two layers, i.e. MX and TX2

with distorted rock-salt and hexagonal structures, respectively,

alternate periodically along the c-axis. Sometimes more com-

plex MLC superstructures are formed, such as MX–TX2–TX2,

etc. [17-20]. The (distorted) rock-salt layer consists of two

atomic planes. In the hexagonal TX2 lattice, the metal M atom

is sandwiched between two chalcogen (X) atoms, in a trigonal

bi-prism (2H) or octahedral (1T) coordination. The MX and

TX2 layers are stacked together via van der Waals forces.

Frequently, the difference in the work function between the MX

and TX2 slabs leads to a partial charge transfer from the MX

slab to that of TX2. This charge transfer induces polar interac-

tions between the layers juxtaposing on the van der Waals

forces [29]. As the constituting compounds usually exhibit their

own symmetry and space groups, their unit cells differ from

each other along, at least, one direction. Therefore, MLCs are

incommensurate and do not have a unit cell. They are often

represented for simplicity as an approximant, made usually of

5 MX and 3 TX2 units along the a-axis, respectively. Also, due

to the different unit-cell volume of the two components, the

(MX)1+yTX2 are non-stoichiometric compounds with the term

. Interestingly, several chromium sulfide

based compounds of the form MCrS3 where reported early on,

however their misfit structure was understood only many years

later [33,34]. Importantly also, the hexagonal CrS2 (VS2) is not

a stable polymorph unless it is intercalated in the galleries of

the van der Waals gap by an electron donor (Lewis base).

Incidentally, in [32] the authors mention that: “Another type of

crystals with a "hollow-rod" shape often grow in a same batch”.

Unfortunately, the authors did not elaborate any further or

study these “hollow-rod” shaped crystallites in their following

work.

Nanotubes based on rare-earth monosulfide-tantalum disulfide

MLCs have been the subject of a few works, which demon-

strate the possibility of synthesizing such structures using both

early and late lanthanides on the scale of tens of milligrams.

This product could then be analyzed and its properties were

studied beyond the nanoscale [35]. It has been recently demon-

strated that extension of this synthetic protocol allows the intro-

duction of several types of heteroatoms, yielding bulk MLCs

which were not reported in the literature hitherto, and nano-

tubes thereof. The first example of this new strategy was dedi-

cated to the synthesis of LnS–TaSe2 nanotubes, which exhibit

double periodicity La/Ta and S/Se superstructures [36]. Here,

the nanotubes (NTs) are characterized by the presence of a

superstructure in which the Se atoms preferentially occupied the

hexagonal crystal positions around the Ta atoms, while the

sulfur atoms showed a preference for the rock-salt sites in the

LnS lattice [36]. More recently, the inclusion of Nb atoms in

LaS–TaS2 nanotubes has been studied in detail allowing the

identification of various Nb-rich structures in which the

heteroatoms replace the Ta occupying the hexagonal sites in the

TaS2 lattice [37]. An outstanding observation in the Nb-rich

LaS–NbxTa1−xS2 nanotubes was the appearance of a period-

icity with interlayer (c-axis) spacing of 2.35 nm instead of the

expected 1.18 nm. This double periodicity was attributed to a

superstructure with each two sequential LnS layers (and
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possibly also the NbxTa1−xS2 layers) rotated 30° (60° in the

ortho-pseudohexagonal unit cell) with respect to each other.

Furthermore, instead of the stable 2H-TaS2 (2H-NbS2) [35,38]

polytype, the Nb-rich LaS–NbxTa1−xS2 slabs were all found to

be in the 1T state, i.e., with octahedral coordination of the

Ta(Nb) atoms in the NbxTa1−xS2 lattice. The charge transfer

from the M (rare earth element) to the Ta atom of TaS2 in

MS–TaS2 MLC has been discussed in the past [32,35,38]. It

was argued that the low work function of the rare earth atom

forces it to transfer a charge to the half-filled 4dz
2 orbital of the

Ta atom. Thus, the MLC gains extra stability by this charge

transfer as discussed also in [39]. The question then arises: how

much of the rare-earth atom can be replaced by a divalent alkali

earth atom, like strontium, while still retaining the stability of

the MLC compound? This issue was deliberated in the case of

the MLC SrxLa1−xS–CrS2 [40], SrxLa1−xS–VS2 [41,42],

CaxBi1−xS–TiS2 [43] and SrxLa1−xS–NbS2 [44,45]. The

stability limit with respect to the Sr exchange in the lattice

varies from one MLC to the other. For example, in

SrxLa1−xS–CrS2 the stability limit was found to be about

20 atom % [40]. In this case, the authors showed that the

maximum Sr content is determined by a charge balance, i.e., the

amount of La vacancies in the parent MLC compound. For

smaller amounts of lanthanum atoms (i.e., larger Sr content in

the MS sublattice), the charge transfer to the CrS2 slab becomes

smaller. Therefore, the hexagonal (layered) phase of CrS2

becomes unstable beyond 20 atom % Sr and the MLC vanishes.

While the parent compound has a full dz
2 Cr level and is a semi-

conductor, the Sr-substituted compound is electron deficient,

and hence, is metallic. The maximum content of Sr in

SrxLa1−xS–NbS2 was found to be 45 atom %, [44,45] and

35 atom % in SrxLa1−x–VS2 [41,42]. In this latter case, the

MLC can be transformed from a Mott insulator into a metallic

state at a Sr content of 30 atom %.

Interestingly, in several MLCs, the c-axis was found to expand

with increasing Sr concentration [40,45,46]. The expansion of

the c-axis can be ascribed to the reduced charge transfer from

the SrxLa1−xS rock-salt slab to the NbS2 (CrS2) slab, which

leads to the weakening of the interlayer polar forces between

the MX and the TX2 units. This point was discussed also in

relation to the number of f-electrons in the rare-earth series in

LnS–TaS2 (MLC) nanotubes [46]. Thus, the interlayer spacing

(c-axis) was found to shrink in the electron-rich late lanthanides

(Gd, Yb) compared to the early ones (La, Pr). This trend was at-

tributed to the increase of the charge transfer from the rare-earth

atom (in MX) to the Ta atom (in TX2) as their atomic number

increases along the lanthanide series of atoms. Alternatively, the

shrinking interlayer spacing can be stated as originating from

the smaller ionic radius of the rare-earth atom with increasing

Z-number. This trend was further confirmed by following the

blue shift of the Raman E2g
1-mode in these compounds, which

was directly associated with the degree of charge transfer in the

MLC nanotubes [46]. Finally, the compound SrTa2S5 with hex-

agonal structure, which can be possibly described as

SrS–(TaS2)2 MLC, was found to exhibit a transition to a super-

conductor state at 3.16 K. [47]. A few authors suggested that in-

creasing the charge transfer from the MX unit to the TX2

suppresses the charge density wave (CDW) transition,

promoting thereby the superconducting state of the MLC [32].

This effect can be refined by controlling the Sr to rare-earth

atoms in the MX lattice of the MLC.

In the present work, the synthesis and characterization of nano-

tubes from the series SrxLa1−xS–TaS2 with ascending Sr content

was undertaken. In particular, high-resolution transmission elec-

tron microscopy and Raman spectroscopy served as the main

experimental tools to analyze these new nanotubes. Density

functional theory (DFT) calculations were used to study the

chemical bonding and the stability of the SrxLa1−x–TaS2

misfits as a function of Sr content to unveil the origin of the

morphological and structural peculiarities observed experimen-

tally.

Experimental Details
Synthesis
The synthesis was carried out via the chemical vapor transport

(CVT) technique following a procedure similar to the one

which has been described in the literature already [17-20,37].

The precursors, La (Sigma-Aldrich Chemicals 99.5%), SrS

(Sigma-Aldrich Chemical), Ta (Alfa Aesar 99.9%) and S

(Sigma-Aldrich Chemical 99.99%), were taken in the molar

proportion 1:1:3 (La+Sr)/Ta/S and mixed with a catalytic

amount of TaCl5 (Sigma-Aldrich Chemicals 99.99%). The mix-

tures were mechanically ground under inert atmosphere in a

glove box and charged into quartz ampoules. The ampoules

were evacuated and sealed under a vacuum on the order of

1 × 10−5 Torr and placed in a preheated two-zone vertical

furnace. The annealing was performed following a two-step

protocol under constant monitoring of the temperature inside

the furnace. In the first step the ampoule was submitted to a

thermal gradient of 390 °C (bottom edge) and ≈800 °C (upper

edge). After one hour the ampoule was moved inside the

furnace and exposed to an opposite temperature gradient

(860 °C at the lower edge and ≈390 °C at the upper edge). After

6 h the ampoule was withdrawn from the furnace and cooled

down to room temperature in the air. Under these conditions the

mass transport was negligible allowing the complete recovery

of the product present at the lower edge of the ampoule. The

concentration of Sr in the precursor is expressed as atom % (i.e.,

100 − atom % of La). MLC SrxLa1−xS–TaS2 nanotubes with

varying Sr compositions (Sr atom %: 10%, 20%, 40%, 60%,
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corresponding to x = 0.1, 0.2, 0.4 and 0.6, respectively) were

prepared.

Electron microscopy
Scanning electron microscopy (SEM) was done by LEO model

Supra 55VP SEM. Transmission electron microscopy (TEM)

and scanning transmission electron microscopy (STEM) were

performed on a Titan Themis 80-300 microscope with probe

and image spherical aberration (Cs) correctors, at 200 kV.

Energy-dispersive X-ray spectroscopy (EDX) was performed

using a SuperX EDX detector attached to this microscope using

Bruker Esprit software. The quantification was done using the

Cliff–Lorimer method. The samples for electron microscopy

were prepared by dispersing the synthesized powder in ethyl

alcohol, followed by ultrasonication and drying a drop of this

dispersion onto a lacey-carbon-supported Cu/Ni grid. To mini-

mize contamination during imaging, the TEM specimens were

heated in a vacuum chamber at 60 °C overnight followed by 3

seconds of oxygen plasma exposure prior to the electron

microscopy analysis.

Raman spectroscopy
Raman spectroscopy measurements were recorded from 100 to

800 cm−1 on individual nanotubes using the reflection mode.

The LabRAM HR Evolution (HORIBA, France) set-up was

used for this analysis. The excitation was performed with a

633 nm laser having 2 mW maximum power. The set-up uses

an 800 mm spectrograph, which allows for a high spectral reso-

lution and low stray light. The pixel resolution is ≈1.8 cm−1

when working with a 600 gr/mm grating and a 633 nm laser.

The sample was illuminated using a ×100 objective (MPlanFL

NA 0.9, Olympus, Japan). The Raman spectra were measured

using a 1024 × 256 pixel open electrode front-illuminated CCD

camera cooled to −60 °C (Syncerity, HORIBA, USA). The

system utilizes an open confocal microscope (Olympus BXFM)

with a spatial resolution better than 1 μm. The measurements

were done with the laser beam focused on a single nanotube at a

time.

DFT calculations
All calculations were performed within the framework of the

density-functional theory (DFT) using the SIESTA 4.0 imple-

mentation [48,49]. The Perdew–Burke–Ernzerhof (PBE) param-

etrization of the exchange-correlation potential within the

generalized gradient approximation (GGA) was used. The

core electrons were treated, applying norm-conserving

Troullier–Martins pseudopotentials. The pseudopotential core

radii (given in the following in brackets, in aB units) for the

valence shells were chosen as 6s2(3.47)6p0(3.74)5d1(3.22)

f o r  L a ,  6 s 1 ( 2 . 5 5 ) 6 p 0 ( 2 . 7 4 ) 5 d 4 ( 2 . 5 5 )  f o r  T a ,

5 s 2 ( 3 . 5 8 ) 5 p 0 ( 3 . 7 6 ) 4 d 0 ( 3 . 5 8 )  f o r  S r ,  a n d

3s2(1.69)3p4(1.69)3d0(1.69) for S. A double-ζ polarized basis

set was employed for all elements. The k-point mesh was gener-

ated by the method of Monkhorst and Pack with the cutoff of

15 Å for k-point sampling. The real-space grid used for the

numeric integrations was generated with the energy cutoff of

300 Ry. All calculations were performed using variable-cell and

atomic position relaxations, with convergence criteria corre-

sponding to the maximum residual stress of 0.1 GPa for each

component of the stress tensor, and the maximum residual force

component of 0.05 eV/Å. Preliminary test calculations of binary

sulfides SrS, LaS2, La2S3, and 2H-TaS2 revealed a good suit-

ability of the chosen approach for the description of the geome-

try. The difference between the experimental and computed

lattice parameters is within ±2%.

Results and Discussion
Four kinds of Sr-substituted LaS–TaS2 samples, i.e.,

SrxLa1−xS–TaS2 with increasing Sr content in the precursor (10

to 60 atom %), were prepared. Concomitantly, the correspond-

ing content of La atoms in the precursor was reduced from 90 to

40 atom %. Here the percentage refers to the atom % in the MS

precursor. SEM analysis showed that the nanotubes are indeed

formed in all the different compositions, although the yield of

the nanotubes decreased with increasing Sr content. Figure 1

shows an overall image of the product obtained with 10 atom %

Sr (90 atom % La) in the precursor. The powder consisted of

tubular and sheet like morphologies.

Figure 2 shows the statistical analysis of the SEM micrographs

where the relative abundance of the nanotubes and their outer

diameter are reported. Clearly the abundance of the nanotubes

decreased with increasing Sr concentration in the precursor.

Above 60 atom %, the presence of nanotubes was significantly

reduced and most of the remaining material consisted of less

well-defined MLC platelets. Considering that the nanotubes

make up about 30–40% of the product in the pure LaS–TaS2

[35], it is clear from the graph (red curve) that the nanotubes

form a minority phase (5% of the product) already at 40 atom %

Sr in the precursor. The reduced abundance of the NTs with in-

creasing Sr content in the precursor may be rationalized on the

basis of the reduced charge transfer between the MS unit

(LaxSr1−xS) and the TaS2 layer in the MLC which destabilize

the MLC lattice. The increased (average) external diameter of

the nanotubes with increasing Sr content in the precursor

could be also attributed to the reduced charge transfer between

the MS and TaS2 sublattices, which weakens the polar interac-

tion in the lattice and leads to expansion of the interlayer

spacing and the overall radius of the nanotubes. However, this

is only one plausible explanation and more careful study of this

tendency is undertaken by means of DFT calculations vide

infra.
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Figure 1: SEM images (two different magnifications) of LaxSr1−xS−TaS2 powder prepared from 10 atom % Sr (90 atom % La) in the precursor.
Tubular structures and conical nanoscrolls along with sheet-like morphology are visible.

Figure 3: HAADF-STEM image (top left) and EDX elemental mapping of Sr, Ta, S, and La in a SrxLa1−xS–TaS2 nanotube prepared from 10 atom %
of Sr in the precursor.

Figure 2: Relative abundance of the nanotubes (red curve) in the
product and their average outer diameter (black curve) determined
from the SEM images.

The tubular morphology of the SrxLa1−xS–TaS2 sample with

10 atom % Sr in the precursor was further confirmed by high-

angle annular dark field (HAADF)-STEM analysis as shown in

Figure 3 (top left). The brighter walls and the darker hollow

region are typical of a tubular morphology. The compositional

map obtained from the nanotube (Figure 3 (top right)) shows

that Sr is uniformly distributed in the nanotube. Elemental

quantification from the EDX spectra indicates that 7–11 atom %

of Sr substitution (93–89 atom % La) is achieved in a nanotube.

The overlap of the L and Cu K lines for Ta might induce some

error in quantification in the case of Ta. Also, due to the overlap

of the L line for Sr and the M line for Ta, the weak Sr K line is

used for mapping and quantification of Sr. Nanotubes with a

wide range of inner and outer diameters were observed; inner

diameters of 20–70 nm and outer diameters of 80–300 nm were

found.
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Figure 4: (a), (b) HAADF STEM images of SrxLa1-xS-TaS2 (Sr 10 atom %) nanotubes. (c) High-resolution image of (a) indicating that alternating TaS2
layers (red line) are of two different orientations. (d) High-resolution image of (b) showing the SrxLa1-xS double layer clearly (two atomic planes indi-
cated by green lines).

In the case of the LaS–TaS2 misfit-layered compound, the struc-

ture consists of alternating slabs of LaS and TaS2 with different

crystallographic structures. LaS adopts a distorted NaCl struc-

ture and the TaS2 can be indexed in a pseudo-hexagonal unit

cell [35,38].

Figure 4 shows low-magnification and high-resolution

HAADF-STEM images of two LaS–TaS2 (10 atom % Sr in the

precursor) nanotubes. One can see the stacking of the SrxLa1−xS

(indicated by green lines) and TaS2 (indicated by red line)

layers in Figure 4c and that TaS2 appears brighter due to the Z

dependence of contrast [50], as compared to the SrxLa1−xS

double layer between them. From Figure 4c, one can also con-

clude that the alternating TaS2 layers have different atomic

arrangements, indicating the presence of two folding vectors for

TaS2. The atomic arrangement of the SrxLa1−xS double layers

are better revealed in the nanotube shown in Figure 4d.

The structure of this nanotube was further analyzed by a

selected area electron diffraction (SAED) pattern as shown in

Figure 5. Twelve pairs of spots corresponding to (10.0) planes

with a d spacing of 2.82 Å and 12 pairs of spots corresponding

to (11.0) planes (marked on the red circles) with a spacing of

1.63 Å were observed for TaS2. The multiplicity of these planes

is 6, therefore we can confirm the presence of two folding

vectors for TaS2 in the nanotube investigated. Eight pairs of

spots of 3.97 Å and 2.04 Å were also observed (marked on the

green circles), which could be indexed to (110) and (220), re-

spectively, of LaS. The multiplicity factor of these planes is

four, therefore the presence of two folding vectors can be con-

firmed for the LaS lattice as well. The splitting of the spots indi-

cates the chiral nature of the nanotube. The chiral angles calcu-

lated from the splitting of the spots, hk.0 of LaS and TaS2, were

≤3°. Also, it was observed that the (020) spots of LaS coincide

with the (10.0) of TaS2 even though they are not parallel to the

nanotube axis, marked as a pink arrow. This is in contrast to the

previously reported tubular LnS–TaS2 (Ln = rare earth) materi-

al, where the majority of nanotubes analyzed were of one

common b-axis parallel to the nanotube axis [35]. The basal

reflections are the spots appearing perpendicular to the nano-

tube axis. From the HRTEM images, a periodicity of ≈1.16 nm

along the c-axis was concluded (Figure 5a).



Beilstein J. Nanotechnol. 2019, 10, 1112–1124.

1118

Figure 5: a) HRTEM image of a SrxLa1−xS–TaS2 (10 atom % Sr in the precursor) nanotube showing 1.157 nm periodicity along the c-axis.
b) Selected area electron diffraction showing the orientation relationship between LaS layers (green) and TaS2 layers (red). The nanotube axis is
shown as a pink arrow and the basal reflections are marked with blue arrows.

Figure 6: (a,b) HAADF-STEM images of a SrxLa1−xS–TaS2 (20 atom % Sr in the precursor) nanotube showing multiple orientations of TaS2 layers.

The analysis of HAADF-STEM images of a SrxLa1−xS–TaS2

nanotube from a sample containing 20 atom % Sr substitution

shows that nanotubes with different folding vectors are present.

For example, in Figure 6a, the TaS2 layer has multiple orienta-

tions whereas in Figure 6b, it has two different orientations.

EDX quantification indicates that 25–37 atom % of Sr/La sub-

stitution was achieved in the nanotubes, i.e., the rock-salt lattice

contained 70 atom % La and ≈30 atom % Sr. From the

HAADF-STEM image in Figure 7, the TaS2 layer with higher

HAADF intensity can be identified as well as the LaS double

layer in between them.

EDX elemental maps on the LaS–TaS2 sample with 40 atom %

Sr substitution (Figure 7) show that the Sr map as well as the La

map matches with the LaS double layer position and the Ta map

shows higher intensity at the TaS2 layer, as expected from the

HAADF intensity. To clearly see this, the map data with Ta, La

and Sr are merged in Figure 7d. This indicates that the Sr

substitutes for La (SrLa) in the crystal. EDX quantification

showed that 28–41 atom % of Sr substitution of the La site was

obtained in the analyzed nanotubes. The S map shows more or

less uniform distribution in the nanotube.

HRTEM imaging and SAED analysis were carried out on a

SrxLa1−xS–TaS2 sample with 60 atom % Sr in the precursor

(40 atom % La). The nanotube was found to have an interlayer

periodicity of ≈1.18 nm along the c-axis (Figure S1a, Support-

ing Information File 1). The interlayer spacing is larger for the

tube with 60 atom % Sr in the precursor compared with that of

the 10 atom % (1.16 nm). This result reflects the weaker inter-
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Figure 7: (a) HAADF-STEM image and (b–f) EDX elemental mapping on a SrxLa1−xS–TaS2 (40 atom % Sr in the precursor) nanotube of (b) Ta,
(c) La, (d) a composite map of the elements, (e) Sr and (f) S.

layer interaction in the nanotube, i.e., the reduced charge

transfer with increasing Sr concentration. From SAED (Figure

S1b, Supporting Information File 1), two folding vectors of

SrxLa1−xS and TaS2 were observed in the nanotube. Also, it was

observed that the b-axis (020) of LaS/(10.0) of TaS2 is not

parallel to the nanotube axis, which is analogous to the situa-

tion in the SrxLa1−xS–TaS2 nanotube with 10 atom % Sr in the

precursor (Figure 5). However, we have come across nanotubes

with different orientations of TaS2 and SrxLa1−xS layers in the

sample.

In the HAADF-STEM image in Figure 8, three nanotubes with

three different arrangements of constituent layers are found. A

TaS2 layer with higher HAADF intensity can be identified as

well as the LaS double layer in between them. Elemental EDX

maps of the SrxLa1−xS–TaS2 sample with 60 atom % Sr substi-

tution (Figure S2, Supporting Information File 1) show that the

Sr map as well as the La map matches with the position of the

double layer rock-salt lattice, whereas the Ta map shows higher

intensity at the TaS2 layer, as expected from the HAADF inten-

sity image. For better understanding, the map data with Ta, La

and Sr are merged in Figure S2d, Supporting Information File 1.

This indicates that the Sr atoms substitute for La in the lattice.

EDX quantification indicated that the La/Sr ratio is in the range

38–61 (La):62–39 (Sr) in the analyzed nanotubes. This analysis

shows that the Sr atoms can substitute for the La atoms up to

about 60 atom %. The HRTEM/EDX analysis does not indicate

any Sr substitution into the TaS2 lattice (the detection limit is

about 0.5 atom %). Presumably, above that Sr concentration,

the charge balance is lost, and the MLC nanotubes become

unstable. The diameter distribution obtained from the TEM/

STEM images is shown in Table S1, Supporting Information

File 1. Samples with 40% and 60% have larger diameters than

samples with 10% and 20%. There is no linear increase as the

order is reversed between 40% and 60%.

The SrxLa1−xS–TaS2 nanotubes with different Sr content were

also analyzed by Raman spectroscopy and Figure 9 summa-

rizes this analysis. The Raman spectra of MLC were analyzed

first by Kisoda et al. [51], and were further elaborated in [32]

and [43]. The range between 100–150 cm−1 was assigned to the

intralayer vibrations of the LnS lattice (Ln = rare earth). The
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Figure 8: (a–c). HAADF-STEM images of a SrxLa1−xS–TaS2 (with Sr 60 atom % in the precursor) nanotube showing multiple orientation of TaS2
layers and SrxLa1−xS double layers.

Figure 9: Raman spectra of SrxLa1−xS–TaS2 nanotubes with different
Sr content. Additionally, the reference Raman spectrum is shown for
LaS–TaS2.

high energy range 250–400 cm−1 was associated with the

intralayer vibrations of the hexagonal TaS2 lattice. The peak at

253 cm−1 was assigned to the two-phonon bands of the TaS2

slab. The 125 cm−1 peak was assigned to the out-of-phase

vibration of the LaS lattice. On the other hand, the 150 cm−1

peak was assigned to the in-phase phonon of LaS. The E2g

mode of the TaS2 in the MLC lattice is found in the energy

range of about 321–325 cm−1. This peak is blue-shifted com-

pared to the pure TaS2 (279 cm−1), which is attributed to the

characteristic charge transfer from the LaS slab to that of TaS2.

The broad band between ≈240 and 304 cm−1 is attributed to the

two-phonon band [52], whereas the 400 cm−1 transition was

assigned to the A1g vibration of the 2H-TaS2. Obviously, the di-

ameter, number of layers and chirality varies from one nano-

tube to the next, and from one batch to the next. This polydis-

persity leads to the broadening of the peaks and minor shifts in

their positions. Increasing the Sr content in the lattice of the

rock-salt slab in place of the La has several ramifications on the

Raman spectrum. First, the Sr atom is lighter (87.6 au) than the

La atom (138.9 au), which should lead to an increase in the fre-

quency of the oscillating atoms. However, at the same time, Sr

bears a smaller charge (+2 instead of the +3 for the La). In the

absence of any accurate calculation, one can nevertheless con-

clude that the charge transfer between the LaxSr1−xS slab to the

TaS2 one is reduced with increasing Sr content in the lattice.

Therefore, the polar forces between the two slabs are weaker

and the interlayer spacing becomes larger, which is expected to

lead to softening of the Raman modes (i.e., lower wavenum-

bers). Furthermore, assuming the Sr distribution in the lattice is

random, the structural fluctuations increase, leading also to

broadening of the modes. Notwithstanding these variations,

some systematic changes in the Raman spectra with Sr content

in the lattice are noticeable. Most importantly, a clear softening

in the Raman modes is observed, which suggests that the

predominant effect of the Sr substitution is to reduce the strain

in the lattice due to the reduced charge transfer between the

layers, and consequently, the lattice strain. It also appears that

beyond an Sr content of ≈60 atom %, the MLC lattice becomes

unstable and new modes >680 cm−1 appear, which is typical for

metal oxides.

DFT calculations of the pristine LaS–TaS2  and the

SrxLa1−xS–TaS2 MLC bulk alloys were undertaken. Overall, the

trends observed in the morphology and in the lattice parameters

of MLC upon Sr alloying were confirmed by the results of the

DFT calculations. As a prototypic model structure, the approxi-

mant (LaS)1.11TaS2 was chosen, whose supercell includes one

LaS and one TaS2 layer (20 LaS and 18 TaS2 units). The evolu-

tion of the electronic structure and the lattice parameters of

SrxLa1−xS–TaS2 was traced by consecutive exchange of La

atoms with Sr atoms, keeping the Sr atoms as far from each

other as possible and preventing their clustering together. The

in-plane lattice parameters of the pristine compound are found

using DFT calculations as a = 2.94 nm and b = 0.58 nm,

while the interlayer LaS–TaS2 spacing along the c-axis is
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Figure 10: DFT calculations presenting the peculiarities of the chemical bonding within the SrxLa1−xS–TaS2 misfits, as a function of the Sr content.
(a) Charge redistribution map at the interface formed between the Sr0.05La0.95S slab and single TaS2 layer. Red and blue colors on the map corre-
spond to an increase and decrease of electron density on 0.05 e/Å3, respectively, and the green color corresponds to no change when compared to
isolated layers. (b) The value of charge transfer (Q) from the SrxLa1−xS to TaS2 layer, and (c) modulation of the lattice parameters (a, b, c) with
ascending Sr content (and reduced La content).

equal to 1.15 nm. The relative thermodynamic stability of

(SrxLa1−xS)1.11TaS2 misfits was estimated using the formation

energy ΔE for the model reaction (LaS)20(TaS2)18 + xSrS →

(SrxLa1−xS)20(TaS2)18 + xLaS, where LaS refers to the hypo-

thetical fcc compound. The DFT calculations confirmed that the

consecutive substitution of La with Sr leads to a gradual

diminution in the stability and to an expansion in the

SrxLa1−x–TaS2 lattice along all crystallographic directions

(Figure 10 and Figure S3 in Supporting Information File 1).

Meanwhile, a closer inspection of the modulations in the func-

tions of ΔE, a, b and c has disclosed inflection points near

30–40 atom % Sr content. Such functional behavior points to a

sudden change of an intrinsic property of the lattice. Indeed, a

qualitative change in the chemical bonding between SrxLa1−xS

and TaS2 parts of the lattice has been registered, while the MLC

lattice was found to preserve its integrity after the geometry op-

timization. The intuitive charge transfer from the electron-rich

LaS layer to the electrophilic TaS2 layer demonstrates a non-

monotonic behavior upon Sr doping of the LaS part. In fact, the

charge transfer per TaS2-unit, Q, first slightly increases in

absolute value with increasing Sr content in the rock-salt lattice

from 0.14 to 0.16 e− per TaS2 unit and then reaches a minimum

(maximum in absolute value) at 20 atom % Sr content

(Figure 10a). At higher Sr content, the function Q displays an

S-shaped profile and diminishes (in absolute value) dramati-

cally from 0.16 to 0.06 e−/TaS2 of a hypothetical (SrS)1.11TaS2

misfit (i.e., upon a complete La to Sr substitution). This phe-

nomenon can be explained by the excessive electron-donating

ability of the LaS layer. Even in the presuming case of the

single electron transfer from La2+ to Ta5+, the number of La

atoms within the (LaS)1.11TaS2 misfit remains too excessive for

the number of Ta atoms. Several options can be suggested for

accommodation of excessive electrons within the MLC lattice.

An analysis of the electron density distribution within the

studied (SrxLa1−xS)1.11TaS2 misfits unveils the localization of

excessive electron density due to charge transfer not only at

5dz
2 orbitals of Ta atoms. Rather, redistribution and alignment

of the charge between the La atoms and the S atoms of TaS2

layer can be also observed (see the red regions between La and

S in Figure 10a). Such localized and unidirectional enhance-

ment of the electron density can be ascribed to the coordination

(covalent-like) La–S(TaS2) bonding in the MLC. Noticeably,

the substituting Sr atoms do not participate in the formation of

any bonding within the TaS2 layer (represented by the green

color in Figure 10a). The electron density in the vicinity of the

Sr atoms (in the SrxLa1−xS lattice) remains essentially unper-

turbed compared to the corresponding free-standing SrS part.

Quantitatively, the degree of bond covalency can be also dis-

cussed using the crystal orbital overlap populations (COOPs)

between atoms. For example, the La–S bonds within LaS part of

the (Sr0.05La0.95S)1.11TaS2 misfit are characterized by COOPs

in the order of 0.2 e−, while the COOPs for Sr–S bonds within

the SrxLa1−xS lattice are equal to 0.10 e−. Depending on the

positional coincidence between incommensurate LaS and TaS2

layers, the La atoms can form 1–3 coordinate bonds with the S

atoms of the TaS2, where the COOPs are equal to 0.1–0.2 e−. In
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contrast to this, the COOP for the bonding between Sr and the S

atoms of TaS2 does not exceed 0.05 e− and becomes even

smaller in misfits with a higher Sr content. As expected, the

calculations confirm the presumably ionic character of the Sr–S

interaction and a covalent-like La–S interaction between the

atoms of different units of the (SrxLa1−xS)1.11TaS2 misfits.

Obviously, the charge transfer from LaS to the 5dz
2 orbitals of

Ta atoms is only slightly perturbed by the interfacial coordina-

tion between the La atom of LaS and the S atom of the TaS2

slab. The gradual removal of excessive electrons from the LaS

upon Sr alloying allows one to observe the maximal charge

transfer (minimal value Q) up to the ratio La/Ta 8:9 (20 atom %

Sr). Since the Sr does not contribute to the charge transfer be-

tween the two slabs, this small increase in charge transfer with

increasing Sr content can be possibly attributed to a purely

geometric effect. The Sr diameter is 132 pm while La is

117 pm, and hence the lattice is compressed upon substitution

of La by Sr atom. Any further Sr insertion leads to electron

deficiency within the SrxLa1−xS–TaS2 misfits and to the weak-

ening of cohesion between LaS and TaS2 layers. The electronic

density-of-states (DOSs) for the misfits with a Sr content up to

20% are quite similar to the pristine compound (Figure S4, Sup-

porting Information File 1). A minor difference between 0 and

20 atom % Sr can be noticed in the shift of the S3p-states of the

TaS2 part with energies −5…−6 eV towards EF (see Figure S4,

Supporting Information File 1) at ascending Sr content. At a Sr

content of about 40 atom % the DOS difference with respect to

the DOS of pristine LaS–TaS2 MLC becomes more pro-

nounced: a clear shoulder of the valence band appears at

−1.0...1.5 eV (see Figure S4, Supporting Information File 1). It

consists of S3p-states, which are responsible for the Sr–S bond-

ing within the SrS part. At this Sr content (40 atom %) the slope

of the curves for all three lattice parameters varies substantially

(Figure 10c and Figure S1c in Supporting Information File 1).

Most prominently, the rate of change of the interlayer distance

(c-axis) attains a steeper slope, than for the a or b lattice

parameters (Figure 10c). Such escalation of the interlayer dis-

tance correlates with the occurrence of endothermic formation

energies ΔE (Figure S3, Supporting Information File 1).

In addition, the loss in stability can be more remarkable due to

an uneven distribution of Sr atoms. Particularly, the

(Sr0.50La0.50S)1.11TaS2 misfit with strictly separated SrS and

LaS fragments is less stable, than the isostoichiometric misfit

with an even Sr distribution in the LaS slab, by a mere 0.08 eV/

TaS2.

An alternative arrangement of the MLC to sustain excess charge

transfer from the rock-salt sublattice is to form a pair of TaS2

layers for each rock-salt layer. Particularly, the rise of a

stacking fault like a supernumerary TaS2 layer within the

"planar" LaS–TaS2 misfit is highly likely. However, this

arrangement could not be confirmed experimentally by the

detailed TEM analysis of the samples and hence it can be con-

cluded that this mechanism is not relevant to the present study.

A curved morphology may also effectively accommodate the

excessive electrons, e.g., sinusoidal-like TaS2 layers between

planar LaS slabs or sinusoidal-like alteration of both TaS2 and

LaS layers with the TaS2 layer being on the outer surface

(convex) while the LaS layer is on the inner part of the sinu-

soidal surface (concave). Since the TaS2 is the outermost

(convex) layer, the number of acceptor units (TaS2) is effec-

tively enhanced as compared to the number of donor units in

inner (convex) LaS slab. Finally, another example includes

nanotubes or nanoscrolls consisting of both TaS2 layers and

LaS slabs, where the TaS2 unit would tend to form the external

side of the walls. Indeed, the TEM analysis confirms that the

TaS2 is the outermost layer in these nanotubes and hence this is

the likely mechanism to compensate for excess electrons from

molecular-like slabs (LaS) in the nanotube. Therefore, the Sr

alloying and the nanotubular morphology act similarly in regu-

lating the charge imbalance, i.e., in charge transfer and interfa-

cial bonding within the LaS–TaS2 misfits. Therefore, progres-

sive Sr doping should disqualify the necessity of nanotubular

morphology. Not surprisingly, the interlayer distance (c-axis)

and the overall diameter of the SrxLa1−xS–TaS2 misfit nano-

tubes increases with higher Sr content in the lattice.

Conclusion
In conclusion, new alloys of misfit-layered compounds with

strontium atoms substituting for the La atoms in the LaS–TaS2

lattice, in both flake and tubular forms, were synthesized.

Careful characterization with high-resolution electron microsco-

py and related techniques and Raman spectroscopy were carried

out on the nanotubes. Clearly, the Sr atoms were found to be

confined in the LaS distorted rock-salt structure. Although the

Sr concentration varied from one nanotube to the next (and even

within the nanotube itself), they were found to be unstable

beyond ≈60 atom % Sr (40 atom % La). This phenomenon was

attributed to the reduced charge transfer between the LaS slab

and the TaS2 layer, resulting in a weakening of the interlayer

polar forces. For this reason, the interlayer spacing (along the

c-axis) was found to increase with increasing Sr content. In

general, increasing the Sr content in the nanotube led to soft-

ening of the Raman modes, which is also attributed to the relax-

ation of the interlayer forces. DFT calculations of the approxi-

mant (SrxLa1−xS)1.11TaS2 showed that the amount of charge

transfer from the rock-salt SrxLa1−xS lattice to the hexagonal

TaS2 lattice goes through a shallow minimum at 20 atom % Sr

substitution. Furthermore, the lattice of the alloy is stable up to

40 atom % Sr content, where the charge distribution and the

lattice parameters thereafter exhibit abrupt changes, which can

be attributed to lattice instability. The interlayer distance (along
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the c-axis) increases and the degree of charge transfer from the

rock-salt to the hexagonal lattice is reduced upon increasing

SrLa substitution. An analysis of the charge density distribution

in the SrxLa1−xS–TaS2 misfits confirms the fairly ionic nature

of the Sr atoms (like that in SrS compounds), while the La

atoms establish covalent-like bonding with neighbor S atoms

from both SrxLa1−xS and TaS2 parts of the MLC.

Supporting Information
Supporting Information File 1
Additional experimental data and calculations.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-10-111-S1.pdf]
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