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Abstract: This paper highlights advantages and drawbacks due to the use of portable and low-cost
devices for aerosol sampling, showing their performances during an aerosol monitoring campaign
with the parallel use of the gravimetric sampling reference method and a cascade impactor. A specific
monitoring campaign was held running all instruments in parallel in indoor, confined, and outdoor
environments characterized by local emission sources or particulate matter background concentra-
tions. PM2.5 concentrations were used to compare data emerging from the different instruments
adopted. Significant underestimation of PM2.5 emerged when comparing data coming from optical
sensors with those estimated by the cascade impactor, whose data resulted in being coherent with
gravimetric determination, integrated over the same sampling time. A cause–effect relationship
between PM2.5 concentrations and specific emission sources was found when observing the daily
patterns of all the real-time sampling devices. It emerged that optical devices are useful for detecting
concentration trends, the presence of peak values, or changes in the background value, even if
with limited accuracy and precision. The comparison with particle size distributions obtained by
the cascade impactor data allowed us to define which particle sizes are not detected by different
optical devices, evidencing a low representativeness of optical low-cost sensors for health exposure
measurements. The correlations among the specific particle size fractions detected by the cascade im-
pactor and their specific emission sources were particularly high for car emissions in a semi-confined
garage area.

Keywords: air monitoring; gravimetric analysis; optical particle counter (OPC); size distribution;
cascade impactor; emission sources

1. Introduction

Aerosol monitoring is extremely important since the respirable suspended particles
(hereafter denoted as RSP, commonly referred to as PM10) are presently considered one
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of the most critical atmospheric pollutants, mainly in urban areas. Actually, PM10 con-
centrations often exceed the daily limit value according to the Directive 2008/50/EC [1],
especially in winter when adverse meteorological conditions (i.e., thermal inversions)
confine pollutants near ground level [2]. Furthermore, the health impact of aerosol is
scientifically recognized [3–5]. PM10, for example, can penetrate the upper respiratory
tract, and PM2.5 can reach the secondary lungs and bronchi [6]. In particular, the effects
of exposure to PM2.5 on stroke, dementia, Alzheimer’s disease, autism spectrum disorder
(ASD), Parkinson’s disease, and mild cognitive impairment (MCI) had been scientifically
demonstrated [7]. For almost 20 years aerosol monitoring has started to focus not only on
particle mass (PM) but also on particle number (PN) in order to better assess the health
impact due mainly to ultrafine (1–100 nm) and fine (100–1000 nm) particles [8,9]. Actually,
in urban areas the size distributions of particles present PN peaks (between 2000 and
4000 cm−3) in the ultrafine region [10–12] even if their contribution as particle mass (PM) is
negligible. The parallel sampling of PN and PM is thus becoming more and more important
in the aerosol monitoring field. Even indoor aerosol monitoring is capturing the attention
of researchers in the field, since people spend more than 80% of their time in closed environ-
ments [13,14], and instantaneous PN values could increase by more orders of magnitude
with respect to background levels after the activation of aerosol indoor sources [11,15].

The harmfulness of atmospheric particulate on human health depends not only on
particles size but also on chemical composition. Indeed, during recent years, substantial
improvements were achieved in the chemical characterization and identification of the
main atmospheric aerosol components [16]. Inorganic species represent more than 1% of
total RSP mass and their sources are identified as crustal elements (silicon, aluminum,
iron, calcium, carbonate), sea-salt aerosol (sodium chloride), inorganic secondary species
(ammonium nitrate and sulphate), and primary anthropogenic species (elemental carbon).
Organic compounds instead represent from 20 up to 60% of RSP mass and include a wide
variety of individual species such as harmful compounds or tracers of specific emission
sources [17] and biologic material [18]. These measurements are performed on PM10 or
PM2.5 filters coming from the reference system (gravimetric samplers) so that the chemical
speciation is averaged over all particles collected on them. Nevertheless, particles contained
in the atmospheric aerosol cover five orders of magnitude, from a few nm up to 100 µm [16],
so complete monitoring coverage of them needs more devices characterized by different
physical principles. A wide variety of instruments for aerosol monitoring is present on
the market and their technical features could be very different. For example, there are
real-time instruments based on laser scattering (optical particle counters, OPC) able to
detect particles with optical diameters above 300 nm [19]; gravimetric devices able to detect
PM1, PM2.5, and PM10 depending on their inlet impactors; real-time cascade impactors
able to detect different particle fractions on different stages from 10 nm up to 10 µm;
and condensing particle counters (CPC) able to detect nanometric particles through their
enlargement due to butanol or water condensation followed by optical detection. Real-
time instruments such as cascade impactors, and OPC and CPC instruments for aerosol
monitoring could be characterized by high precision and sensitivity but they can reach
costs up to tens of thousands of euros and require significant resources for their constant
maintenance and calibration [20,21], so a capillary monitoring of aerosol concentrations
could only be performed by less precise and sensitive but low-cost (from EUR 10 up to EUR
1000 indicatively), small, easy-to-manage, and portable (their dimension is up to one tenth
of the size of the instruments used in air-quality monitoring networks) sensors [19]. Low-
cost sensors are based on the optical detection of particles through laser scattering, counting
particles with an optical diameter under 1, 2.5, or 10 µm and indirectly evaluating PM1,
PM2.5, and PM10, assuming for all particles a unit density and a spherical shape [22,23].
The indirect calculation of particle mass from the particle concentration number is often
discouraged if not accompanied by reference measurements [19,24,25]. The real density
and shape of particles as well as their color and refractive index can affect the evaluation
of their size distribution [26–28]. Nevertheless, the availability of diffuse differential
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concentrations in terms of PM2.5 or PM10 over a territorial domain could help a local
or regional administrator in understanding eventual critical sites to implement the right
policies to abate RSP [21].

Along with the estimation of RSP concentrations, other integrated low-cost sensors in
the same monitoring device can evaluate parameters such as temperature, humidity, and
carbon dioxide concentrations to additionally estimate the air quality index (EEA, n.d.).
Some examples taken from the literature [19,23] are given by the following devices: OPC-
N1 (Alphasense, Essex, UK), the DC1100 Pro (Dylos, Riverside, CA, USA, GP2Y1010 (Sharp,
Sakay City, Japan), Kobe, Japan, and AirVisual Pro (IQAir AG, Goldach, Switzerland).
New solutions in the field of low-cost RSP sensors are continuously under study, including
devices able to detect nanoparticles using different technical principles [29].

Low-cost sensors can be deployed in great quantities and connected in devoted
air-quality networks. The resulting measurements are sent to dedicated platforms (e.g.,
AirCasting, AirVisual) for global collection and data sharing [23]. These widespread
devices may provide high temporal and spatial resolution if we really understand and
critically evaluate the capabilities and characteristics of the data they provide, allowing
the development of PM1, PM2.5, and PM10 concentration maps at a global level to drive
local policies for PM abatement. To assure their effective usefulness as aerosol monitoring
devices, they must be tested in parallel to reference instruments. Measurements should be
performed indoors and outdoors to characterize different aerosol sources and meteorologi-
cal conditions that can greatly impact low-cost sensor performance [25,30]. Optical devices
can be affected by high relative humidity conditions that could lead to an underestimation
of PM. Furthermore, the instability of the flow of a low-cost sensor can alter the quantity of
particles being sampled. An intercomparison of parallel aerosol measurements allows a
critical evaluation of the potentialities of a large-scale implementation of low-cost sensors
since data of poor or unknown quality are less useful than no data at all [31]. To the best of
our knowledge, the literature reports mainly intercomparison studies of outdoor aerosol
monitoring among optical devices (standard analyzers and/or low-cost sensors) and gravi-
metric samplers used as reference. A more comprehensive study including devices with
different working principles and analysis methods for PM determination is needed.

In this paper, measurements taken with optical low-cost sensors, gravimetric samplers,
and a cascade impactor are directly compared for quantitative determination of PM2.5
concentration and to estimate detection limits. Our research aims to assess the perfor-
mance of low-cost sensors in comparison with other technical devices to better understand
potentialities and drawbacks, and their usefulness for health impact assessment.

2. Materials and Methods

The present research foresaw the integration of more atmospheric aerosol monitoring
devices to detect particle number and mass due to the activation of specific particle sources.

The tests were conducted in the northeast of Italy (the city of Brescia), inside the Po
Valley, characterized by high pollution levels [32]. The places selected for sampling differed
based on environmental conditions and/or location. Three locations were considered: an
indoor warehouse (laboratory of civil and construction engineering), a garage, and an
outdoor area adjacent to the warehouse (Figure 1).

With reference to the environmental conditions in the warehouse, the monitoring
period comprised both the presence of building and construction activities (referred to
as “indoor busy”) and the absence of building work (referred to as “indoor quiet”). The
outdoor area was characterized by the occasional presence of smokers in the surroundings.
Finally, the garage events were only related to cars passing by. The sampling period
covered 12 workdays in March 2018. The calendar of measurements is reported in the
Supplementary Materials (Figure S1). Labels assigned to each day identify the specific
monitoring site and environmental conditions.
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Figure 1. Pictures representing the sampling environments: (a) indoor, (b) outdoor, and (c) garage.

Aerosol concentrations were monitored by running different instruments in paral-
lel. In particular, the integrated monitoring system comprised two low-cost instruments
characterized by the optical detection of particles, a gravimetric sampler, and a cascade
impactor. In the following paragraphs we provide details about the technical features of
all instruments.

The Electrical Low-Pressure Impactor (ELPI+, Dekati, Tampere, Finland) provides the
real-time particle number size distribution in a wide dimensional range (6 nm to 10 µm)
with a sampling frequency up to 10 Hz. For the measurements foreseen by this research the
sampling frequency was set to 1 Hz. It also indirectly estimates PM10–PM2.5–PM1 with the
usual approximations of particle unit density and sphericity. The measurement principle
is based on the unipolar charging of particles through a discharge achieved by a positive
high voltage of approximately 3.5 kV. To achieve stable charging conditions, the discharge
current is kept at a constant value of 1 µA. The following size classification according to the
particles’ aerodynamic diameter is given by the impact of particles on 14 different impactor
stages [29] characterized by different cut-off efficiencies reported in Table 1.

Table 1. Cut-off particle size (D50%) of each impactor stage.

Stage D50% (µm)

F 0.006
2 0.016
3 0.0309
4 0.0547
5 0.0951
6 0.155
7 0.256
8 0.382
9 0.603

10 0.948
11 1.63
12 2.47
13 3.66
14 5.37
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Particles with aerodynamic diameters lower than the D50% value are ideally collected
in the following stages in the air flow direction: from stage 14 to filter stage F, whereas
particles with aerodynamic diameters between the D50% values of two consecutive stages
are collected in the stage with the lower D50%. The 14 impactor stages of the instrument are
electrically insulated and connected to sensitive electrometers. Currents measured by each
electrometer are directly proportional to the particle number concentrations with calibration
factors provided by the manufacturer [33]. The downstream pressure is measured and
can be set to the manufacturer-specified value of 40 mbar by adjusting a control valve,
located between the filter stage and the connection to the external vacuum pump, with a
flow rate of 10 L/min. The ELPI+ can be used for gravimetric measurements by calculating
the weight difference of the filters placed on each impactor stage. However, for this work
greased Al foils were used to avoid particles bouncing and to improve the accuracy of
particle determination. Thus, no gravimetric data were extracted.

The customized kit for outdoor air quality measurements (hereafter called KORA,
Acronet, Savona, Italy) is a remote meteorological station that measures PM2.5 by extractive
sensing using a high-flow pump operating at 10 L/min along with air temperature, relative
humidity, and atmospheric pressure. Data are registered with a time resolution of 5 s and
sent to the remote platform, where they are privately stored and can be downloaded.

The personal modular impactor (PMI, SKC, Blandford Forum Dorset, UK) is a portable
gravimetric sampler characterized by a single inertial impactor that collects PM2.5 by an
extractive method using a Leland Legacy SKC pump operating at 10 L/min and collecting
particles onto a Teflon filter membrane with a pore size of 2 µm, weighed before and after
the sampling to evaluate particulate mass. Sampling was performed on the same filter
over all weekdays during the first two weeks and on one filter per day during the last
two days, to collect one filter per environment. Filters were weighed with a microbalance
(model XS3DU, Mettler Toledo, Milano, Italy) characterized by a sensibility of 0.5 µg (1 µg
readability between 0–0.8 g and 10 µg readability up to 3.1 g).

The AirVisual Pro is a real time aerosol sampler with time resolution: 10 s based
on laser light scattering by particles for the indirect monitoring of PM2.5 concentrations,
integrated with low-cost sensors to monitor CO2 concentrations and meteorological pa-
rameters (air temperature and relative humidity). Within the measuring chamber, a laser
beam hits the particles and light is scattered in different directions. A photodetector can
count particles according to the light scattering angle through the measurements of single
pulses. The device can detect particles with optical diameters ranging from about 0.3 µm
to 2.5 µm. The device also provides the concentration of PM10 calculated by an algorithm
using the concentration of PM2.5 [34,35].

Statistical analysis of the data was performed with the JMP Software (SAS Institute srl,
Milano, Italy). Multivariate statistical analysis was performed with the PARAFAC method.
Experimental data were arranged in a three-dimensional array, collecting the instruments
in the first mode, the PM concentrations in the second mode, and the days in the third mode.
The final array was represented by a 9 × 401 × 10 matrix. The most useful chemometric
method to analyze this kind of data is parallel factor analysis (PARAFAC), which is a
generalization of PCA to a higher-order array [36]. The calculation was performed using
MATLAB 2019a (MATLAB R2019a, The MathWorks, Inc.: Natick, MA, USA) with an
N-Way Toolbox [37] and PLS_Toolbox version 8.9 (Eigenvector Research Inc., Manson,
WA, USA).

Images of particulate matter were collected by field emission scanning electron micro-
scope (FE-SEM, model Leo 1525, Zeiss, Germany), operated in the 1–10 KV range.

3. Results and Discussion
3.1. Comparison of Sampling Locations

Sampling locations and environments were selected to be representative of classes
where series of known events are present, in addition to the availability of tools to perform
the sampling (i.e., electrical connection and protection from the atmospheric events) for
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eight (8) consecutive hours, approximately from 9 a.m. to 5 p.m. Normally in the ware-
house, emission sources are absent and air recirculation is low: This condition is indicated
as “indoor quiet.” Occasionally, building work in the presence of extraordinary emission
sources is performed: This condition is indicated as “indoor busy.” Direct car exhaust
emissions and resuspension of fine particles are present in the garage. Uncontrollable
diffuse emissions are present outdoors. All the daily patterns collected with KORA and
AirVisual Pro along with the specific events that occurred during the monitoring period are
reported in the Supplementary Materials (Figures S2 and S3 and Table S1). Both patterns
allowed a simple and immediate evaluation of PM2.5 concentration trends, showing peaks
corresponding to the presence of identified emission sources. For a detailed comparison,
a one-day representative of each sampling location and environmental conditions was
selected. The corresponding PM2.5 daily patterns collected with KORA are reported in
Figure 2, with the identification of the most relevant emission sources (see Supplementary
Materials Table S1 for the code descriptions).

Figure 2. Daily patterns of PM2.5 concentrations measured by KORA in different environments: (a) indoor busy, (b) indoor
quiet, (c) outdoors, (d) garage, respectively. The labels (E: car exhausts, S: cigarette smoke, H: hammering works, C: crane
movements, T: crane truck circulation, B: building and construction works, V: local forced ventilation, D: drilling work)
describe the local ongoing activities (a complete list is given in Table S1).

The locations have different ranges of average concentration values. The average
PM2.5 baseline concentrations indoors fell in the range of 4–15 µg/m3 and were clearly
influenced by the presence of peaks, up to 40–45 µg/m3 under busy conditions due to
emissions from internal combustion engines in the warehouse. During the indoor busy
condition, the occurrence of events such as a truck entering the warehouse at 9 a.m. and the
following wall demolition at 11 a.m. were reflected over different duration periods, lasting
the time needed for full air recirculation in the area investigated. The presence of a forced
aspiration near the emission source rapidly abated PM2.5 concentrations. The average
PM2.5 concentration outdoors was significantly higher (about 40–50 µg/m3) and quite
constant during the day apart from sporadic events due to smokers in the proximity of the
sampling device (three sharp peaks were registered between 11:16 and 12:28 a.m.). They
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were not persistent and did not influence the background value, as it was to be expected in
a not-confined area. The PM2.5 concentration range was significantly higher with respect
to the previous one, mostly due to the urban contribution, which was higher during these
days, as confirmed by the official data of the Regional Agency for Environmental Protec-
tion [38] A different situation was recorded in the garage, assumed to be a semi-confined
outdoor area and presenting concentrations of up to 60 µg/m3 with peaks corresponding
to emissions from car exhausts, mostly concentrated in the early morning. These emissions
increased background concentrations over a large duration of time, depending on the
natural ventilation conditions.

3.2. Comparison with Reference Gravimetric Measurements

Sampling devices are compared based on two quantitative parameters: the total
mass collected during a defined monitoring period and the average daily and/or hourly
concentrations. Extractive sampling devices allow both mass and concentration to be
calculated if the flow rate is known. Only average concentration values can be used for an
external sensing device with no defined flow rate. Given the significance of gravimetric
measurement as a reference, the total mass calculated for ELPI+ was compared with the
mass collected on the SKC filters and the results are presented in Table 2.

Table 2. PM2.5 total mass (expressed in µg) calculated for the ELPI+ andPMI. Relative percent errors
(%) are reported in round brackets.

Monitoring Site, Date, and
Environmental Condition Sampling Device (PM2.5) Total Mass (µg)

Outdoor 26 March 2018
ELPI 267 (1)
PMI 250 (2)

Garage 27 March 2018 ELPI 277 (1)
PMI 270 (2)

The total mass on the filters was measured gravimetrically by weight difference
with the blank filter. The relative percent error (RE%) was determined experimentally
by performing three different measurements of the weight of each filter. One filter per
environment was prepared (warehouse, outdoors, and garage). Unfortunately, some issues
occurred with the SKC pump during the two-week sampling in the warehouse, so the filter
was not used for the gravimetric analysis. Therefore, only samples collected in the last
two days were considered. The total mass collected by a real-time sampling device can be
calculated using Equation (1), where C is the average mass concentration of PM2.5 for each
interval ∆t, Q is the pump flow rate (10 L/min for the ELPI+), and ∆t is the sampling time
interval. The ELPI+ manufacturer provides an RE% value of 1% for PM2.5 concentrations,
which was considered as the estimated uncertainty, taking the other factors exactly.

∑ Ct

[
mg/m3 ]×Q [m3/s

]
× ∆t[s] = M [mg] (1)

The comparison between PMI and ELPI+ data highlighted a very good agreement,
with the two values not significantly different. Although the comparison among average
concentration values was rough, the one based on the total mass was more precise and
allowed us to drive some hypotheses related to the particle size. Indeed, the cascade
impactor values of PM2.5 used for the previous calculations were obtained, summing up the
data collected in the first 11 stages of the device and able to trap particles with aerodynamic
diameters from a few nm up to 2.5 µm. Since it is known that the smallest particles
contribute less to the total mass, it is worth noting that this may be partly compensated
by their very high number. In addition, it shall be considered that the conversion from
number to mass concentration, used to extract ELPI+ data, assumes the unit density of
all particles. On this basis, the agreement between PMI and ELPI+ data is even more
satisfactory, and it also demonstrates the comparability between these two devices both
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based on the impaction of particles on filter stages according to their aerodynamic diameter,
including the ultrafine range. This was confirmed by SEM images reported in Figure 3,
where micrometric-size spongy aggregates of nanoparticles attached to the smooth Teflon
filter surface are clearly visible.

Figure 3. SEM images of the Teflon membrane filter where PM2.5 was collected at different magnifications.

3.3. Granulometric Distribution of the Emitted PM

The comparison of daily PM2.5 patterns of ELPI+ stages showed wide differences. In
the same day, the pattern of particles accumulated in near stages were very similar (see
Supplementary Materials Figure S4), suggesting their relation, depending obviously on the
emission source. To ascertain the possible correlation of fractions, linear correlation plots
were used. An example of statistical analysis by linear correlation of data corresponding
to Stage 4, highlighting the event of a truck entering the warehouse on the indoor busy
day, is reported in the Supplementary Materials (see Figure S5). The linear correlation
of data corresponding to the event was clear among the first lower size fractions, which
were more representative of the specific emission source, and was progressively lost as the
fraction size increased. Linear correlation matrices were built with all the daily patterns (see
Table S3), and the PM correlation plots for the most representative environmental condition
(garage) are reported in Figure 4.

A unit slope correlation is mostly present, whereas different slopes characterize car
exhaust emissions. Indeed, it is known that vehicle emissions depend on the categories, age,
and fuel type, but most of them belong to the inhalable fractions of PM2.5–PM10 [39]. When
only ultrafine emissions were present the correlation was progressively lost from the lowest
to the highest size fractions. Similar considerations could be done for the indoor busy
environment (see Table S3 22 March 2018). The correlation here was always present among
different fraction size ranges. In particular, the coarse fractions were well correlated, which
corresponded to the typical emissions of a construction site where regulations indicate to
test coarse PM [40]. This information is fundamental for source apportionment studies.
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Figure 4. Linear correlation plots of PM concentrations (expressed in µg/m3) among all the ELPI+ fraction daily patterns
derived from data monitored in the garage on 27 March 2018. Time as well as PM values associated with the ELPI+ stages
(1–14) are reported on the x and y axis.

To determine people exposure to PM for health impact assessments it is important
to know the size distribution of particles collected over time. ELPI+ daily patterns in
the different stages may be used for that evaluation in the monitoring area. However,
daily patterns are not very representative of the contribution of the different emission
sources, being mediated over the whole day. For this reason, the portion of patterns
corresponding to the exact time of the day when recorded emissions occurred were selected
and concentrations over the corresponding hour were summed up. These data were used
to build size distribution curves related to five identified emission sources: outdoors with
and without the presence of smokers, indoor quiet, during construction work (busy), and
garage in the early morning when cars passed by. Normalized particle and volume size
distributions are reported in Figure 5, clearly showing a polydisperse curve.

The comparison of normalized data shows that the potential exposure was higher in
the outdoor environment, mostly due to the background values and even increased by the
presence of smokers, and particularly high in the confined area of the garage where car
exhaust emissions occur [41–43]. A meaningful increase of inhalable particles was evident
in the indoor quiet environment and the contribution of coarse particles was higher when
construction work was ongoing.
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Figure 5. Size distribution curves of normalized particle concentrations in different environmental
conditions reported in terms of (a) number and (b) volume of particles (ELPI+ data). Specific
expansions of the curves are shown in the insets.

3.4. Comparison of Real-Time Sampling Devices

Given the different sampling frequency of the three devices (ELPI+ 1 Hz, KORA
0.2 Hz, and AirVisual Pro 0.1 Hz), it was necessary to compare average values over the
same time interval. Daily average PM2.5 concentrations, including descriptive statistics
and uncertainty estimation, are reported in Table 3. The uncertainty estimation in this case
was complicated because it was not possible to adopt the error propagation law and there
was no data available from the manufacturer. We thus decided to assume the standard
deviation based on instrumental sensitivities, equal to 0.5 µg/m3 and 0.05 µg/m3 for
AirVisual Pro and KORA, respectively, and calculate the corresponding relative percent
error (RE%) of the average values. The comparison among real-time sampling devices
confirmed the underestimation of PM2.5 concentrations of both optical systems with respect
to the cascade impactor. Given the alignment observed between ELPI+ and SKC data,
the above-mentioned underestimation was expected [24,44]. The data reported in Table 3
show the same trend among average concentrations. KORA PM2.5 concentrations lay in
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the range 65–88%, and those of AirVisual Pro in the range 73–98% with respect to data
monitored by the ELPI+.

Table 3. PM2.5 daily minimum, maximum, and average concentrations measured by real-time sampling devices. Minimum
and maximum concentrations, and the relative percent error (RE%) are also reported.

Monitoring Site, Date, and
Environmental Condition

Sampling Device RE%
PM2.5 Daily Concentrations (µg/m3)

AVERAGE MIN MAX

Indoor quiet 12 March 2018
AirVisual Pro 13.0 3.8 1.0 6.0

KORA 1.4 3.6 1.9 9.7
ELPI+ 1.0 4.9 1.7 15.6

Indoor quiet 13 March 2018
AirVisual Pro 7.6 6.6 3.0 12.0

KORA 0.9 5.9 3.7 9.5
ELPI+ 1.0 9.0 0.00004 26.2

Indoor quiet 14 March 2018
AirVisual Pro 5.5 9.1 5.0 15.0

KORA 0.6 8.0 4.3 12.2
ELPI+ 1.0 11.7 0.1 21.7

Indoor busy 15 March 2018
AirVisual Pro 2.6 19.4 7.0 46.0

KORA 0.4 14.1 6.5 26.1
ELPI+ 1.0 19.8 0.0003 43.5

Indoor busy 16 March 2018
AirVisual Pro 5.8 8.6 3.0 20.0

KORA 0.6 7.9 3.8 19.5
ELPI+ 1.0 10 0.3 43

Indoor quiet 19 March 2018
AirVisual Pro 11.0 4.5 1.0 11.0

KORA 1.1 4.6 0.7 9.9
ELPI+ 1.0 5.3 0.0003 14.6

Indoor busy 20 March 2018
AirVisual Pro 3.1 16.3 4.0 29.0

KORA 0.4 13.4 5.8 21.7
ELPI+ 1.0 19.8 0.0003 51.3

Indoor busy 21 March 2018
AirVisual Pro 3.3 15.2 9.0 29.0

KORA 0.4 12.5 8.6 24.1
ELPI+ 1.0 18.9 0.0003 49.0

Indoor quiet 22 March 2018
AirVisualPro 2.1 23.3 11.0 43.0

KORA 0.3 19.7 10.2 37.3
ELPI+ 1.0 26.8 0.0003 48.0

Indoor busy 23 March 2018
AirVisual Pro 4.6 10.8 2.0 16.0

KORA 0.6 8.7 6.3 15.2
ELPI+ 1.0 13.4 0.007 22.8

Outdoors 26 March 2018
AirVisual Pro 1.1 45.2 13.0 197.6

KORA 0.1 38.5 32.8 81.9
ELPI+ 1.0 54.4 38.8 454.4

Garage 27 March 2018
AirVisual Pro 1.1 47.3 34.0 78.3

KORA 0.1 39.0 29.8 64.4
ELPI+ 1.0 51.1 35.5 301.7

The comparison based on daily mean concentrations was not representative of the
observed PM2.5 concentration trend. Thus, a more in-depth discussion was based on
hourly average concentrations. Figure 6 shows the scatter plot and regression lines of
the KORA and AirVisual Pro datasets for the whole sampling campaign compared to
ELPI+. Data correlation is evident, with linear regression slopes deviating from the unit
and decreasing from AirVisual Pro to KORA. The differences among the datasets increases
with PM2.5 concentrations. Since the ELPI+ was our reference real-time monitoring device,
the AirVisual Pro, despite its small dimensions and easy use, seemed to be more accurate,
even less precise, than KORA, but no information about reliability is known. The related
Bland–Altman plots [45] are also reported in Figure S6, where the difference between PM2.5
concentration values estimated by specific couples of instruments (ELPI+ and KORA (a),
ELPI+ and AirVisual Pro (b), and AirVisual Pro and KORA (c)) are plotted with respect to
the average hourly concentrations of measurements collected by the two technical devices.
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For average PM2.5 concentrations lower than 45 µg/m3, the difference between ELPI+
and KORA/AirVisual Pro concentrations suggested a good agreement between the two
monitoring systems and a good representativeness of optical sensors to indirectly evaluate
PM2.5 concentrations well beyond the yearly limit value for the protection of human health
of 20 µg/m3 [1]. The Bland–Altman plot that compared KORA and AirVisual Pro data
showed a good alignment for all the concentrations range, evidencing that they are based
on the same physical principle (optical particle detection).

Figure 6. Hourly average concentrations of PM2.5 measured by KORA (blue circles) and AirVisual
Pro (grey circles) with respect to ELPI+. Ideal correlation is shown by the slope 1 line. The inset better
evidences the correlation at the lower end of concentration range.

3.5. Estimation of the Detection Limits of the Adopted Optical Devices

A deeper understanding of the results obtained with the three real-time sampling
devices needs to consider the differences based on the detection methods. The measurement
range may be different mainly in terms of detection limits (LOD), which is the minimum
dimension of the determinable particles.

The daily PM2.5 concentration patterns of KORA and AirVisual Pro were compared
with concentration patterns obtained by summing the PM concentration values associated
with all the cascade impactor particle fractions covering the stages from 1 to 11. The
efficiency curve of an ideal impactor stage is a step function that only allow particles larger
than the cut-off diameter (D50%) to be collected by inertial impaction, whereas all particles
smaller than D50% follow the flow and impact in lower stages. In practice, an un-ideal flow
through the impactor nozzles determines a true collection efficiency to be S-shaped [46].
Additionally, due to particles bouncing and blowing off, some large particles will go to
the lower stages than they should, and due to diffusion, ultrafine particles will stay in
the upper stages. For this reason, the erroneous current signal derived by these factors
can be significant, so we decided to consider only stages 1–11 for PM2.5 determination
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by the cascade impactor when comparing data with the ones produced by AirVisual Pro
and KORA.

To understand which fractions were excluded from KORA and AirVisual Pro mea-
surements and how this cut may have affected the sampling results, we first selected the
garage location due to the uniformity of emission sources. The whole day concentration
patterns are compared in Figure 7, based on average concentration per minute to have
greater representativeness. Underestimation of KORA along the whole curve is clear, with
an asymmetrical shift higher in the first part of the day.

Figure 7. PM2.5 daily concentration patterns measured by AirVisual Pro, KORA, and ELPI+, the
latter identified by the range of fractions (min–max) considered.

Similar behavior was observed for the AirVisual Pro, whose pattern was nearer to
ELPI+ and moved away markedly in that part of the day. The emissions present in
the sampled area during the morning included car exhaust, which is known to produce
very fine particles [16]. On this basis, we guessed that both the optical devices were
not able to detect the lower range of fine particles and thus the smallest fraction of the
cascade impactor should not be included in the PM concentration sum for the compar-
ison. Indeed, the dimensional range represented by the 11 stages was very wide, with
lower granulometries up to 6 nm (collected on the filter stage F), well below the optically
visible range.

The hypothesis was that optical devices cut the particles with average diameters below
250–300 nm, so the ELPI+ stages from 8 to 11 (for simplicity called 8–11) were considered
first. A preliminary graphical comparison showed a very good superposition of the KORA
and 8–11 patterns throughout the whole day, whereas the agreement with AirVisual Pro
was present only in the first two hours of sampling, and the 8–11 pattern was lower in the
rest of the day (see Figure 7). For this reason, a new pattern also including fraction 7, called
7–11, was considered. In this case, the agreement was better for the rest of the day, but not



Appl. Sci. 2021, 11, 4360 14 of 18

for the first hours, and this may have been due to the type of emission present during this
sampling time. Indeed, it is known that typical car exhaust, mainly occurring during the
first morning hours, is mostly in the ultrafine range [16] and probably cannot be detected
by the AirVisual Pro.

To support the comparison with statistics data, the KORA, AirVisual Pro, and ELPI+
stages 7–11 and 8–11 datasets were reduced to the same data dimension by averaging
the concentrations measured in the corresponding day time over one minute. Statistical
evaluation of the reduced pattern superposition was performed by applying the ordinary
least square method to the whole sampling campaign dataset (see Supplementary Materials
Table S3). The results confirmed that the best superposition with KORA was achieved
with ELPI+ stages 8–11, whereas AirVisual Pro better superposed with fractions 7–11,
with the former sum about one-third of the latter, probably due to what was previously
observed for the garage environment. The hypothesis was verified for the days with higher
concentrations (all the indoor busy, outdoor, and garage) with one exception on 20 March
for the AirVisual Pro. The principal component analysis (PCA) confirmed and did not
give additional information to the least square method (see Supplementary Materials
Figure S7). The statistical significance of the applied methods was not sufficient to drive
a general conclusion for the LODs and a more complex model, called PARAFAC, was
applied to the whole dataset.

Different pre-processing methods were considered before applying PARAFAC (data
not shown), and the best result was obtained by scaling across the mode of the PM concen-
trations and mean centering across the instruments mode. An unconstrained PARAFAC
model with one to four components was fitted to explore the data structure. The choice of
the number of components was considered a crucial step of the data analysis. Different
criteria were evaluated, such as core consistency [46], percent error of explained variance,
and sum of squared errors, to determine the right number of components. The sum of
squares was evaluated in terms of the loss function given relative to the loss function
value of the one-component model. The following results are shown for each number
of components in Table 4. It can be seen that a two-component PARAFAC model was
appropriate, having core consistency of 100%, whereas three- and four-component models
showed a core consistency of 7.65% and 17.99%, respectively.

Table 4. Loss function values relative to the value for a one-component model, explained variance
(expressed as percentage), and core consistency with respect to the number of components calculated
by the PARAFAC model.

Components Loss % Explained Variance Core Consistency

1 1.00 66.15 100
2 0.56 81.17 100
3 0.30 89.72 7.65
4 0.21 92.89 17.99

This result indicates that the two-component model is more stable than the other
two. The explained variance suggests that two components are optimal because the
increase obtained with more than two components is small relative to the increase in
explained variance obtained using up to two components. The score plot of component
1 vs. component 2 (F1 vs. F2) is reported for the first mode (instruments mode, see
Supplementary Materials Figure S8). They accounted for 81.17% of the total variability,
F1 for 66.15%, and F2 for 15.02%. In detail, along F1 a systematic variation seems to
exist, based on the inclusion of the finest fraction of the ELPI+ (see Table 1). Indeed,
the sum of fractions starting from 8 and 1 were opposite to each other, and in between
there were those starting from 7 and 6. The scores started from very negative values and
reached high positive values, from stage 8 to stage 1. Along F2 there was discrimination
between the coarser fractions (11 and 12) included in the sum. All data including fraction
12 were located at positive F2 score values, on the opposite side of all data up to 11 lying
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together with both KORA and AirVisual Pro at negative score values. The formation of the
couples most correlated to each other is evidenced: KORA with S8–11 and AirVisual Pro
with S7–11.

4. Conclusions

This paper presents an experimental comparison of aerosol sampling methods by
means of real-time samplers based on low-cost optical sensors, a cascade impactor, and
a PMI for collection of PM2.5 on a Teflon filter membrane. Measurements of PM2.5 were
performed in four environmental conditions, namely, indoor busy, indoor quiet, outdoors,
and confined space (garage), where different registered activities were ongoing.

The results that emerged from the research evidenced:

1. The underestimation of PM2.5 concentration indirectly calculated by low-cost optical
sensors with respect to concentrations provided by the PMI, and the good alignment
between the latter and the cascade impactor;

2. Different LODs for the optical sensor of the AirVisual Pro (250 nm) and KORA
(380 nm) systems, estimated through the comparison with PM obtained by summing
up size-segregated fractions of ELPI+ and supported by statistical analysis (PARAFAC
model); and

3. An interesting correlation among size-segregated PM fractions measured by the
cascade impactor (ELPI+) to discriminate specific emission sources indoors, in a
confined environment, and outdoors.

In conclusion, the performance assessment of optical low-cost sensors showed the
representativeness in providing a good evolution of concentrations over time and the
cause–effect relationship between aerosol emission sources and their impact on air quality.
Therefore, they can successfully be used to detect PM2.5 critical concentrations and eventual
hot spots to drive local policies. Data analysis revealed the impossibility of discriminating
aerosol emission sources and detecting particles in the ultrafine, and part of the fine, region.
In order to use low-cost sensors for health impact assessments, the technology should be
oriented toward the detection of particles comprising the nanoscale range.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11104360/s1, Table S1: Classification of the type of events occurred during the monitoring
campaign with specific brief descriptions and labels; Table S2: Results of the least square method
applied to the comparison of KORA and AirVisual Pro with the sum of various ELPI + fractions:
8–11, 7–11, 6–11, 1–11. The sum of the squares of deviations for each comparison is reported from
columns 3 to 5, minimum values are in bold; Table S3: Correlation matrices of PN concentrations
associated to ELPI + Stages from 1 to 14. High correlation is highlighted for coefficients larger than
0.7, reported in bold; Figure S1: Calendar of sampling days during March 2018; Figure S2: Daily
concentrations of PM2.5 (averaged over 1 min sampling time) of KORA and AirVisual Pro collected
outdoor (left) and in the garage (right). The starting time of different events is labelled with the
corresponding letter as specified in Table S1; Figure S3: Daily concentrations of PM2.5 (averaged over
1 min sampling time) of KORA and AirVisual Pro collected in the warehouse. It should be noted
the different y-axis scale up to 20 µg/m3 for “indoor quiet” and up to 45 µg/m3 for “indoor busy”.
The starting time of different events is labelled with the corresponding letter as specified in Table S1;
Figure S4: Daily PM2.5 concentrations (averaged over 1 min sampling time) of ELPI+ data from Stage
2, Stage 3, Stage 8 and Stage 11; Figure S5: Daily concentrations pattern measured by ELPI + Stage 4
(grey) and the corresponding linear correlation plots with Stages from 1 to 6. Data highlighted in
black refer to the event of truck entering the warehouse; Figure S6: Altman Plots representing the
difference of PM2.5 hourly concentrations between ELPI + and KORA(a), ELPI + and AirVisual Pro
(b) and AirVisual Pro and KORA (c) measurements. On the y-axis the difference for each measure i
of PM2.5 (di: ELPI + -KORA; ELPI + -AirVisual Pro; AirVisual Pro-KORA) between the 2 monitoring
devices is plotted. On the x-axis the average value Xi,mean between the two monitoring devices
considered is represented. The dashed line represents the di,mean while the two solid lines underline
the 95% confidence interval (di,mean ± 1.96 SD); Figure S7: Score plots of the first two components
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(PC1 vs PC2) of the PCA, for each daily dataset; Figure S8: Score plot of the first two factors (F1 vs
F2), for the first mode (instruments mode), of the PARAFAC statistical model.
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