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Abstract
In this paper we give a sharper sufficient condition for blow-up of the solu-
tion to a nonlinear Schrödinger equation with free/Stark/quadratic potential by
improving the well known Zakharov–Glassey’s method.

Keywords: nonlinear Schrödinger equation, blow-up solutions,
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1. Introduction

We consider, in dimension one, the nonlinear Schrödinger equation (hereafter NLS){
iℏ∂ψt

∂t = Hψt+ ν|ψt|2µψt
ψt(x)|t=t0 = ψ0(x) ,∥ψ0∥L2 = 1 ,

,ψt ∈ L2(R,dx) , (1)

where H=− ℏ2

2m
∂2

∂x2 +V(x) is the linear Schrödigner operator with real-valued potential V(x);
ν ∈ R represents the strength of the nonlinear perturbation and µ> 0 is the nonlinearity power.
Hereafter, for sake of simplicity, we fix the units such that ℏ= 1 andm= 1, we further assume
that t0 = 0. The restriction to dimension one is just to simplify the discussion, but extension
of the ideas developed in this paper to higher dimensions could be possible; however, we do
not dwell on this problem here.

The first fundamental question that arises when dealing with a nonlinear Schrödinger
equation (1) is the existence of a solution locally in time in some functional space. Thus, forψ0

∗
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in such a space and under some assumptions on the potential V(x) (e.g. V(x) is a smooth, real-
valued and at most quadratic function [9]), there exists 0< t⋆+ ⩽+∞ such thatψt ∈ C([0, t⋆+));
furthermore, conservation of the norm

N (ψt) =N (ψ0)where N (ψ) := ∥ψ∥L2 , (2)

and of the energy

E(ψt) = E(ψ0)where E(ψ) := ⟨ψ,Hψ⟩L2 +
ν

µ+ 1
∥ψ∥2µ+2

L2µ+2 , (3)

are satisfied. Concerning global existence in the future three possibilities may occur:

• t⋆+ =+∞ and limsupt→+∞ ∥ψt∥H1 <+∞, that is the solution is global in time and bounded;
• t⋆+ =+∞ and limsupt→+∞ ∥ψt∥H1 =+∞, that is the solution blows up in infinite time;
• 0< t⋆+ <+∞ and ∥ψt∥H1 →+∞ as t→ t⋆+ − 0, that is the solution blows up in finite time.

A similar analysis can be considered in the past for t⩽ 0.
Our purpose in this paper is to give a blow-up sufficient condition by improving the

Zakharov(–Shabat)–Glassey’s method.
The method introduced by Zakarhov and Shabat [25] and by Glassey [12] (see also the

papers [15, 17, 19]) is quite simple in the case where the virial identity takes a simple form.
Let

I(t) = ⟨ψt,x2ψt⟩L2

be themoment of inertia. If it can be shown that I(TI+) = 0 (resp. I(TI−) = 0) for some±TI± >
0 then blow-up occurs in the future at some t⋆+ ∈ (0,TI+] (resp. in the past at some t⋆− ∈ [TI−,0)).

To prove that I(t) can take a null value at some instant t one usually uses the virial identity,
which in the one-dimensional free model where V≡ 0 takes the form

d2I
dt2

= 4E(ψ0)+ 2ν
µ− 2
µ+ 1

∥ψt∥2µ+2
L2µ+2 . (4)

If, for example, µ= 2 and ψ0 is such that E(ψ0)< 0, then by the virial identity (4) and by
the conservation of the energy, the positive quantity I(t) is an inverted parabola that must
then become negative at finite times TI±, −∞< TI− < 0< TI+ <+∞, and thus the solution
cannot exist for all time and it blows up at finite time in both the future and the past [18]. This
argument is very powerful because of its simplicity; in fact, it is based on a pure Hamiltonian
information E(ψ0)< 0, and it also applies to the super-critical case µ> 2.

We have to point out that this method strongly depends on the fact that the virial identity (4)
leads to an equation that can be explicitly solved with respect to I(t) and thus it cannot simply
be applied when an external potential V(x) is present because the associated virial identity is
not in general associated to an explicitly solved equation. However, in a sequence of seminal
papers by Carles [5–8] this method has been applied to the case where V(x) is a quadratic or
Stark potential in any dimension.

Our proposal of enhancement of the Zakarov–Glassey’s method is based on a quite simple
idea. Let

⟨x̂⟩t := ⟨ψt,xψt⟩L2 (5)

be the expectation value of the position observable x, where x̂ is the associated operator. Let

V(t) =
⟨
ψt,(x̂−⟨x̂⟩t)2ψt

⟩
= I(t)− [⟨x̂⟩t]2 (6)
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be the variance. If it can be shown that V(TV+) = 0 (resp. V(TV−) = 0) at some ±TV± > 0 then
blow-up occurs in the future for some t⋆+ ∈ (0,TV+] (resp. in the past for some t⋆− ∈ [TV−,0)).
SinceV(t)⩽ I(t) then we expect to give a sharper sufficient condition for the occurrence of the
blow-up; the price to pay is to give an expression of the expectation value ⟨x̂⟩t, but this problem
can be easily overcome using the (generalized) Ehrenfest’s theorem where ⟨x̂⟩t is nothing but
the solution of the ‘classical mechanics equation’. In fact, explicit solution to the ‘classical
mechanics equation’ coming from the (generalized) Ehrenfest’s theorem can be easily given
only when V(x) is a free, Stark or quadratic potential as discussed in remark 1; indeed, for
generic (both regular or singular) potentials the ‘classical mechanics equation’ does not has
an explicit solution (see remark 2).

Finally, we must also emphasize the fact that the enhanced Zakharov–Glassey’s method
not only gives a sharper sufficient condition for the occurrence of blow-up but it also allows
us to give a better estimate of the instants t⋆± at which the solution becomes singular because
|TV±|⩽ |TI±|.

The paper is organized as follows. In section 2 we recall the Ehrenfest’s generalized the-
orem; in section 3 we review the standard blow-up conditions in the free model where V(x)≡ 0
and we show that these conditions can be easily improved by applying the virial equation for
the variance V(t); in section 4 we consider the case where V(x) = αx, α ∈ R, is a Stark poten-
tial; in section 5 we review the blow-up conditions in the case where V(x) = αx2, α ∈ R, is a
quadratic potential and we show that again these conditions can be easily improved by apply-
ing the virial equation for the variance V(t). Finally, appendix A is about some functional
inequalities, appendix B is about a comparison result for ordinary differential equations and
appendix C is about the formal derivation of the virial identity; some results in appendices B
and C are due to the papers [5–8], I collect these results in two short appendices for reader’s
benefit.

Hereafter, for the sake of simplicity, we omit the dependence on the variable t when this
fact does not cause misunderstandings, e.g. ψ instead of ψt, ⟨x̂⟩ instead of ⟨x̂⟩t, ⟨p̂⟩ instead of
⟨p̂⟩t, I instead of I(t), V instead of V(t), and so on.

By f ′ = df
dx we denote the derivative with respect to x, by ⟨f,g⟩L2 we denote the scalar product´

R f̄(x)g(x)dx, and it is sometimes denoted simply by ⟨f,g⟩; also ∥f∥ sometimes simply denotes
∥f∥L2 .

2. Ehrenfest’s generalized theorem for NLS

The extension of the Ehrenfest’s theorem to the nonlinear Schrödinger equation (1) has already
been considered by [4, 14]. In fact, by means of a straightforward calculation it follows that

Proposition 1. Let A be a time-independent quantum mechanical operator, and let

⟨A⟩= ⟨ψt,Aψt⟩L2 (7)

be its expectation value depending on time. Then

d⟨A⟩
dt

= i⟨ψt, [H,A]ψt⟩L2 + iν
⟨
ψt,

[
|ψt|2µ,A

]
ψt
⟩
L2
, (8)

where [H,A] = HA−AH is the commutator operator between the operators H and A, and
where

[
|ψ|2µ,A

]
ψ = |ψ|2µA(ψ)−A(|ψ|2µψ). Equation (8) is usually called ‘Ehrenfest’s gen-

eralized theorem’.

3
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As a consequence it follows that

Corollary 1. Let x be the position observable and let x̂= x be the associated multiplication
operator, then

d⟨x̂⟩t

dt
= ⟨p̂⟩t (9)

where p̂=−i ∂∂x is the associated operator to the momentum observable p.

Proof. Corollary 1 immediately follows from (8) since [|ψ|2µ, x̂] = 0; hence

d⟨x̂⟩
dt

= i⟨ψ, [H, x̂]ψ⟩= i

⟨
ψ,

[
p̂2

2
, x̂

]
ψ

⟩
= ⟨p̂⟩ .

Similarly

Corollary 2. Let p be the momentum observable with associated operator p̂=−i ∂∂x , then

d⟨p̂⟩t

dt
=−

⟨
dV
dx

⟩t

,where

⟨
dV
dx

⟩t

=

⟨
ψt,

dV
dx
ψt

⟩
L2
. (10)

Proof. Corollary 2 follows from (8) if we prove that
⟨
ψ,

[
|ψ|2µ, p̂

]
ψ
⟩
= 0; indeed

⟨
ψ,

[
|ψ|2µ, p̂

]
ψ
⟩
=−i

ˆ
R
ψ̄

[
|ψ|2µ ∂ψ

∂x
−
∂
(
|ψ|2µψ

)
∂x

]
dx

=−i
ˆ
R
|ψ|2µ

[
ψ̄
∂ψ

∂x
+ψ

∂ψ̄

∂x

]
dx=−i

ˆ
R
ρµ
∂ρ

∂x
dx= 0

where ρ= |ψ|2. Hence

d⟨p̂⟩
dt

= i⟨ψ, [H, p̂]ψ⟩= i⟨ψ, [V, p̂]ψ⟩=−
⟨
dV
dx

⟩
.

Remark 1. Let ψt be the solution to the hereafter NLS (1); then the expectation values ⟨x̂⟩ of
the position observable and ⟨p̂⟩ of the momentum observable satisfy to the ‘classical canonical
equation of motion’ (9) and (10). In the case where V(x) = 1

2ax
2 + bx, for some a,b ∈ R, then

the system (9) and (10) takes the form{
d⟨x̂⟩
dt = ⟨p̂⟩

d⟨p̂⟩
dt =−a⟨x̂⟩− b

and it has an explicit solution that does not depend on the nonlinearity parameter ν.

Remark 2. We have to point out that the system (9) and (10) has not an explicit solution for
generic potentials, both regular like the double-well one or singular like point defect interac-
tions. Indeed, if V(x) = (x2 − a2)2, a> 0, is a double-well potential then the system (9) and
(10) takes the form{

d⟨x̂⟩
dt = ⟨p̂⟩

d⟨p̂⟩
dt =−4⟨x̂3⟩− 4a2⟨x̂⟩

4
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that does not has an explicit solution. Similarly, if V(x) is a singular potential like a Dirac’s δ
at x= 0 (one can consider several kinds of point defects in nonlinear Schrödinger equations,
see, e.g. [1, 2]) then the system (9) and (10) takes the form{

d⟨x̂⟩
dt = ⟨p̂⟩

d⟨p̂⟩
dt = 2ℜ

[
ψt(0)ψ̄′

t (0)
]

and it does not has an explicit solution, too.

Remark 3. Ehrenfest’s generalized theorem was also proved by [3] for nonlinear Schrödinger
equations with a two or three-dimensional confining harmonic potential and under the effect
of a rotating force. In such a framework it has also been proved that, under some circum-
stances (see proposition 4.3 in [3]), the solution is such that ⟨x̂⟩t and ⟨p̂⟩t go to +∞ when t
goes to ±∞.

Remark 4. We should point out that the Ehrenfest’s generalized theorem (8) for nonlinear
Schrödinger does not give the same result of the usual one for linear Schrödinger equations if
the quantum operator is the Hamiltonian H; indeed, in such a case

d⟨H⟩
dt

= iν
⟨
ψ,

[
|ψ|2µ,H

]
ψ
⟩
=−νℑ

⟨
ψ, |ψ|2µp̂2ψ

⟩
is not generically zero. In fact, ⟨H⟩ is an integral of motion only when ν= 0; otherwise the
integral of motion is the energy E(ψ) defined by (3).

3. Blow-up for the free NLS

We consider now the case where the external potential is zero: V(x)≡ 0. We assume that

ψ0 ∈ Σ := H1(R)∩D(x̂) , (11)

where D(x̂) is the domain of the operator x̂. Then the solution ψ(x, t) to (1) locally exists and
it belongs to C((t⋆−, t

⋆
+),Σ), for some t⋆− < 0< t⋆∗, and the conservation of the norm ∥ψ∥L2

and of the energy E hold true (see, e.g. theorem 3.10 in [22]). If t⋆± =±∞ then the solution
globally exists; if not, i.e. t⋆+ <+∞ (resp. t⋆− >−∞) then

lim
t→t⋆±∓0

∥ψ∥H1 =∞

and thus blow-up occurs in the future (resp. in the past). We observe that blow-up cannot occur
when ν ⩾ 0 because of the conservation of the energy (3). Furthermore, we can also point out
that when blow-up occurs for ν < 0 then we also have that

lim
t→t⋆±∓0

∥ψ∥2µ+2
L2µ+2 =∞

because conservation of the energy.

3.1. Criterion for blow-up by means of the Zakharov–Glassey method

Estimates of the moment of inertia I(t) can be obtained by means of the one-dimensional
virial identity (4) with initial conditions

I0 := I(0) = ∥xψ0∥2L2 (12)

5
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and

İ0 :=
dI(0)
dt

= 2ℑ
[ˆ

R
xψ̄0(x)

∂ψ0(x)
∂x

dx

]
= 2ℜ⟨x̂ψ0, p̂ψ0⟩ . (13)

Theorem 5.1 in [22] gives a sufficient condition for blow-up in the future (and similarly in
the past). Specifically, when ν < 0 and µ⩾ 2 then there exists a t⋆+ ∈ (0,+∞) such that

lim
t→t⋆+−0

∥ψ∥H1 =∞

if any of the following conditions is satisfied:

(a) E(ψ0)< 0;
(b) E(ψ0) = 0 and İ0 < 0;
(c) E(ψ0)> 0 and İ0 ⩽−

√
8E(ψ0)I0.

The proof of theorem 5.1 in [22] is quite simple: if µ⩾ 2 and ν ⩽ 0 then (4) implies that

d2I
dt2

⩽ 4E(ψ0)

and thus

I(t)⩽M(t) := 2E(ψ0)t
2 + İ0t+ I0. (14)

If any of the three conditions (a)–(c) is satisfied then there exists T̃I+ > 0 such thatM(T̃I+) = 0
and thus there exists a 0< TI+ < T̃I+ such that I(TI+) = 0. From this fact and from (31) the
occurrence of blow-up in the future follows at some t⋆+ < TI+.

3.2. Criterion for blow-up by means of the enhanced Zakharov–Glassey method

We improve now the previous criterion by applying the same argument to the analysis of the
variance V(t) and making use of the Ehrenfest’s generalized theorem. Indeed, if the potential
V(x) is exactly zero then (9) and (10) imply that

⟨p̂⟩ ≡ p̂0and ⟨x̂⟩= p̂0t+ x̂0 ,where x̂0 := ⟨x̂⟩t|t=0 and p̂0 := ⟨p̂⟩t|t=0 . (15)

Remark 5. We point out that in the free NLS problem the conservation of the momentum ⟨p̂⟩
and the fact that the center of mass of the wavepacket ⟨x̂⟩ moves at constant speed can be also
derived by making use of arguments of invariance of space translation (see, e.g. section 2.3 in
[22]).

Since (15) we have that

V(t) = I(t)−⟨x̂⟩2 = I(t)− [p̂0t+ x̂0]
2 ⩽ N(t)

where

N(t) :=M(t)− [p̂0t+ x̂0]
2

=
[
2E(ψ0)− p̂20

]
t2 +

[
İ0 − 2p̂0x̂0

]
t+

[
I0 − x̂20

]
. (16)

Thus we have the following improvement of theorem 5.1 in [22].

6
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Theorem 1. Let ν < 0 and µ⩾ 2, let ψ0 ∈ Σ; then we have blow-up in the future if any of the
following conditions is satisfied:

(a) 2E(ψ0)< p̂20;
(b) 2E(ψ0) = p̂20 and İ0 < 2p̂0x̂0;
(c) 2E(ψ0)> p̂20 and[

İ0 − 2p̂0x̂0
]
⩽−2

√[
2E(ψ0)− p̂20

][
I0 − x̂20

]
.

Proof. Indeed, if any of the three conditions (a)–(c) is satisfied then there exists T̃V+ > 0 such
that N(T̃V+) = 0 and thus there exists 0< TV+ ⩽ T̃V+ such that V(TV+) = 0. From this fact and
from (32) the occurrence of blow-up follows for some t⋆+ ⩽ TV+.

Remark 6. In fact, under condition (a) we have blow-up in the future and in the past, too;
under conditions (b) and (c) we have blow-up in the future only.

Remark 7. We remark that condition (a) for blow-up is not new and it has been already proved
under some circumstances, see e.g. corollary 1.2 in [11] and theorem 7 in [19].

4. Blow-up for the NLS with Stark potential

Let the potential V(x) = αx be a Stark potential, where α ∈ R \ {0}, the occurrence of blow-up
in such a case has been considered by [7, 16, 20] . Again we assume (11).

4.1. Criterion for blow-up by means of the Zakharov–Glassey method

In the case of Stark potentials it has been proved that the solutions to the NLS (1) with a Stark
potential can be derived from the ones of the free NLS, see theorem 2.1 in [7]. Then one can
make use of the results obtained in section 3.1; in particular, corollary 3.3 in [7] states that
blow-up occurs in the past and in future when

1
2
∥ψ ′

0∥L2 +
ν

µ+ 1
∥ψ0∥2µ+2

L2µ+2 < 0 . (17)

4.2. Criterion for blow-up by means of the enhanced Zakharov–Glassey method

If the potential V(x) = αx is a Stark potential, where α ∈ R \ {0} then (9) and (10) imply that

⟨p̂⟩t =−αt+ p̂0 and ⟨x̂⟩t =−1
2
αt2 + p̂0t+ x̂0 (18)

where

x̂0 = ⟨x̂⟩t|t=0 and p̂0 = ⟨p̂⟩t|t=0 .

Estimates of the moment of inertia I(t) can be obtained by means of the one-dimensional
virial identity (38) with initial conditions (12) and (13).

If ν(µ− 2)⩽ 0 then (18) and (38) imply that

d2I
dt2

⩽ 4E − 6α

(
−1
2
αt2 + p̂0t+ x̂0

)
7



J. Phys. A: Math. Theor. 56 (2023) 045203 A Sacchetti

where

E =
1
2
∥ψ′∥2L2 +α⟨x̂⟩+ ν

µ+ 1
∥ψ∥2µ+2

L2µ+2 ,

and thus

I(t)⩽ 1
4
α2t4 −αp̂0t

3 + [2E − 3αx̂0] t
2 + İ0t+ I0 .

I0 and İ0 are given by (12) and (13). Therefore,

V(t) = I(t)− [⟨x̂⟩t]2 ⩽
[
∥ψ′

0∥2 +
2ν
µ+ 1

∥ψ∥2µ+2
L2µ+2 − p̂20

]
t2

+ 2 [ℜ⟨x̂ψ0, p̂ψ0⟩− p̂0x̂0] t+V(0).
Thus, we can conclude that

Theorem 2. If

(a) ∥ψ ′
0∥2 + 2ν

µ+1∥ψ0∥2µ+2
L2µ+2 < p̂20 then we have blow-up in the past and in the future;

(b) ∥ψ ′
0∥2 + 2ν

µ+1∥ψ0∥2µ+2
L2µ+2 = p̂20 and ℜ⟨x̂ψ0, p̂ψ0⟩− p̂0x̂0 ̸= 0 we have blow-up in the past or

in the future;
(c) ∥ψ ′

0∥2 + 2ν
µ+1∥ψ0∥2µ+2

L2µ+2 > p̂20 and

[ℜ⟨x̂ψ0, p̂ψ0⟩− p̂0x̂0]
2
>

[
∥ψ′

0∥2 +
2ν
µ+ 1

∥ψ0∥2µ+2
L2µ+2 − p̂20

]
V(0)

we have blow-up in the past or in the future.

Remark 8. Since ∥ψ ′
0∥2 = ∥p̂ψ0∥2 and |p̂0|= |⟨ψ0, p̂ψ0⟩|⩽ ∥p̂ψ0∥ then conditions (a) and (b)

hold true only when ν < 0.

Remark 9. We remark that the blow-up condition (17) given by [7] agrees with theorem 2,
indeed (17) implies (a).

5. Blow-up for NLS with harmonic/inverted oscillator potential

In this section we consider the cases of harmonic oscillator potential V(x) = αx2,
where α> 0, and inverted oscillator potential, where α< 0. The occurrence of blow-
up in these cases has been considered by several authors under different assumptions
[5, 6, 8, 10, 13, 21, 23, 24, 26].

In this section we consider the blow-up conditions obtained by means of the enhanced
Zakharov–Glassey’s method and then we compare these results with the previous ones
obtained by Carles [5, 6, 8].

We require now some preliminary results.
Also in this case we assume (11), then local in time existence of the solution to (1) inΣ and

conservation of the norm and of the energy E follows (see, e.g. [8]).
Corollary 2 implies that d⟨p̂⟩t

dt =−2α⟨x̂⟩t; hence the expectation value of the position
observable coincides with the classical solution. More precisely, let

λ2 = 2|α| , x̂0 = ⟨x̂⟩t|t=0 and p̂0 = ⟨p̂⟩t|t=0 ;

8
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then the Ehrenfest’s generalized theorem implies that:

• In the case of the harmonic oscillator where α> 0, then{
⟨x̂⟩t = x̂0 cos(λt)+

p̂0
λ sin(λt)

⟨p̂⟩t =−λx̂0 sin(λt)+ p̂0 cos(λt)
. (19)

• In the case of the inverted oscillator where α< 0, then{
⟨x̂⟩t = x̂0 cosh(λt)+

p̂0
λ sinh(λt)

⟨p̂⟩t = λx̂0 sinh(λt)+ p̂0 cosh(λt)
. (20)

In a previous paper [6] devoted to the analysis of the occurrence of blow-up it has been
found that, in the case of harmonic/inverted potential, the moment of inertia I satisfies to the
following equation

d2I
dt2

+ 8αI = 4E(ψ0)+ 2ν
µ− 2
µ+ 1

∥ψ∥2µ+2
L2µ+2 . (21)

As in the free case we consider now the equation for the variance V .

Lemma 1. The variance V satisfies to the following equation

d2V
dt2

+ 8αV = CV + 2ν
µ− 2
µ+ 1

∥ψ∥2µ+2
L2µ+2 , (22)

where

CV =−2p̂20 − 4αx̂20 + 4E(ψ0) . (23)

Proof. Indeed, form (21) it turns out that the variance is a solution to the equation

d2V
dt2

+ 8αV =−d2⟨x̂⟩2

dt2
− 8α⟨x̂⟩2 + 4E(ψ0)+ 2ν

µ− 2
µ+ 1

∥ψ∥2µ+2
L2µ+2 ,

where ⟨x̂⟩ simply denotes ⟨x̂⟩t and it is given by (19) (resp. (20)) when α> 0 (resp. α< 0). We
may remark that the term

C=−d2⟨x̂⟩2

dt2
− 8α⟨x̂⟩2

is constant. Indeed,

C=−2

(
d⟨x̂⟩
dt

)2

− 2⟨x⟩d
2⟨x̂⟩
dt2

− 8α⟨x⟩2 =−2

(
d⟨x̂⟩
dt

)2

− 4α⟨x⟩2

since d2⟨x̂⟩
dt2 =−2α⟨x̂⟩ and thus

dC
dt

=−4
d⟨x̂⟩
dt

d2⟨x̂⟩
dt2

− 8α⟨x̂⟩d⟨x̂⟩
dt

= 0 .

Hence,

C=−2

(
d⟨x̂⟩
dt

)2

t=0

− 4αx̂20 =−2p̂20 − 4αx̂20

and (22) follows.

9



J. Phys. A: Math. Theor. 56 (2023) 045203 A Sacchetti

We recall that the initial condition associated to (21) and (22) are

V0 := V(0) = I0 − x̂20 = ∥x̂ψ0∥2 − x̂20 (24)

and

V̇0 :=
dV(0)
dt

= 2 [ℜ⟨x̂ψ0, p̂ψ0⟩− x̂0p̂0] . (25)

Let us consider now the differential equation (22) for µ⩾ 2 and ν < 0. From lemma 3 in
appendix B we have that 0⩽ V(t)⩽ ζ(t) where ζ(t) is the solution to{

d2ζ
dt2 + 8αζ = CV

ζ(0) = V0and
dζ(0)
dt = V̇0

.

If we set Ω= 2λ=
√
8|α| then the solution ζ(t) is given by

ζ(t) =


ζH(t) :=

V̇0
Ω sin(Ωt)+V0 cos(Ωt)+ 1

Ω2CV [1− cos(Ωt)] , if α > 0

ζI(t) :=
V̇0
Ω sinh(Ωt)+V0 cosh(Ωt)− 1

Ω2CV [1− cosh(Ωt)] , if α < 0

.

Now, we are ready to apply the enhanced Zakharov–Glassey method.

5.1. Harmonic oscillator—criterion for blow-up

In the case of the harmonic oscillator potential, where α> 0, from lemma 3 in appendix B it
follows that the variance V(t) is bounded from above by the function

ζH(t) =
√
a2 + b2 sin(Ωt+φ)+ c

for any t such that Ω|t|⩽ π, where φ is a phase term such that

a√
a2 + b2

= cosφ,
b√

a2 + b2
= sinφ,a :=

V̇0

Ω
,b := V0 −

CV

Ω2
,c :=

CV

Ω2
.

Since ζH(±π/Ω) = 2
Ω2CV −V0 then we have blow-up in the future and in the past if

2
CV

Ω2
−V0 ⩽ 0 . (26)

If not, since by means of a straightforward calculation it follows that

min
t∈[−π/Ω,+π/Ω]

V(t)⩽ min
t∈[−π/Ω,+π/Ω]

ζH(t) =
CV

Ω2
−

√
V̇2
0

Ω2
+

(
V0 −

CV

Ω2

)2

and then there exists blow-up in the past or in the future if

V̇2
0 +V2

0Ω
2 − 2V0CV ⩾ 0 . (27)

Thus, we have proved the following results.

Theorem 3. Let ψ0 ∈ Σ be the normalized initial wavefunction; let µ⩾ 2, α> 0 and
Ω=

√
8α; let CV , V0 and V̇0 defined as in (23)–(25). Then, in the focusing nonlinearity case

such that ν < 0 blow-up occurs in the past and in the future at some instants T̃− ⩽ t⋆− < 0<
t⋆+ ⩽ T̃+ if (26) is satisfied; where T̃± are the solutions to the equation ζH(t) = 0 in the interval
[−π/Ω,π/Ω]. If (26) is not satisfied, but (27) holds true then blow-up occurs in the past or in
the future in the interval [−π/Ω,+π/Ω].

10
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Remark 10. We compare now the results above with the ones given by proposition 3.2 [5]
where occurrence of blow-up in the past and in the future was proved in the case of harmonic
potential, where α> 0, focusing nonlinearity, where ν < 0, and under the conditions µ⩾ 2
and

1
2
∥∇ψ0∥2L2 +

ν

µ+ 1
∥ψ0∥2µ+2

L2µ+2 ⩽ 0 . (28)

In fact, condition (28) implies that (since V0 ⩾ 0)

Ω2I0 ⩾ 8E ⇔ Ω2V0 − 2CV ⩾ 4p̂20 .

That is, if (28) occurs then (26) is satisfied (but not vice versa).

5.2. Inverted oscillator—criterion for blow-up

In the case of the inverted oscillator potential where α< 0 a similar argument proves that the
variance V(t) is bounded from above by the function ζI(t) for any t ∈ R. Then, it follows that

Theorem 4. Let ψ0 ∈ Σ be the normalized initial wavefunction; let µ⩾ 2, α< 0 and Ω=√
8|α|; let CV , V0 and V̇0 defined as in (23)–(25). Let it now

a :=
V̇0

Ω
,b := V0 +

CV

Ω2
and c :=−CV

Ω2
.

Then, in the focusing nonlinearity case such that ν < 0 blow-up occurs if

(a) b<−|a|; in that case blow-up occurs in both the past and in the future.
(b) |a|< b and

√
b2 − a2 + c⩽ 0; in that case blow-up occurs only in the future (if a< 0) or

only in the past (if a> 0).
(c) |a|> |b|; in that case we have blow-up in the past if a> 0 or in the future if a< 0.
(d) |a|= |b|; in that case we have blow-up if bc< 0, in particular we have blow-up in the past

if a> 0 or in the future if a< 0.

Proof. Let us introduce the function ζ(τ) = ζI(t) where τ =Ωt, then

ζ(τ) := asinh(τ)+ bcosh(τ)+ c , ζ(0) = V(0)> 0 ,

and where a, b and c are defined above. If

(a) |a|< |b| then dζ(τ1)
dτ = 0 where τ1 = arctanh

(
− a

b

)
. In particular, if:

1. b< 0 then limτ→±∞ ζ(τ) =−∞ and thus there exists T− < 0< T+ such that
ζ(T±) = 0. In such a case we have blow-up in the past and in the future.

2. 0< b then limτ→±∞ ζ(τ) = +∞. We compute now

ζ(τ1) =
√
b2 − a2 + c .

Thus, if √
b2 − a2 + c⩽ 0

then we have blow-up in the future if a< 0 or in the past if a> 0.
(b) |a|> |b| then ζ(τ) is a monotone increasing (resp. decreasing) function if a> 0 (resp.

a< 0) such that limτ→±∞ ζ(τ) =±∞ (resp. ∓∞); therefore there exists T− < 0 (resp.
0< T+) such that ζ(T−) = 0 (resp. ζ(T+) = 0), and thus we have blow-up in the past
(resp. in the future).

11
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(c) a= b then dζ(τ)
dτ ̸= 0 for any τ . Hence, if:

1. a> 0 then dζ(0)
dτ > 0 and then dζ(τ)

dτ > 0 for any τ ; furthermore, limτ→−∞ ζ(τ) = c and
limτ→+∞ ζ(τ) = +∞. Thus, if c< 0 then there exists T− < 0 such that ζ(T−) = 0 and
so we have blow-up in the past.

2. a< 0 then dζ(0)
dτ < 0 and then dζ(τ)

dτ < 0 for any τ ; furthermore, limτ→−∞ ζ(τ) = c and
limτ→+∞ ζ(τ) =−∞. Thus, if c> 0 then there exists 0< T+ such that ζ(T+) = 0 and
so we have blow-up in the future.

(d) a=−b then dζ(τ)
dτ ̸= 0 for any τ . Hence, if:

1. a> 0 then dζ(0)
dτ > 0 and then dζ(τ)

dτ > 0 for any τ ; furthermore, limτ→−∞ ζ(τ) =−∞
and limτ→+∞ ζ(τ) = c. Thus, if c> 0 then there exists T− < 0 such that ζ(T−) = 0
and so we have blow-up in the past.

2. a< 0 then dζ(0)
dτ < 0 and then dζ(τ)

dτ < 0 for any τ ; furthermore, limτ→−∞ ζ(τ) = +∞
and limτ→+∞ ζ(τ) = c. Thus, if c< 0 then there exists T− < 0 such that ζ(T−) = 0
and so we have blow-up in the past.

Collecting all these results then theorem 4 follows.

Remark 11. We compare now the results above with those given by theorem 1.1 [8]. For
example, [8] proved that in the case of inverted potential, where α< 0, and focusing non-
linearity, where ν < 0, under the condition µ⩾ 2 and

1
2
∥∇ψ0∥2L2 +

ν

µ+ 1
∥ψ0∥2µ+2

L2µ+2 <−|α|∥xψ0∥2L2 −
√
2|α| |ℜ⟨x̂ψ0, p̂ψ0⟩| (29)

then blow-up occurs in the future and in the past at some instant. Bymeans of a straightforward
calculation it can be proved that if condition (29) is satisfied, then condition (a) of theorem 4
holds true, but not vice versa.
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Appendix A. Functional inequalities

Lemma 2. The following inequality holds true: let y ∈ R and let

Γ := Γ(y) = ⟨ f,(x− y)2f ⟩L2

for any test function f ∈ L2(R,dx) such that xf ∈ L2(R,dx). Then, for any q⩾ 0:

∥ f ∥2q+2
L2q+2 ⩽ C

√
Γ∥ f ∥qL2∥ f

′∥q+1
L2 , (30)

for some positive constant C, where f ′ = df
dx .

12
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Proof. Indeed:

∥ f ∥2q+2
L2q+2 =

ˆ
R

∂(x− y)
∂x

f q+1̄f q+1dx =−(q+ 1)
ˆ
R
(x− y)|f| 2q

[
f ′̄f+ f̄f ′

]
dx .

Hence

∥ f ∥2q+2
L2q+2 ⩽ 2(q+ 1)∥(x− y) f ∥L2∥ f ∥

2q
L∞∥ f ′∥L2 .

Now, recalling that from the Gagliardo–Nirenberg inequality one has that

∥ f ∥L∞ ⩽
√
2∥ f ′∥1/2L2 ∥ f ∥1/2L2

then it follows that

∥ f ∥2q+2
L2q+2 ⩽ C

√
Γ∥ f ∥qL2∥f

′∥q+1
L2 ,

for some positive constant C.

Corollary 3. In particular, if y= 0 and q= 0 then we have that for some positive constant C:

∥ f ∥2L2 ⩽ C
√
I∥ f ′∥L2 , (31)

where Γ(0) = ∥xf∥2L2 = I is the moment of inertia; if y= ⟨x̂⟩= ⟨f,xf⟩L2 and q= 0 then we have
that:

∥ f ∥2L2 ⩽ C
√
V∥ f ′∥L2 , (32)

where Γ(⟨x̂⟩) = ∥(x−⟨x̂⟩)f∥2L2 = V is the variance.

Appendix B. Comparison between solutions of the harmonic/inverted
oscillator

Let V±(t) be the solution to the differential equation{
d2V±
dt2 ±Ω2V± = C+ f(t)

V±(0) = V±,0 and
dV±(0)

dt = V̇±,0
, (33)

whereC is a constant factor and f(t)⩽ 0 for any t; and let ζ±(t) be the solution to the differential
equation {

d2ζ±
dt2 ±Ω2ζ± = C

ζ±(0) = V±,0 and
dζ±(0)

dt = V̇±,0
. (34)

Then, the difference Z±(t) = V±(t)− ζ±(t) solves the differential equation{
d2Z±
dt2 ±Ω2Z± = f(t)

Z±(0) = 0 and dZ±(0)
dt = 0

.

Hence, we have that

Z+(t) =
1
Ω

ˆ t

0
sin [Ω(t− s)] f(s)ds⩽ 0if Ω|t|⩽ π

and

Z−(t) =
1
Ω

ˆ t

0
sinh [Ω(t− s)] f(s)ds⩽ 0 ,∀t ∈ R .

In conclusion,

13
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Lemma 3. Let V± be the solution to (33), and let

ζ+(t) =
V̇+,0

Ω
sin(Ωt)+V+,0 cos(Ωt)+

1
Ω2

C [1− cos(Ωt)]

and

ζ−(t) =
V̇−,0

Ω
sinh(Ωt)+V−,0 cosh(Ωt)−

1
Ω2

C [1− cosh(Ωt)]

be the solution to (34). Then

V+(t)⩽ ζ+(t) ,∀t ∈
[
− π

Ω
,+

π

Ω

]
and

V−(t)⩽ ζ−(t) ,∀t ∈ R .

Appendix C. A formal touch—the virial identity

Here we formally derive the virial identity for any real-valued potential V(x).

Hereafter, we denote ψt by ψ and ψ ′ = ∂ψ
∂x , ψ

′ ′ = ∂2ψ
∂x2 , ψ̇ = ∂ψ

∂t , İ = dI
dt , Ï = d2I

dt2 , and so
on.

Let (3) be the energy integral of motion (here we make no assumptions about the values of
the mass m and of the Planck constant ℏ):

E(ψ) := ℏ2

2m
⟨ψ′,ψ′⟩+ ⟨ψ,Vψ⟩+ ν

µ+ 1
∥ψ∥2µ+2

L2µ+2 .

Let

I(t) = ⟨x̂2⟩t = ⟨ψt,x2ψt⟩L2

be the moment of inertia. It satisfies to the following virial identity:

Ï =
4
m
E − 2

m
[⟨ψ,xV ′ψ⟩+ 2⟨ψ,Vψ⟩] + 2ν(µ− 2)

m(µ+ 1)
∥ψ∥2µ+2

L2µ+2 . (35)

In order to compute the derivatives of I(t) from (8) it follows that

İ =
i
ℏ
⟨ψ, [H, x̂2]ψ⟩

since [|ψ|2µ, x̂2] = 0. From this fact and since

[H, x̂2]ψ =− ℏ2

2m
(2ψ+ 4xψ′)

then

İ =−i ℏ
m
∥ψ∥2 − 2i

ℏ
m
⟨xψ,ψ ′⟩ . (36)

From equation (36) and since the norm ∥ψ∥ is a constant function with respect to the time then

Ï =−2i
ℏ
m
⟨xψ̇,ψ′⟩− 2i

ℏ
m
⟨xψ,ψ̇′⟩= 2i

ℏ
m
⟨ψ,ψ̇⟩+ 4

ℏ
m
ℑ
[
⟨xψ̇,ψ′⟩

]
where

⟨ψ,ψ̇⟩= i
ℏ
⟨ψ,Hψ+ ν|ψ|2µψ⟩=− i

ℏ
E − i

ℏ
νµ

µ+ 1
∥ψ∥2µ+2

L2µ+2

14
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because ψ̇ =− i
ℏHψ− iνℏ |ψ|

2µψ, and

⟨xψ̇,ψ′⟩=− i
ℏ
⟨Hψ+ ν|ψ|2µψ,xψ′⟩= i

ℏ
B+

iν
ℏ
A ,

where

B= ⟨Hψ,xψ′⟩ and A= ⟨|ψ|2µψ,xψ′⟩ .
By integrating by parts then

A=

ˆ
R
xψ̄µ+1ψµψ′dx

=−
ˆ
R
ψµ+1ψ̄µ+1dx− (µ+ 1)

ˆ
R
xψ̄µψµ+1ψ̄′dx−µ

ˆ
R
xψ̄µ+1ψµψ′dx

=−∥ψ∥2µ+2
L2µ+2 − (µ+ 1)Ā−µA

from which it follows that

(A+ Ā) =− 1
µ+ 1

∥ψ∥2µ+2
L2µ+2 .

Now, let

B= B1 +B2 where B1 =− ℏ2

2m
⟨ψ′′,xψ′⟩ and B2 = ⟨Vψ,xψ′⟩ .

A straightforward calculation yields

B2 =−⟨Vψ′,xψ⟩− ⟨(xV)′ψ,ψ⟩=−B̄2 −⟨(xV)′ψ,ψ⟩ ,
hence

(B2 + B̄2) =−⟨(xV)′ψ,ψ⟩ .
Similarly

B1 =− ℏ2

2m
⟨ψ′′,xψ′⟩= ℏ2

2m
⟨ψ′, x̂ψ′′⟩+ ℏ2

2m
⟨ψ′,ψ′⟩

=−B̄1 + E − ⟨ψ,Vψ⟩− ν

µ+ 1
∥ψ∥2µ+2

L2µ+2

from which follows that

(B1 + B̄1) = E − ⟨ψ,Vψ⟩− ν

µ+ 1
∥ψ∥2µ+2

L2µ+2 .

In conclusion:

Ï = 2i
ℏ
m

[
− i
ℏ
E − i

ℏ
νµ

µ+ 1
∥ψ∥2µ+2

L2µ+2

]
+ 4

ℏ
m
ℑ
[
i
ℏ
A+

iν
ℏ
B

]
=

2
m
E +

2νµ
m(µ+ 1)

∥ψ∥2µ+2
L2µ+2 +

4
m
ℜ [B+ νA]

=
4
m
E − 2

m
[⟨ψ,xV′ψ⟩+ 2⟨ψ,Vψ⟩] + 2ν(µ− 2)

m(µ+ 1)
∥ψ∥2µ+2

L2µ+2 .

Thus (35) follows.

Remark 12. We remark that the virial identity (35) in the particular cases V(x)≡ 0, V(x) = αx
and V(x) = αx2, for α ∈ R, respectively becomes

Ï =
4
m
E +

2ν(µ− 2)
m(µ+ 1)

∥ψ∥2µ+2
L2µ+2 , if V(x)≡ 0 , (37)
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Ï =
4
m
E − 6α

m
⟨x̂⟩t+ 2ν(µ− 2)

m(µ+ 1)
∥ψ∥2µ+2

L2µ+2 , if V(x) = αx , (38)

and

Ï =
4
m
E − 8α

m
⟨x̂2⟩t+ 2ν(µ− 2)

m(µ+ 1)
∥ψ∥2µ+2

L2µ+2

=
4
m
E − 8α

m
I +

2ν(µ− 2)
m(µ+ 1)

∥ψ∥2µ+2
L2µ+2 , if V(x) = αx2 . (39)
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