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Abstract

Estimating financial risk is a critical issue for banks ansguirance companies. Recently, quantile estima-
tion based on Extreme Value Theory (EVT) has found a suagedsiain of application in such a context,
outperforming other approaches. Given a parametric maweiged by EVT, a natural approach is Maximum
Likelihood estimation. Although the resulting estimatsraisymptotically efficient, often the number of obser-
vations available to estimate the parameters of the EVT teadeoo small in order to make the large sample
property trustworthy. In this paper, we study a new estimafahe parameters, the MaximungilLikelihood
estimator (MLgE), introduced by Ferrari and Yang (2007). We show that thejlkan outperform the standard
MLE, when estimating tail probabilities and quantiles of tGeneralized Extreme Value (GEV) and the Gen-
eralized Pareto (GP) distributions. First, we assess thtve efficiency between the the ME and the MLE
for various sample sizes, using Monte Carlo simulationgo8é, we analyze the performance of the d#.for
extreme quantile estimation using real-world financiabdathe MLOE is characterized by a distortion parameter
g and extends the traditional log-likelihood maximizationgedure. Wheq — 1, the new estimator approaches
the traditional Maximum Likelihood Estimator (MLE), recening its desirable asymptotic properties; wiggA 1
and the sample size is moderate or small, thegElisuccessfully trades bias for variance, resulting in amadve
gain in terms of accuracy (Mean Squared Error).

1 Introduction

Recent financial crises and the new regulations for bankénsadance companiébave prompted intermediaries
to regularly compute statistical tail-related measuredsté. One of the most popular measures of financial risk
is the Value-at-Risk (VaR), usually defined as ting¢h quantile of the distribution of losses (negative retirn
Although the appropriateness of VaR as a risk measure (Artznal. (1999)) has been recently questioned, it is
still the most widely used for risk management, asset afionand risk-adjusted performance evaluation. Various
methods have been proposed to estimate VaR: historicabagipy parametric quantile estimators (e.g., Normal
or t-Student parametric models), variance-covariancegaiscahd Monte Carlo methods are the most commonly
used techniques. Recently, Extreme Value Theory (EVT) bard extensive application in finance to estimate
tail-related risk measures, as it has been shown that itimaide estimators that perform best overall in predicting
Value-at-Risk (Brooks et al. (2005), Kuester et al. (2006))

EVT is supported by a sound statistical theory and it relieshee asymptotic properties of the distributions of

sample extrema. Specifically, the two prevailing pararoefpproaches for modelling extreme events are the Peaks-

1Basel Il for banks, Solvency Il for insurance companies &RIS 32 and 39 for all financial companies.



Over-Threshold (POT) and Block Maxima (BM) methods. The R@&thod exploits the Generalized Pareto (GP)
distribution for modelling the exceedances over a certaieshold, while the BM method relies on the Generalized
Extreme Value (GEV) distribution to model the maximum vathat a variable takes in a given period of time
(block).

Although maximum likelihood is the most popular estimatapproach in this context, mainly due to its asymp-
totic properties and ease of implementafijarften the number of observations available to estimate GEY/GPD
parameters is too small to guarantee the desirable largelsgroperties of the Maximum Likelihood Estimator
(MLE); thus, inference might not be trustworthy. Our invgation aims to address this issue by studying for the
first time in the EVT context the performance of a new estimafdhe parameters, the MaximungiLikelihood
Estimator (MLgE), which has been recently proposed by Ferrari and Yang7()200he MLQE is based on the
information measure introduced by Havrda and Charvat{186d generalizes the traditional log-likelihood max-
imization procedure: it preserves the desirable asynppotperties of the traditional MLE, while it allows for
a peculiar type of distortion introduced by the extra par@mg resulting in a gain in terms of precision (Mean
Squared Error) when the sample size is moderate or small.

The objective of this paper is to study the behavior of the mstimator on both simulated data and on real-
world time series for extreme quantile estimation. Firs,show that the new estimator is more efficient than the
standard MLE when the goal is to estimate the tail probatilithe GP and GEV distributions. The comparison
is carried out through Monte Carlo simulations, where thégsmance of the two estimators is evaluated for
different choices of the tail probability and sample size2 $kiow that when the distortion paramegés properly
chosen, the Mean Squared Error of the ¢fiLis sensibly smaller than that of MLE. Second, we focus oreex¢
guantile estimation, assessing the performance ofilan a financial stock market index for both GEV and GP
distributions. The comparison with the MLE indicates thaices of the distortion parametgsmaller than 1 can
dramatically reduce the generalization error.

The paper is organized as follows. In section 2, we desdnderto main parametric approaches for risk estimation
based on EVT; in section 3 we introduce the Maximunpllikelihood Estimator. In section 4 we present a
Monte Carlo simulation study to explore the relative efficig between the M4E and the MLE in a finite-sample
situation. Section 5 describes a hold-out validation pdoce applied to real-world financial data and compares

the generalization error of the new estimator with that offMEinally, in section 6 we outline the conclusions.

2 Extreme Value Theory for tail-related risk measures

Extreme Value Theory has found numerous applications iiowarfields (e.g., Lazar (2004)), including finance.

The reader is referred to Embrechts et al. (1997), and RedsTaomas (1997) for an overview of the main

20Other methods include the method of moments, the methodobkapility-weighted moments and the elemental percenté¢hod. The
reader is referred to Hosking and Wallis (1987), Grimsha99@), Castillo et al. (1997).



applications in finance, while a brief description of the twmain approaches, namely the Peaks-Over-Threshold

and the Block Maxima, is reported below.

2.1 Peaks-Over-Threshold

The POT approach considers exceedances over a certaindlttasLet {X;,1 < i < n} be a random sample from
a distributionF with meanu and variancer?. An exceedance occurs wherX; > u and anexcess over u is defined
by y = x— u. The conditional distribution of the exceedances ayeaken atX > uis

Fluty) —FW B

Fu(y) =P(X-u<ylX>u)= i—Fw V7

Balkema and de Haan (1974) showed that for a large classtabdisons,F,(y) — G(y) asu — o whereG(y) is
a Generalized Pareto (GP) distribution. A representation of the GP distribution is
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The probability density functiog is obtained by differentiating with respect;to

) (x—u)\ V&
gmaw—{“10+&7r> 70, 3)
o lexp(—(x—u)/o), &=o0.

The shape parameté&rcan be positive, negative or zero and provides an indicatithe heaviness of the tail. The
GP can represent different distributions depending on &heevtaken byé . In particular, wher€ > 0, we obtain
the ordinary Pareto distribution which is suitable for mitidg heavy tailed distributions such as financial returns.
Whené = 0 andé < 0 we have respectively the exponential and the Pareto Ildigigbutions.

From eq.(1) one can obtain the following equality for valoés larger tharu:
1-F(¥) = (1-F(u)(1-Fy(x—u)). 4)

Given a sufficiently high threshold valuéy(x — u) can be estimated using the plug-in estimate based on GP
distribution andF (u) can be estimated using the sample proportion of obsenatidhus, from eq.(4) one can
write the tail estimator oF (x). Inverting the expression for the tail gives the estima#ngation of the Value-at-
Risk3

u

. ol n s
= — J— 75 —
VaR;_4 u+E (N a 1), (5)

3The Value-at-Risk is usually defined as tneth quantile of the distribution of losses, or the negatsteims. Namely, VaR ¢ := inf{x €
0:P(X >x) < a} whereX is a real-valued random variable representing losses atimegeturns and & a < 1. Typically, values of interest
for o are 005 and 001.



whereN, denotes the observed number of exceedances over the tlirashite reader is referred to McNeil et al.
(2005) for a complete mathematical treatment of the POTagatr for Value-at-Risk estimation.

Note that the asymptotic result poses some applicabilifstraints. In fact, the thresholdhas to be large in
order the Generalized Pareto approximation to hold; as aezprence, few exceedances would left. Thus, if an
excessively high threshold is chosen, the plug-in estimatght be inaccurate with high variance. Furthermore,
the asymptotic properties of the Maximum Likelihood estionavould hardly hold. Conversely, a low threshold

would inevitably induce bias.

2.2 Block Maxima

The BM method models the maximum value that a variable takesgiven period of time (block). Consider a
random variabléX with cumulative distribution functiofr (x) with meanu and variances?. Let {Y;,1<i <n}

be a random sample from the standardized distribFi¢f-t ) and definé
Yn’n - rnaX{Y:]_,YZ7 ...,Yn} .
In addition, let{a,;n > 1} and{by > 0;n > 1} be sequences of numbers such that

P (52 <x) — i) ©

n

ash — oo for some non-degenerate distributi@nFisher and Tippett (1928), and Gnedenko (1943) showedzhat

belongs to one of the following three extreme value distidns:

Gumbel:A(y) = exp(—exp(—Y)), —o <y < o

0, y<O0

Fréchet®(y,a) = { exp(-y %), y>0, a>0

_(_\y\a
Weibuu:w(y;a):{ P, y=B a0

Later, Jenkinson (1955) and von Mises (1954) suggestegaranetrization of the above expressions by setting
& = a1 for the Fréchet distribution anfl = —a 1 for the Weibull distribution. Thus, Gumbel, Fréchet and

Weibull can be represented in a unified parametric modelwknas the Generalized Extreme Value distribution

(GEV), whereé represents the shape parameter and gives an indication ti@obeaviness of the tail of the

distribution.

4We could study as well the minimum rather than the maximumtaadesults for one of the two can be immediately transfensidg the
relationshipYyn = —max{—Y1,—Y2,...,—Yn }.



The following characterization, which includes also thegliion and scale parametgrando, is most commonly

used:
C(1gErm) Ve xu
H(x &, 11,0) = exp{ (1+&%E) }, if£#£0, 1+&5E>0 -
exp[—exp(-H)],  if&=0.
The probability density function is then:
—py el —un\1/&\ .
h(x&,u,0) = e (1875 eXp(_ (1+&75) ) if & £0, ®8)
C—l,exp(—%) exp(exp(—%)), if £=0,

with 1+ E% > 0. We remark that the asymptotic results just described guérantee that is approximately
distributed according to a GEV distribution. Hence, theuaacy of such an approximation relies strongly on the
size of the blocks from which the maxima are computed.

The block maxima approach allows to compute the so-calledrdevel, that is the level expected to be exceeded
in one out of thek periods of lengtn. Given a block size large enough to hold the GEV approxinmatize return

level can be computed by inverting eq.(7) and thus obtaining

Ue=H1 (1—%;5,041)- ©)

Substituting the parameter estimates, we have

Gy = flg<l<|og(lli)>é>’ ifé#o’ (10)

3 The Maximum Lq-Likelihood Method

Let f(x; 8p) be the GP density in eq.(3) or the GEV density in eq.(8), wigre: (8o1, ..., Bop) € © denotes the
vector of parameters to estimaig=@ for GP andp=3 for GEV). Given a random samplq, ..., X, from f(x; 6),
the Maximum Likelihood Estimator is

N n

6, = argmaxy log[f(X;;0)]. (11)

8o S

Maximum Likelihood is the standard approach in paramesto®ation, mainly due to the desirable asymptotic
properties of consistency, efficiency and normality. Irtigatar, under some regularity conditions (e.g., see van de
Vaart (1998), Ferguson (1996) ), we have tb/ﬁt(@n — 90) 2N (0,V) asn — o, whereV represents the inverse
of the Fisher information matrix.
Note that the asymptotic result is valid under the assumptiat the underlying distribution is actually one of
the extreme value distributions. However, the resultsguresl in the previous section guarantee that the block

maxima and the excesses over a threshold are appyoximately from GEV and GP distributions. Thus, two

contrasting sources of distortion characterize the esiimanf the tail probability. The first concerns the limit



results for the tail quantities. In the POT method we needareasingly high threshold, in order to guarantee
the convergence to the GP distribution; similarly, in the Bidthod a large block size is necessary in order to hold
the GEV distribution. The second issue deals with the sasipkenecessary to make the asymptotic properties
of MLE trustworthy, especially when the goal is to estimatea8 tail probabilities. Clearly, if we choose higher
thresholds or larger block sizes, the number of availabsenlations for ML estimation will be too small.

Recently, in order to handle the second issue, Ferrari and §2007) introduced an estimator inspired to Havrda
and Charvat (Havrda and Charvat (1967)) generalizedrimdtion measufe the Maximum lg-Likelihood Esti-
mator (MLQE). The MLQE of 6, is defined as

n

6n = argmaxy Lq[f(X;0)], (12)
6ecO =
where 1 q
z79-1 .
L@ =4 1-q 'M97L (13)
logz ifg=1

The functionLq represents a Box-Cox transformation in statistics andhertontexts it is often called deformed

logarithm of ordeig. The estimates of the parameters are computed by solvirfgltb@ing system of equations:
n g .

Whengq is a fixed constantgh belongs to the class d¥l-estimators. Under some regularity conditions such
estimators have well known asymptotic proprieties suchsggatotic normality (e.g., see van der Vaart (1998)
and Huber (1981)).

The MLQE can be considered as a generalization of the traditiongt Mior values ofy arbitrarily close to 1,
we have thatlq(-) — log(-) and the MIgE approaches the classical MLE. However, an advantage &snelot

by havingq slightly different from 1: in this situation the MiE allows trading bias for variance and provides
more accurate estimates when the sample size is smajl#A corresponds to assign a different weight to the
observations in the sample based on the rarity of their oenage. In particular, wheq < 1 the role played by
extreme observations, which are the most influential on gtienates, is reduced. Consequently, when setting
g < 1 the variability is reduced by increasing the bias, whiahmessult in an overall gain in terms of Mean Squared
Error, as we shall see. Converselygif> 1 the role of the observations corresponding to densityegblose to
zero is accentuated (Ferrari and Yang (2007)).

In the context of the class of distributions belonging to éx@onential family, Ferrari and Yang (2007) derive
the asymptotic properties of the ME. They show that the peculiar type of distortion introduakdws to gain in
terms of precision (Mean Squared Error) by reducing theavae when both the sample size and the tail probability

to be estimated are small. Conversely, when the samplessiaegie, reducing the amount of bias allows for the

5Such information measures, usually caltesbrder entropies (ag-entropies in physics), relax the additivity assumptiaat tharacterizes
Shannon’s information. In recent yearsorder entropies have found successful applications feréifit fields, such as finance, biomedical
sciences, environmental sciences and linguistics (eg.Gell-Mann (2004).



recovery of a number of desirable large sample propertiels ag efficiency and consistency. Hence, thegML
procedure extends the classic method resulting in a geinéeedntial procedure that inherits most of the desirable
features of traditional maximum likelihood methods andhat $ame time gains some new properties that can be
usefully exploited irad hoc estimation settings. The following sections report enggiriesults supporting the use

of such estimator in the EVT framework.

4 Finite-sample efficiency of MLgE: Monte Carlo simulations

In this section we compare the relative efficiency betweenMihgE and the MLE on simulated data from both
GEV and GP distributiorfs Our first aim is to investigate whether the BE can outperform, in terms of Mean
Squared Error, the classical MLE when estimating smalfaibabilities. The estimates of the tail probability are
obtained by using the so-callptlg-in approach, where the point estimate of the unknown pararisetebstituted
into the distribution of interest.

Let F(x; 8) be the cumulative distribution function for either GEV or @Rtributions. The true parameter is
denoted bydy and the true tail probability by (in particular,a = 1— F(x; 6) if the right tail is considered, and
a = F(x; 6) otherwise). Further, lefi, anday, be the plug-in estimates of, obtained respectively via the ML
and the MLg methods.

The relative performance of the two estimators is measuyet@dling the ratio between the two Mean Squared

Errors:
MSE (Gn) E(Gn—a)?  (E(Gn) — a)?+Var(an)

R = NMSE(Gn) ~ E(@n—a)  (E(Gn)— )24 Var (@)’

(15)

As pointed out by the error decomposition in the above exiwas we are interested in the relative trade-off
between bias and variance of the two estimatorsafgiven sample size. The simulations are then carried out as

follows:

e For any given sample sizg a numbeB = 1000 of random samples, ..., X, are generated from either

GEV or GP with parameter vect®é.

e For each samplé,, andanp, b=1,...,B, the ML and MLg estimates of the tail probability are obtained.
The estimates of the parameters for both estimators arewteshpy solving numerically thieg-likelihood
equations (14). The optimization is performed by using aalde metric algorithm (e.g., see Givens and

Hoeting (2005)), where the MLE estimatérs,b are chosen as starting values.

e Finally, the relative performance between the two estinsatoevaluated by the ratio

R, — H _ Siea(Gnk—a)?/B
B Ye(Gnk—a)?/B

6The analyses presented in sections 4 and 5 are performegl thsirstatistical computing envirnoment R (R DevelopmenteCteam
(2006)). In the routines described we utilize functionsirthe Extreme Value Theory packageér (McNeil and Stephenson (2007))




where[i andi represent the Monte Carlo estimates of the Mean SquaredférfLE and MLgE, respec-

tively. Furthermore, the standard erroriifis computed via the multivariate Delta Method as
~ ~ ~o\ 1/2
() -8B 26 ol /
p? p3 pt

whereds 1, G»» and 0y, denote respectively the Monte Carlo estimates for the naéisand the covariance

of the squared errors (see Appendix 1 for the details of thritzdion).

The procedure described above is repeated for several sasipes (ranging from 5 to 200) and different choices
of the true tail probabilitya and the distortion parametgr The simulations discussed in the remainder of this

section are obtained by sampling from a GEV distributiorhvpérameters
8o = (o, Mo, J0) = (0.1,0.05,0.015),
and from a GP distribution with parameters
8o = (0, 00) = (0.5,1).

We remark that the parameter vall@se comparable in size to the estimates for various stoakigicomputed
by Gilli and Kellezi (2006) and McNeil et al. (2005). Nevesthss, we also performed simulations using other
parameter settings, obtaining similar results.

Figures 1 and 2 show the results for the GP distribution. hi@dar, figure 1 shows the performance of the -
whengq is 0.94 for different values of the tail probability. For small and moderate sample sizes, we have that
Ry > 1 and the MIgE is clearly more accurate than MLE. From figure 2 we can saeMha estimates are more
precise not only for small but even for larger sample siz@st¢u200). Moreover, for a given tail probability the
gain is more accentuated whetis smaller.

Figures 3 and 4 present the case of the GEV distribution. |&ilpito the GP distribution, figure 3 points out that
ML gE is more accurate than the MLE for moderate or small sampéssiMoreover, the gain appears to be more
evident for smaller values af. Actually, note that whemr is 0.05, the MIgE outperforms the MLE in accuracy
only for sample sizes smaller than 80, while this is not theecshena equal to 0.01. In figure 4 we can see
that the relative performance of ME versus MLE improves when the tail size becomes smatiet 0.005) and
the parameteq decreases from 0.95 to 0.93. Recall that decreasing thertitist parameteq is equivalent to
downweighting extreme observations that can be drambticdluential on the accuracy of the estimates when
the size ofo is small.

In general, ifq is fixed, it is important to note that as the sample size getetathe bias component of the error
becomes more relevant than the variance component and theviilLalways tend to dominate M4E due to its
asymptotic properties. This observation has suggesteathalue ofq closer to 1 should be preferred when the

sample size increases.

"The value of the shape paramefgewhich determines heaviness of the tail, is critical forbGEV and GP distributions. Since financial
returns are have usually heavy tailed distributions (C28601)), they can be suitably represented by considefing0.



5 Forecasting financial empirical quantiles

The simulation results have encouraged a further study alAwerld financial data, where Extreme Value The-
ory plays a crucial role in forecasting the empirical quiesti The analyses presented in the following sections
have been carried out on publicly available financial #athe daily log-returns of the Standard & Poor’s 500
index (S&P500) from January 1960 to June 1993. Extreme \ahadysis on these data set has been previously
discussed in literature (e.g., see McNeil and Frey (20083, knight et al. (2005)). The summary statistics for

this data set are reported in table 1. This data set preseaisrés that commonly characterize the distribution

Table 1: Descriptive statistics of the log-return serieS&P500 index.
Sample Size Min Max Mean St.Dev. Skewness Kurtosis
8414 -20.388 9.099 0.028 0.871 -1.510 44.300

of financial log-returns. In particular, note that the disition of returns for the S&P500 index is remarkably
skewed. In the remainder of this section we consider the comtyremployed hold-out procedure to estimate the
generalization error of the estimates. We use such a meéuoecompare the relative performance between
ML gE and MLE when predicting empirical quantiles of one the exie value distributions (GEV or GP); (ii) to

study the performance of MJE, relatively to the tail sizer and the distortion parametgr

5.1 Hold-out validation procedure

The comparison between the ME and the MLE is carried out using an estimate of the genetiiz error (Hastie
et al. (2001)), obtained via epeated hold-out procedure. First, from the original dataset of the logmetuve
take the block maxima (for the BM model) or the exceedancesaeertain threshold (for the POT model). Then,

on the filtered data, the following steps are performed:

(i) The data are randomly divided into a training set of si?€ and a testing set of sizé'¥ = n—n{""), wheren

is the size of the filtered sample. The training and testimgpses are chosen such téf) = n(tr).
(ii) The ML and MLgq estimates of the quantile denoted byr™"), are computed from the training set.
(iii) The sample quantile'¥, is computed from the testing set.

Steps (i),(ii) and (iii) are repeated f&8&= 500 times and then the performance of the estimator is el ey
~ B 2
&=B15 (7! _19)". (16)
2, (")

Finally, the standard error of is calculated using nonparametric bootstrap, based on gffiiizations. The

analysis is carried out for both left and right tails of thetdbutions of returns.

8http:/Avww.ma.hw.ac.uk/ mcneil/data.html



5.2 Empirical results on financial Data

In the filtering phase, 100 observations are extracted fi@rS&P500 log-return time series. In the BM model,
the original sample is divided in= 100 blocks, obtaining a block size reasonably large in offtee GEV asymp-
totic approximation to apply (e.g., see Gilli and KellezO(@)). In the POT model, although some data driven
procedures have been proposed (Lazar (2004)), there seebesrto universal agreement on the choice of the
threshold value to employ. However, Monte Carlo studieg.(see McNeil and Frey (2000)) have shown that for
heavy tailed distributions a threshold corresponding tuab = 100 exceedances, performs well in terms of Mean
Squared Errck.

Tables 2 and 3 report the empirical results for the BM and P@r@aches, for different quantiles and choices of
the distortion parameter. Column 3 and 5 report the gerzatain erroré for the left tail and the right tail, while
columns 4 and 6 report the percent gain (or loss) in termsefiption error of the MQE over that of MLE. The
results for the MLE are reported in the row corresponding o1, since the two estimators are the same for such
a value.

For the BM method, a substantial improvement is obtainednwhe 1. In all the cases, the improvement is
relevant when the distortion parameter decreasgs+t®.95. Furthermore, we notice that the gain deriving from
the MLg method is more evident on left tail, which is usually of majuterest in risk analysis as it represents
the losses. Actually, it is known that equity times seriegally show a loss/gain asymmetry (Cont (2001)) with
left-skewed distributions, as shown in table 1 for the data ander exams. Finally, as expected, as the distortion
parameter approaches 1, the usual MLE is recovered and tfeerpance of the two estimators becomes similar.
Table 2 shows the results corresponding to the POT methaaaiilysis on the left tail confirms the considerations
previously discussed for the BM method. However, the perorce on the right tail shows only little or no
improvement with respect the standard approach, whenaenmsg the 90th percentile. Nevertheless, the analysis
clearly points out that the M4E can be considered as a valid alternative to the MLE when atingpthe value at

risk of financial losses, especially if interested in estingaextreme quantiles.

6 Discussion and Final Remarks

In this work, we have shown that the ME can be a valid alternative to the classical MLE when estirgat small

tail probability or a large quantile in the context of ExtreMalue Theory. The M{E can be regarded as a natural
extension of the classical MLE. Specifically, the distantfparameteq allows to adjust the relative weight of the
information provided by each observation in the samplg.i$fclose to 1, the estimator preserves the large sample
properties of the MLE, while foq # 1 the trade-off between bias and variance is modified, prioduan overall

gain in terms of accuracy (Mean Squared Error) when the sasipé and/or the tail probability to estimate are

9This choice is also confirmed by preliminary exploratorylgses carried out by using the graphical tools containetiérR package POT
Ribatet (2006).
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Table 2: Block Maxima method. The squared ereorjs computed fog=1,0.9950.975 and 5 (whereg =1
corresponds to the MLE) and considering two choices of thsitze. In parenthesis, the bootstrap standard error
of &, computed from 2000 replicates. The percent gain is condagé&svLe /émLge — 1) x 100.

Percentile ¢ Left Tail Right Tail
& % Gain & % Gain

1.000 0.3836(0.0332) / 0.2759(0.0248) /

90th  0.995 0.3642(0.0320) 5.3155 0.2716(0.0244) 1.5981
0.975 0.2981(0.0273) 28.6603 0.2565(0.0227) 7.5647
0.950 0.2373(0.0231) 61.6476 0.2429(0.0210) 13.5677

1.000 1.3706(0.1135) / 0.5583(0.0531) /

95th  0.995 1.3213(0.1128) 3.7305 0.5449(0.0523) 2.4618
0.975 1.1594(0.1025) 18.2168 0.4971(0.0478) 12.3238
0.950 1.0239(0.0953) 33.8575 0.4505(0.0432) 23.9352

small. Such settings are typical in finance, where the atteiig often on estimating very small probabilities with
a small number of extrema. Although we have considered thgBviior the specific purpose of Extreme Value
Theory estimation, this stream of research seems to be vergiging, due to the considerable flexibility of the
new estimator to many classical estimation settings arfahite-sample variance reduction properties.

The simulation study has pointed out that the dfLis more accurate than MLE in estimating tail probabilities
for GEV and GP distributions for relatively small and modersample sizes. The gain from the ME appears

to be more remarkable when the target tail probability islEnaWhen the sample size is too large relative to
the choice of the distortion parametgrthe bias component plays an increasingly relevant roleexedtually
we observe that the MIE decreases its accuracy. This indicates that the distop@mameter should approach 1
as the sample size increases in order to preserve the effjojmin. In addition, smaller values of the distortion
parameteq enhance the accuracy attainable in small sample situagioeducing the role played by extreme (and
more influential) observations. The findings from the sirtiatastudy are also confirmed by the empirical analysis
on financial data. We show that for more extreme target geanthe MLgE achieves a superior performance in
terms of generalization error, when the distortion parangis chosen to be smaller than 1.

Even if the arbitrariness of the choice g@ftould be one of the main critics of the new method, we beliba t
the main strength of the MiE derives from the flexibility gained from the choice of sughe@ameter and further
work need to be focused on this issue. Currently, two resedirections are under investigation on the choice of
g: (i) theoretical derivation of optimal values gfbased on asymptotic theory and (ii) data-driven reguléidna

procedures such as cross-validation.
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Table 3: Peaks-Over-Threshold method. Squared efrofor q=1,.995.975 and.95 (whenq = 1 we are
computing the MLE) and two choices of the tail size. In pahests, the bootstrap standard erroggfcomputed
from 2000 replicates. The percent gain is compute@ase /SuLqge — 1) x 100.

Percentile g Left Tail Right Tail
& % Gain & % Gain
1.000 1.4190(0.1307) / 0.522(0.0622) /

90th  0.995 1.3627(0.1277) 4.1327 0.522(0.0618) 0.0094
0.975 1.1630(0.1107) 22.0158 0.5233(0.0623) -0.2430
0.950 0.9671(0.0933) 46.7225 0.5285(0.0631) -1.2296

1.000  7.0898(0.6909) / 1.7555(0.2685) |

95th  0.995 6.7981(0.6763) 4.2903 1.7452(0.2666) 0.5887
0.975 5.7576(0.5813) 23.1364 1.7103(0.2757) 2.6421
0.950 4.7161(0.4806) 50.3295 1.6814(0.2883) 4.4060

Appendix: Delta Method Calculation

Considem, G, anddn , defined as in section 4. Moreover, Jgt=B"15E | (Gnp—a)2andyg =B 138 ;(anp—

a)?. By the central limit theorem, for large valuesBfve have that

Bl e () == (a 22)). @

wherep; = MSE (@) and i, = MSE (). We are interested in the limiting distribution gfxg,ys) = Xg/Ys
whenB — o, By the Delta Method (e.g., see Ferguson (1996)) we have that

VB g0.ye) = N (9(k). (1) Z4() ) asB — e (18)

whereé(-) is the gradient. In this case we have that

)" = (5000, a%g(u))T - (i—ﬁ—;) , (19)

and

owzam — () (om o2 )( M)

2
011 H1 Uy
= — —2012—= + 02—.
3 u3 3
Therefore, we obtained that
2
\/E(ﬁ) EAN (ﬂ,@—2012ﬂ+022ﬂ),a53_>oo. 20
yB o' 2 u3 T (20)
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Figure 1: GP distribution. Monte Carlo Mean Squared Errtioreomputed fronB = 1000 samples of size, for
o = 0.05,0.01,0.005 andy = 0.94. The dashed lines represent 95% confidence bands fordbewternor = 0.05.
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Figure 2: GP distribution. Monte Carlo Mean Squared ErrGoreomputed fronB = 1000 samples of size, for
various values of the distortion parametge{0.94,0.96,0.98) and true tail probabilitgr = 0.01.
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Figure 3: GEV distribution. Monte Carlo Mean Squared Eradiar computed fronB = 1000 samples of size,
for two values of the true tail probabilitya(= 0.01,0.05) and distortion parametegr= 0.95. The dashed lines
represent 95% confidence bands.

2.0

15

1.0

—— q=0.95
—— q=0.93

T T T T T T T T T
0 25 50 75 100 125 150 175 200

n

Figure 4. GEV distribution. Monte Carlo Mean Squared Eradiar computed fronB = 1000 samples of size,
for two values of the distortion parametey=£ 0.93,0.95) and true tail probabilityr = 0.005. The dashed lines
represent 95% confidence bands for the case whe0.95.
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