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Abstract

We construct an effective field theory for complex Stueckelberg dark photon dark matter. Such an
effective construction can be realized by writing down a complete set of operators up to dimension six
built with the complex dark photon and Standard Model fields. Classifying the effective operators,
we find that in order to properly take into account the non-renormalizable nature of an interacting
massive vector, the size of the Wilson coefficients should be naturally smaller than naively expected.
This can be consistently taken into account by a proper power counting, that we suggest. First we
apply this to collider bounds on light dark matter, then to direct detection searches by extending the
list of non-relativistic operators to include the case of complex vectors. In the former we correctly
find scaling limits for small masses, while in the latter we mostly focus on electric dipole interactions,
that are the signatures of this type of dark matter. Simple UV completions that effectively realize
the above scenarios are also outlined.
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1 Introduction

The existence of Dark Matter (DM) relies so far just on gravitational evidences, while little is known
about its possibile non-gravitational interactions (see however [1] for a review). From the particle
physics point of view, apart from the obvious absence of strong interactions with us, one of the most
remarkable inferred property of DM is its cosmological stability. For ordinary matter, stability arises as
a consequence of accidental symmetries of the Standard Model (SM) after all the possible renormalizable
interaction terms are written down. Such accidents depend upon the gauge interactions as well as the
matter content of the theory. Barring massless particles, as the photons, the stability of electrons and
protons are understood in terms of accidental symmetry. In the DM literature the stability is often
taken for granted and ensured, for example for phenomenological studies, assuming DM to be (at least)
charged under some Z2 symmetry, with the SM being a total singlet. Generally speaking, such dark
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symmetries like Z2 can act on DM, so that in these cases it is then possible to study in full generality
the effective theory of DM interactions with the SM [2, 3].

In this work, we would like to study effective field theories (EFTs) of DM that are consistent with
the idea that DM stability arises accidentally. As such - in analogy to what happens for the SM -
we have in mind dark sectors with gauge interactions, where the lightest states are accidentally stable
against decay to the SM.

Here we consider DM as a massive vector, a scenario which is commonly known as dark photon,
see [4, 5] for reviews. Its simplest realization is characterised by a kinetic mixing interaction with the
SM hypercharge. Dark photon can be DM if a Z2 symmetry forbids such a kinetic mixing [6–19].
More complicated models involving extensions of the SM with non abelian gauge groups have also been
considered, realising stable vector DM candidates by means of renormalisable SU(2) gauge interactions
[17, 19–31, 31–33] (see also [34] for an example of confined SU(2)), or larger groups as in [17, 35–37],
further generalized to SU(N) in [38–40]. The case in which the dark sector is not a complete singlet
under the SM gauge group has been investigated for instance in [41, 42], allowing for electroweak
interactions between the two sectors.

Here we focus on a scenario in which the complex dark photon stability arises thanks to an accidental
U(1)D global symmetry of the dark sector. In order to fix the ideas, it is convenient to think about
the SM. If we consider a world where there are no fermions, the W± vector bosons will be accidentally
stable thanks to a U(1) symmetry (the global rephasing associated to electromagnetism), while the Z
boson (or the Higgs) have in principle no right to be stable. Indeed they would decay to W+W− if
g were sufficiently small. From this very simple ideal example, we are led to consider dark sectors -
endowed with dark gauge-Higgs interactions - that deliver dark photons in irreducible representation
of U(1)D. Having that in mind, we will remain agnostic about the precise origin of the interactions in
the dark sector, excluded for the presence of this U(1)D accidental symmetry, and only make use of
the assumption that the dark matter candidate is a massive complex dark photon that is a complete
singlet with respect to SM interactions. We dub these as complex dark photon scenarios.

The main purpose of this paper is to consider a bottom-up approach and construct the EFT for
complex dark photons stabilized by the accidental U(1)D, for similar studies see [15, 17, 43–50]. We
consider M⋆ as the effective mass scale of the new sector, while M is the mass of DM, and explore
contact interactions between operators constructed with dark photon fields and SM singlet operators.
In this context, the interactions between the dark and SM sector are typically casted in terms of a portal
connecting them, often generated by contact terms of SM singlet fields or carried by some mediator of
definite spin. The most studied scenario is that of a scalar portal [6, 8–10, 15, 18, 19, 22, 51], but also
models involving a pseudo-scalar [52], a fermion [33, 53] or a vector [36, 54–59] have been considered.

At low energy, DM is described as a Stuckelberg massive vector. While this is a consistent theory
when there are no interactions, the presence of interactions between DM and the SM challenges the
construction of the EFT. In practice, as we will review below, depending on the strength of the DM-SM
interactions, Stueckelberg massive vectors lose perturbativity around a scale E ≫M that can be well
below the natural EFT cutoff M⋆. To overcome this problem, in this work we suggest a modified
version of the power counting for the size of the Wilson coefficients of our DM EFT that systematically
include this effect, by associating to each non-derivative insertion of dark photon fields a suppression
proportional to ratio of M/M⋆. This is instrumental to avoid non-physical effects that appear when
computing observables with on-shell DM, such as collider bounds.

With the correct power counting, we then explore the direct detection and collider phenomenology
(for other works along these lines with somewhat complementary studies, see [21, 46, 51, 58, 60]). We
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highlight the importance of the Higgs portal even in the dark photon case and we emphasize that
accidentally stable complex dark photon can have - in principle - dipole interactions that give rise to
long-range effect in direct detection rates [61, 62]. The latter effect is absent for real dark photons.

The paper is organized as follows. In section 2 we discuss the structure of the operators that can be
written down for a complex dark photon, paying attention to redundancies in their definition and to the
hidden cut-off inherent to the Stuckelberg nature of the DM. The setup is then applied to identify the
leading terms in an EFT expansion in section 3. In section 4 we move to lower energies and match the
EFT obtained in the previous section into effective theories valid below the electroweak scale and at the
nuclear scale. This matching is instrumental for correctly compute the limits on the new physics scale
M⋆ coming from direct detection experiments. Section 5 constitutes the core of our phenomenological
analysis, in which we show the limits on the parameter space coming from direct detection and colliders
(focusing, in the later case, on Higgs and Z boson decays), while in section 6 we sketch two possible
UV-complete theories that generate, at least in part, our low energy EFT. We draw our conclusions in
section 7 and relegate technical material to the appendices.

2 Complex Dark Photon

In this work we consider DM as a complex dark photon, that is a vector field Vµ with a non-trivial
complex conjugate V̄µ, being a total singlet of the SM. The Lagrangian of Vµ is described by the
following terms

LV = −1

2
Vµν V̄

µν +M2VµV̄
µ + Linteractions(Vµ; SM) . (1)

The free part of the above lagrangian displays a global symmetry U(1)D under which Vµ → eiαVµ.
Such a symmetry, when extended to the full lagrangian, including interactions, acts as a stabilising
symmetry for DM, forbidding interactions between one single V and SM fields, all taken to be neutral
under U(1)D. Effectively, one can think of this model as if the dark photon Vµ were charged with some
dark abelian charge.

At this level, Vµ is a massive Proca field (gauge fixed Stueckelberg vector), described by the general-
ized Lorenz condition ∂µV

µ = 0, such that it is the solution of a Klein-Gordon equation (2+M2)Vµ = 0
with just three physical degrees of freedom. The Fourier modes in momentum−p space are described
by three polarization states ελµ(p) such that

∑
λ ε

λ
µ(p)ε

λ∗
ν (p) = −gµν + pµpν/M

2.
We assume that, at low energies, U(1)D is a good symmetry of the DM lagrangian. This greatly

restricts the interactions between Vµ and the SM fields, allowing us to classify the possible structures
arising at low energy in an EFT description. The idea is that at some scale M⋆, new states coupled to
Vµ are integrated out. In general, we expect the following structure

L = LSM +
1

M2
⋆

L̂eff(SM;Vµ)−
1

2
Vµν V̄

µν +M2VµV̄
µ . (2)

At this level, L̂eff(SM;Vµ) contains all the interactions between DM and the SM, and we expect it to

be a polynomial series in operators of higher dimension. The normalization is such that L̂eff(SM;Vµ)
has dimension six, but this does not forbid that it can contain operators of any dimensions with
the appropriate dimensionful Wilson coefficient. The above structure is meant to render explicit the
decoupling limit when the mass scale M⋆ is taken arbitrarily large, a limit in which the DM becomes
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M⋆
integrating out the dark sector

L = LSM + 1
M2
⋆
L̂eff(SM;Vµ)− 1

2Vµν V̄
µν +M2VµV̄

µ

MMEW

SM × dark sector

Figure 1. Generation of the DM effective field theory under consideration. We put in evidence the hierarchy
of scales needed for the effective description to be valid.

extremely weakly coupled to the SM. Clearly, our EFT is valid up to energies E ≲ M⋆ and can only
be applied in this range.

To be included in the EFT, the DM mass must satisfy M ≪M⋆, so that all the process important
for DM phenomenology can be described within the effective theory. The fundamental theory of which
eq. (1) is a low-energy description is depicted in a cartoon in fig. 1. We take the heavy fields that
are integrated out to have masses M⋆ ≫ MEW, with MEW standing for the common mass scale of
the heaviest SM states (h,W, t). The matching is then done at a scale M⋆ where the SM electroweak
symmetry is still unbroken and operators are classified according to SM gauge symmetries.

The systematic construction of the effective field theory coupling the SM and DM, described by
L̂eff(SM;Vµ), depends on two important assumptions that we now discuss. The first relies on the U(1)D
symmetry to be elevated to full symmetry of the lagrangians in eqs. (1) and (2). The second, instead,
relies on the effective description of Vµ as a massive vector field à la Stueckelberg. This implies that
eq. (1) is itself an approximate description valid at low energies up to some scale ΛV , that may be
lower than M⋆. This last point is extremely important, as we can only use the EFT in a correct energy
range where ΛV ≫M⋆.

2.1 Symmetry constraints on the effective interactions

Since the full theory enjoys U(1)D but the SM is neutral under such a symmetry, the effective interac-

tions L̂eff(SM;Vµ) are constructed with singlets of U(1)D, that necessarily involve at least two powers
of Vµ. This forbids for example a kinetic mixing between Vµν and the hyper-charge field strength,
which is usually the most dominant effect for the phenomenology of dark photons [4, 20].

We classify the U(1)D singlet operators in terms of their Lorentz structure. Since we are dealing
with a model for DM we only consider operators involving up to two fields Vµ, and up to dimension
four. We now discuss in detail the different structures that may appear in the EFT operators, also
shown in table 1.
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Type Name Expression

scalar OS VµV̄
µ

scalar OF 2 Vµν V̄
µν

pseudoscalar OP εµνρσV
µν V̄ ρσ

vector JµV iV̄ν
←→
∂µV

ν

pseudo-vector JµP iεµνρσV̄ν
←→
∂ρVσ

symm. tensor OSµν V(µV̄ν)

antisymm. tensor OAµν iV[µV̄ν]

traceless tensor OTµν iV[µρV̄
ρ
ν]

Table 1. The eight operators constructed with two complex dark photon dark matter fields considered in this
work, including up to two derivatives.

Scalar singlet operators
We first discuss Lorentz scalar operators constructed with Vµ. There are both CP-even and CP-odd
singlet operators:

scalar : OS = VµV̄
µ , OF = Vµν V̄

µν ; pseudoscalar : OP = εµνρσV
µν V̄ ρσ . (3)

Out of these three operators, OS = VµV̄
µ is expected to give the larger effects for phenomenology,

since it has the lowest dimensions. Notice also that OP could have been added to eq. (1), but being
a total derivative does not lead to effects at the perturbative level. As for Vµν V̄

µν , it can appear in
dimension six operators involving |H|2 affecting, for example, Higgs decay. These operators can then
be contracted with the following SM scalar singlet operators

OSM = { |H|2 , |H|4, F 2, |DµH|2 , ψ̄i /Dψ, QHU, F F̃ , · · · } . (4)

Here F = G,W,B refer to the SM gauge bosons in the unbroken electroweak phase, in agreement with
the assumption M⋆ ≫ MEW. In this paper we follow the convention by which ⟨H⟩ = v/

√
2(0, 1)T and

v ≃ 246GeV.
We notice that other Lorentz and U(1)D invariant scalars can be constructed with Vµ and deriva-

tives, such as ∂µVρ∂
µV̄ ρ or |∂ρV ρ|2. However they are redundant with V V̄ (and current operator,

see next) once equations of motion and gauge conditions are imposed, for example ∂µVρ∂
µV̄ ρ =

Vρ2V̄
ρ + total derivative. In addition, there is also the dimension-4 structure ∂µV

ν∂ν V̄
µ, which after

double integration by part can be written as a (symmetric) tensor structure, also to be discussed next.

Vector singlet operators
Lorentz vector operators are again of two types, depending on the CP quantum numbers. In particular
we can define a current real CP-even operator and a CP-odd vector exploiting the Levi-Civita tensor

vector : JVµ = iV̄ν
←→
∂µV

ν ; pseudo− vector : JPµ = iεµνρσV̄
ν←→∂ρV σ. (5)

Notice that other CP-even structures such as V̄ ρVρµ are equivalent to JVµ when integration by part
and the condition ∂µV

µ = 0 are taken into account. These operators have energy dimension three and
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can be contracted with vector singlet operators of the SM, such as the hyper-charge current or generic
vector structures bilinear in the SM fermions, Higgs and gauge fields. These operators can then be
paired with the following vector structures of SM fields:

OµSM = { JµY ≡
∂ρBµ

ρ

g′
, JµH ≡ iH

†←→DµH, ψ̄iγ
µψi , · · · } , (6)

where ψi denotes a generic SM fermion with flavor index i. For later convenience we have introduced
the hyper-charge current JµY and the Higgs singlet current JµH . We take the complex dark photon to
have diagonal couplings to SM fermions, avoiding flavor-violation effects, from which follow equal flavor
indices in the fermionic current.

Tensor singlet operators
In principle we can also classify tensor structures and distinguish them upon symmetry properties. In
particular we can have both antisymmetric and symmetric combinations:

antisymm. : OAµν = iV[µV̄ν] , OTµν = iV[µρV̄
ρ
ν] ; symm. : OSµν = V(µV̄ν). (7)

All these dark operators can be contracted with SM Lorentz tensor structures (also respecting gauge
invariance), but notice that if contracted with terms proportional to gµν the resulting interactions
are either redundant with the ones associated to scalar-scalar contact operators or vanish. The OAµν
and OSµν terms are dimension 2, but only the antisymmetric combination allows for the creation of a
dimension-4 renormalizable interaction when coupled to Bµν , therefore resulting of particular interest
since it provides leading phenomenological contributions. Meanwhile OTµν , and OSµν when contracted
with tensor structure with SM fields gives rise to higher dimensional effective operators. We remind
that we do not consider operators in L̂eff(SM;Vµ) with dimension higher than 6.

Having this in mind, dark tensor singlets can be coupled to the following SM tensor and gauge
singlets:

OµνSM = {Bµν , |H|2Bµν , B̃µν , |H|2B̃µν , ∂(µ∂ν)|H|2 , Tµνψ , TµνF } . (8)

We here accounted for the possibility of giving rise to both CP-even and CP-odd interactions, where the
couplings to the hodge dual B̃µν is the only extra source of CP-violation coming with SM structures.
The tensor structure Tµνψ (F ) is nothing but the energy-momentum tensor of SM fermions (gauge bosons).

We summarize all the possible UV operator structures respecting symmetry constraints with two
complex dark photons in table 1.

2.2 Stueckelberg effective field theory

An important consideration on the validity of the EFT is somehow already hidden in eq. (1) when a
bare mass term for the vector has been introduced, with the same structure of the operator OS .

The free part of eq. (1) enjoys the typical structure of Stueckelberg massive vector, which in isolation
is a renormalizable theory. However, interactions can easily spoil this behaviour, as we now show. This
is crucially related to the operator OS which is badly behaved at high-energy when tested in connection
with other interactions and it is of great importance for our effective description. Similar discussions
along this line can be found in [44] for a real massive Stuckelberg vector, and in [61] for the case of
complex vector only coupled to operators made with electromagnetic field strength. We generalize the
discussion to an EFT approach.
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In order to illustrate the problem, let us consider as an example the operator κ|H|2OS , which has
exactly the same structure of the mass term,M2OS , of eq. (1). Having added interactions, despite them
being dimension-4 at this level, and hence naively renormalizable, they completely spoil the argument
that the Stueckelberg mass can be extrapolated up to extremely high energy. This follows from the
fact that the amplitude for the scattering hh → V V̄ grows with energy for E ≫ M/

√
κ, introducing

a physical cut-off at a scale ΛV ≈ M/
√
κ that, depending on the value of κ, can be parametrically

smaller than M⋆.
The apparent renormalizability of κ|H|2VµV̄ µ is manifestly lost when, applying the ‘Stueckelberg

trick,’ we restore the gauge invariance of the free Proca Lagrangian. Introducing the Goldstone π and
by sending Vµ → Vµ + ∂µπ/M , we restore the full gauge symmetry under which π shifts. In particular
the gauge invariance is realised as

δVµ(x) = ∂µλ(x) , δπ(x) = −Mλ(x) , (9)

and complex conjugate transformations for V̄ and π̄.
This is instrumental to study the high energy behaviour of the model: when discussing the E ≫M

limit it is convenient to restore the gauge symmetry. This leads to the following Lagrangian from the
free part of (1)

L Stueckelberg
V = −1

2
Vµν V̄

µν +M2

(
Vµ +

∂µπ

M

)(
V̄ µ +

∂µπ̄

M

)
− 1

ξ
(∂µV̄

µ + ξMπ̄)(∂µV
µ + ξMπ) , (10)

where we have added a Rξ gauge fixing to remove the V − π mixing. In Landau gauge with ξ = 0,
the amplitudes with an external longitudinal polarization at high momentum p≫M are equivalent to
A(VL(p); ...) = εµL(p)Aµ = A(π; ...) as dictated by the ‘equivalence theorem’.

This can then be used to study the high energy behaviour of operators constructed with Vµ. This
feature does not appear in operators involving Vµν , since it is invariant under (9) and the Goldstone
boson π does not appear. Each time an insertion of Vµ is present, the high energy behavior can be
studied focusing on the longitudinal polarization of V (in Landau gauge for simplicity). This has
remarkable consequences for our DM EFT, for all kind of dark operator structures.

This can then be applied to study the cut-off associated to processes involving non gauge-invariant
operators under the sole δVµ = ∂µλ. Only operators constructed with Vµν are gauge invariant, while
OS , JVµ , JPµ , OAµν and OSµν are not. This implies that operators involving such terms are originating
from integrating out (at tree or loop level) dark sector states that are involved with the generation of
the mass scale M . It also makes evident that only in the singular limit where the Wilson coefficients
of these operators are exactly zero the gauge invariance is recovered in the effective operators. In such
a limit a local U(1)2 × Z2 is recovered.

For all processes at energies much above M , such as the case of H and Z decays into dark matter,
the behavior of these operator is respectively

OS =
1

M2
|∂µπ|2 + · · · , JVµ =

i

M2
(∂ρπ̄
←→
∂µ∂

ρπ) + · · · , Oµν =
∂µπ∂ν π̄

M2
+ · · · (11)

This signals the appearance of a physical cut-off that can be parametrically smaller than M⋆ and it is
related to the mass M rather than to some UV parameter.

For the case of interest |H|2OS , which will be relevant for our phenomenological discussion, we then
have

κ|H|2OS =
κ

M2
|H|2(∂µπ + · · · )(∂µπ̄ + · · · ) . (12)
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The operator has a hidden cut-off which is much smaller than naively expected and, as mentioned above,
is of order M/

√
κ. At this point, our normalization of the L̂eff term in (2) is justified even for the

operator |H|2OS and it suggests that the correct power counting for κ is of the form κ ∝ λ× (M/M⋆)
2.

Here λ is a (quartic) coupling and M⋆ the scale of the new-physics generating the effective interaction.
The physical cut-off of the effective operator is now M⋆/

√
λ, which is correctly the scale of new-physics

M⋆ times the effect of the coupling between the SM and DM sectors.

3 Structure of the EFT

Having discussed the possible operators constructed with Vµ invariant under U(1)D and the constraints
on the size of the coupling due to the parametrization as a Stueckelberg massive vector, we are now
in the position to write down the effective lagrangian of SM plus DM. As already mentioned, this
lagrangian has to be invariant under SM×U(1)D. At energies below M⋆ the SM is deformed by the
following interactions

L = LSM −
1

2
Vµν V̄

µν +M2VµV̄
µ + L̂eff(SM;Vµ) +

1

M2
⋆

L̂SM,6 . (13)

We have included also the SM EFT at dimension-6, L̂SM,6, because in concrete realizations we expect
that deformations with only SM field be generated by integrating out the dark sector at the scale M⋆.
For the moment, we only consider L̂eff . The construction of the EFT can proceed simply by listing all
the operators of a given dimension built from SM singlet operators and DM singlet operators, in order
to have an EFT invariant under U(1)D. Therefore we have

L̂eff(SM;Vµ) = L̂
(4)
eff +

1

M2
⋆

L̂
(6)
eff + · · · (14)

The structure of these two terms is provided below and it is constructed using the operators in table
1 together with the SM structures listed in eqs. (4), (6) and (8).

Dimension-4 terms
There are only three operators at dimension-4, given by

L̂
(4)
eff = λHOS |H|2 + λBOAµνBµν + λ′BOAµνB̃µν . (15)

While the first term is common to any theory of dark photon, and it is essentially an Higgs-portal
interaction, the second and third contributions only arise for complex dark photon scenarios, since
the anti-symmetric two index tensor vanishes for real vectors. In particular, we are interested in the
phenomenology associated to the λB, λ

′
B coefficients, which induce a low-energy interaction between

DM and the photon – despite the complex dark photon being electrically neutral. These interactions
can give enhanced features at low momentum transferred in direct detection, equivalent to magnetic
and electric dipole moment for spin-1 dark matter respectively [45, 61, 62]. Being dimension four, the
operators in eq. (15) are expected to be the leading effect, which should be even more important for
strongly coupled DM as in [63]. However, we will see that the appropriate power counting connected
to the discussion in sec. 2.2 will make the size of the Wilson coefficients effectively smaller.
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Operator Expression Gauge invariance
Naive

power-counting
Improved

power-counting

OS VµV̄
µ ✗ 1 ×(M/M⋆)

2

OF 2 Vµν V̄
µν ✓ 1 1

OP εµνρσV
µν V̄ ρσ ✓ 1 1

JVµ iV̄ν
←→
∂µV

ν ✗ 1 ×(M/M⋆)
2

JPµ iεµνρσV̄
ν←→∂ρV σ ✗ 1 ×(M/M⋆)

2

OSµν V(µV̄ν) ✗ 1 ×(M/M⋆)
2

OAµν iV[µV̄ν] ✗ 1 ×(M/M⋆)
2

OTµν iV[µρV̄
ρ
ν] ✓ 1 1

Table 2. We summarize the effect of the application of the improved power counting of eq. (17) to all the
possible DM structures listed in tab. 1, highlighting when the extra (M2/M2

⋆ ) factor modifies the usual naive
power counting to restore the gauge invariance of the low energy theory for a massive Stueckelberg vector.

Dimension-6 terms
There are clearly many more operators at dimension 6, given by the following Lagrangian:

L̂
(6)
eff = OS

[
CH |H|4 + CDH |DµH|2 +

∑
ψ

CHψ yψ ψ̄Hψ +
∑
F

(
CFFµνFµν + CF̃FµνF̃

µν
)]

+ CH,2OF 2 |H|2 + CH,3OP |H|2

+ JVµ

[∑
ψ

Cψψ̄γµψ + CY JµY + CHcJµH

]
+ JPµ

[∑
ψ

Cψ̃ψ̄γ
µψ + CỸ J

µ
Y + CH̃cJ

µ
H

]

+OSµν
[
CD2H∂

(µ∂ν)|H|2 +
∑
ψ

CTψT
µν
ψ +

∑
q

CTF T
µν
F

]

+OAµν
[
CHB|H|2Bµν +

∑
ψ

CHψ,2 yψ ψ̄Hσµνψ
]
+ CBOTµνBµν

+OAµνC′HB|H|2B̃µν + εµνρσOAµν
∑
ψ

CHψ,3 yψ ψ̄Hσρσψ + C′BOTµνB̃µν .

(16)

We have grouped the various contact interaction accordingly to their Lorentz structure. We explic-
itly multiply every interaction involving one left handed and one right handed SM fermion by the
corresponding Yukawa coupling, in such a way that Minimal Flavor Violation is respected [64].

3.1 Power counting possibilities

We would now like to assign to the various coefficients a natural size that respects a good high-energy
behavior of the theory, consistent with having massive gauge fields in the EFT. Exploiting the discussion
of section 2.2, we can argue in favour of the following power counting: every vector field Vµ that appears
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Ci Power counting Ci Power counting Ci Power counting

CH cH g
4
⋆ CDH cDH g

2
⋆ CHψ cHψ g

2
⋆

CF, F̃ g2F cF, F̃
g2⋆

16π2 CH,2 cH,2 g
2
⋆
g2⋆

16π2 CH,3 cH,3 g
2
⋆
g2⋆

16π2

Cψ, Y,Hc cψ, Y,Hc g
2
⋆ Cψ̃, Ỹ , H̃c cψ̃, Ỹ , H̃c g

2
⋆ CD2H cD2H g

2
⋆

CTψ cTψ g
2
⋆ CTF cTF g

2
⋆ CHB cHB g

′ g2⋆
g2⋆

16π2

CHψ,2 cHψ,2 g
2
⋆ CB cB g

′ g2⋆
16π2 C′HB c′HB g

′ g2⋆
g2⋆

16π2

CHψ,3 cHψ,3 g
2
⋆ C′B c′B g

′ g2⋆
16π2

Table 3. List of the normalized effective Wilson coefficients for dimension 6 operators in terms of powers of
gauge couplings gi.

without the full field strength is assigned a weight

Vµ →
M

M⋆
Vµ , improved power-counting . (17)

while operators built out of the DM field strength are left invariant. In principle this rescaling has
an overall O(1) dimensionless coefficient that we fix to unity in the rest of the paper (see however
section 6).

The rescaling of eq. (17) has several effects. First of all, while it does not change the dimensionality
of the operators, it makes their Wilson coefficient consistent with a high-energy limit of the massive
gauge field, as discussed in section 2.2. Second, it will guarantee a correct high-energy behaviour,
namely when the energy is in the rangeM ≪ E ≪M⋆, we will not see spurious non-decoupling effects,
which is instrumental for a correct interpretations of the collider bounds. This has also an impact for
the low energy physics related to DM scatterings (and, in general, also annihilations), since it naturally
suppresses the size of the effects by the DM mass. Therefore, although less spectacular than the effects
on high-energy observables M ≪ E, there are important consequences also at low energies.

In terms of operators, this implies that the Wilson coefficients should be rescaled according to what
shown in table 2. In the table, we contrast the improved power-counting introduced in eq. (17) with
the naive power-counting in which the Vµ rescaling is not applied.

Moreover, in order to make a stronger connection with possible UV completion, we define the size
of the Wilson coefficient Ci normalized (in ℏ counting) to a coupling g⋆. Every coefficient Ci in eq. (14)
therefore has its explicit expression in terms of g⋆. The dictionary is the following: for dimension 4
operators, we have {

λH = dH g
2
⋆ , λB = dB g

′ g2⋆
16π2

, λ′B = d′B g
′ g2⋆
16π2

}
, (18)

where g′ is the hyper-charge gauge coupling and all the small d’s are O(1) numbers. The same can be
done at the level of dimension 6 operators, for which we obtain the expressions summarized in table 3,
where gF denotes the gauge coupling of the gauge boson F = G,W,B and the c’s are O(1) numbers.
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3.2 About the dark photon physical mass

The first terms of (15) and (16) renormalize the low-energy free lagrangian of Vµ. Indeed, upon
electroweak symmetry breaking they redefine the dark photon mass as

M2
phys =M2

[
1 + dH

g2⋆v
2

M2
⋆

+
cH
2

(
g2⋆v

2

M2
⋆

)2
]
. (19)

With the improved power counting, the physical mass is only partially corrected by higher dimensional
operators, since if M → 0 in the above formula the physical mass is itself zero. Also the correction
from cH is quadratically suppressed as compared to dH .

There are, however, two more extreme Stueckelberg-like scenarios. First, the case M ≫ g⋆v,
where the physical mass originates mostly from dynamics above M⋆ in such a way that M corrections
to the mass can be neglected. In this limit one could explore a Stuckelberg-like interactions with
|H|2n without the suppression M2n/M2n

⋆ . In particular we reach this configuration with the shift
λH → λSH ×M2

⋆ /M
2. The cut-off scale of our EFT becomes E ≳M/

√
λHg⋆. Second, we have the pure

massless Stueckelberg scenario, where V gets its mass entirely from |H|2. This limit can be reached
by rescaling λH → λ0H ×M2

⋆ /M
2 and CH → C0H ×M4

⋆ /M
4 and then also M → 0. Such a term has an

even lower cut-off than the one discussed in section 2.2, since in the limit where M → 0 the physical
mass does not vanish, but its proportional to Mphys ∝ λ0Hg⋆v. Such a limit shows a cut-off in the
scattering hh → V V̄ at around E ≳ v, which is as worse as the one of Higgsless theories. We will
briefly come back to this case in section 5 where we explore wether this scenario can live in some point
of the parameters space tested by experiments. Notice that, upon electro-weak symmetry breaking,
the first operator on the second line of (16) renormalizes the wave-function of Vµ. We neglect this
correction, since in minimally coupled models it arises at loop-level.

3.3 Dark Matter abundance

Before we go on discussing the DM phenomenology in detail, we would like here to comment on how
we expect to reproduce the DM abundance of complex dark photon in our context. We take the point
of view - consistent with our EFT approach to the problem - that the DM abundance ΩDM can be
computed only below the scale M⋆ of our EFT. Indeed, with our approach we cannot explore the
other possibility where contributions to the DM abundance happen also beforeM⋆. However, although
we do not rely on them, it is conceivable to imagine that there are mechanisms, both thermal and
non-thermal, that contribute to the DM abundance even above M⋆.

We are then left with the chance of producing DM in the early universe only if we consider energy
scales, both temperature and Hubble, that are aboveM . There are several distinguished scenarios that
can be discussed easily depending on the size of Hubble scale during inflation HI and the reheating
temperature TR. For the practical reasons discussed above we consider M⋆ > TR, while the individual
size of TR and HI compared to the DM mass M is important to identify scenarios of DM production.
We here focus on two main cases:

• TR < M : in this case no thermal production of DM is expected and freeze-out from the SM will
be negligible. Yet, if HI > M , a massive Stueckelberg vector can be produced gravitationally
during inflation, as shown in [65]. This mechanism only depends on the mass of the vector, and
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it is at work at the level of the free field, see anyhow [66] for a discussion of the impact of self-
interactions. The final abundance will depend on the value of the Hubble scale during inflation
and on TR [67–69] and it is possible to find DM masses that reproduce today’s abundance of
interest for our phenomenological study in the next sections. This mechanism is non-thermal,
based on particle production during/after inflation (see also [70] for a review);

• TR > M : in this case, in addition to the inflationary production, we have also the chance that
the DM is kept in thermal equilibrium with the SM bath through the interactions in the EFT.
The observed abundance is then thermally produced as the complex dark photon eventually
freezes-out. In principle this can be done systematically in the EFT as long as we work in a
range M⋆ ≳ TR ≳ M . The dominant contribution to the DM abundance from freeze-out comes
from the EFT operators that contribute to s-wave annihilation of complex dark photons into SM
final states, during radiation domination. In eq. (14), s-wave annihilation comes mainly from the
dimension-4 operators Higgs portal and the electric dipole-like ones in eq. (15). We focus here
briefly on these two, all the others will give smaller annihilation cross-sections and hence larger
contributions to the abundance. We find that, individually, the Higgs portal operator reproduce
the DM abundance for a quartic dH ≲ 8× 10−5(M/100GeV) while the dipole requires
d′B ≲ 0.1(M/100GeV) with the naive power counting. On the other hand, when the improved
power counting is adopted, the DM abundance is obtained for dH ≲ 8×10−9(M/100GeV)(M⋆/M)2

for the Higgs portal and d′B ≲ 10−5(M/100GeV)(M⋆/M)2 for the electric-like dipole operator.
For values smaller than these, DM is overproduced. As we are going to show in the next section,
these values can be larger than the bounds attainable on these Wilson coefficients from direct
searches. We conclude that DM thermal production likely leads to overproduction in the region
tested by direct detection. In this case, thermal production of DM can be rendered consistent
with the observed value requiring dilution of the number density. This however requires extra
ingredients beyond the EFT.

Our arguments suggest that there is more than a way to reproduce the DM abundance. In the following
we assume that today’s abundance is always reproduced in our phenomenological studies.

4 Matching onto low energy EFT

The EFT so far developed in eq. (14) cannot be used straightforwardly unless we are just interested
in high energy phenomena, as, for example, modifications to invisible branching ratios of H and Z
(as discussed in section 5.1). When we are interested in low energy phenomena like direct detection
experiments, we would like to match our eq. (14) to a non-relativistic theory of nuclei.

In this section we discuss in detail the procedure to match our EFT onto effective theories valid
at even lower energy regimes. While this procedure is completely standard (see [71] for a technical
review), this exercise will allow us to keep track explicitly of all the operators in eq. (14) by computing
their effects on low-energy observables. A summary of the low energy operators generated in our
model is shown in two main tables: table 4 for the EFT of DM and quarks and gluons; table 5 for the
non-relativistic EFT of DM-nucleons.
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Operator Expression Coefficient Expression

Õ1 VµV̄
µ[mq q̄q] c̃1

[
1, M

2

M2
⋆

](
− λH

M2
h
− CH

M2
⋆

v2

M2
h
+

CHf
M2
⋆

)
Õ2 VµV̄

µ[ αs12πGµνG
µν ] c̃2

[
1, M

2

M2
⋆

](
λH
M2
h
+ CH

M2
⋆

v2

M2
h
+ CF

M2
⋆

)
Õ3 Vµν V̄

µν [mq q̄q] c̃3 − CH,2
M2
⋆M

2
h

Õ4 Vµν V̄
µν [ αs12πGµνG

µν ] c̃4 − CH,2
M2
⋆M

2
h

Õ5 Ṽµν V̄
µν [mq q̄q] c̃5 − CH,3

M2
⋆M

2
h

Õ6 Ṽµν V̄
µν [ αs12πGµνG

µν ] c̃6 − CH,3
M2
⋆M

2
h

Õ7 JVµ [Jµq ] c̃7
[
1, M

2

M2
⋆

]
1
M2
⋆

(
Cf + CY Yf + CHc

g2Zg
q
vv

2

M2
Z

)
Õ8 JPµ [J

µ
q ] c̃8

[
1, M

2

M2
⋆

] g2⋆
M2
⋆

(
Cf̃ + CỸ Yf + CH̃c

g2Zg
q
vv

2

M2
Z

)
Õ9 iV[µV̄ν][F

µν ] c̃9
[
1, M

2

M2
⋆

] cθw
2

(
λB + CHB v2

M2
⋆

)
Õ10 iV[µV̄ν][q̄σ

µνq] c̃10
[
1, M

2

M2
⋆

]CHf,2
2M2

⋆
mq

Õ11 iV[µV̄ν][∂
[µ
A J

ν]
NC] c̃11

[
1, M

2

M2
⋆

] sθw
2

gZ
M2
Z

(
λB + CHB v2

M2
⋆

)
Õ12 iV[µρV̄

ρ
ν][F

µν ] c̃12 cθw
CB
M2
⋆

Õ13 iV[µρV̄
ρ
ν][∂

[µ
A J

ν]
NC] c̃13 sθw

gZ
M2
Z

CB
M2
⋆

Õ14 V(µV̄ν)[T
µν
G ] c̃14

[
1, M

2

M2
⋆

] CTF
2M2

⋆

Õ15 V(µV̄ν)[∂
(µ
A J

ν)
q ] c̃15

[
1, M

2

M2
⋆

] CTf
2M2

⋆

Õ16 V(µV̄ν)[∂
(µ∂ν)mq q̄q] c̃16 −

[
1, M

2

M2
⋆

] CD2H

2M2
⋆M

2
h

Õ17 V(µV̄ν)[∂
(µ∂ν) αs12πGαβG

αβ] c̃17 −
[
1, M

2

M2
⋆

] CD2H

2M2
⋆M

2
h

Õ18 iV[µV̄ν]F̃
µν c̃18

[
1, M

2

M2
⋆

] cθw
2

(
λ′B + C′HB

v2

M2
⋆

)
Õ19 εµνρσiV[µV̄ν][q̄σρσq] c̃19 −

[
1, M

2

M2
⋆

]CHψ,3
2M2

⋆
mq

Õ20 εµνρσiV[µV̄ν][∂[µJNCσ]] c̃20
[
1, M

2

M2
⋆

] sθw
2

gZ
M2
Z

(
λ′B + C′HB

v2

M2
⋆

)
Õ21 iV[µρV̄

ρ
ν][F̃

µν ] c̃21 cθw
C′
B

M2
⋆

Õ22 εµνρσiV[µαV̄
α
ν][∂[ρJNCσ]] c̃22 sθw

gZ
M2
Z

C′
B

M2
⋆

Table 4. Effective operators involving quarks and gluons, and corresponding Wilson coefficients, obtained
matching the EFT presented in section 3 to the low energy EFT of eq. (20) at the weak scale. We set the Wilson
coefficients CDH , CF̃ = 0 since they will not play any role in the rest of the work. In the second column we
indicate in square brackets the two alternative choices for the power counting, i.e. 1 for the naive power counting
and M2/M2

⋆ for the improved power counting.

4.1 Matching at the Electro-Weak Scale

According to our fundamental assumptions, our EFT is defined at the UV scale M⋆ ≫MEW at which
any heavy dark degree of freedom is integrated out. Moving to lower energies, we need to perform a
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first matching procedure at the electroweak scale, when the Z, W , h bosons and the heavy top-quark
must be integrated out. The effective Lagrangian valid at energies E ≪MEW is generally given by:

LEFT

∣∣
E ≪MEW

⊃
22∑
i=1

c̃i Õi, (20)

with the operators Õi and the corresponding Wilson coefficients c̃i listed in table 4. In the table,
we write the SM structures to be further evaluated when even lower energies are considered (see next
section) in square brackets, and we also show in square brackets the two possible power counting choices
according to what stated in table 2.

In order to set the notation, θw is the weak angle, the quark current Jµq that appears in Õ7,8,11,13,15

is the vector current Jµq = q̄γµq computed with light quarks, while JµNC is the neutral current to which
the Z boson couples,

JµNC =

(
1

2
− 4

3
sθw

)
ūγµu+

(
−1

2
+

2

3
sθw

)(
d̄γµd+ s̄γµs

)
. (21)

It appears in the Õ11,13,20,22 operators because they are obtained integrating out the Z boson in the
s-channel (as well as in the contribution from the Higgs current in Õ7,8 but with a different structure, so
we dropped the notation momentarily there). We notice that from each coupling of the complex dark
photon to the hypercharge, we obtain two contributions below the EW symmetry breaking, among
which the one due to the Z-coupling is evidently suppressed by an extra 1/M2

Z factor. On the other
hand, the operators Õ9,12,18,21 that contain a single photon field strength will be particularly important
for direct detection, since they contribute to the cross section via a photon exchange in the t-channel
and are thus enhanced, rather than suppressed, by the small momentum exchanged in the reaction.
On top of that, we will only show bounds coming from the γ-coupling when discussing direct detection
phenomenology in section 5.2. Finally, TµνG denotes the energy-momentum tensor of gluons. We do
not consider operators that contain leptons and more than one photon because they are not relevant
(at leading order) for the phenomenology we discuss in this work.

4.2 Single Nucleon EFT

We now take the EFT defined by eq. (20) and move to even lower energies. The next relevant threshold
we encounter is around the GeV, i.e. around the QCD confinement scale, when we must match to a
single-nucleon relativistic EFT. In momentum space, the Lagrangian can be written in terms of the
nucleon field N as

LN =cSVµV̄
µN̄N + cFSVµν V̄

µνN̄N + cPSṼµν V̄
µνN̄N + cV J

V
µ J

µ
N + cPV J

P
µ J

µ
N + cMV[µV̄ν]q

[µ
A J

ν]
N

+ cATV[µV̄ν]N̄σ
µνN + c′MV[µρV̄

ρ
ν]q

[µJ
ν]
N + cSTV(µV̄ν)q

(µJ
ν)
N + c2dV(µV̄ν)q

(µqν)N̄N

+ cE ε
µνρσV[µV̄ν]q[ρJN σ] + c′AT ε

µνρσV[µV̄ν]N̄σρσN + c′E ε
µνρσV[µαV̄

α
ν]q[ρJN σ]

(22)

where q represents the exchanged 4-momentum and the vector nucleon current is JµN = N̄γµN . The
set of effective operators appearing in eq. (22) is obtained by evaluating the operator structures in
square brackets containing quarks and gluons that appear in table 4 using the matrix elements listed
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in [71, 72]. The dimensionful Wilson coefficients appearing in eq. (22) can then be written in terms of
the tilded Wilson coefficients of table 4 as

cS = mN

[(∑
q

fNTq

)
c̃1 +

2

27

(∑
q

fNTq − 1

)
c̃2

]
, cV =

∑
q

F q,N1 (0) c̃7 ,

cFS = mN

[(∑
q

fNTq

)
c̃3 +

2

27

(∑
q

fNTq − 1

)
c̃4

]
, cPV =

∑
q

F q,N1 (0) c̃8 ,

cPS = mN

[(∑
q

fNTq

)
c̃5 +

2

27

(∑
q

fNTq − 1

)
c̃6

]
, cAT =

∑
q

F q,NT,0 (0) c̃10 ,

c2d = mN

[(∑
q

fNTq

)
c̃16 +

2

27

(∑
q

fNTq − 1

)
c̃17

]
, cST =

∑
q

F q,N1 (0) c̃15 ,

cM =
QN
q2

c̃9 + FNC
1 (0) c̃11 , c′M =

QN
q2

c̃12 + FNC
1 (0) c̃13 ,

cE =
QN
q2

c̃18 + FNC
1 (0) c̃20 , c′E =

QN
q2

c̃21 + FNC
1 (0) c̃22 ,

c′AT =
∑
q

F q,NT,0 (0) c̃19 ,

(23)

where we used the standard notation for the form factors that appear at the nucleon level (see [71, 72]).
The effective coefficients generated by UV interactions to the hypercharge are here labelled according

to the type of interaction they resemble, i.e. c
(′)
M contributes to the complex dark photon magnetic

dipole while c
(′)
E is the triggered electric dipole-like coupling.

4.3 Non-relativistic Effective Field Theory

Finally, the relativistic EFT defined in eq. (22) should be reduced to a non-relativistic EFT (NREFT),
that can be used to compute nuclear response functions needed for the purpose of direct detection.
Such a NREFT can be written in terms of the following independent Galilean invariants:{
IV,N , q⃗ = p⃗− p⃗ ′ = k⃗ − k⃗ ′ , P⃗ = p⃗+ p⃗ ′ , v⃗⊥ =

P⃗

2M
− P⃗N

2mN
, P⃗N = k⃗ + k⃗ ′ , S⃗V , s⃗N , S

}
, (24)

where IV,N is the identity operator acting in the dark photon (V) or nucleon (N) space, p⃗ and p⃗ ′ are

the initial and final DM momenta, k⃗ and k⃗′ are the initial and final nuclear momenta, S⃗V and S are
the complex dark photon spin operators (we defer to appendix A for the definition of such operators
for spin-1 DM), s⃗N represents the nucleon spin and v⃗⊥ is the so called transverse velocity.

The NREFT Lagrangian is constructed out of Galilean and rotational invariant combinations of
the structures presented in eq. (24) and explicitly reads

LNR =
25∑
i=1

∑
N

cNi ONR
i , (25)

This “Lagrangian” must be interpreted as the matrix element of the direct detection scattering process,
as is clear from its dimensions, computed for the a set of hermitian operators that were classified in
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ONR
i Structure Ci ONR

i Structure Ci
ONR

1 1 λH , CH,2, CF , Cψ ONR
13 i(S⃗V · v⃗⊥)(q⃗ · s⃗N )/mN

ONR
2 v2⊥ not generated ONR

14 i(s⃗N · v⃗⊥)(q⃗ · S⃗V )/mN

ONR
3 is⃗N · (q⃗ × v⃗⊥)/mN ONR

15 (S⃗V · q⃗)[(s⃗N × v⃗⊥) · q⃗]/m2
N

ONR
4 S⃗V · s⃗N ONR

16 [S⃗V · (q⃗ × v⃗⊥)](q⃗ · s⃗N )/m2
N

ONR
5 iS⃗V · (q⃗ × v⃗⊥)/mN λB , CB ONR

17 iqiSijvj⊥/mN CTψ
ONR

6 (S⃗V · q⃗)(s⃗N · q⃗)/m2
N ONR

18 iqiSijsjN/mN

ONR
7 s⃗N · v⃗⊥ ONR

19 qiqjSij/m2
N CHψ,2, CD2H

ONR
8 S⃗V · v⃗⊥ Cψ̃ ONR

20 [(s⃗N × q⃗)]iqjSij/m2
N

ONR
9 iS⃗V · (s⃗N × q⃗)/mN ONR

21 vi⊥s
j
NSij

ONR
10 i(q⃗ · s⃗N )/mN ONR

22 i[(q⃗ × v⃗⊥)]isjNSij/mN

ONR
11 i(q⃗ · S⃗V )/mN CH,3, λ′B , C′B , CHψ,3 ONR

23 i[(s⃗N × v⃗⊥)]iqjSij/mN

ONR
12 S⃗V · (s⃗N × v⃗⊥) ONR

24 i[(s⃗N × q⃗)]ivj⊥Sij/mN

ONR
25 vi⊥v

j
⊥Sij not generated

Table 5. Basis of non-relativistic operators for direct detection of complex spin-1 DM. The first column shows
the usual non redundant basis constructed with a single structure. Operators Oi exclusive for spin-1 DM start
from i ≥ 17. Spin-independent operators have been highlighted in green and we provide the leading contribution
from UV Wilson coefficient that generate each specific interaction, with the complete matching given in eq. (26).

[73, 74] and augmented in [75–77] to take into account the additional structures that appear for spin-1
DM. We provide the complete set of invariant structures in table 5. Since our focus in section 5.2 will
be exclusively on spin-independent cross-sections, in the table we highlight in green the operators that
are relevant for our purpose and we point to the relative leading contribution in terms of the coefficients
for the high energy effective theory presented in section 3.

We match the single nucleon EFT of eq. (22) onto eq. (25) and obtain the following results for the
Wilson coefficients generating spin-independent interactions:

cN1 = −2mN

(
cS + 2M2cFS + 2McV

)
← {λH , CH , CHψ, CF , CH,2, Cψ,Y,Hc} ,

cN2 = Not generated ← {} ,
cN5 = 4m2

N

(
−cM +M2c′M

)
← {λB, CHB, CB} ,

cN8 = −4MmNcPV ←
{
Cψ̃,Ỹ H̃c

}
,

cN11 = −2mN

(
4MmNcPS + c′AT + 2mNcE + 2M2mNc

′
E

)
←

{
CH,3, CHψ,3, λ′B, C′HB, C′B

}
,

cN17 = −8m2
NcST ← {CTψ} ,

cN19 = 2m2
N

(
4mNc2D +

cAT
M

)
← {CD2H , CHψ,2} ,

cN25 = Not generated ← {} .
(26)

For each entry, we also list the high-energy Wilson coefficients that contribute to the low energy

coefficients cNi . We observe that cN5 is enhanced by a factor 1/q⃗ 2 contained in c
(′)
M and the same applies

to the c
(′)
E contribution to the NR Lagrangian coefficient cN11. This factor comes from the photon
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exchange and is generated by the magnetic (Õ9, Õ12) and electric (Õ18, Õ21) “dipole-like” interactions
appearing in table 4, respectively. We stress that we keep only the leading contributions generated
by each of the operators in eq. (22) in a qn expansion, neglecting for instance higher order terms like
cSONR

19 ∼ O(q2) or cMq
2ONR

1 which does not show the 1/q2 enhancement for dipole-like interactions we
just mentioned.

5 Phenomenological Bounds

The main focus of this section are phenomenological constraints on our EFT. In this section we derive
bounds on the Wilson coefficients with particular emphasis on the improved power counting. For this
very same reason, prior to the discussion of direct detection, we also consider collider bounds coming
from invisible decays of the Higgs and Z bosons. This will serve us as a proof of the importance of
this approach in deriving sensible limits, as we will show how an incorrect treatment of the cut-off of
massive Stueckelberg would lead to spurious very strong bounds.

In this section, in order to derive bounds from direct detection we will assume that for each point
in the parameter space we are able to reproduce the DM abundance (see section 3.3 for a discussion).

Irrespectively of the Stueckelberg nature of the complex dark photon, our limits should only be
applied whenM ≪M⋆, while we are free to vary g⋆ from a weak to a moderate strong coupling regime,
without invalidating the EFT approach. In what follows, we will always fix g⋆ to two specific values
(to be discussed below) and show bounds obtained fixing the value of the Wilson coefficients di = 1,
ci = 1, leaving M⋆ free to vary, so that exclusion curves will thus be read as lower bounds on the size
of M⋆. Clearly, the validity of the EFT requires that the new physics scale, i.e. the mass of the heavy
mediator M⋆, must be much larger than the lighter complex dark photon degree of freedom. We here
define for convenience the ratio

R ≡ M⋆

M
, (27)

in such a way that the EFT description is valid as long as R≫ 1. We will comment later on the effect
of changing the value of g⋆. Each bound will be shown for both power counting schemes (naive and
improved) discussed in sections. 2.2 and 3.1.

We start our discussion in sec. 5.1 by discussing the limits coming from the invisible decays of the
Higgs and Z bosons, and then in sec. 5.2 we will instead compute bounds coming from direct detection
experiments, following the same prescription for the size of the Wilson coefficients.

5.1 Collider Constraints: Higgs and Z invisible decays

In this section we consider the effect of DM in the invisible branching ratios of Higgs and Z boson. As
such, we are applying our EFT in an energy range whereM ≪ E and our improved power counting has
to be used. In order to show its effect on the limits, we present a comparison between what happens
with and without such power counting fixing g⋆ = 1.

When the Higgs and Z bosons are heavier than twice the DM mass, all dimension 4 operators in eq.
(15) and some of the effective operators in eq. (16) may induce their decay into a particle-antiparticle
pair of DM. We can then use the measured value of the decays into invisible states to put bounds on
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Operator Coefficient αi Kinematic factor ηi

OS
(
|H|2, |H|4

)
α1 =

[
1, M

2

M2
⋆

]
g2⋆ v

(
dH + cH

g2⋆ v
2

M2
⋆

)
η1 =

(M2
h−2M2)

2

4M4 + 2

OF 2 |H|2 α2 =
g4⋆

16π2 cH,2
v
M2
⋆

η2 = 2M4
(
6− 4

M2
h

M2 +
M4
h

M4

)
OP |H|2 α3 =

g4⋆
16π2 cH,3

v
M2
⋆

η3 = 8M4
h

(
1− 4M

2

M2
h

)
OSµν∂(µ∂ν)|H|2 α4 =

[
1, M

2

M2
⋆

]
cD2H

g2⋆ v
2M2

⋆
η4 =

M4
h(M

2
h−4M2)2

4M4

Table 6. List of the parameters appearing in the invisible decay width of the Higgs boson, see eq. (28a). For
each set of parameters we also present the operator(s) that generate them. We also show in square brackets the
two alternative solutions for the naive and improved power counting when a choice is needed.

Operator Coefficient βi Kinematic factor ρi

JVµ J
µ
H β1 =

[
1, M

2

M2
⋆

]√
g2 + g′2 cHc

g2⋆ v
2

2M2
⋆

ρ1 =
M6
Z−8M2M4

Z+28M4M2
Z−48M6

12M4

JPµ J
µ
H β2 =

[
1, M

2

M2
⋆

]√
g2 + g′2 cH̃c

g2⋆ v
2

2M2
⋆

ρ2 =
(M2

Z−4M2)2

3M2

OAµνBµν
(
1, |H|2

)
β3 =

[
1, M

2

M2
⋆

] g2⋆ g′
16π2 sθw

(
dB + cHB

g2⋆ v
2

2M2
⋆

)
ρ3 =

M2
Z

12

(
M4
Z

M4 − 16
)

OTµνBµν β4 =
g2⋆ g

′

16π2 sθw
cB
M2
⋆

ρ4 =
M4
Z
6

(
M2
Z − 8M

4

M2
Z
− 2M2

)
OAµνB̃µν

(
1, |H|2

)
β5 =

[
1, M

2

M2
⋆

]
g2⋆ g

′

16π2 sθw
(
d′B + cHB′

g2⋆ v
2

2M2
⋆

)
ρ5 =

1
3

(
M4
Z

M2 + 2M2
Z

)
OTµνB̃µν β6 =

g2⋆ g
′

16π2 sθw
c′B
M2
⋆

ρ6 =
2
3M

4
Z

(
1− 2M

2

M2
Z
+ 4M

4

M4
Z

)
Table 7. As in table 6 but for the Z → V V̄ decay, see eq. (28b). The couplings g and g′ are the usual
SU(2)L × U(1)Y gauge couplings, while sθw is the sine of the weak angle.

the parameter space of the EFT we are considering. We write the two relevant decay widths as

Γh→V V̄ = 1
16πMh

(∑
i |αi|2ηi

)√
1− 4M2

M2
h
, (28a)

ΓZ→V V̄ = 1
16πMZ

(∑
i |βi|2ρi

)√
1− 4M2

M2
Z
, (28b)

where Mh and MZ are the Higgs and Z bosons masses, respectively. The values of the coefficients αi,
βi, and the kinematic structures ηi and ρi are collected in tables 6 and 7, together with the operators
that generate the decays. For the coefficients αi and βi we show in brackets the two alternative choices
associated with the naive and improved power counting solutions according to table 2.

We have written the decay widths in this form to highlight two effects. First, the coefficients αi and
βi are just avatars for the Wilson coefficients of eq. (14), and as such they are linear in them, as can
be seen from tables 6 and 7. Second, the coefficients ρi and ηi are instead kinematic factors, that only
depend on M , and they differ from case to case. In particular, by looking at table 6 and table 7, we
see that they might display apparent divergences as M ≪Mh,Z . This makes self-evident the situation
that might arise by extrapolating bounds fixing αi, βi and letting M drop arbitrarily.

Assuming that the decay into the V V̄ pair saturates the h and Z invisible widths, we can set bounds

19



using the experimental values BRh→inv < 13% [78] and ΓZ→V V̄ < δΓ(Z → inv), where δΓZ→inv = 1.5
MeV is the error on the Z invisible width [78].

Our results are presented in Fig. 2 where we show the constraints for each operator in the plane
(M,M⋆). In such figure all the dimensionless coefficients are set to one, allowing us to display all the
constraints in the same plot. In the left panels of figure 2 we show the limits on M⋆ obtained using the
naive power counting, while in the right panels we show the limits on M⋆ obtained with the improved
power counting. The upper and lower panels present the limits obtained from h → inv and Z → inv,
respectively.

We have included all the leading effect from the operators of eq. (14) with a caveat for the ones
appering in (15). Indeed, they do not show up in the naive power counting as they are ’renormalizable’
and no power of M⋆ appears in the naive scaling.

We also highlight the regions in which the validity of the EFT computation is questionable: the
horizontal regions show when M⋆ < 5Mh,Z (light grey) or M⋆ < 10Mh,Z (dark grey), depending on the
case considered, while the oblique regions refer to R < 5 (light blue) and R < 10 (lighter blue).

As it is clear from the left panels, when the naive power counting is used for the operators that
do not contain the DM field strength and are, thus, not invariant under the dark U(1)D, the bounds
become stronger as we move to lower values of M . Namely, the bound mass M⋆ becomes larger and
larger. This is due to the 1/M4 enhancement discussed in sec. 2.2 and it is cured once the improved
power counting is used (see right panels). A particular behavior is displayed by the class of non-gauge
invariant CP-odd operators, associated to the Wilson coefficients (cH̃c, c

′
B, c

′
HB) involved in the Z boson

decay. This is due to the presence of the Levi-Civita tensor in their definition. As can be seen from
table 7, in these cases the decay width has a weaker dependence on the DM mass when the naive
power counting is used, scaling as M−2. This behavior is dramatically affected when the choice on the
power counting is modified, namely for M ≪ MZ the decay width drops proportionally to M2 when
we apply the improved power counting. As a consequence, the bound on M⋆ becomes irrelevant for
small masses, since the decay width vanishes in the M → 0 limit.

In general we observe that the bounds obtained using the improved power counting are less con-
straining than those obtained using the naive power counting due to the additional M2/M2

⋆ ≪ 1
suppression. When using the improved power counting scheme, the choice g⋆ = 1 implies that the
limits fall in a region in which the validity of the EFT is questionable (see figure 4). As such, colliders
limits are then mostly applicabile in EFT terms when the underlying model has some strong coupling.

The limits for different values of g⋆ can be easily obtained from the ones shown in Fig. 2 by an
appropriate rescaling. For instance, consider the bound on M⋆ obtained switching on the operator
VµV̄

µ|H|4, with coefficient [1, M2/M2
⋆ ]g

4
⋆cH/M

2
⋆ as in eq. (16). The bound on M⋆ can be written as

M⋆[M ] ≥ (M⋆[M ])bound,g⋆=1

{
g2⋆ (naive)
g⋆ (improved),

(29)

where (M⋆[M ])bound,g⋆=1 is the experimental bound as a function of the DM mass obtained in a given
power counting, that can be read from Fig. 2. The different dependence on g⋆ in eq. (29) is due to the
different dependence of the decay widths on M⋆ in the two power counting schemes. For the remaining
operators, it is now straightforward to repeat this reasoning considering the correct powers of g⋆ and
to obtain the bound for any value of the coupling.

This exercise shows that the bounds from invisible decays of H and Z are not so constraining as
one might think. We show that this is especially true for a weakly coupled realization. From the right
panels of figure 2 we see for example that also the ’Higgs portal’ cH is not so constraining once the
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Figure 2. Regions excluded by the bound on the invisible decays of the Higgs boson (upper panels) or Z boson
(lower panels). The regions excluded are those below the colored lines. In the left (right) panel we show the
limits obtained using the naive (improved) power counting. All the limits are obtained fixing g⋆ = 1, di = 1 and
ci = 1. The grey horizontal regions show when M⋆ < 5Mh,Z or M⋆ < 10Mh,Z , while the oblique lines show the
regions in which R < 5 (lightblue) or R < 10 (lighter blue).
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Figure 3. Upper limits on the (dH , dB , d
′
B) coefficients, corresponding to the Wilson coefficients of renormal-

izable operators in eq. (15) when the naive power counting is used. The curves are obtained for g⋆ = 1 and
represent the constraints obtained from Higgs and Z bosons invisible decay modes.

improved power counting is applied. This is also what happens in explicit realizations and we believe
it is the right way to inspect EFT of dark photon dark matter.

As a final remark we show the bounds on the quartic couplings dH and d
(′)
B when the naive power

counting is used in Fig. 3, where the constraints live in the plane (M , couplings). For dH , this is the

usual bound on the Higgs portal coupling [15, 17, 46–50], while the d
(′)
B coupling has been studied in

the context of the coupling between vector DM and electromagnetic and weak multipoles [61, 62]. In
this case, the grey shaded region is drawn in correspondence of the benchmark value di ≥ 4π, which is
the typical value for breakdown of perturbativity and unitarity.

Summary of collider searches
Our procedure has identified a selection of operators that are mostly constrained by invisible decays of
H and Z. As discussed, the bounds are not important (fig. 2) for a theory of weakly coupled complex
dark photon (g⋆ = 1) when we apply the correct power counting solution i.e. the improved one (see
sec. 3.1) since they apply in a region beyond the EFT validity.

In figure 4, in which we show the bounds for a moderately strong bound g⋆ = 3, we can appreciate
that only the operators connected with the Higgs invisible decay mode happen to escape the regions
where the validity of the EFT breaks down as the requirement on the separation of scales fails. In this
case, the well known Higgs portal operator dH (dark cyan line) sets the largest lower bound on the
new physics scale M⋆ and would therefore be relevant for the effective theory phenomenology. Other
relevant exclusion regions in this scenario are given by (cH , cH,2, cH,3) which are the dimension six
Higgs portal, the CP-even and CP-odd field strength operators, respectively. As a reference, we also
show that the strongest bound from Z → inv associated to the dark red (labelled cH̃c) still cannot
overcome the EFT validity region.
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Figure 4. Bounds on the parameters space (M, M⋆) from invisible decay of H and Z bosons. Each line
correspond to the Wilson coefficient of the EFT as in table 6. We show the constraints arising from one operator
at a time, and the region below each curve is excluded. The results apply for g⋆ = 3 with all the dimensionless
coefficients di, ci = 1 when the improved power counting is used. Shaded regions correspond to regions of
parameters space where the EFT validity breaks down: M⋆ ≤ (5, 10)Mh in grey and R ≤ [5, 10] in light blue.

5.2 Direct Detection

In this section we describe how direct detection experiments can put bounds on the parameter space of
the EFT we are considering. Despite direct detection experiment work at low energy transfer, therefore
in a regime where the non-renormalizable nature of massive vectors does not appear, we find that the
power counting developed in the previous section still provides a suppression to otherwise unphysical
large effects in the rates. The bounds derived here connects with the discussion of sec. 4.

As already mentioned in that section, we consider only spin-independent processes, which should
impose the stronger constraints on our model. The relevant Lagrangian we consider is the one in
eq. (25), with Wilson coefficients given in eq. (26). As can be seen with our derivation, the EFT
Lagrangian of eq. (14) generates only six non-relativistic spin-independent operators

direct detection : (ONR
1 ,ONR

5 ,ONR
8 ,ONR

11 ,ONR
17 ,ONR

19 ), (30)

and we refer again to table 5 for the definitions. We focus on these in the remainder of this section.
Naively one would expect that ONR

1 would give the strongest constraint, but the results will be radically
different when low-momentum enhancement are considered.

In order to set the limits coming from direct detection experiments, we use the following approx-
imate procedure. We use the 95% C.L. exclusion obtained by the LZ experiment on the DM-nucleon
spin-independent cross section [79] and plug it inside eq. (59) in appendix B to obtain the number of
experimentally excluded events Nexp(M) as a function of the DM mass. For this computation, we
use the Helm form factor as nuclear response function representative of the spin-independent search.
For each of the Wilson coefficients appearing in eq. (15) and eq. (16), we then compute the number of
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Figure 5. Lower bounds on the new physics scale M⋆ derived for each operator ONR
i contribution to our

”reduced” SI NREFT describing a complex dark photon undergoing elastic scattering off nuclei. We compare
the constraints derived adopting both the naive (dashed lines) and the improved (solid lines) power counting
solutions. All curves are plotted for the benchmark value g⋆ = 1. Grey and lightblue shaded regions correspond to
parameters space patches where the EFT validity is questionable, i.e. when M⋆ ≤ (5, 10)Mh and R =M⋆/M ≤
(5, 10) respectively.
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events Nmodel(M ; {Ci, g⋆,M⋆}), following all the matching procedure and the computation of the cross
section as explained in appendix B. We obtain the excluded region imposing

Nmodel(M ; {Ci, g⋆,M⋆}) < Nexp(M) . (31)

More details on the computation of the number of events at direct detection experiments can be found
in appendix B.

Our results are presented in Fig. 5, where we show a comparison between the limits obtained using
the naive (dashed lines) and improved (solid lines) power counting in the plane (M,M⋆). Each panel
shows one of six different non-relativistic operators generated when matching onto the NREFT of
eq. (25) as discussed in sec. 4. Shaded regions are the same as in Fig. 2 and show the regions in which
the EFT is not a valid expansion anymore. In all the plots the dimensionless coefficients di, ci are set
to unity, as well as the dark coupling g⋆. For each line M⋆(M)excl., the excluded region stays below
that line.

In discussing our surveys of bounds, two main points have to be considered. First, we see that the
improved power counting strongly relaxes the bound in the EFT regime (when R≫ 1), since in all the
plots the solid line stay below the dashed line of corresponding color. Second, some non-relativistic
operators are enhanced by inverse powers of q2, which may overcome the suppression of q and v at
the numerators. This fact allows us to explain why the bound on M⋆(M) from ONR

1 is comparable
to the bound arising from ONR

5,11. The operator ONR
1 is the only NR interaction not suppressed by

powers of DM velocity or exchanged momentum. However, we obtain physically significant bounds
also from ONR

11 = i(q⃗ · S⃗V )/mN (that carries one factor of the exchanged momentum q⃗), and from
ONR

5 = iS⃗V · (q⃗ × v⃗⊥)/mN (further suppressed by one factor of v⃗⊥). These results could appear quite
surprising, but they are easily explained remembering that, despite the ∼ q, ∼ qv⊥ suppression, both
Wilson coefficients of these NR operators receive leading order contributions in a qn expansion from
the magnetic and electric ”dipole-like” interactions

{V[µV̄ν]Bµν , V[µρV̄
ρ
ν]B

µν , V[µV̄ν]B̃
µν , V[µρV̄

ρ
ν]B̃

µν},

that are labelled by coefficients d
(′)
B , c

(′)
B as in eq. (18) and table 3. This results in a 1/q⃗ 2 enhancement

factor typical of the long range interaction at low exchanged momentum, so that we obtain a significant
bound in a region in which the EFT is valid. In particular we point out that complex dark photon DM
is the only scenario where a dimension-4 operator - although cured by the improved power counting -
can give rise to an electric dipole moment interaction, corresponding to q−2ONR

11 = q−2i(q⃗ · S⃗V )/mN ,
therefore giving a low-momentum enhancement which is unsuppressed by the DM velocity (contrary
to the magnetic dipole interaction, which is still suppressed by v⃗⊥).

In terms of the naive power counting rule, we can impose upper limits on the coefficients of the
four operators of (15). The results are shown in Fig. 6.

Before concluding, it is worth emphasizing that half of the bounds on the NR operators do not
extend over the whole mass range investigated by the LZ experiment, with the curves terminating
abruptly, rather than smoothly. This feature can be traced to their q⃗, v⃗⊥ dependence. These enter
the calculation of the total number of theoretically expected events through the velocity (astrophysical
uncertainy) and recoil energy (experimental input) integrated form factor discussed in eq. (57) of
Appendix B, which is (partially) responsible of the shape and responsible of the fact that they close
earlier than the experimental window.
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Figure 6. Upper limits on the (dh, dB , d
′
B) coefficients, corresponding to the Wilson coefficients of renormal-

izable operators in eq. (15) when the naive power counting is used. The curves are obtained for g⋆ = 1 and
represent the constraints obtained from spin-independent direct detection at LZ.

Summary of direct detection
Our procedure has identified a selection of operators that are mostly constrained by direct detection.
In figure 7 we focus on the resulting exclusion curves M⋆(M) obtained for a weakly coupled dark
sector g⋆ = 1 when the correct behaviour of effective operators under gauge transformations is restored
applying the improved power counting (see sec. 3.1). All curves correspond to di, ci = 1.

We notice that the exclusion of a few interactions (as for example the Higgs portal dH , dark cyan
line) fall in a region beyond the EFT validity. We conclude that Higgs portal phenomenology is not so
relevant for vector DM (see however [17]).

However, other operators receive meaningful exclusion limits in a region where the EFT is fully valid.

This is the case for dipole-like operators corresponding to d
(′)
B , c

(′)
B and c′HB. They provide the strongest

lower bounds on the new physics scale M⋆(M) even for moderate couplings g⋆ = 1. This was already
noticed in [62], that used previous Xenon data. For complex vectors, the most interesting channel is
the one mediated by electric-dipole interaction with the photons OAµνF̃µν corresponding d′B. In the
NREFT it receives a 1/q⃗ 2 enhancement at low momentum transfer – typical of long-range interactions
mediated by the photon – and no v suppression that set M⋆(M) ≳ 104 − 105GeV throughout the
investigated mass window. It gives a strong bound even with the improved power counting.

5.3 Massless Stueckelberg case

In section 3.2 we briefly discussed the possibility that the physical complex dark photon mass is com-
pletely generated by the EFT operators, once we setM = 0. Considering only the leading effect coming
from the Wilson coefficient λH , we would have that the dark photon mass equals

m2
V = dH g

2
⋆

v2

2
, (32)

i.e. it is fixed by the coefficient dH . In this case, we can then study when collider and direct detection
bounds can place constraints on such a scenario. We show our results in fig. 8, where the dashed
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Figure 7. Bounds on the parameters space (M, M⋆) from spin independent direct detection at LZ. Each line
correspond to the Wilson coefficient of the EFT as in table 5. We show the constraints arising from one operator
at a time, and the region below each curve is excluded. The results apply for g⋆ = 1 with all the dimensionless
coefficients di, ci = 1 when the improved power counting is used. Shaded regions correspond to regions of
parameters space where the EFT validity breaks down: M⋆ ≤ (5, 10)Mh in grey and R ≤ [5, 10] in light blue.

line represents the dark photon mass of eq. (32). The experimental bounds obtained from the Higgs
invisible BR and from direct searches at LZ are shown together. As we can see, the limit coming from
the Higgs decay width exclude this scenarios for masses belowMh/2 ≃ 63 GeV. On the other hand, the
limits coming from the LZ experiment exclude the scenario for masses above (14− 15) GeV, meaning
that this simple scenario is completely excluded. We observe that the conclusion is independent on
the value of g⋆, since the experimental limits and the dark photon mass scale in the same way once we
allow for g⋆ ̸= 1.

6 Sketching possible UV completions

In this section we present two explicit UV complete models that generate, under some assumptions
about hierarchy of vacuum expectation values, some of the operators that appear in the low energy EFT
of a complex dark photon. In our discussion, we pay special attention to the requirements necessary
to generate the improved and the naive power counting described in Sec. 3.1.

6.1 Model I: SU(2)× U(1)

The first model we present is based on a SU(2)× U(1) dark gauge symmetry (see also Refs. [51, 57–
59, 62, 80]), completely broken by the vacuum expectation values (vevs) of two scalars transforming
as ϕ ∼ (d, q) and φ ∼ (1, q′). Here d denotes a generic dimension-d representation of SU(2) and q, q′

are the U(1) charges. Both scalars are complete singlets under the SM gauge group. We denote by

27



10-3 10-2 10-1 1 10 102 103 104
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1

10

102

mV [GeV]

d h

Massless Stueckelber scenario

g★  1

Γh  inv

DD

Figure 8. Limits coming from the Higgs invisible BR and DD searches on the massless Stueckelberg scenario.
The dashed line represents the values of parameters in which eq. (32) is satisfied, namely in which the dark
photon mass is completely generated by contact interactions between DM and SM fields (more specifically, by
the dH coefficient).

V a and X the gauge bosons of SU(2) and U(1), respectively, with corresponding gauge couplings gD
and g′D. The DM candidate V and its antiparticle are given by the combinations V = (V 1 − iV 2)/

√
2

and V̄ = (V 1 + iV 2)/
√
2. As we are now going to show, the EFT generated integrating out the heavy

scalar and vector states will include the Higgs portal interactions, as well as vector × vector and tensor
× tensor operators.

For what concerns the generation of effective operators via scalar exchange, the relevant interactions
are contained in the following potential

V (ϕ, φ,H) = −µ2ϕ|ϕ|2 + λϕ|ϕ|4 − µ2φ|φ|2 − λφ|φ|4 − λ1|ϕ|2|φ|2 − λ2|ϕ|2|H|2 − λ3|φ|2|H|2 , (33)

that contains all the terms involving ϕ, φ and their interactions with the Higgs doublet H. In what
follows, we will always consider scenarios for which

⟨φ⟩ ≫ ⟨ϕ⟩, ⟨H⟩, (34)

in such a way that the mixing between ϕ and φ, that generates the Higgs portal, is given by

θφϕ ≃
λ1
λφ

⟨ϕ⟩
⟨φ⟩

. (35)

Similarly, the kinetic mixing ε between U(1)Y and U(1) induces a mixing between the dark gauge
bosons V 3, X and the SM ZSM and generates a vector portal between the dark and visible sector. After
symmetry breaking, we can write the dynamical fields V 3, X and ZSM in terms of the mass eigenstates
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Z ′, D and Z as follows:
V 3 ≃ Z ′ + θXV 3 D + . . .

X ≃ D − θXV 3 Z ′ − θXZ ZSM + . . .

Z ≃ ZSM + θXZ D + . . .

θXV 3 ≃ q g′D
m
√
1−ε2gD

M2

M2
X
,

θXZ ≃ εg′

gZ
√
1−ε2

M2
Z

M2
X
,

(36)

where we have written the expansion for the mixing angles. The vector masses are

M = gD⟨ϕ⟩
√
ℓ(ℓ+ 1)−m2, MZ′ ≃ mgD ⟨ϕ⟩ , (37)

MD ≃
g′Dq

′
√
1− ε2

⟨φ⟩ , MZ ≃MZSM
, (38)

where ℓ = (d−1)/2 and m = −ℓ, . . . ,+ℓ are the usual SU(2) quantum numbers (m labels the direction
along which the vev is aligned [29]).

We now focus on the generation of the EFT. For the moment, we do not assume any hierarchy
between ⟨ϕ⟩ and ⟨H⟩, so that the only heavy states are those whose masses are O(⟨φ⟩), i.e. D ≃ X
and φ. The operator VµV̄

µ|H|2 is generated by the scalar portal once φ is integrated out. We obtain

M(φ)

V V̄ H†H
= gφV V̄

1

M2
φ

gφH†HϵV ϵV̄ ∼
λ1λ3
λφ

M2

M2
φ

ϵV ϵV̄ , with
λ1λ3
λφ
∼ g2⋆, (39)

where ϵV ϵV̄ denote, schematically, the DM polarization vectors and we have used that the coupling
between φ and the V V̄ pair goes like gφV V̄ ∼ (M2/ ⟨ϕ⟩)θφϕ, while the coupling between φ and H†H
scales as gφH†H ∼ λ3 ⟨φ⟩. As we see, the Wilson coefficient obeys the “improved” power counting of
Sec. 2.2, once we identify M⋆ ∼Mφ.
Turning now to the current × current operator JµV J

B
µ , this is generated via the vector portal once we

integrate out the heavy X state. We obtain (up to numerical factors)

M(X)

V V̄ JB
= gXV V̄

1

M2
X

gXJB
1√

1− ε2
ϵV ϵV̄ ∼

g′D g
′ q ϵ

gD

M2

M4
X

ϵV ϵV̄ , with
g′D g

′ q ϵ

gD
∼ g2⋆, (40)

where have used gXV V̄ ∼ gDθV 3X , gXJB ∼ g′ϵ, while the mixing angle can be found in eq. (36). Once
again, we appreciate that the naive power counting 1/M2

⋆ = 1/M2
X is corrected by the factor M2/M2

⋆ ,
i.e. the “improved” power counting applies. Qualitatively similar results hold when we make the
further assumption and consider ⟨φ⟩ ≫ ⟨ϕ⟩ ≫ ⟨H⟩. For instance, if we consider the amplitude with a
(now heavy) ϕ exchange, we obtain

M(ϕ)

V V̄ H†H
= gϕV V̄

1

M2
ϕ

gϕH†HϵV ϵV̄ ∼ g2D
λ2
λϕ

√
ℓ(ℓ+ 1)−m2ϵV ϵV̄ ∼

M2

M2
ϕ

λ2ϵV ϵV̄ withλ2 ∼ g2⋆. (41)

Once more, we obtain the improved power counting we have advocated for in the text.
We conclude observing that the SU(2) non-abelian kinetic term contains, in addition to the V 3

µ J
µ
V

coupling between V 3 and the DM vector current, also the tensor coupling V 3
µνV

[µV̄ ν]. This means
that the argument outlined above for the current × current operators can be immediately extended to
the tensor × tensor operators generated through this term – e.g. the dipole-like contact term in the
effective theory of eq. (15) – with the same conclusions about the power counting applying.
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6.2 Model II: SU(2)L × SU(2)R × Z2

The second model we consider is based on a SU(2)L×SU(2)R×Z2 gauge symmetry. This time, the DM
candidate only interacts with the visible sector via a Higgs portal since, being the dark gauge symmetry
non-abelian, there is no kinetic mixing between the dark and visible sectors forbidding any interaction
mediated by vector bosons. For concreteness, we denote by V a

L,R and gL,R the gauge bosons and
couplings of SU(2)L,R. The symmetry is completely broken in two steps: first to U(1)L × U(1)R × Z2

by the vev of two triplets, ΣL ∼ (3,1) and ΣR ∼ (1,3); then to Z2 by the vev of two doublets,
ϕL ∼ (2,1) and ϕR ∼ (1,2). The Z2 symmetry acts as

(Z2) V a
L ↔ V a

R , ΣL ↔ ΣR, ϕL ↔ ϕR. (42)

Invariance under dark parity transformation forces the equality between the gauge couplings gL = gR ≡
gd, between the triplets vevs ⟨ΣL⟩ = ⟨ΣR⟩ ≡ ⟨Σ⟩ and between the doublets vevs ⟨ϕL⟩ = ⟨ϕR⟩ ≡ ⟨ϕ⟩. The
two-step symmetry breaking described above can be achieved assuming a hierarchy between dark scalar
vevs ⟨Σ⟩ ≫ ⟨ϕ⟩ and that the triplets vevs are aligned along the σ3/2 generator. Under these hypothesis,
the states V ±

L,R = (V 1
L,R ∓ iV 2

L,R)/
√
2 and the scalar triplets have O(⟨Σ⟩) masses, while V 3

L,R and the
scalar doublet are much lighter, with masses of order O(⟨ϕ⟩). However, because of the Z2 symmetry,
V 3
L and V 3

R are degenerate, so that we can identify our DM candidate via V = (V 3
L − iV 3

R)/
√
2. Unlike

what happened in the SU(2)× U(1) model, we have now successfully obtained a hierarchy between
the mass of the DM and of the remaining states in the gauge multiplet without invoking large SU(2)
representations. The price we pay is the absence of the vector portal. The scalar portal operator is
now obtained integrating out the heavy triplets instead of φ. The amplitude we obtain is the same as
in eq. (39), with the identification Mφ →MΣ and new, appropriate quartic coupling. Also in this case
we thus have a situation in which the “improved” power counting is valid.

7 Conclusions

In this work, we have studied a scenario in which the dark matter candidate is a massive complex
vector Vµ, dubbed complex dark photon. We assume that the spin-1 DM particle is the only low
energy remnant of a more complex heavy dark sector with typical mass M⋆ that, once integrated out,
generates a set of effective operators that can be studied phenomenologically. The stabilization of the
DM candidate is achieved via an accidental dark U(1)D symmetry which survives at low energy.

An essential point that must be highlighted is the fact that, in the EFT of a massive vector field,
the power counting of the operators is subtler than the one of theories with spin-0 or spin-1/2 DM
candidates. This is because the free theory of a massive Stueckelberg field is renormalizable, but this
renormalizability is lost in general once interactions are turned on. In practice, this means that the
theory may cease to be valid at an energy parametrically smaller than the naive cutoff M⋆. To correct
this behavior and reinstate M⋆ as cutoff of the EFT, we introduced the so-called “improved power
counting”, in which we replace Vµ → (M/M⋆)Vµ.

We then turned to the main point of the paper, i.e. the construction of the EFT Lagrangian at the
scale M⋆, considering operators up to dimension 6 and paying particular attention to the elimination
of redundant operators. With this information, we studied the effective theories obtained at lower
energies, having in mind applications in direct detection experiments. We first integrated out SM
particles at the electroweak scale (Higgs, W and Z bosons and the top quark). We then moved to
energies of order 1 GeV and matched the operators to a single-nucleon relativistic EFT. Finally, we
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matched onto the non-relativistic theory that can be used to compute nuclear response functions and,
ultimately, the number of events expected at direct detection experiments.

With all this information at our disposal, we finally turned to the phenomenological analysis, with
the aim of putting limits on the Wilson coefficients of the operators defined at the scale M⋆. We
considered two types of processes: SM particle decays (more specifically, Higgs and Z boson decays)
and limits coming from direct detection, namely, from the LZ experiment. Turning on one Wilson
coefficient at a time, we studied the regions in parameter space which are experimentally excluded.
In order to show the artificially large bounds one would obtain without considering the improved
power counting, we compare the limits obtained using this rescaling of the field with the so-called
“naive” power counting, in which the Wilson coefficient has simply the M⋆ dependence dictated by
the dimensions of the operator. The difference is particularly relevant when we consider high energy
observables (Higgs and Z decays): with the naive power counting the bounds grow larger and larger the
smaller the DM mass is taken, while this effect is correctly avoided once the improved power counting
is considered. At low energy (direct detection) we also observe interesting effects, as strong limits
are obtained on two types of operators: the one typically related to spin-independent direct detection
experiments that sees the coherent enhancement and those obtained by the exchange in the t-channel
of a massless photon, which are enhanced (rather than suppressed) by the small momentum exchange.
This second class of operators are the spin-1 analog of electric and magnetic dipole operators that
appear for spin-1/2 DM. However we emphasize that complex vectors are the only one that can display
very large electric/magnetic dipole moments.

Finally, we turned to the question: which kind of UV completions can generate the EFT we have
constructed? We presented two theories in which Vµ emerges as a gauge boson. In both cases, we have
shown explicitly how the improved power counting is obtained once heavy dark states are integrated out.
Since the relevance of the bounds crucially depends on the power counting, it could be interesting in
the future to explore more generic schemes that allows for an even bigger enhancement of the operators
constructed with SM field strength and complex vector DM fields, even though the UV completion
might be difficult to identify.
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A Polarizations of massive vectors

Definitions and properties

In this section we collect useful formulas for the computation of matrix elements in the EFT of complex
dark photon. The free Lagrangian of our massive vector can be read out from the first two terms of
eq. (1). The equations of motion are given by

∂µV
µν +M2V ν = ∂ν(∂µV

µ) , (43)

and correspond to the Klein Gordon equation when the condition ∂µV
µ = 0 is imposed upon the field.

This selects three physical polarizations for Vµ, which we will denote by εsµ(p). Going to Fourier space
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and writing the 4-momentum of the particle as pµ = (Ep, p⃗), we have that the polarization vectors
satisfy pµεsµ = 0 and gµνε

µ
s ενs′ = −δss′ , where as usual the index s can take values s = ± for the

transverse degrees of freedom and s = L for the longitudinal one. They can be constructed from p⃗ as
follows:

εµ± = (0, ϵ⃗±), εµL =

(
|p⃗|
M
,
Ep
M

p⃗

|p⃗|

)
, (44)

where ϵ⃗± · p⃗ = 0. A useful way of rewriting the above polarization vectors, suitable for taking the
non-relativistic limit, can be found as follows. In the rest frame of the particle we have kµ = (M, 0⃗),
and in that frame the three polarizations (that can be chosen to be eigenvectors of rotations around an
axis, conventionally taken to be z) are in the fundamental representation of the little group SO(3). We

can thus write εµs (k) = (0, ξis) and the 3-polarizations can be taken to be orthonormal, ξ†sξt = δst, with
s, t = 1, 2, 3. In a generic frame in which the particle has 4-momentum pµ = (Ep, p⃗), the polarization
vectors are obtained as εµs (p) = D[L(p, k)]µνενs(k), where L(p, k) is the Lorentz transformation on k
such that pµ = L(p, k)µνkν , while D[L] is a suitable representation of L. For vectors D[L] = L, since
they transform in the 4-dimensional representation. Therefore, the polarization in a generic frame can
be written as

εµs (p) =

(
p⃗ · ξ⃗s
M

, ξ⃗s +
(p⃗ · ξ⃗s)

M(Ep +M)
p⃗

)
, (45)

which clearly satisfies the relativistic condition pµε
µ
s (p) = 0 for any value of p⃗ · ξ⃗s. In particular, in the

non-relativistic limit we can neglect terms of order p2/M2, obtaining

εµs (p)|NR =

(
p⃗ · ξ⃗s
M

, ξ⃗s

)
+O

(
p⃗ 2

M2

)
. (46)

In presence of two particles we have also p′ = p− q

εµs (p
′)|NR =

(
p⃗ ′ · ξ⃗s′
M

, ξ⃗s′

)
+ · · · (47)

The spin operator Jσ(n̂) is well-defined around any generic axis n̂ and the 3-vectors ξ⃗ and ξ⃗′ are its
eigenstates; more precisely, Jσ(n̂)ξs = σξs, with σ = −1, 0, 1.

It is important to observe that, since the structure ξ̄as′ξ
b
s, that will appear in the scattering ampli-

tudes, is obtained by the product of two SO(3) fundamentals, it can as usual be decomposed under
SO(3) as 3×3 = 5+3A+1, with 5 symmetric and traceless, 3A antisymmetric and 1 a singlet (trace),
Therefore we have

ξ̄as′ξ
b
s = Sabs′s −

i

2
ϵabcScs′s +

1

3
δabIV . (48)

The appearance of a symmetric tensor structure is typical of a spin-1 DM candidate and is not present
for spin-1/2 candidates, since group theory dictates that 2× 2 = 3S + 1A.

In section 6.1 of ref. [77] a similar decomposition is carried out, without singling out the trace part
from the symmetric combination. We stress, however, that our decomposition follows directly from the
irreducible spin representations of the product of polarization vectors of massive vectors and is thus
more natural from this point of view.
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Massive vectors polarization bilinears

As mentioned above, the product [ξ̄as′ξ
b
s] appears in the matrix elements of the elastic DM-nucleus

scattering. In particular, the possible structures are the ones generated by the operators OS , OFS ,
OPS , JV,Pµ and OA,S,Tµν listed in table 1. To fix our notation, we will take the incoming DM particle
to have momentum pµ and spin state ξs, while the outgoing DM particle has momentum p′ and spin
state ξs′ :

DM(ξs, p⃗) + SM(k⃗, · · · )→ DM(ξs′ , p⃗
′) + SM′(k⃗′, · · · ) , (49)

where DM is our complex dark photon V . We also remind the set of Galilean invariant quantities of
eq. (24) which will be used in the following. We summarize in table 8 the non-relativistic expansion
for the polarization vector bilinears generated by such interactions, where we stop the NR expansion
at leading order in a qn expansion. The few the extra terms appearing in tensor structures components
are kept since they would induce NR contributions that are NLO for the single UV operator but of
the same order of other effects at the level of NREFT. In fact, for instance, terms like q2(ONR

1,19) that

arise from the dipole-like interactions when OAµν is contracted with the hyper-charge field strength,
are clearly NLO in a momentum expansion due to the ∝ q2 factor, but would be competing effects of
the same order of similar contributions from other effective operators once we take into account the
long-range enhancement.

On top of that, we provide all the useful tools for a more complete analysis, but we urge the reader
to remind that we have been coherent with our purpose of investigating only the characteristic LO
signature of each UV Wilson coefficient when discussing direct detection phenomenology.

Sum rules

In computing the squared amplitudes we often encounter the sum over the spin indices s and s′ of
initial states. We here list the relevant sum rules for spin-1 particles:∑

s′s

A⃗IV = 3A,
∑
s′s

AaSabs′sSbs′s = 0,∑
s′s

AaS
a
s′s = 0

∑
s′s

AaSabs′sBbCcScs′s = 0,∑
s′s

(S⃗s′s)
2 = −6

∑
s′s

AaSabs′sBbδs′s = 0,

∑
s′s

εabcεajkA
bScs′sB

jSks′s = −4A⃗ · B⃗,
∑
s′s

AaSabs′sBcScbs′s =
5

3
A⃗ · B⃗,

∑
s′s

AaS
a
s′sBbS

b
s′s = −2A⃗ · B⃗,

∑
s′s

AaSabs′sBbAcScds′sBd =
1

2
A2B2 +

1

6
(A⃗ · B⃗)2.

(50)

B Cross sections for direct detection

We collect here useful equations to compute the rate of events at direct detection experiments. Given
the NREFT of eq. (25), the squared amplitude at the nucleon level, averaged over DM and nucleon
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Structure Polarization Bilinear

Scalar

OS = VµV̄
µ −IV + · · ·

OFS = Vµν V̄
µν −2M2IV + · · ·

OPS = εµνρσVµν V̄ρσ −4M(iq⃗ · S⃗V ) + · · ·

Vector

JVµ = Vν
↔
∂µV̄

ν

{
−2M IV + · · · (µ = 0)

+Pi IV + · · · (µ = i)

JPµ = εµνρσVν
↔
∂ρV̄ σ

{
−iS⃗V · P⃗ + · · · (µ = 0)

+2iMSV, i + · · · (µ = i)

Tensor

OAµν = V[µV̄ν]


0 (µ = 0, ν = 0)

− 1
M

(
qaSais′s −

i
2ϵiacP

aScV + qa
δai

3 IV
)
+ · · · (µ = 0, ν = i)

iεijkS
k
V + · · · (µ = i, ν = j)

OSµν = V(µV̄ν)


1

2M2 S⃗V · (iq⃗ × P⃗ ) + . . . (µ = 0, ν = 0)

− 1
M

(
PaSais′s +

i
2ϵiacq

aScV + δai

3 PaIV
)
+ . . . (µ = 0, ν = i)

2
(
Sijs′s +

δij

3 IV
)
+ . . . (µ = i, ν = j)

OTµν = V[µρV̄
ρ
ν]


0 (µ = 0, ν = 0)

−iMεiabq
aSbV + · · · (µ = 0, ν = i)

iM2εijkS
k
V + · · · (µ = i, ν = j)

Table 8. We summarize the full set of polarization bilinears generated by each operator structure appearing in
our EFT for a massive complex vector DM. We classified the structures of bilinears accordingly, making clear
the different components for vector and tensor structure.

spin degrees of freedom, can be written as

|MN |2 =
1

2SV + 1

1

2SN + 1

∑
s′,s

∑
r′,r

∑
i,j

cNi c
N ′
j ⟨Ns′Vr′ | ONR

i ONR
j |NsVr⟩ , (51)

where r, r′, s, s′ are spin indices. From this matrix element we can compute the DM-nucleon scattering
cross section as

σN =
µ2N

16πM2m2
N

|MN |2. (52)

In order to compute the squared matrix element for the DM-target nucleus scattering amplitude, we
simply need to multiply by the normalization factorm2

T /m
2
N (wheremT is the target nucleus mass) that

accounts for the |N⟩ → |T ⟩ substitution and to replace the
∑

s′,s

∑
r′,r ⟨Ns′Vr′ | ONR

i ONR
j |NsVr⟩ /(2SV +
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1)(2SN + 1) matrix element by a nuclear response function FNN
′

ij (q2, v2) [71, 74, 81] . We obtain

|MT |2 =
1

2SV + 1

1

2ST + 1

∑
N

∑
s′,s

∑
r′,r

|MN |2 =
m2
T

m2
N

∑
N

∑
i,j

cNi c
N ′
j FNN

′
ij (q2, v2). (53)

The nuclear response functions account for the coherent enhancement of the cross section at low
exchanged momentum and are different for different NR interactions. Moreover, they depend on the
kinematic variables q2 and v2, where v is the DM velocity. For convenience, we report here the relevant
expressions:

FN
′N

1,1 (M, q2, v2) = FN
′N

M = NN ′NNF 2
SI(ER) with Np = Z , Nn = A− Z ,

FN
′N

5,5 (M, q2, v2) =
C(SX)

4

1

q4

[
q2
(
v2 − q2

4µ2T

)
FN

′N
M

]
,

FN
′N

8,8 (M, q2, v2) =
C(SX)

4

(
v2 − q2

4µ2T

)
FN

′N
M ,

FN
′N

11,11(M, q2, v2) =
C(SX)

4
q2FN

′N
M ,

FN
′N

17,17(M, q2, v2) =
C(SX)

4
q2
(
v2 − q2

4µ2T

)
FN

′N
M ,

FN
′N

19,19(M, q2, v2) =
C(SX)

4
q4FN

′N
M ,

(54)

where the DM spin dependent factor C(S) = 4S(S+1)/3 = 8/3 for a spin-1 candidate. No interference
arise between different operators. Approximated expressions for FN

′N
M are listed for different target

nuclei in Ref. [74]. For simplicity, in our analysis we use the Helm form factor F 2
SI(ER), whose expression

can be found in [71, 74, 81]. This approximation does not introduce any large error, since at very low
recoil energy (i.e. in the most relevant region for direct detection experiments) FM and F 2

SI give
basically the same results.

The differential DM-target scattering cross section in the LAB frame is given by:

dσT
dER

=
|MT |2

32πM2mT v2
. (55)

Finally, we are in the position of giving explicit expressions for the differential detection rate [71, 81]:

dR

dER
(ER) =

ρDM

32πM3m2
N

A2
∑
i,j

cicjF
N ′N
i,j (M,ER), (56)

where ρDM is the DM density on Earth and the integrated form factors expressions are given by

FN ′N
i,j (M,ER) =

∫
v≥vmin(ER)

d3v
fSHM,E

v
(v⃗)FN

′N
i,j (M, q2, v2)

∣∣∣∣
q2=2mTER

. (57)

In the previous equation, we take the velocity distribution fSHM,E in Earth’s frame to be

fSHM,E =
e−(v+vE)

2/v20 − βe−v2esc/v20
(v0
√
π)3Nesc

Θ(vesc − |v + vE |) , (58)
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with Nesc being a normalization factor which goes to one as we send the escape velocity to infin-
ity. The minimum velocity for which we have a direct detection scattering event is vmin(ER) =
(mTER/2µ

2
TV )

1/2, with µTV = MmT /(M + mT ) the DM-target reduced mass. From the practical
point of view, we compute the velocity integrals using the expressions presented in Appendix A of [81].
The expected numbers of observed events, computed as a function of the EFT parameters (Ci,M⋆, g⋆)
can be found integrating over the nuclear recoil energy in the range indicated by experiments, after
having multiplied eq. (56) by the total exposure:

Nth = TexpMexp

∫ ERmax

ERmin

dR

dER
(ER), (59)

where Texp is the total time over which the experiment ran and Mexp the total mass of the experiment.
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