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Abstract

In this paper we identify a novel reason why signaling may fail to separate types, which

is specific to cases where the receiver has to incur a cost to acquire the signal sent by the

sender. If the receiver chooses not to incur the acquisition cost, then all sender’s types

find it optimal to pool on the least costly signal; also, if all sender’s types pool on the

least costly signal, then the receiver finds it optimal not to incur the acquisition cost.

This kind of coordination failure makes the resulting pooling equilibrium extremely

robust, even when costs of signal acquisition are very small. Also, pooling is shown to

be robust to all refinements based on out-of-equilibrium beliefs, even when the sender

can engage in further signaling that can act as an “invitation” to acquire the main

signal, and when acquisition costs are smooth and depend on the receiver’s effort to

acquire the signal. These results provide a new source of interest in pooling equilibria.
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Berengario 51, 43 ovest, 41121 Modena, Italia. Tel.: +39 059 205 6843, fax: +39 059 205 6947, email:

ennio.bilancini@unimore.it.
†Dipartimento di Economia e Management, Università degli Studi di Pisa, Via Cosimo Ridolfi 10, 56124
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1 Introduction

Signaling is a pervasive phenomenon in economic interactions, emerging in many situations

where there are information asymmetries. Many signaling models have been developed and

studied, making the class of signaling games a quite prominent one in economics (see Riley,

2001, for a comprehensive survey).

An important characteristic of signaling games is that they typically show many Bayes-

Nash equilibria with rather distinct features: equilibria in which sender’s types pool together

by sending the same signal and equilibria where sender’s types separate from each other by

sending different signals.

In applied research, signaling models are often used with the focus on the best separating

equilibrium, also called the Riley equilibrium, i.e., the equilibrium where all sender’s types

separate but they incur the minimun necessary signaling cost to do so. This is in good

part due to an important stream of literature that has shown the prominence of the Riley

equilibrium when agents are supposed to possess a sufficient degree of forward induction (see

Sobel, 2009, for an instructive survey and Subsection 6.1 where we provide more details on

this point).

Quite surprisingly, however, not much attention has been given to the possibility that

the acquisition of the signal by the receiver might be a costly activity. Is the assumption of

freely acquisition of signals innocuous? In this paper we show that it is definitely not so.

Indeed, even a very small cost of signal acquisition can make a great difference in terms of

the robustness (and plausibility) of equilibria. In particular, we show that in the presence

of costs to acquire the signal the pooling of sender’s types becomes at least as prominent

as their separation as an equilibrium outcome. This happens because a coordination failure

emerges: if the receiver chooses not to incur the acquisition cost, then all sender’s types

find it optimal to pool on the minimum signal and, at the same time, if the different types

of the sender pool on the same signal, then the receiver finds it optimal not to incur the

acquisition cost. So, a complementarity naturally arises between the receiver’s incentive

to costly acquire the signal and the sender’s incentive to engage in the costly signaling

activity. Our results suggest that new attention should be given to pooling outcomes. This

could have far-reaching implications, especially in the light of the widespread reliance on

separating equilibria in applied models.

This paper is part of a broader project that studies the consequences of introducing

frictions in signaling games. In particular two general classes of frictions are considered.

The first class comprises exogenous frictions: the signal sent by the sender is subject to a
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friction that reduces its informativeness for the receiver. The analysis of this case is developed

in Bilancini and Boncinelli (2014b). The second class comprises instead endogenous frictions:

the signal sent by the sender is subject to a friction whose intensity depends on the choices

of either the sender, the receiver, or both. In the present paper we explore the case where

the receiver can choose to incur a cost to eliminate all frictions affecting the signal sent by

the sender.

The paper is organized as follows. In Section 2 we review the literature on costly acqui-

sition of information. In Section 3 we introduce signaling games with costly acquisition of

signals by means of an example that is a variant of the classical Spence’s signaling model. In

Section 4 we define a general class of signaling games with costly acquisition of signals. In

Section 5 we show that the existence of acquisition costs may lead to a coordination failure

that sustains a pooling equilibrium, which is also shown to be the unique pooling outcome;

further, we contrast the equilibra that emerge in this class of games with those that emerge

in the related class of standard signaling games (i.e., with no acquisition costs). In Section

6 we explore the robustness of the coordination failure along three dimensions: equilibrium

refinements acting on out-of-equilibrium beliefs (Subsection 6.1), equilibrium selection by

means of further signaling that can act as an “invitation” to acquire the main signal (Sub-

section 6.2), and smooth acquisition costs that depend on the receiver’s acquisition effort

(Subsection 6.3).

2 Literature on costly acquisition of information

The idea that the acquisition of information is a strategic choice which comes at a cost

is receiving increasing attention in economics. Several models with this feature have been

investigated but just a few of them are closely related to our model. In fact, most of these

models do not consider a sender-receiver setup, and none of them considers a typical signaling

framework.

Gabaix et al. (2006) test the directed cognition model – which assumes that agents use

partially myopic option-value calculations to select their next cognitive operation – by study-

ing information acquisition in two different experiments. Caplin and Dean (2014) develop

a revealed preference test for the costly acquisition of information, encompassing models of

rational inattention, sequential signal processing, and search. Liu (2011) studies the dy-

namic behavior of firms and customers in markets with costly acquisition of information on

past transactions. Shi (2012) analyzes optimal auction design in a setting where values are

private and there are several potential buyers who can each costly acquire information about
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others’ valuations prior to participation in the auction. Oliveros (2013) studies the role of

abstention in an election where voters can costly acquire information and the cost increases

in the precision of the information acquired.

A paper more closely related to ours is Dewatripont and Tirole (2005) which develops a

theory of costly communication where both the sender and the receiver have to incur a cost

in order to communicate. The model can be seen as a standard cheap talk model where the

precision of the message depends on the cost sustained by the sender and where the receiver

has to incur a cost – which may depend on the message precision – to acquire the message.

Due to such costs, a form of coordination failure arises – that is similar to the one emerging

in our model – which gives rise to a robust babbling equilibrium where the message sent by

the sender contains no information and the receiver does not acquire it. The main difference

with our model is that Dewatripont and Tirole (2005) do not consider costly signaling, but

different modes of cheap communication.

Tirole (2009) develops a model of limited cognition and examines its consequences for

contractual design. This paper formalizes the idea that the acquisition of information is a

costly activity because of cognitive limitation. This same idea is applied to persuasion in

Bilancini and Boncinelli (2014a) where the receiver has to incur a cognitive cost to fully

and precisely elaborate information. In this model the sender tries to persuade the receiver

to accept an offer by sending a costly signal - the reference cue - which refers the offer to

a category of offers whose average quality is known by the receiver; the actual quality is a

sender’s private information, but the sender can pay a cost to acquire it – the elaboration

cost. Pooling equilibria emerge also in this setup and turn out to be robust. However, they

are not due to a coordination failure: a pooling equilibrium – i.e., an equilibrium where the

bad offer and the good offer are proposed with the same reference cue – is sustained by the

fact that the receiver accepts or not the offer independently of the observed reference cue, no

matter what information she decides to acquire. An important difference between the model

by Bilancini and Boncinelli (2014a) and the one developed in the present paper is that in

the former the acquisition cost is paid to acquire hard information on the state of the world,

while in the present paper the cost is paid to acquire the soft information embodied by the

signal.

3 A motivating example

Consider the following simple variant of the classical model by Spence (1973). There is one

employer E that wants to hire a worker W . There are two types of workers, distinguished
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by their productivity θ ∈ {1, 2}, which is a worker’s private information; E has a prior p > 0

that W is highly productive, i.e., that θ = 2. Technology and market conditions are such

that E’s net profits are given by θ−w if a worker is hired, with w the wage paid to the hired

worker and θ his productivity, while otherwise profits are 0.

Moreover, W can acquire education by incurring a cost that is type-dependent. In partic-

ular, suppose that W comes from a foreign country and that he has to move to E’s country

in order to be hired. Suppose also that W can only acquire education in the foreign country,

and that the only available alternatives are a good school G and a bad school B, which are

not previously known to E. For the prospective worker of type θ, the cost of attending G is

2/θ and the cost of attending school B is 1/θ. So, attending school G is more costly than

attending school B, and it is relatively more so for the low type θ = 1. This provides W

with a costly signal x ∈ {G,B} that potentially allows W ’s types to separate.

So far, there is no substantial difference from Spence’s model. However, what if E, in

order to assess the quality of the schooling signal x sent by W , has to actively acquire

the information on what school W has attended in the country he comes from, and what

attendance costs have been paid? These information can well not come for free and, we

stress, this can make the difference. We observe that the costs of acquiring such information

can be interpreted as due to the material and/or the cognitive effort which is necessary to

retrieve and elaborate the relevant data on x. On the material side, E might have to search

and collect information on G and B, and maybe also pay to translate documents that would

be otherwise unaccessible. On the cognitive side, E might have to make an effort to elaborate

the collected information in order to establish that one school is G with costs 2θ and the

other is B with costs θ and to assign the signal x to either G or B – otherwise the schools

would be undistinguishable to E. To model this situation suppose that E has to pay a cost

c > 0 to acquire the signal x sent by W . In particular, if E does not incur the cost c, then

E cannot condition his actions on x.

Consider now the following situation: W chooses G independently of her type, i.e.,

x(1) = x(2) = B, and E decides not to acquire the signal x. It is easy to check that this

is an equilibrium in the present example: both types of W strictly lose by switching to the

more costly G, and E strictly loses by acquiring the signal because it costs c and provides

no new information. We observe that such an equilibrium is very similar to the pooling

equilibrium with lowest signal that emerges in Spence’s model. However, we stress that the

presence of acquisition costs makes this pooling equilibrium much more robust than that

pooling equilibrium in Spence’s model. Since E does not acquire any signal, W cannot use

out-of-equilibrium signals to communicate with E, and the reason is that W would not even
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notice that such signals have been sent. In particular, even if W ’s high type deviates from

x(2) = B to x(2) = G, there is no way to let E know – or even imagine – about such

a deviation. So, arguments based on the reasonability of out-of-equilibrium beliefs cannot

refine away this pooling equilibrium.

There is another important difference. In this example the lowest signal pooling equilib-

rium is the only pooling equilibrium, again in contrast with Spence’s model where there are

multiple pooling equilibria. To see why, consider the case where both types of W pool on G,

i.e., x(1) = x(2) = G. Given this behavior by W , E finds it strictly profitable not to incur

the acquisition cost, as acquiring the signal provides no new information. But if W does not

acquire the signal x, then the choice of x(1) = x(2) = G cannot be sustained in equilibrium

since each of W ’s type would strictly gain by switching from G to B, as this allows to save

on the cost of signaling without adversely affecting W ’s beliefs.

4 The model

We now introduce the more general game of signaling with costly acquisition of signals

(SCAS). There is one sender S and one receiver R (sometimes referred to as “he” and

“she”, respectively). The sender S observes his own type t ∈ T , with T a finite set of car-

dinality n, and then chooses a signal x ∈ X = R+. The receiver R can exert costly effort

and acquire the signal x, or save on effort and observe nothing. We denote with s ∈ {s1, s2}

such a choice, where s1 means that x is not acquired and s2 means that x is acquired and

effort is exerted.1 In any case, then R has to take an action y ∈ Y = R. The prior beliefs

held by R on T are given by p = (p1, ..., pn) ∈ ∆T where pt denotes the probability that S

is of type t ∈ T .

Utility for S is U : T ×X × Y → R, and utility for R is V : T ×X × Y × {s1, s2} → R.

The following assumptions on utility functions hold:

A1. continuity: U and V are continuous over x and y;

A2. monotonicity in action: U is strictly increasing in y;

A3. costly signaling: U is strictly decreasing in x;

1This labeling owes to the classification of elaboration processes as “System 1”, or S1, which is fast, cheap

and intuitive, and “System 2”, or S2, which is slow, costly and analytical (see, e.g., Kahneman, 2003). We

stress this interpretation based on cognitive effort because we think that it applies to many relevant cases

of signal acquisition. Of course, other interpretations are possible where the cost of acquiring the signal is

entirely due to non-psychological factors.

6



A4. single-crossing property: U(t, x, y) ≤ U(t, x′, y′), with x′ > x, implies that U(t′, x, y) <

U(t′, x′, y′) for all t′ > t and y, y′ ∈ Y ;

A5. costly acquisition of signal: V (t, x, y, s1) > V (t, x, y, s2) for all t ∈ T , x ∈ X, y ∈ Y ;

A6. constant cost of acquisition: V (t, x, y, s1) − V (t, x, y, s2) = c for all t ∈ T , x ∈ X,

y ∈ Y ;

In the light of A6, we define function v : T×X×Y → R such that v(t, x, y)+c = V (t, x, y, s2).

A strategy for S is a function µ : T → X; we denote with M the set of all possible µ. A

strategy for R is a pair (s, α) where s ∈ {s1, s2} and α : X×{s1, s2} → Y is a function such

that α(x, s1) = α(x′, s1) for all x, x′ ∈ X, i.e., R’s action is unconditional on x whenever

s = s1 si chosen; we denote with A the set of all such functions.

For given µ and (s, α), R has posterior beliefs that crucially depend on her choice of s. If

R chooses s = s2 then she derives, by means of the Bayes rule, posterior beliefs β(x|µ, s2) =

(β1(x|µ, s2), . . . , βn(x|µ, s2)) ∈ ∆T , where each βt(x|µ, s2) denotes the probability that S is

of type t conditional on the observation of x. If, instead, R chooses s = s1 then she can only

rely on her priors – no new information is acquired – so that posteriors are trivially identical

to priors: βt(x|µ, s1) = βt(x
′|µ, s1) = pt, for all t ∈ T and all x, x′ ∈ X.

We introduce the following additional assumption:

A7. uniqueness of best action under s1:

ρs1(µ) = argmaxy∈Y
∑

t∈T ptV (t, µ(t), y, s1) is single valued.

Assumption A7 resembles an assumption that is typically made in standard signaling models:

the single-valuedness of the receiver’s best reply. We stress, however, that A7 does not ensure

this much. In fact, it is consistent with the case where R is indifferent between choosing

ρs1(µ) with no acquisition of the signal and some other action (or actions) with the acquisition

of the signal. We observe that, because of the separability of acquisition costs implied by

assumption A6, the best action does not depend directly on the choice between s1 and s2,

but it does indirectly through the updating of beliefs that becomes possibile when s2 is

chosen. This implies that the best action against µ is given by ρs1(µ) whenever posteriors

are identical to priors, independently of the choice of s ∈ {s1, s2}.

An equilibrium of a SCAS game is a profile of strategies (µ, (s, α)) such that:2

E1. µ(t) ∈ argmax
x∈X

U(t, x, α(x, s)), for all t ∈ T ;

2We note that, as for standard signaling games with two players and just one move for the sender, a

Bayes-Nash equilibrium is also Sequential (Kreps and Wilson, 1982).
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E2. (s, α) ∈ argmax
s∈{s1,s2},α∈A

∑

t∈T

pt

(

∑

k∈T

βk(µ(t)|µ, s)V (t, µ(t), α(µ(t), s), s)

)

;

E3. the beliefs β(x|µ, s) ∈ ∆T are calculated by means of Bayes rule whenever possible.

The meaning of E1 is straightforward: S must be best-replying to R. Similarly, the meaning

of E2 is that Rmust be best-replying to S given her beliefs, but this might not be immediately

clear from the stated condition. To see why it is so note that E2 is equivalent to the following

set of conditions:

• if s = s1, then α is such that α(x, s1) = ỹ = ρs1(µ) for all x ∈ X and
∑

t∈T

ptv(t, µ(t), ỹ)≥
∑

t∈T

pt

(

∑

k∈T

βk(µ(t)|µ, s2)v(t, z, µ(t), α(µ(t), s2))−c

)

for all α ∈ A;

• if s = s2, then α = α̃ ∈ argmax
α∈A

∑

k∈T

βk(µ(t)|µ, s2)v(t, z, µ(t), α(µ(t), s2)) for all t ∈ T

and
∑

t∈T

ptv(t, µ(t), y)≤
∑

t∈T

pt

(

∑

k∈T

βk(µ(t)|µ, s2)v(t, z, µ(t), α̃(µ(t), s2))−c

)

for all y ∈

Y .

Condition E3 is also straightforward. We observe that, in the present setup, posterior beliefs

along the equilibrium path are the following:

• if s = s2 then, for all t ∈ T and for all x such that µ(t′) = x for some t′ ∈ T :

βt(x|µ, s) =







pt
∑

k:µ(k)=x pk
if µ(t) = x

0 if µ(t) 6= x;

• if s = s1 then βt(x|µ, s) = pt for all t ∈ T and for all x ∈ X.

Lastly, in order to better contrast our results with the results on standard signaling games

we find it useful to define the standard signaling game that can be obtained from a SCAS

game by forcing R to play s = s2 and setting c = 0. We call this a game of signaling with

free acquisition of signals (SFAS). Note that a SFAS game with utilities U and v is actually

the standard signaling game – i.e., with no costs to acquire the signal – that can be obtained

from a SCAS game with utilities U and v and any acquisition cost c > 0. In the light of

this, we denote with Γ(T, p, U, v, c) a given SCAS game – where T is the sender’s type space

and p is the tuple of receiver’s priors – and with Γ(T, p, U, v, 0), its associated SFAS game.

8



5 Equilibria

The set of Bayes-Nash equilibria of a SCAS game is in general different from the set of Bayes-

Nash equilibria of a typical signaling game. This difference is mostly due to the inexistence

of pooling equilibria where sender’s types pool on non-minimum signals. To make this claim

precise we provide a number of results characterizing the set of equilibria of a generic SCAS

game, and we compare it to the set of equilibria of the associated SFAS game.

5.1 Coordination failure leads to pool on the null signal

Our first result states that when coordination between the sender and the receiver fails, the

emerging equilibrium is one where all sender’s types pool on the null signal. More precisely,

it turns out that in a SCAS game a pooling equilibrium must be such that all sender’s types

pool on the signal x = 0 and the receiver does not acquire the signal, implying that there is

a unique pooling outcome in equilibrium – to which we sometimes refer as a no-signal pooling

equilibrium. The following proposition formalizes:

Proposition 1. A SCAS game Γ(T, p, U, v, c) has a pooling equilibrium. If (µP , (sP , αP ))

is a pooling equilibrium, then it must be such that µP (t) = 0 for all t ∈ T , sP = s1, and

αP (x, s1) = αP (0, s2) = ρs1(µP ) for all x ∈ X.

Proof. We first show that the profile (µP , (sP , αP )) is an equilibrium. Preliminarily, note

that by A7 (uniqueness of best action under s1) R’s expected utility
∑

t∈T ptv(t, µ
P (t), y) =

∑

t∈T ptV (t, µP (t), y, s1) admits a maximum over Y and, hence, the profile (µP , (sP , αP ))

exists. For notational convenience we denote this maximum with y∗ = ρs1(µP ).

Consider R deviating from (sP , αP ). Since αP (x, s1) = y∗ for all x ∈ X, no strictly

profitable deviation from αP exists as long as R maintains s1. Consider a deviation to

(s′, α′) with s′ = s2 and some α′ ∈ A. We observe that, since µP (t) = 0 for all t ∈ T , R

obtains no additional information by playing s2 instead of s1, and therefore her posterior

beliefs must be equal to her priors p. This implies that y∗ is an optimal action also when

s′ = s2 and signal µP (t) = 0, for all t ∈ T , is observed. Since by A5 and A6 (respectively,

costly acquisition of signal and constant acquisition cost) the only effect on utility of playing

s2 instead of s1 is, for a given choice of α ∈ A, to incur the constant cost c > 0, it follows

that R’s expected utility is lower under deviation (s2, α′), for all α′ ∈ A, than under (sP , αP ).

Consider S deviating from µP . In particular, consider S deviating to µ′ such that µ′(t′) >

0 for some t′ ∈ T . Recall that αP (x, s1) = y∗ for all x ∈ X, i.e., the action chosen by R is y∗

independently of the actual value of µ′(t), t ∈ T . This, together with assumption A3 (costly
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signaling) implies that S’s expected utility cannot be greater under any µ′ ∈ M than under

µP .

We now show that no pooling equilibrium other than (µP , (sP , αP )) exists. Consider the

profile (µP ′

, (sP
′

, αP ′

)) where µP ′

(t) = xP ′

> 0 for all t ∈ T . Note that, exactly because

µP ′

(t) = xP ′

for all t ∈ T , along the equilibrium path R never learns anything and so R

takes the same action yP
′

= αP ′

(µP ′

(t), sP
′

) for all t ∈ T . If sP
′

= s2, then – by assumptions

A5 and A6 – R’s gets an expected utility of
∑

t∈T ptv(t, x
P ′

, yP
′

) − c which is strictly lower

than
∑

t∈T ptv(t, x
P ′

, yP
′

), i.e., the expected utility that R obtains by playing s1 together

with any αP ′′

∈ A such that αP ′′

(x, s1) = yP
′

for all x ∈ X. So, in order for (sP
′

, αP ′

) to be

a best reply for R to µP ′

, it must be that sP
′

= s1 and, hence, αP ′

(x, s1) must be constant

over X and, in particular, such that αP ′

(x, s1) = ρs1(µP ′

) for all x ∈ X. But if this is the

case, then we claim that S has a profitable deviation. In particular, consider S deviating to

µP . Since R always responds with ρs1(µP ′

) and by A3 (costly signaling), it follows that S’s

expected utility is strictly greater under µP than under µP ′

.

5.2 Sufficiently low acquisition costs allow separation

Proposition 1 establishes that the presence of a positive cost to acquire the signal – no matter

how small – induces a strong reduction in the number and variety of pooling equilibria,

actually leading to a unique outcome where all sender’s types pool on the null signal. Our

second result shows that such a strong reduction does not take place for separating and semi-

separating equilibria. More precisely, if a SFAS game has a separating or semi-separating

equilibrium and information on sender’s types is of some value to the receiver, then also all

associated SCAS games with acquisition costs sufficiently low possess the same equilibrium.

In a SFAS game Γ(T, p, U, v, 0), we say that information on sender’s types is valuable to

R if there exits v̄ > 0 such that, for all µ ∈ M where µ(t) 6= µ(t′) for some t, t′ ∈ T , we have:

max
α∈A

∑

t∈T

βt(µ(t)|µ, s2)v(t, µ(t), α(µ(t)), s2)−max
y∈Y

∑

t∈T

ptv(t, µ(t), y) > v̄; (1)

i.e., R gains at least v̄ by being able to distinguish some types from some others. We observe

that if information is valuable to R in the SFAS game Γ(T, p, U, v, 0), then it is valuable also

in the SCAS game Γ(T, p, U, v, c), for all c > 0.

The next proposition formalizes the result mentioned above:

Proposition 2. Let (µS, (sS, αS)) be an equilibrium profile of the SFAS game Γ(T, p, U, v, 0)

where µS(t) 6= µS(t′) for some t, t′ ∈ T . If information on sender’s types is valuable to R,
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then there exists c̄
(

(µS, (sS, αS))
)

> 0 such that (µS, (sS, αS)) is an equilibrium of all SCAS

games Γ(T, p, U, v, c) with c ≤ c̄
(

(µS, (sS, αS))
)

.

Proof. Let (µS, (sS, αS)) be an equilibrium of Γ(T, p, U, v, 0) with supporting beliefs βS(x|µ, s) ∈

∆T . Since Γ(T, p, U, v, 0) is a SFAS game, it must be that sS = s2. Moreover, since

(µS, (sS, αS)) is an equilibrium of Γ(T, p, U, v, 0), µS must be a best-reply to (sS, αS) for S.

Consider now the SCAS game Γ(T, p, U, v, c). Note that (µS, (sS, αS)) is a profile which is

feasible also in Γ(T, p, U, v, c), for any c > 0. Note also that, by construction, S has the same

set of strategies and faces the same payoffs in game Γ(T, p, U, v, 0) and game Γ(T, p, U, v, c),

for any c > 0. Hence, if µS is a best reply to (sS, αS) for S in Γ(T, p, U, v, 0) then it is also

a best reply to (sS, αS) for S in Γ(T, p, U, v, c), for any c > 0.

Instead, R has a set of strategies and a payoff structure in Γ(T, p, U, v, c) that are different

from those of game Γ(T, p, U, v, 0). In particular, R’s strategy set in Γ(T, p, U, v, 0) is {s2}×A

which is a restriction of {s1, s2}×A, R’s strategy set in Γ(T, p, U, v, c); R’s payoff structure

in Γ(T, p, U, v, c) is that faced in Γ(T, p, U, v, 0) with the addition, in the light of A5 and

A6 (respectively, costly acquisition of signal and constant acquisition cost), of −c in case R

chooses s = s2. So, R’s expected utility in game Γ(T, p, U, v, c) under profile (µS, (sS, αS))

and beliefs βS(x|µ, s) =
(

βS
1 (x|µ, s), . . . , β

S
n (x|µ, s)

)

∈ ∆T is given by:

∑

t∈T

pt

(

∑

k∈T

βS
k (µ

S(t)|µS, s2)v(t, µS(t), αS(µ(t), s2))− c

)

. (2)

Consider a deviation by R from (sS, αS) to (s1, α′), with α′(x, s1) = ρs1(µS) for all x ∈ X.

Note that, by definition of ρs1, this is the best deviation entailing s = s1 that is available to

R. Note also that, because R observes no signal under s1, R’s posterior beliefs are equal to

priors p, so that R’s expected utility for deviating to (s1, α′) is given by:

∑

t∈T

ptv(t, µ
S(t), ρs1(µS)). (3)

Let us set:

c̄
(

(µS, (sS, αS))
)

=
∑

t∈T

pt

(

∑

k∈T

βS
k (µ

S(t)|µS, s2)v(t, µS(t), αS(µ(t), s2))

)

−
∑

t∈T

ptv(t, µ
S(t), ρs1(µS)).

(4)

If information on sender’s types is valuable toR, then there exists v̄ such that c̄
(

(µS, (sS, αS))
)

≥

v̄ > 0. By construction, c ≤ c̄ implies that expected utility (2) is not lower than expected

utility (3), i.e., deviation (s1, α′) is not profitable with respect to (sS, αS).
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Consider a deviation by R from (sS, αS) to (s2, α′′). Since (µS, (sS, αS)) is an equilibrium

of Γ(T, p, U, v, 0), it follows that αS is chosen optimally by R given sS = s2 and µS. Hence,

(s2, α′′) cannot be a profitable deviation in the game Γ(T, p, U, v, c), for all c > 0.

These observations on the possible deviations byR imply that for any c ≤ c̄
(

(µS, (sS, αS))
)

the strategy (sS, αS) is a best reply to µS for S in game Γ(T, p, U, v, c). This, in turn, im-

plies that, for any c ≤ c̄
(

(µS, (sS, αS))
)

, (µS, (sS, αS)) is an equilibrium of the SCAS game

Γ(T, p, U, v, c).

The main insight of Proposition 2 is that, whenever information on sender’s types is

valuable to R, any separating or semi-separating equilibrium of a SFAS game is also an

equilibrium of the SCAS games with same utility functions U and v and acquisition costs

sufficiently small. From this it is straightforward to conclude that if acquisition costs are

low enough, then a SCAS game where information on sender’s types is valuable to R has

all separating and semi-separating equilibria of the associated SFAS game. The following

corollary formalizes:

Corollary 1. For any SFAS game Γ(T, p, U, v, 0) where information on sender’s types

is valuable to R, there exists ¯̄c = v̄ > 0 such that if (µS, (sS, αS)) is an equilibrium of

Γ(T, p, U, v, 0) and µS(t) 6= µS(t′) for some t, t′ ∈ T , then (µS, (sS, αS)) is an equilibrium of

the SCAS game Γ(T, p, U, v, c) for all positive c ≤ ¯̄c.

Proof. Consider the set M = {µ ∈ M|∃t, t′ ∈ T, µ(t) 6= µ(t′)}. Since information on sender’s

types is valuable to R, there exists v̄ > 0 such that, for every µ ∈ M , we have:

c̄ ((µ, (s, α))) =
∑

t∈T

pt

(

∑

k∈T

βk(µ(t)|µ, s2)v(t, µ(t), α(µ(t), s2))

)

−
∑

t∈T

ptv(t, µ, ρ
s1(µ)) ≥ v̄.

(5)

Set ¯̄c = v̄. Since ¯̄c ≤ c̄ ((µ, (s, α))) for all (µ, (s, α)) such that µ ∈ M , a fortiori ¯̄c ≤

c̄ ((µ, (s, α))) holds for all (µ, (s, α)) that form a separating or a semi-separating equilibrium

of the SFAS game Γ(T, p, U, v, 0). Then, by applying Proposition 2 for all such equilibria,

we get the result.

5.3 Surplus maximization

So far, we have shown that in a SCAS game the presence of costs to acquire the signal leads

to the existence of a unique pooling equilibrium outcome – where all sender’s types pool

on the null signal – while separating and semi-separating equilibria may exist in the same

number and quality of those of the associated SFAS game, but only if acquisition costs are
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not too large and information on types is valuable to the receiver. Furthermore, as it is

shown in Section 6, a no-signal pooling equilibrium turns out to be robust to many standard

refinements of equilibria. This suggests that in a SCAS game a no-signal pooling equilibrium

is typically more focal than in the associated SFAS game, and this is more likely to be the

case the larger the acquisition costs.

Is this good or bad news? From a welfare perspective, a no-signal pooling equilibrium

can lead to either a better or worse outcome with respect to an alternative separating or

semi-separating equilibrium. Of course, this is true for standard signaling games as well; but

in the presence of costs to acquire the signal a no-signal pooling equilibrium is more likely to

be the second best, and the likelihood of this increases in the cost size. The next proposition

makes this point clear:

Proposition 3. For any SFAS game Γ(T, p, U, v, 0), there exists c̄P > 0 such that in all

SCAS games Γ(T, p, U, v, c) with c ≥ c̄P the pooling equilibrium (µP , (sP , αP )) entails a total

surplus which is not lower than in any other equilibrium.

Proof. Let ES(Γ(T, p, U, v, 0)) ⊆ M × {s1, s2} × A be the set of separating and semi-

separating equilibria of the SFAS game Γ(T, p, U, v, 0), i.e., (µ, (s, α)) ∈ ES if and only

if (µS, (sS, αS)) satisfies E1-E3 and µS ∈ M = {µ ∈ M|∃t, t′ ∈ T, µ(t) 6= µ(t′)}.

For any (µ, (s, α)) ∈ ES(Γ(T, p, U, v, 0)), the total surplus of the SFAS game Γ(T, p, U, v, 0)

is given by:

TS(µ, (s, α)) =
∑

t∈T

ptU(t, µ(t), α(µ(t), s)) +
∑

t∈T

βt(µ(t)|µ, s)v(t, µ(t), α(µ(t), s));

while the total surplus associated with the pooling equilibrium (µP , (sP , αP )) of both the

SFAS game Γ(T, p, U, v, 0) and the SCAS game Γ(T, p, U, v, c) is given by:

TS(µP , (sP , αP )) =
∑

t∈T

ptU(t, 0, ρs1(µP )) +
∑

t∈T

ptv(t, 0, ρ
s1(µP )).

Let c̄P be defined as follows:

c̄P =











(

sup
(µ,(s,µ))∈E(Γ(T,p,U,v,0))

TS(µ, (s, α))

)

− TS(µP , (sP , αP )) if greater than 0

0 otherwise.

Consider now the SCAS games Γ(T, p, U, v, c′) such that c′ ≥ c̄P . By Proposition 1, (µP , (sP , αP ))

leads to the unique pooling equilibrium outcome, and therefore TS(µP , (sP , αP )) is trivially

the maximum total surplus among pooling equilibria.

13



If no separating or semi-separating equilibrium (µS, (sS, αS)) ∈ ES(Γ(T, p, U, v, 0)) is

an equilibrium of Γ(T, p, U, v, c′), then (µP , (sP , αP )) is trivially a surplus maximizer in

ES(Γ(T, p, U, v, c′)). If there exists a separating or semi-separating equilibrium (µS, (sS, αS)) ∈

ES(Γ(T, p, U, v, 0)) that also belongs to ES(Γ(T, p, U, v, c′)), then (µS, (sS, αS)) entails a total

surplus equal to TS(µS, (sS, αS))−c′, because of assumption A6 (constancy of the acquisition

cost). Hence, we can conclude that, if c′ ≥ c̄P , then TS(µP , (sP , αP )) ≥ TS(µ, (s, α)) − c′

for all (µ, (s, α)) ∈ ES(Γ(T, p, U, v, 0)).

A straightforward implication of Proposition 3 is that whenever a no-signal pooling equi-

librium is desirable in a standard signaling setup, then it is a fortiori desirable in the presence

of acquisition costs, no matter how big or small they are. Of course, the converse does not

hold as a separating equilibrium could well be the desirable outcome in a SFAS game, but

it may not be viable in the associated SCAS game with sufficiently large acquisition costs.

The following corollary formalizes:

Corollary 2. If (µP , (sP , αP )) is a pooling equilibrium of the SFAS game Γ(T, p, U, v, 0)

and entails a total surplus which is not lower than in any other equilibrium, then (µP , (sP , αP ))

also entails this for all SCAS games Γ(T, p, U, v, c). Moreover, the converse does not hold.

Proof. The first claim follows directly from the last observation of the proof of Proposition

3. Indeed, if TS(µP , (sP , αP )) is the maximum equilibrium total surplus in Γ(T, p, U, v, 0),

then c̄P = 0, and so TS(µP , (sP , αP )) is also the maximum equilibrium total surplus in

Γ(T, p, U, v, c), for any c > 0. That the converse does not hold follows from the obser-

vation that TS(µP , (sP , αP )) is not always the maximum total surplus in a SFAS game

Γ(T, p, U, v, 0), while it must be so for the associated SCAS game Γ(T, p, U, v, c′) for c′ suffi-

ciently high, e.g., for c′ > max(µ,(s,µ))∈E(Γ(T,p,U,v,0)) c̄(µ, (s, µ)).

6 On the robustness of the coordination failure

6.1 Refinements acting on out-of-equilibrium beliefs

Many refinements of Bayes-Nash equilibria have been proposed, especially for signaling

games. Most of them follow the idea that out-of-equilibrium beliefs should not be totally free,

but need to satisfy some criterion of reasonableness. All such refinements imply sequentiality

(Kreps and Wilson, 1982).

Cho and Kreps (1987) introduce the Intuitive Criterion which requires that out-of-

equilibrium beliefs place zero weight on types that can never gain from deviating from the
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considered equilibrium.

Banks and Sobel (1987) introduce Divinity which requires that out-of-equilibrium beliefs

place relatively more weight on types that gain more from deviating from the considered

equilibrium. They also introduce Universal Divinity which requires that beliefs survives

Divinity for all possible priors. The surviving beliefs do not depend on the priors – while

those surviving Divinity in general do.

Motivated by Banks and Sobel (1987), Cho and Kreps (1987) have also introduced D1,

which requires that out-of-equilibrium beliefs are supported on types that have the most

to gain from deviating from the considered equilibrium, and D2, which requires to place

zero weight on types that always have some other type gaining strictly from deviating from

the considered equilibrium. In general Divinity turns out to be a weakening of D1, while

Universal Divinity to be a strengthening of D2.

Cho and Sobel (1990) demonstrate that, for monotonic signaling games, the set of D1

and Universal Divinity are equivalent to Strategic Stability (Kohlberg and Mertens, 1986);

moreover, if the single-crossing property is satisfied, then D1 yields a unique equilibrium.

The perfect sequential equilibrium by Grossman and Perry (1986) is more tricky. It selects

equilibria that survive backward induction in a game where nodes are not only identified

by paths of play but also by beliefs at such nodes – they call a strategy of this game a

metastrategy. The concept of perfect sequential equilibrium selects a set of equilibria –

possibly empty – that is a subset of that obtained with the intuitive criterion.

The undefeated equilibrium by Mailath et al. (1993) rests on totally different grounds

and restrict beliefs according to payoff comparisons at distinct sequential equilibria. More

precisely, a first sequential equilibrium is defeated by a second sequential equilibrium if

there exists a non-negligible set of types that prefer to deviate from what they do in the first

equilibrium to what they do in the second equilibrium and, at the same time, the beliefs of

the non-deviating types in the first equilibrium are not consistent with such a deviation for

this set of types. A sequential equilibrium is undefeated if no other equilibrium defeats it.

These refinements relate to each other in a non trivial way,3 but all rely on the possibility

that a deviation by the sender triggers a path of play along which the receiver gets some

piece of information that is unexpected along the equilibrium path. However, in the pooling

equilibrium of a SCAS game the receiver does not acquire the signal, so that this possibility

3In particular, an equilibrium satisfying D1 must also satisfy D2 which in turn requires to satisfy the

Intuitive Criterion; an equilibrium satisfying Universal Divinity must also satisfy Divinity which in turn

requires to satisfy the Intuitive Criterion; an Undefeated equilibrium need only be Sequential, while a Perfect

Sequential Equilibrium must satisfy the Intuitive Criterion.
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does not exist. Intuitively, this is why refinements based on out-of-equilibrium beliefs do not

have a bite in such case.

To formalize this point let us introduce the following definitions. For given strategy

profile (µ, (s, α)) and priors p, R has beliefs β(x|µ, s) ∈ ∆T associated with each of her

information sets where an action in Y has to be chosen. Denote with Xe(µ, (s, α)) ⊆ X

the set of signals that R can observe on information sets along the equilibrium path, i.e.,

at information sets that contain decision nodes along the equilibrium path. Denote with

Xo(µ, (s, α)) = X \ Xe(µ, (s, α)) the set of signals that R can observe only at information

sets off the equilibrium path, i.e., at information sets that do not contain decision nodes

lying on the equilibrium path.

Moreover, denote with Xo1(µ, (s, α)) ⊆ Xo(µ, (s, α)) the set of signals off the equilibrium

path that R cannot observe as a consequence of S deviating from µ because a deviation by R

is required. Also, denote with Xo2(µ, (s, α)) = Xo(µ, (s, α))\Xo1(µ, (s, α)) the set of signals

off the equilibrium path that R can potentially observe as a consequence of S deviating

from µ. In a SCAS game, we call receiver-triggered out-of-equilibrium beliefs the beliefs held

by R which are activated by signals in Xo1(µ, (s, α)),4 and we call sender-triggered out-of-

equilibrium beliefs the beliefs held by R which are activated by signals in Xo2(µ, (s, α)).

A refinement that rules away equilibria by restricting admissible beliefs to a subset of

those possibly activated by signals in Xo(µ, (s, α)) can be regarded as a refinement act-

ing on out-of-equilibrium beliefs. All equilibrium refinements discussed above are evidently

refinements acting on out-of-equilibrium beliefs. Note that, although such refinements re-

quire R to observe an unexpected signal, they can potentially act on beliefs activated by all

x ∈ Xo(µ, (s, α)), i.e., they act not only on sender-triggered out-of-equilibrium beliefs, but

also on receiver-triggered ones.

The following proposition establishes that the pooling outcome identified by Proposition

1 is robust to any refinement acting on out-of-equilibrium beliefs:

Proposition 4. In the SCAS game, the profile (µP , (sP , αP )) where µP (t) = 0 for all t ∈ T ,

sP = s1, and αP (x, s1) = αP (x, s2) = ρs1(µP ) is an equilibrium that survives any possible

equilibrium refinement acting on out-of-equilibrium beliefs.

Proof. The considered equilibrium profile (µP , (sP , αP )) prescribes that R plays sP = s1,

so it follows that Xe(µP , (sP , αP )) = Xo2(µP , (sP , αP )) = ∅ and Xo1(µP , (sP , αP )) = X,

because R can observe a signal x ∈ X only if she deviates from her equilibrium strategy. In

4We note that, although all receiver-triggered beliefs require a deviation by R to be activated, some of

them may additionally require a previous deviation by S to be activated.
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particular, no sender-triggered out-of-equilibrium belief exists because, since sP = s1, any

x ∈ X that is chosen by S leads to the same R’s information set, which is on the equilibrium

path. Hence, at this information set, R must have constant beliefs which are identical to

the priors p and which cannot be refined away by refinements acting on out-of-equilibrium

beliefs.

So, refinements acting on out-of-equilibrium beliefs can rule out only beliefs associated

with information sets that become active when a signal in x ∈ Xo1(µP , (sP , αP )) = X is

observed. However, none of these receiver-triggered out-of-equilibrium beliefs is necessary to

sustain the considered equilibrium. To see why, note that R always uses the priors p and S’s

strategy µP to evaluate whether to deviate or not from (sP , αP ); so, there is no deviation

by S that can induce R to deviate from (αP , sP ), as (αP , sP ) is a best response to µP given

p, no matter what are the receiver-triggered out-of-equilibrium beliefs held by R; since also

µP is a best response to (αP , sP ), it follows that S has no strictly profitable deviation from

µP , and this is again independent of the receiver-triggered out-of-equilibrium beliefs held by

R. Hence, no refinement acting on out-of-equilibrium beliefs can refine away the considered

equilibrium (µP , (sP , αP )).

Let us remark that refinements acting on out-of-equilibrium beliefs do have a bite in a

SCAS game. Actually, they do refine away a lot of separating equilibria, in a manner similar

to what they do in a signaling game without costly acquisition of signals. Indeed, in any

separating equilibrium with profile (µS, (sS, αS)), the receiver R must be playing sS = s2, so

that signals x ∈ Xo2(µS, (sS, αS)) = X \Xe(µS, (sS, αS)) 6= ∅ lead to sender-triggered out-

of-equilibrium beliefs which crucially sustain separation by punishing S’s deviations from µS

– as it happens in standard signaling games.

6.2 Inviting to acquire the signal through further signaling

It seems natural to ask whether the prominence of separation is restored if S has the possi-

bility to communicate to R that he is actually sending an informative signal – i.e., a signal

that separates (at least partly) types – and that therefore the signal is worth acquisition.

One can think of many situations where indeed the sender can send, together with the

main signal x, an accompanying costly signal, say z, that acts as an invitation for the receiver

to engage in the costly acquisition of x. We show that, in fact, not much can be restored by

the use of z.

To have an intuition of why it is so, note that in order for the accompanying signal z to

help separation, types must separate on z. Indeed, if separation is attained on x and the
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receiver acquires x, then all types would strictly prefer to save on costs and pool on a null z.

So, suppose that separation is effectively attained on z. Then, the receiver strictly prefers

not to incur the cost of acquiring x – since its acquisition would add no useful information –

with the result that the only communication that takes place is that through z. However, in

order for this kind of separation to be more robust than a pooling equilibrium, it is necessary

that the sender’s utility function satisfies an equivalent of the single-crossing property on

types and z – e.g., by satisfying the single-crossing property on x and z so that, for separating

profiles, the single-crossing on types and x induces the single-crossing on types and z – but

this is not guaranteed in general. At any rate, even if such a necessary condition holds, to

restore the prominence of separation the receiver must be able to acquire z for free. In fact,

if the receiver has to incur a positive cost to acquire z – no matter how small – then the

coordination failure is still possible and the very same arguments discussed in Subsection 6.1

apply also in this setup.

To provide a more formal discussion of these ideas, we construct a variant of the SCAS

game that we call SCAS game with invitation signal (SCAS-IS), and for which we show an

equivalent of Proposition 1 and Proposition 4. Since both the details of the SCAS-IS game

and the proof are rather long and add little to intuition, we provide them in Appendix A.

6.3 Smooth acquisition costs

One can think of the process of signal acquisition as a smooth one: the greater the cost

incurred to acquire the signal, the greater the acquisition of the signal content. In this

respect, a natural question to ask is whether separation of sender’s types becomes more likely

under such a smooth process. It turns out that the pooling outcome retains its focality, as

the robustness of a no-signal pooling equilibrium does not depend at all on the fact that R’s

acquisition choice is binary, i.e., either pay the acquisition cost and acquire x or pay nothing

and acquire nothing.

A simple way to model a smooth process of signal acquisition is to consider a stochastic

acquisition where the probability of acquiring x is an increasing function of the cost paid.5

Suppose R has the possibility to choose a level of acquisition effort e ∈ [0, 1], which replaces

the choice of s ∈ {s1, s2}; also, with probability 1 − e no signal is acquired, while with

probability e the signal is acquired. Note that a no-signal pooling equilibrium is still sustained

by a coordination failure: if S chooses x = 0 for all t ∈ T then R’s optimal choice is e = 0

5A different way to model smooth process of signal acquisition is to have the signal x always acquired

but with some blurring noise whose incidence negatively depends on e. We do not explore this case here as

the issue of noisy signaling is studied in detail in a companion paper (Bilancini and Boncinelli, 2014b).
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(so never acquiring the signal), and if R chooses e = 0 then S’s optimal choice is x = 0 for

all t ∈ T .

Similarly to what done for the SCAS-IS game, in order to provide a formal argument in

support of intuition we provide a variant of the SCAS game that accommodates the idea of

smooth acquisition costs. We call this variant the SCAS game with acquisition effort (SCAS-

AE); for such a class of games we show an equivalent of Proposition 1 and Proposition 4.

Since also in this case both the details of the game and the proof are rather long and add

little to the intuition described in the current subsection, we put them in Appendix B.
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A The SCAS game with Invitation Signal (SCAS-IS)

Consider a SCAS game and add a preliminary stage where S can send an additional costly signal z ∈ Z = R+.

Note that, if z can be used by S to signal to R in a credible way that the signal x is informative, then z can

indeed be used by S to invite R to acquire the signal x. This kind of credibility is assumed by means of a

single-crossing property over x and z, for all t ∈ T , which captures the fact that the types who are investing

resources to signal through x have relatively smaller costs for sending z (see assumption B5).

As it happens for the signal x, also the invitation signal z can be acquired or not by R. The choice by

R to acquire z is denoted with r ∈ {r1, r2}, where r = r1 means that R does not acquires z while r = r2

means that R acquires z.

In a SCAS-IS game, utility for S is U : T × X × Z × Y → R, and utility for R is V : T × X × Y ×

{s1, s2} × {r1, r2} → R. The following assumptions on utility functions hold:

B1. continuity: U and V are continuous over x, z, and y;

B2. monotonicity in action: U is strictly increasing in y;

B3. costly signaling: U is strictly decreasing in x and z;

B4. single-crossing property on (t, x): U(t, x, z, y) ≤ U(t, x′, z, y′), with x′ > x, implies that U(t′, x, z, y) <

U(t′, x′, z, y′) for all t′ > t, y, y′ ∈ Y , and z ∈ Z;

B5. single-crossing property on (x, z): U(t, x, z, y) ≤ U(t, x, z′, y′), with z′ > z, implies that U(t, x′, z, y) <

U(t, x′, z′, y′) for all x′ > x, y, y′ ∈ Y , and t ∈ T ;

B6. costly acquisition of signal x: V (t, x, y, s1, r) > V (t, x, y, s2, r) for all t ∈ T , x ∈ X, y ∈ Y , r ∈ {r1, r2};

B7. constant cost of acquiring x: V (t, x, y, s1, r) − V (t, x, y, s2, r) = cx for all t ∈ T , x ∈ X, y ∈ Y ,

r ∈ {r1, r2};

B8. costly acquisition of signal z: V (t, x, y, s, r1) > V (t, x, y, s, r2) for all t ∈ T , x ∈ X, y ∈ Y , s ∈ {s1, s2};

B9. constant cost of acquiring z: V (t, x, y, s, r1) − V (t, x, y, s, r2) = cz for all t ∈ T , x ∈ X, y ∈ Y ,

s ∈ {s1, s2};

In the light of B6-B9, we have that v(t, x, y) + cx + cz = V (t, x, y, s2, r2), v(t, x, y) + cx = V (t, x, y, s2, r1),

and v(t, x, y) + cz = V (t, x, y, s1, r2).

In a SCAS-IS game, a strategy for S is a pair (ζ, µ) where ζ : T → Z describes a type’s choice of z while

µ ∈ M describes, as in a SCAS game, a type’s choice of x; we denote with Z the set of all possible ζ. A

strategy for R is a triple (r, σ, α) where:

• r ∈ {r1, r2} describes R’s choice to acquire the invitation signal z;

• σ : Z × {r1, r2} → {s1, s2} describes R’s choice to acquire the signal x conditional on z, with σ

satisfying σ(z, r1) = σ(z′, r1) for all z, z′ ∈ Z, i.e., with the choice of s being unconditional on z if

r = r1; we denote with Σ the set of all such functions;

• α : X × {s1, s2} × {r1, r2} × Z → Y describes (with a slight abuse of notation) R’s choice of y, with

α satisfying:

– α(x, s1, r2, z) = α(x′, s1, r2, z) for all x, x′ ∈ X,
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– α(x, s1, r1, z) = α(x′, s1, r1, z′) for all x, x′ ∈ X and z, z′ ∈ Z,

– α(x, s2, r1, z) = α(x, s2, r1, z′) for all z, z′ ∈ Z,

i.e., with the choice of y being unconditional on z if r = r1 and unconditional on x if s = s1; we

denote with AIS the set of all such functions.

For given (ζ, µ) and (r, σ, α), R has posterior beliefs that depend on both her choice of r and her

choice of s. If R chooses s = s2 and r = r2 then she derives, by means of the Bayes rule, posterior be-

liefs β(z, x|(ζ, µ), s2, r2) = (βt(z, x|(ζ, µ), s2, r2), . . . , βn(z, x|(ζ, µ), s2, r2)) ∈ ∆T where βt(z, x|(ζ, µ), s2, r2)

denotes the probability that S is of type t, conditional on the observation of z and x. If R chooses

s = s1 and r = r2 then she does not observe x but still observes z, so that her posteriors are given by

βt(z, x|(ζ, µ), s1, r2) = βt(z, x
′|(ζ, µ), s1, r2), for all t ∈ T and all x, x′ ∈ X. If R chooses s = s2 and

r = r1 then she observes x but does not observe z, so that her posteriors are given by βt(z, x|(ζ, µ), s2, r1) =

βt(z
′, x|(ζ, µ), s2, r1), for all t ∈ T and all z, z′ ∈ Z. Finally, if R chooses s = s1 and r = r1 then she can

only rely on her priors – no new information is acquired – so that posteriors are trivially identical to priors:

βt(z, x|(ζ, µ), s1, r1) = βt(z
′, x′|(ζ, µ), s1, r1) = pt, for all t ∈ T and all x, x′ ∈ X and z, z′ ∈ Z.

We also introduce an equivalent of assumption A7 for the current setup, which accommodates the fact

that R obtains no information if she refuses to acquire both z and x:

B10. uniqueness of best action under s1 and r1:

ρs1,r1(µ) = argmaxy∈Y

∑

t∈T ptV (t, µ(t), y, s1, r1) is single valued.

Note that, since z does not affect R’s utility, function ρs1,r1(µ) is the same of function ρs1(µ) of a SCAS

game.

To define the equilibrium of a SCAS-IS game in a compact and readable form, let us introduce some

further notation:

EV [s, α|r1, (ζ, µ)] =
∑

t∈T

pt

(

∑

k∈T

βk(ζ(t), µ(t)|(ζ, µ), s, r1)V (µ(t), α(µ(t), s, r, ζ(t)), s, r1)

)

;

EV [σ, α|r2, (ζ, µ)] =
∑

t∈T

pt

(

∑

k∈T

βk(ζ(t), µ(t)|(ζ, µ), σ(ζ(t), r2), r2)·

· V (µ(t), α(µ(t), σ(ζ(t), r2), r2, ζ(t)), σ(ζ(t), r2), r2))

)

;

where EV [s, α|r1, (ζ, µ)] is R’s expected utility against (ζ, µ) when choosing r = r1, σ(z, r) = s for all z ∈ Z,

and some α ∈ AIS , while EV [σ, α|r2, (ζ, µ)] is R’s expected utility against (ζ, µ) when choosing r = r2, some

σ ∈ Σ, and some α ∈ AIS .

The equilibrium of a SCAS-IS game is a profile of strategies ((ζ, µ), (r, σ, α)) such that:

F1. (ζ(t), µ(t)) ∈ arg max
z∈Z,x∈X

U(t, x, z, α(x, s, r, z)), for all t ∈ T ;

F2. r = r1 implies that σ(z, r) = s̃ for all z ∈ Z, (s̃, α) ∈ arg max
s∈{s1,s2},α∈AIS

EV [s, α|r1, (ζ, µ)], and

EV [s̃, α|r1, (ζ, µ)] ≥ EV [σ′, α′|r2, (ζ, µ)] for all σ′ ∈ Σ and all α′ ∈ AIS ;

r = r2 implies that (σ, α) ∈ arg max
σ∈Σ,α∈AIS

EV [σ, α|r2, (ζ, µ)] and EV [σ, α|r2, (ζ, µ)] ≥ EV [s′, α′|r1, (ζ, µ)]

for all s′ ∈ {s1, s2} and all α′ ∈ AIS ;
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F3. the beliefs β(z, x|(ζ, µ), s, r) ∈ ∆T are calculated by means of Bayes rule whenever possible.

The meaning of F1 is that S must be best-replying to R, while the meaning of F2 is that R must be best-

replying to S given her beliefs – this is better seen by noting that, for r = r1, condition F2 is substantially

identical to E2 for a SCAS game. Condition F3 is straightforward. For the sake of completeness we observe

that, in a SCAS-IS game, posterior beliefs along the equilibrium path are the following:

• if r = r2 and s = s2 then, for all t ∈ T and for all (z, x) such that (ζ(t′), µ(t′)) = (z, x) for some

t′ ∈ T :

βt(z, x|((ζ, µ), s, r) =







pt
∑

k:(ζ(k),µ(k))=(z,x) pk
if (ζ(t), µ(t)) = (z, x)

0 if (ζ(t), µ(t)) 6= (z, x);

• if r = r1 and s = s2 then, for all t ∈ T and for all x such that µ(t′) = x for some t′ ∈ T :

βt(z, x|((ζ, µ), s, r) =







pt
∑

k:µ(k)=x pk
if µ(t) = x

0 if µ(t) 6= x;

• if r = r2 and s = s1 then, for all t ∈ T and for all z such that ζ(t′) = z for some t′ ∈ T :

βt(z, x|((ζ, µ), s, r) =







pt
∑

k:ζ(k)=z pk
if ζ(t) = z

0 if ζ(t) 6= z;

• if r = r1 and s = s1 then βt(z, x|(ζ, µ), s, r) = pt for all t ∈ T and for all x ∈ X.

For comparability purposes, we observe that for any given SCAS game Γ(T, p, U, v, c) we have, be-

sides the associated SFAS game Γ(T, p, U, v, 0), also an associated SCAS-IS game, that we denote with

Γ(T, p, Û , v, cx, cz) where cx = c and Û(t, x, z, y) = U(t, x, y) + γ(z) for some appropriate function γ.

We now turn our attention to the relevant beliefs in a SCAS-IS game. For a given strategy profile

((ζ, µ), (r, σ, α)) and priors p, R has beliefs β(z, x|(ζ, µ), s, r) ∈ ∆T associated with each of her information

sets where an action in Y has to be chosen. Let S = Z×X∪Z×∅∪∅×X be the set of potentially observable

pairs of signals – we consider the union with Z × ∅ ∪ ∅ × X to encompass the case where only either z or

x is acquired by R. Denote with (Z,X)e((ζ, µ), (r, σ, α)) ⊆ S the set of pairs of signals that R can observe

on information sets along the equilibrium path, i.e., at information sets that contain decision nodes along

the equilibrium path. Denote with (Z,X)o((ζ, µ), (r, σ, α)) = S \ (Z,X)e((ζ, µ), (r, σ, α)) the set of pairs of

signals that R can observe only at information sets off the equilibrium path, i.e., at information sets that do

not contain decision nodes lying on the equilibrium path.

Moreover, denote with (Z,X)o1((ζ, µ), (r, σ, α)) ⊆ (Z,X)o((ζ, µ), (r, σ, α)) the set of pairs of signals off

the equilibrium path that R cannot observe as a consequence of S deviating from (ζ, µ) because a deviation by

R is required. Also, denote with (Z,X)o2((ζ, µ), (r, σ, α)) = (Z,X)o((ζ, µ), (r, σ, α))\(Z,X)o1((ζ, µ), (r, σ, α))

the set of pairs of signals off the equilibrium path that R can potentially observe as a consequence of S deviat-

ing from (ζ, µ). Similarly for what done for a SCAS game, we call receiver-triggered out-of-equilibrium beliefs

the beliefs held by R which are activated by signals in (Z,X)o1((ζ, µ), (r, σ, α)), and we call sender-triggered

out-of-equilibrium beliefs the beliefs held by R which are activated by signals in (Z,X)o2((ζ, µ), (r, σ, α)). So,

in a SCAS-IS game a refinement acting on out-of-equilibrium beliefs is a refinement that rules away equilibria

by restricting admissible beliefs to a subset of those possibly activated by signals in (Z,X)o((ζ, µ), (r, σ, α)).
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Note also that – as it happens in SCAS games – although such refinements require that R observes an

unexpected signal, they can potentially act on beliefs activated by all (z, x) ∈ (Z,X)o((ζ, µ), (r, σ, α)), i.e.,

on both sender-triggered and receiver-triggered out-of-equilibrium.

Proposition 5. The SCAS-IS game Γ(T, p, Û , v, cx, cz) has a pooling equilibrium where all types pool on the

same pair of signals. If ((ζP , µP ), (rP , σP , αP )) is such a kind of pooling equilibrium, then it must be such

that ζP (t) = 0 and µP (t) = 0 for all t ∈ T , rP = r1, σP (z, r1) = s1, and αP (x, s1, r1, z) = ρs1,r1(µP ) for

all x ∈ X and z ∈ Z. Moreover, ((ζP , µP ), (rP , σP , αP )) survives any possible equilibrium refinement acting

on out-of-equilibrium beliefs.

Proof. We first show that ((ζP , µP ), (rP , σP , αP )) is an equilibrium. Preliminarily, note that by B10 (unique-

ness of best action under s1 and r1) R’s expected utility
∑

t∈T ptV (t, µP (t), y, s1, r1) admits a maximum

over Y , denoted by y∗, and, hence, the profile ((ζP , µP ), (rP , σP , αP )) exists.

Consider R deviating from (rP , σP , αP ). Since αP (x, s1, r1, z) = y∗ = ρs1,r1(µ) for all x ∈ X and z ∈ Z,

no strictly profitable deviation from αP exists as long as R maintains σ(z, r1) = s1 for all z ∈ Z and chooses

r1. Consider a deviation to (r′, σ′, α′) with r′ = r2, and some σ′ ∈ Σ and α′ ∈ AIS . We observe that, since

ζP (t) = 0 and µP (t) = 0 for all t ∈ T , R obtains no additional information by playing r2 instead of r1 and σ′

instead of σP , and therefore her posterior beliefs must be equal to her priors p. So, by B7 and B9 (constant

cost of acquiring x and z, respectively), it follows that R’s expected utility for playing (r′, σ′, α′) is:

• if σ′(0, r2) = s2, EV [σ′, α′|r2, (ζP , µP )] =
∑

t∈T ptv(t, 0, α
′(0, s2, r2, 0))− cx − cz;

• if σ′(0, r2) = s1, EV [σ′, α′|r2, (ζP , µP )] =
∑

t∈T ptv(t, 0, α
′(0, s1, r2, 0))− cz.

By B10 (uniqueness of best action under s1 and r1) we have that
∑

t∈T ptv(t, 0, α
′(0, s2, r2, 0)) and

∑

t∈T ptv(t, 0, α
′(0, s1, r2, 0)) are both not greater than

∑

t∈T ptv(t, 0, y
∗), implying that y∗ is an optimal

action when r′ = r2 and σ′ are played against (ζP , µP ). So, by B6 and B8 (costly acquisition of signal

x and z, respectively), it follows that R’s expected utility is lower under deviation (r2, σ′, α′) than under

(rP , σP , αP ), for all σ′ ∈ Σ and all α′ ∈ AIS .

Consider S deviating from (ζP , µP ). In particular, consider S deviating to (ζ ′, µ′) such that either

ζ ′(t′) > 0 for some t′ ∈ T or µ′(t′) > 0 for some t′ ∈ T , or both. Recall that αP (x, s1, r1, z) = y∗ for all

x ∈ X and all z ∈ Z, i.e., the action chosen by R is y∗ independently of the actual value of ζ ′(t) and µ′(t),

t ∈ T . This, together with assumption B3 (costly signaling) implies that S’s expected utility cannot be

greater under any (ζ ′, µ′) ∈ Z ×M than under (ζP , µP ).

We now show that no pooling equilibrium other than ((ζP , µP ), (rP , σP , αP )) exists. Consider the profile

((ζP
′

, µP ′

), (rP
′

, σP ′

, αP ′

)) where ζP
′

(t) = zP
′

≥ 0 and µP ′

(t) = xP ′

≥ 0 for all t ∈ T , with zP
′

and xP ′

not

both zero. Note that, exactly because ζP
′

(t) = zP
′

and µP ′

(t) = xP ′

for all t ∈ T , along the equilibrium

path R never learns anything and so R takes the same action yP
′

= αP ′

(µP ′

(t), sP
′

, rP
′

, ζP
′

(t)) for all t ∈ T .

By assumptions B6-B9, R’s expected utility is:

• if rP
′

= r2 and σP ′

(z, r2) = s2 for all z ∈ Z, EV [σP ′

, αP ′

|r2, (ζP
′

, µP ′

)]=
∑

t∈T ptv(t, x
P ′

, yP
′

)−cx−cz;

• if rP
′

= r2 and σP ′

(z, r2) = s1 for all z ∈ Z, EV [σP ′

, αP ′

|r2, (ζP
′

, µP ′

)] =
∑

t∈T ptv(t, x
P ′

, yP
′

)− cz;

• if rP
′

= r1 and σP ′

(z, r1) = s2 for all z ∈ Z, EV [s2, αP ′

|r1, (ζP
′

, µP ′

)] =
∑

t∈T ptv(t, x
P ′

, yP
′

)− cx;

• if rP
′

= r1 and σP ′

(z, r1) = s1 for all z ∈ Z, EV [s1, αP ′

|r1, (ζP
′

, µP ′

)] =
∑

t∈T ptv(t, x
P ′

, yP
′

).
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These expected utilities imply that R strictly prefers to play, instead of (rP
′

, σP ′

, αP ′

)), any strategy

(rP
′′

, σP ′′

, αP ′′

)) such that rP
′′

= r1, σP ′′

(z) = s1 for all z ∈ Z, and αP ′′

∈ AIS such that αP ′′

(x, s1, r1, z) =

yP
′

for all x ∈ X and z ∈ Z. So, in order for (rP
′

, σP ′

, αP ′

)) to be a best reply for R to (ζP
′

, µP ′

), it must

be that rP
′

= r1 and σ(z)P
′

= s1 for all z ∈ Z; hence, αP ′

(x, s1, r1, z) must be constant over X and Z,

and in particular it must be such that αP ′

(x, s1, r1, z) = ρs1,r1(µP ′

) for all x ∈ X and z ∈ Z. But if this

is the case, then S must have a profitable deviation. In particular, consider S deviating to (ζP , µP ). Since

R always responds with ρs1,r1(µP ′

), it follows by B3 (costly signaling) that S’s expected utility is strictly

greater under (ζP , µP ) than under (ζP
′

, µP ′

).

Finally, we show that ((ζP , µP ), (rP , σP , αP )) survives any possible equilibrium refinement acting on out-

of-equilibrium beliefs. SinceR plays rP = r1 and σ(z)P = s1 for all z ∈ Z, it follows that (Z,X)e((ζP , µP ), (rP , σP , αP ))

= (Z,X)o2((ζP , µP ), (rP , σP , αP )) = ∅ and (Z,X)o1((ζP , µP ), (rP , σP , αP )) = S, because R can observe a

pair in S only if she deviates from her equilibrium strategy. In particular, no sender-triggered out-of-

equilibrium belief exists because, since σ(z)P = s1 for all z ∈ Z, any pair in S that is chosen by S leads to

the same R’s information set, which is on the equilibrium path. Hence, at this information set, R must have

constant beliefs which are identical to the priors p and which cannot be refined away by refinements acting

on out-of-equilibrium beliefs.

So, refinements acting on out-of-equilibrium beliefs can rule out only beliefs associated with information

sets that become active when a pair (Z,X)o1((ζP , µP ), (rP , σP , αP )) = S is observed. However, none of these

receiver-triggered out-of-equilibrium beliefs is necessary to sustain the considered equilibrium. To see why,

note that R always uses the priors p and S’s strategy (ζP , µP ) to evaluate whether to deviate or not from

(rP , σPαP ), as (rP , σPαP ) is a best response to (ζP , µP ) given p, no matter what are the receiver-triggered

out-of-equilibrium beliefs held by R; since (ζP , µP ) is also a best response to (rP , σPαP ), it follows that

S has no strictly profitable deviation from (ζP , µP ), and this is again independent of the receiver-triggered

out-of-equilibrium beliefs held by R. Hence, no refinement acting on out-of-equilibrium beliefs can refine

away the pooling equilibrium ((ζP , µP ), (rP , σP , αP )).

B The SCAS game with Acquisition Effort (SCAS-AE)

Consider a SCAS game where R, instead of choosing s ∈ {s1, s2}, can choose an acquisition effort e ∈ [0, 1].

The signal x is acquired by R with probability e.

In a SCAS-AE game, utility for S is U : T ×X × Y → R, as a in SCAS game. Instead, utility for R is

V : T ×X × Y × [0, 1] → R. The following assumptions on utility functions hold:

C1. continuity: U and V are continuous over x, y and e;

C2. monotonicity in action: U is strictly increasing in y;

C3. costly signaling: U is strictly decreasing in x;

C4. single-crossing property: U(t, x, y) ≤ U(t, x′, y′), with x′ > x, implies that U(t′, x, y) < U(t′, x′, y′)

for all t′ > t and y, y′ ∈ Y ;

C5. costly effort of acquisition: V is strictly decreasing in e;

C6. separability of the effort cost: V (t, x, y, 0)− V (t, x, y, e) = ce(e).
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In the light of C5-C6, we have that V (t, x, y, e) = v(t, x, y)− ce(e).

In a SCAS-AE game, a strategy for S is a function µ ∈ M describing, as in a SCAS game, a type’s

choice of x. A strategy for R is a triple (e, α1, α2) where:

• e ∈ [0, 1] describes R’s choice of acquisition effort;

• α1 ∈ Y describes R’s choice of action if the signal x is not acquired, and hence is unconditional on x;

• α2 : X → Y describes R’s choice of action if the signal x is acquired, and hence is conditional on x;

AAE denotes the set of possible functions α2.

For given µ and (e, α1, α2), R has posterior beliefs that depend on whether the signal x has been acquired

or not. Let us indicate, with a slight abuse of notation, the event “x is not acquired” with s = s1 and the

event “x is acquired” with s = s2. If s = s2 then R derives, by means of the Bayes rule, posterior beliefs

β(x|µ, s2) = (β1(x|µ, s2), . . . , βn(x|µ, s2)) ∈ ∆T , where βt(x|µ, s2) denotes the probability that S is of type

t, conditional on the observation of x. If, instead, s = s1 then R can only rely on her priors – no new

information is acquired – so that posteriors are identical to priors: βt(x|µ, s1) = βt(x
′|µ, s1) = pt, for all

t ∈ T and all x, x′ ∈ X.

We also introduce the following assumption:

C7. uniqueness of best action when signal x is not acquired:

ρs1(µ) = argmaxy∈Y

∑

t∈T ptV (t, µ(t), y, e) is single valued.

Assumption C7 is the counterpart of assumption A7 in a SCAS game. Moreover, because of assumption C6,

assumption C7 implies that ρs1(µ) = argmaxy∈Y

∑

t∈T ptv(t, µ(t), y), i.e., ρ
s1(µ) is the best reply whenever

posteriors are identical to priors and independently of the choice of e.

An equilibrium of a SCAS-AE game is a profile of strategies (µ, (e, α1, α2)) such that:

G1. µ(t)∈argmax
x∈X

[(1− e)U(t, x, α1) + eU(t, x, α2(x))], for all t ∈ T ;

G2. (e, α1, α2)∈ argmax
e∈[0,1],α1∈Y,α2∈AAE

∑

t∈T

pt

[

(1− e)V (µ(t), α1, e)+e

(

∑

k∈T

βk(µ(t)|µ, s)V (t, µ(t), α2(µ(t)), e)

)]

;

G3. the beliefs β(x|µ, s) ∈ ∆T are calculated by means of Bayes rule whenever possible.

The meaning of G1 is straightforward: S must be best-replying to R, taking into account that R acquires

signal x with probability e. Similarly, the meaning of G2 is that R must be best-replying to S given her

beliefs, taking into account that signal x is acquired with probability e. Condition G3 is also straightforward.

We observe that, in the present setup, posterior beliefs along the equilibrium path are the following:

• if s = s2 then, for all t ∈ T and for all x such that µ(t′) = x for some t′ ∈ T :

βt(x|µ, s) =







pt
∑

k:µ(k)=x pk
if µ(t) = x

0 if µ(t) 6= x;

• if s = s1 then βt(x|µ, s) = pt for all t ∈ T and for all x ∈ X.
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For comparability purposes, we observe that for any given SCAS game Γ(T, p, U, v, c) we have, besides the

associated SFAS game Γ(T, p, U, v, 0), also an associated SCAS-AE game, that we denote with Γ(T, p, U, v, ce).

We now turn our attention to the relevant beliefs in a SCAS-AE game. For given strategy profile

(µ, (e, α1, α2)) and priors p, R has beliefs β(x|µ, s) ∈ ∆T associated with each of her information sets where

an action in Y has to be chosen. Denote with Xe(µ, (s, α1, α2)) ⊆ X the set of signals that R can observe

on information sets along the equilibrium path, i.e., at information sets that contain decision nodes along

the equilibrium path. Denote with Xo(µ, (s, α1, α2)) = X \Xe(µ, (e, α1, α2)) the set of signals that R can

observe only at information sets off the equilibrium path, i.e., at information sets that do not contain decision

nodes lying on the equilibrium path.

Moreover, denote with Xo1(µ, (e, α1, α2)) ⊆ Xo(µ, (e, α1, α2)) the set of signals off the equilibrium path

that R cannot observe as a consequence of S deviating from µ because a deviation by R is required. Also,

denote with Xo2(µ, (e, α1, α2)) = Xo(µ, (e, α1, α2))\Xo1(µ, (e, α1, α2)) the set of signals off the equilibrium

path that R can potentially observe as a consequence of S deviating from µ. Similarly for what done for

CAS game, we call receiver-triggered out-of-equilibrium beliefs the beliefs held by R which are activated

by signals in Xo1(µ, (e, α1, α2)), and we call sender-triggered out-of-equilibrium beliefs the beliefs held by R

which are activated by signals in Xo2(µ, (e, α1, α2)). So, a refinement that rules away equilibria by restricting

admissible beliefs to a subset of those possibly activated by signals in Xo(µ, (e, α1, α2)) can be regarded as

a refinement acting on out-of-equilibrium beliefs. Note also that – as it happens in SCAS games – although

such refinements require that R observes an unexpected signal, they can potentially act on beliefs activated

by all x ∈ Xo(µ, (e, α1, α2)), i.e., they act not only on sender-triggered out-of-equilibrium beliefs, but also

on receiver-triggered ones.

Proposition 6. The SCAS-AE game Γ(T, p, U, v, ce) has a pooling equilibrium. If (µP , (eP , α1P , α2P )) is a

pooling equilibrium, then it must be such that µP (t) = 0 for all t ∈ T , eP = 0, α1P = α2P (µP (t)) = ρs1(µP )

for all t ∈ T . Moreover, (µP , (eP , α1P , α2P )) survives any possible equilibrium refinement acting on out-of-

equilibrium beliefs.

Proof. We first show that the profile (µP , (eP , α1P , α2P )) is an equilibrium. Preliminarily, note that by C7

(uniqueness of best action when signal x is not acquired) R’s expected utility, i.e.,
∑

t∈T ptv(t, µ
P (t), y) =

∑

t∈T ptV (t, µP (t), y, 0), admits a maximum over Y , denoted by y∗, and so the profile (µP , (eP , α1P , α2P ))

exists.

Consider R deviating from (eP , α1P , α2P ). Since α2P (x) = y∗ = ρs1(µ) for all x ∈ X, no strictly

profitable deviation from αP exists as long as s = s1 takes place. But if R maintains eP = 0 then s = s1

takes place with probability 1. So, consider a deviation to (e′, α1′, α2′) with e′ > 0 and some α1′ ∈ Y and

α2′ ∈ AAE . We observe that, since µP (t) = 0 for all t ∈ T , R obtains no additional information if the event

s = s2 takes places, and therefore her posterior beliefs in such a case must still be equal to her priors p.

By C6 (separability of the effort cost) the expected utility for playing (eP , α1P , α2P ) is
∑

t∈T ptv(t, 0, y
∗)

while the expected utility for playing (e′, α1′, α2′) is
∑

t∈T pt [e
′v(t, 0, α1′) + (1− e′)v(t, 0, α2′(0))] − ce(e

′).

By C7 (uniqueness of best action when signal x is not acquired) it follows that v(t, 0, y∗) ≥ v(t, 0, α1′) and

v(t, 0, y∗) ≥ v(t, 0, α2′(0)) which implies that v(t, 0, y∗) ≥ [e′v(t, 0, α1′) + (1− e′)v(t, 0, α2′(0))], and hence

by C5 (costly effort of acquisition) we get that R’s expected utility is not greater under deviation (e′, α1′, α2′)

than under (eP , α1P , α2P ), for all α1′ ∈ Y and all α2 ∈ AAE .

Consider S deviating from µP . In particular, consider S deviating to µ′ such that µ′(t′) > 0 for some

t′ ∈ T . Recall that eP = 0 and α1P = α2P (x) = y∗ for all x ∈ X, i.e., signal x is acquired with probability 0
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and the action chosen by R is y∗ independently of the actual value of µ′(t), t ∈ T . These facts, together with

assumption C3 (costly signaling), imply that S’s expected utility is equal, for each t ∈ T , to U(t, µ(t), y∗)

and, therefore, it cannot be greater than U(t, µP (t), y∗) for any µ′ ∈ M.

We now show that no pooling equilibrium other than (µP , (eP , α1P , α2P )) exists. Consider an alternative

pooling profile (µP ′

, (eP
′

, α1P
′

, α2P
′

)) where µP ′

(t) = xP ′

> 0 for all t ∈ T . Note that, since µP ′

(t) = xP ′

for

all t ∈ T , along the equilibrium path R never learns anything. So, if event s = s1 takes place and x is acquired,

R must take the same action yP
′

= α2P
′

(µP ′

(t)) for all t ∈ T . Hence, by assumption C6 (separability of

the effort cost), R’s gets an expected utility equal to
∑

t∈T pt

[

eP
′

v(t, xP ′

, yP
′

) + (1− eP
′

)v(t, xP ′

, α1P
′

)
]

−

ce(e
P ′

) which, by C5 (costly effort of acquisition) and non-negativity of eP
′

, is also strictly lower than the

maximum between
∑

t∈T ptv(t, x
P ′

, yP
′

) and
∑

t∈T ptv(t, x
P ′

, α1P
′

), each of which is in turn not greater than

the expected utility of playing (eP
′′

, α1P
′′

, α2P
′′

) such that eP
′′

= 0 and α1P
′′

= α2P
′′

(x) = ρs1(µP ′

), because

by C7 (uniqueness of best action when signal x is not acquired) ρs1(µP ′

) maximizes
∑

t∈T ptv(t, x
P ′

, y) with

respect to y ∈ Y . So, in order for (eP
′

, α1P
′

, α2P
′

) to be a best reply for R to µP ′

, it must be that eP
′

= 0

and α1P
′

= α2P
′

(x) = ρs1(µP ′

) for all x ∈ X. But if this is the case, then we claim that S has a profitable

deviation. In particular, consider S deviating to µP . Since R always responds with ρs1(µP ′

) and by B3

(costly signaling), it follows that S’s expected utility is strictly greater under µP than under µP ′

.

Finally, we show that (µP , (eP , α1P , α2P )) survives any possible equilibrium refinement acting on out-

of-equilibrium beliefs. Since R plays eP = 0, the event s = s1 takes place with probability 1 along

the equilibrium path. So, it follows that Xe(µP , (eP , α1P , α2P )) = Xo2(µP , (eP , α1P , α2P )) = ∅ and

Xo1(µP , (eP , α1P , α2P )) = X, because R can observe a signal x ∈ X only if she deviates from her equi-

librium strategy. In particular, no sender-triggered out-of-equilibrium belief exists because, since s = s1

with probability 1, any x ∈ X that is chosen by S leads to the same R’s information set, which is on the

equilibrium path. Hence, at this information set, R must have constant beliefs which are identical to the

priors p and which cannot be refined away by refinements acting on out-of-equilibrium beliefs.

Therefore, refinements acting on out-of-equilibrium beliefs can rule out only beliefs associated with

information sets that become active when a signal in x ∈ Xo1(µP , (eP , α1P , α2P )) = X is observed. However,

none of these receiver-triggered out-of-equilibrium beliefs is necessary to sustain the considered equilibrium.

To see why, note that R always uses the priors p and S’s strategy µP to evaluate whether to deviate or not

from (eP , α1P , α2P ); so, there is no deviation by S that can induce R to deviate from (eP , α1P , α2P ), as

(eP , α1P , α2P ) is a best response to µP given p, no matter what are the receiver-triggered out-of-equilibrium

beliefs held by R; since also µP is a best response to (eP , α1P , α2P ), it follows that S has no strictly profitable

deviation from µP , and this is again independent of the receiver-triggered out-of-equilibrium beliefs held by

R. Hence, no refinement acting on out-of-equilibrium beliefs can refine away the considered equilibrium

(µP , (eP , α1P , α2P )).
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