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Simple Summary: Nearly 30% of adult acute myeloid leukemias (AML) harbor mutations of the
nucleophosmin (NPM1) gene. These forms have a favorable outcome but, despite notable treatment
advances, about 50% of patients still die of progressive disease. Thus, identification of new therapeutic
opportunities is important to improve the prognosis. The aim of our study was to assess the feasibility
of obtaining a cell therapy medicinal product specific for the mutated NPM1 protein from patients or
healthy donors that could be employed to control leukemia and prevent hematologic relapse. We
demonstrated that cytotoxic T cells specific for the mutated antigen can be reproducibly expanded,
and these cells efficiently recognize and lyse leukemia blasts or other cell types carrying the NPM1-
mutated antigen, without causing damage to normal hematopoietic cells. We believe that these T cells
may integrate other therapy options in the treatment of patients with refractory or relapsed AML.

Abstract: Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the
most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after
allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated
protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for
NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing
mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat
hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from
patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides,
and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic
precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine
production and high-level cytotoxicity against patients’ leukemia blasts, and limited inhibitory
activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional
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mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic
capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option
to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated
AML patients or eradicate persistent MRD after HSCT.

Keywords: acute myeloid leukemia; NPM1 mutation; T cell therapy; hematopoietic stem cell trans-
plantation; minimal residual disease

1. Introduction

The outcome of acute myeloid leukemia (AML), an heterogeneous hematologic malig-
nancy characterized by the clonal expansion of myeloid blasts, has improved over recent
decades, especially in children and young adults who can tolerate intensified treatment
strategies, including hematopoietic stem cell transplantation (HSCT) [1,2]. However, re-
lapse is still the major cause of treatment failure in patients who undergo standard induction
and consolidation chemotherapy and HSCT [1,2]. Moreover, the management of elderly
AML patients, often presenting with comorbidities, remains a major clinical challenge,
although in the past few years a high rate of complete remissions were observed in this
cohort with the use of low-toxicity agents, such as combined bcl-2 inhibitor venetoclax
and hypomethylating agent azacytidine [1,2]. In recent years, the association between
the presence of minimal residual disease (MRD) at the end of consolidation therapy and
development of hematologic relapse has pointed to the importance of obtaining MRD clear-
ance [1,3]. Hence, novel, low-toxicity strategies to improve post-remission management of
AML are being tested, and among those, cell therapy may have a role in complementing
existing therapies.

Immunological interventions, such as the use of leukemia-targeted monoclonal an-
tibodies that engage patients’ lymphocytes, or transfer of cancer-specific immune cells,
are promising approaches to overcome leukemia resistance to chemotherapy and induce
durable remissions [4,5]. Cellular therapies, including T lymphocytes genetically modified
to express chimeric antigen receptors (CAR-T), have shown high efficacy in the control of B
cell hematologic malignancies [6,7], but major challenges remain to be overcome to limit
toxicity and to safely apply CAR-T cell therapy to patients with acute myeloid leukemia [8].
T cell therapies that do not involve genetic modification, such as leukemia antigen-specific
cytotoxic T lymphocytes (CTLs), have been developed for AML [9–11]. This approach
may have the advantage of being more physiologic than CAR-T cell therapy, and thus
potentially endowed with fewer side effects, although its efficacy remains to be assessed in
controlled clinical trials.

Ideally, AML-specific neoantigens, selectively expressed on malignant myeloid cells
and not on normal tissue, would guarantee lower toxicity. Nucleophosmin (NPM1) mutations
are among the most common recurring genetic abnormalities seen in AML, accounting
for 30–35% of adult cases [12,13]. These mutations are usually expressed in the entire
leukemic population and result in structural changes of the C-terminal of the NPM1 protein,
leading to aberrant cytoplasmic delocalization [14]. Mutated NPM1 protein (NPM1mut)
may be considered a neoantigen, and it is able to elicit a T cell response that has been
found to contribute to the maintenance of long-lasting complete remission (CR) in patients
treated with conventional chemotherapy [15,16]. Thence, an NPM1mut-targeted treatment,
based on the use of a patient-derived somatic advanced therapy medicinal product (ATMP)
delivered upon the finding of MRD or hematologic relapse after conventional or low-toxicity
therapy, may help promote (re)induction of remission in patients with NPM1-mutated
AML not amenable to HSCT, and contribute to obtain pre-transplant MRD negativity in
candidates for allo-HSCT [17]. Moreover, NPM1mut-specific T cells may be expanded from
HSCT donors, and used in a targeted donor lymphocyte infusion (DLI) protocol to control
hematologic relapse after HSCT [17,18].
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In this study, we validated a protocol for the expansion of NPM1mut-specific cytotoxic
T lymphocytes (CTLs) from both patients and healthy individual candidates donating
hematopoietic stem cells for transplantation, and tested their potency and in vitro safety.

2. Materials and Methods
2.1. Patients and Samples

Bone marrow-derived mononuclear cells (BMMCs) from patients with NPM1-mutated
AML at diagnosis or relapse and peripheral blood mononuclear cells (PBMCs) from the
same patients at remission, or from healthy HSCT donors, were isolated by density gradient
centrifugation, and cryopreserved [16]. Written informed consent was obtained from both
patients and donors, according to the Declaration of Helsinki.

2.2. Production of Cytotoxic T Cell Lines Specific for NPM1mut

Dendritic cells (DCs) were obtained from PBMCs by CD14+ cell selection using
CD14 Microbeads (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany); positive se-
lected cells were resuspended in supplemented medium adding interferon-α2b (Miltenyi
Biotec GmbH), and granulocyte-monocyte colony-stimulating factor (GM-CSF, CellGenix,
Freiburg, Germany) and cultured at 37 ◦C for 3 days.

CTL-NPM1mut lines were obtained by culturing PBMCs from patients or donors with
autologous dendritic cells pulsed with an NPMmut peptide pool [17]. In detail, at day +5 of
culture, autologous DCs were pulsed with the NPMmut peptide pool at a final concentration
of 5 µg/mL and irradiated (3000 rad). Donor or patient PBMCs were cocultured with
DCs at a responder:stimulator ratio of 40:1 in RPMI 1640 medium supplemented with
5% autologous or healthy human serum pool and incubated at 37 ◦C in a humidified
atmosphere at 5% CO2 for 7 days. At day +7–+9 and +14–+16, cultures were restimulated
with a suspension of irradiated autologous feeder PBMCs (1 × 106/well) pulsed with the
NPM1mut peptide pool, in the presence of 20 IU/mL recombinant human interleukin-2
(r-IL2) (Novartis, Basel, Switzerland), and 10 ng/mL recombinant human interleukin-15
(r-IL15, Miltenyi Biotec). On days +10–+12 and +17–+19, r-IL2 (20 IU/mL) and r-IL15
(10 ng/mL) were added to the cultures. At day +21/+23, the T cells obtained were collected,
characterized for immune phenotype, and tested for potency in a standard 51Cr release
cytotoxicity assay using P815 cell line, autologous or allogeneic phytohemagglutinin (PHA)
blasts [16] pulsed or not with the NPM1mut peptide pool or irrelevant peptides, and
autologous or allogeneic AML blasts.

Furthermore, to test the product’s in vitro safety, growth inhibition of nonleukemic
bone marrow-derived clonogenic progenitor cells derived from patients’ bone marrow cells
at remission was also performed [19].

2.3. Immunophenotyping

NPM1mut-specific CTL products were characterized for phenotype by monoclonal
antibody staining and flow cytometry. Anti-CD3 FITC, anti-CD4 PE, anti-HLA-DR PE,
anti-CD8 APC, CDγδ FITC, anti-CD56 Pc5.5, anti-CD14 FITC, anti-CD56 PE, anti-CD3
Pc5.5, anti-CD19+ CD20 APC, anti-CCR7 FITC, and anti-CD45RA PE (Becton Dickinson,
Franklin Lakes, NJ, USA) were employed.

2.4. NPM1-Specific T-Cytotoxic Activity Assessed as 51Cr Release

NPM1mut-specific T cells were tested for lytic activity towards different target cells,
including autologous or allogeneic phytohemagglutinin (PHA) blasts [16] pulsed or not
with the NPM1mut peptide pool or irrelevant peptides, and autologous or allogeneic
AML blasts. For the cytotoxicity assay, effector cells were incubated with target cells at
effector/target (E:T) ratios from 20:1 to 0.01:1. Results are reported as percentage specific
lysis at different E:T ratios [16]. The cytotoxic activity of the ATMPs was also assessed in a
cytotoxicity assay against the NK-resistant cell line P815 in the presence and absence of
anti-CD3 agonist antibody (OKT3), in order to assess the general lytic potential [17].
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2.5. Cytokine Secretion Assessment by Enzyme-Linked Immunospot (ELISPOT) Assay or
Flow Cytometry

The ability of NPM1mut-specific T cells to secrete a Th1 cytokine, i.e., interferon-γ (IFN-
γ), was assessed in an ELISPOT assay [19]. A total of 1 × 105 cells/well were stimulated for
20 h with the NPM1mut peptide pool (final concentration of 50 µg/mL) [16]. Unstimulated
ATMPs were used as negative controls. In detail, 96-well multiscreen filter plates (MAIPS
4510, Millipore, Bedford, MA, USA) were coated with 100 µL of primary antibody (IFN-γ,
Mabtech, Nacka, Sweden) at 2.5 µg/mL, and incubated overnight at 4 ◦C. Cultured T cells
were seeded in the absence or presence of the NPM1mut peptide pool (final concentration
of 50 µg/mL) [16]. After incubation for 24 h at 37 ◦C, 100 µL of biotinylated secondary
antibody (Mabtech, 0.5 µg/mL) was added, and plates were then processed according to
standard procedure. IFN-γ spots were counted using an ELISPOT reader (Bioline, Torino,
Italy). The number of spots per well was calculated after subtracting assay background,
defined as an average of the number of spots in 24 wells containing only complete medium,
and specific background, defined as the number of spots in wells with responder alone.

Flow cytometry cytokine secretion assays for IFNγ, IL-2, and TNFα (Miltenyi Biotec)
were also employed to functionally characterize the products, according to the manufac-
turer’s instructions. In detail, 106 total cells were washed in cold buffer (phosphate buffered
saline containing 0.5% bovine serum albumin and 2 mM EDTSA), centrifuged at 4–8 ◦C and
after removing supernatant, were resuspended in RPMI 1640 medium (Life Technologies,
Carlsbad, CA, USA) containing 5% human serum. IFNγ, IL-2, and TNFα Catch Reagent
(Fitc, PE and APC conjugated, respectively) was added, and the sample was incubated on
ice. After dilution with warm medium and incubations at 37 ◦C, and on ice, IFNγ, IL-2,
and TNFα detection antibodies were added, together with anti-CD4 and -CD8 mAb. At the
end of incubation, the cells were washed by cold buffer and analyzed by flow cytometry.

2.6. Clonogenic Assay

NPM1mut-specific T cells were incubated with marrow mononuclear cells in Iscove’s
Modified Dulbecco’s Medium (IMDM, Gibco, Life Technologies) supplemented with 10%
FBS at 37 ◦C in a 5% CO2 humidified atmosphere for 4 or 24 h. The cells were then collected,
centrifuged, resuspended in 200 µL of IMDM and plated in a clonogenic assay for the
growth of erythroid (BFU-E), and granulocytic-macrophagic (CFU-GM) colonies [20]. Cells
were plated in 30 mm Petri dishes in 0.9% methylcellulose with 30% FCS, 10 ng/mL inter-
leukin 3 (IL-3) (Miltenyi Biotec), 50 ng/mL granulocyte-macrophage colony-stimulating
factor (GM-CSF) (CellGenix), and 3 IU of erythropoietin (rhEpo). After 14 days, colonies
were counted using standard criteria.

2.7. Statistical Analysis

Data were described as the median and range if continuous and as count and percent-
age if categorical. To determine differences among patient groups, categorical variables
were compared by chi-squared analysis, continuous variables with t-tests, and, if skewed,
with non-parametric tests (Mann–Whitney U test); p-values < 0.05 were considered statisti-
cally significant. NCSS System (NCSS, Cary, NC, USA) was used for computation.

3. Results

3.1. NPM1mut-CTLs Can Be Expanded from AML Patients and Healthy Donors by Stimulation
with NPM1mut-Peptide Pools

To evaluate whether NPM1mut-CTLs could be expanded from the peripheral blood
of AML patients in remission, and potential stem cell donors, PBMC were stimulated or
primed with autologous DC pulsed with the NPM1mut-peptide pool in the presence of IL2
and IL15. After one round of re-stimulation, T cells expanded from 3 patients and 7 donors
showed a mean expansion of 11.1-fold (range 5.7–31).

The ATMP were tested for microbiological safety by sterility testing in an automated
blood culture system, and by evaluation of endotoxin levels and mycoplasma contamina-
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tion. The T cell products were found to be sterile, and with endotoxin levels within the
acceptable range.

The recovered cells were predominantly CD3+ (mean 92%) with balanced predomi-
nance of CD4+ and CD8+ T cells (median 44%, range 26–63% and mean 48%, range 10–59%,
respectively). CTLs contained variable low numbers of natural killer CD3-CD56+ cells
(median 9%, range 2–20%) (Figure 1). Analysis of memory phenotype showed a slight
prevalence of CD45RO+/CCR7− T cells in accordance with an effector memory phenotype,
but central memory and naïve T cells were also present.
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Figure 1. Surface phenotype of NPM1mut-CTLs. The results are reported as % positive cells. The
3 patients are indicated with light green, light blue, and red dots.

To demonstrate the presence of cytotoxic T cells within the product, we employed a
CD3-redirected cytotoxicity assay. The T cell lines from both patients and donors mediated
killing of P815 cell line induced by binding through OKT3 monoclonal antibody. The
median percentage lysis at an effector to target (E:T) ratio of 5:1 was 52.5% (range 14–97%)
(Figure 2).
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Figure 2. Potency of NPM1mut-CTLs: cytotoxic activity. The lytic activity of NPM1mut-CTLs against
P815 cell line (CD3-redirected cytotoxicity), against control (bl-PHA-C) or NPM1mut peptide pool-
pulsed autologous PHA blasts (bl-PHA-NPM1m), against allogeneic PHA blasts (bl-PHA-allo), and
against autologous or allogeneic leukemia blasts (LB) is shown. The results are reported as % lysis at
an E:T ratio of 5:1. The 3 patients are indicated with light green, light blue, and red dots.

We then proceeded to evaluate specific activity of the CTLs against the NPM1mutantigen.
All T cell lines from patients and donors showed specific lysis against PHA blasts pulsed
with the NPM1mut peptide pool. In detail, we observed a median percentage lysis at the
5:1 effector to target (E:T) ratio of 35% (range 15–52), with median percentage lysis against
control-pulsed PHA blasts of 3 (range 0–11) (Figure 2). To confirm the ability of NPM1mut-
CTLs to recognize and kill leukemic cells, lytic activity against autologous (in the case
of patients) or HLA partially-matched NPM1mut-positive leukemic blasts was also tested.
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Both patient-derived and donor-derived NPM1mut-CTLs mediated a measurable cytotoxic
activity against their target population, with a median percentage lysis of 22% (range 10–59)
at E:T ratio of 5:1 (Figure 2). We hypothesize that the activity we observed against allogeneic
leukemia blasts in NPM1mut-CTLs from healthy donors was directed against leukemia, and
not against alloantigens, as median cytotoxicity against the allogeneic non-pulsed PHA
blast counterpart was 2% (range 0–9) (Figures 2 and 3).
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Figure 3. Potency of NPM1mut-CTLs: cytotoxic activity. Exemplificative cytotoxicity experiments
of NPM1mut-CTLs from an AML patient (left) panel and a healthy donor (right) panel are shown.
Lysis against P815 cell line (CD3-redirected cytotoxicity, white triangles), against control (PHA-b,
white circles) or NPM1mut peptide pool-pulsed autologous PHA blasts (PHA-NPM1, black circles),
against allogeneic PHA blasts (PHA-b allo, white squares), and against autologous or allogeneic
NPM1m-positive leukemia blasts (LB-NPM1m, black squares) or allogeneic NPM1m-negative LB
(LB, black triangles), is reported as % lysis at different E:T ratios.

In order to verify that the response was directed to the mutated form of NPM1 antigen,
rather than the wild-type form, we performed in vitro experiments using NPM1mut-CTLs
from 3 donors, and testing cytotoxicity against PHA blasts pulsed with the NPM1mut

peptide pool and the HL-60 cell line that is positive for NPM1-wt. We observed a median
percentage lysis at the 5:1 effector-to-target (E:T) ratio of 25% (range 14–49) for NPM1mut

peptide-pulsed targets, with median percentage lysis against HL-60 cells of 8 (range 0–12)
(p < 0.05) (Figure 4). These results indicate a specificity of the CTL lines for the mutated
form, although low lysis to NPM1wt antigen could be observed for some CTL lines.
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Figure 4. Potency of NPM1mut-CTLs: cytotoxic activity. The lytic activity of NPM1mut-CTLs against
NPM1mut peptide pool-pulsed autologous PHA blasts (bl-PHA-NPM1m), and against the NPM1wt-
positive HL-60 cell line is shown. The results are reported as % lysis at a E:T ratio of 5:1.
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We subsequently analyzed whether there was a difference in the specific response
of patients’ and donors’ CTLs. We observed comparable leukemia-specific activity in the
two cohorts, as median lysis at 5:1 E:T ratio against PHA blasts pulsed with the NPM1mut

peptide pool was 32% for donor CTLs compared with 38% for patients’ products (p = ns),
and median cytotoxicity against autologous (in the case of patients) or HLA partially
matched LB (donor CTLs) was 22 and 21%, respectively (p = ns). Only for CD3-redirected
cytotoxicity, CTLs expanded from donors exhibited a higher, although not statistically
significant, lytic potential than patients’ CTLs (median lysis of 74 vs. 41%, respectively,
p = 0.11).

Consistent with the cytotoxicity results, NPM1mut-directed cytokine production, mea-
sured in a ELISpot assay, confirmed specificity of the CTLs. Antigen recognition in IFNγ-
ELISpot showed a mean of 170 SFU/105 cells (range 71–266) (Figure 5). The CTLs had a
polyfunctional profile, as among CD8+ T cells, a median of 21% cells (range 2–30) were
triple-positive for IFNγ, IL-2, and TNFα, while 15% CD4+ T cells (range 2–22) were
triple-positive. Additionally in this case, we did not observe significant differences in
the IFNγ-secreting activity of patients’ CTLs compared with donor T cell lines (median
SFU/105 cells 176 vs. 162, respectively).
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Figure 5. Potency of NPM1mut-CTLs: IFNγ secreting activity. IFNγ production by NPM1mut-CTLs in
the absence of specific stimulation (control) or after stimulation with NPM1mut peptide pool (NPM1m
pool) is shown. The results are reported as spot-forming units (SFU)/105 CTLs. The 3 patients are
indicated with light green, light blue, and red dots.

3.2. NPM1mut-CTLs Show Limited Inhibition of CFU-GM, but Not of BFU-E, When Cocultured
with BM Progenitors

NPM1 antigen is present in its non-mutated wild-type (WT) form in healthy myeloid
precursors, and although peptides derived from the mutated protein have been used to
stimulate CTL expansion, it is theoretically possible that specific NPMmut CTLs could
recognize peptides of WT protein on BM precursors, and that this mechanism leads to bone
marrow suppression and toxicities. To evaluate the bone marrow suppressive effect of
NPM1mut-CTLs in vitro, CTLs were cocultured with bone marrow samples from AML pa-
tients in remission, matched in at least one HLA antigen, for 4 or 24 h. As control conditions,
BM cells were incubated with unmanipulated PBMCs from the same individuals.

At the end of coculture, cells were recovered, resuspended in the appropriate media,
and plated in clonogenic assays for BFU-E and CFU-GM for 14 days. Colonies were then
counted.

The results show that an inhibitory effect was observed mainly after 24 h incubation,
and it concerned CFU-GM (median number of colonies, baseline: 20 vs. 13 after incubation
with CTL, p = 0.35), while no effect was observed on BFU-E, which were increased in
number after CTL co-incubation (median number of colonies, baseline: 14 vs. 20 after
incubation with CTL, p = 0.24) (Figure 6).
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Figure 6. In vitro safety of NPM1mut-CTLs: effects of CTL co-incubation on BM progenitor cells.
(A) The number of BFU-E (pink boxes), and CFU-GM (green boxes), at baseline (lighter color boxes)
or after 24 h co-incubation with CTLs (darker boxes) are shown. In (B,C), examples of BFU-E and
CFU-GM are shown.

Figure 7 shows the effect of CTL coculture time on BM progenitor colony growth. At
4 h, the inhibition on CFU-GM is less prominent.
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are shown for an exemplificative CTL line.

4. Discussion

Despite remarkable advances in the treatment of NPM1-mutated AML, due to opti-
mization of conventional induction chemotherapy and risk-stratified consolidation with
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cytarabine and HSCT in first remission in younger patients, and development of novel
therapeutic approaches including BCL-2 inhibitor venetoclax and hypomethylating agent
association, immune checkpoint inhibitors and AML-targeted monoclonal antibodies in
older unfit patients, about 50% of patients still die of progressive disease [12,21,22]. Thus,
there is a need for new therapies. Beyond novel agents such as menin inhibitors or the
nucleolar stress triggerer dactinomycin [23–26], which have shown anti-leukemic activity
in preclinical models and are being investigated in clinical trials, cell therapy approaches
targeting NPM1-mutated protein on AML cells could represent a useful complementary
approach to the other available treatment options. Our study shows the feasibility and
reproducibility to expand NPM1mut-specific CTLs on a GMP scale from AML patients in
hematologic remission, but also from healthy donors, by stimulation with DCs pulsed
with a peptide pool derived from the mutated NPM1 antigen, irrespective of the donor
HLA type. These CTLs, which include both CD8+ and CD4+ T cells, have high cytotoxic
potential, as they are able to recognize and lyse target cells pulsed with NPM1mut peptides
and, more importantly, they efficiently kill autologous or, in the case of donor, HLA partially
matched NPM1mut-positive leukemia blasts.

In the past, a number of studies have demonstrated a correlation between the emer-
gence of tumor antigen-targeted T cells in the peripheral blood and/or bone marrow of
leukemia patients after induction and maintenance chemotherapy, or after allogeneic HSCT,
and long-term disease remission [17,27–31]. In patients with NPM1-mutated AML, a better
overall survival was documented in the patients that developed autologous NPM1mut-
specific T cell responses [15]. In line with this observation, our group was able to demon-
strate, through sequential monitoring of IFNγ-producing NPM1mut-specific T cells coupled
with molecular MRD [32–34], that the kinetics of leukemia-specific T cells inversely cor-
related with molecular or morphologic leukemia status, having detected increased and
sustained specific immune responses in patients with persistent molecular CR, in some
cases years after completion of leukemia treatments [16]. These data suggest the potential
for an autologous NPM1mut-specific CTL product to promote leukemia control by eradicat-
ing persistent MRD or low-tumor burden relapse following conventional chemotherapy in
older NPM1-mutated AML patients not eligible for allogeneic HSCT, as we observed in a
patient treated for Ph+ALL with B-cell receptor-ABL (BCR-ABL) p190-directed CTLs [35].

The feasibility to expand leukemia-specific CTLs from healthy donors by leukemia
antigen-derived peptide stimulation had been first shown in the setting of chronic myeloid
leukemia (CML) by using the B-cell receptor-ABL (BCR-ABL) p210 fusion protein, pro-
teinase 3 (Pr3) and Wilms’ tumor antigen 1 (WT1) antigens [36], and subsequently replicated
for BCR-ABL p190 [35], WT1 alone [37,38] or combined with multiple antigens including
Pr3, human neutrophil elastase (NE), melanoma-associated antigen A3 (MAGE-A3), pref-
erentially expressed antigen in melanoma (PRAME) and survivin [11,18,39]. In the case
of NPM1-mutated AML, we were successful in priming leukemia-specific CTLs able to
kill efficiently partially HLA-matched primary myeloid leukemia blasts from all donors
tested. This finding reflects previous observations from our and other groups on the high
frequency of IFNγ-producing NPM1mut-specific T cells in the peripheral blood of healthy
volunteers or AML patients after HSCT [16,40], possibly due to a cross-reactive immune
response induced by short amino acid sequences from the C-terminal of NPM1-mutated
protein homologous with several common viral and bacterial antigens [16]. Successful
expansion of CTLs from individuals with varied HLA types was obtained by employing a
pool of fifteen 9- and 11-mer NPM1mut peptides, but also three 18-mer peptides that could
contain multiple T cell epitopes, possibly cross-presented through various HLA class I
and II alleles [41]. In addition, the peptides included epitopes representative of the most
common NPM1 gene mutations, in order to allow broad antigen targeting [16].

The use of a donor-derived NPM1mut-specific product could be usefully employed
as targeted DLI in MRD-positive patients to prevent hematologic relapse after allogeneic
HSCT. Indeed, some of these products were infused prophylactically [18,35,39] or pre-
emptively [18,36] in patients with CML or acute leukemia who were at high risk of relapse
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or had positive MRD after allogeneic HSCT, demonstrating safety and in vivo antileukemia
effects. Although the design of these early phase trials did not allow assessing with
certainty the role of leukemia antigen-targeted DLIs in patient outcomes, as patients
generally received associated therapies, it is undeniable that these cohorts had at least
comparable efficacy to chemotherapy and unmanipulated DLI, with a reduced risk of
GVHD as compared with DLI [18,39].

Although a preemptive strategy guided by MRD monitoring could, more successfully,
guarantee leukemia control due to the low tumor burden, a curative treatment approach
in patients with hematologic relapse after HSCT may also be pursued. Indeed, in some of
the early phase studies, responses were registered in patients with active disease [35,39].
In this latter setting, it is unlikely that the use of cell therapy alone, as observed for
hypomethylating agent (HMA)-based salvage therapy [42–44], will be sufficient to control
the outgrowth of leukemia blasts long-term, except perhaps in a few patients with late
relapse and low tumor burden [44]. However, the use of targeted cell therapies that
include a higher number of leukemia-specific T cells compared with unmanipulated DLIs,
combined with azacytidine and/or the BCL-2 inhibitor venetoclax, or FLT3 inhibitors such
as gilteritinib or sorafenib [45], may provide an added advantage and be able to increase
the response rate in patients with hematologic relapse after HSCT. Indeed, HMA have been
shown to induce HLA class I and costimulatory molecule expression on leukemia blasts,
and favor their susceptibility to T cell-mediated cytotoxicity, while venetoclax was able to
directly enhance cytotoxicity against AML cells both in vitro and in vivo [46,47].

So far, no specific T cell therapy for NPM1-mutated AML has been employed in vivo.
Van der Lee et al. have been able to clone and transfer a NPM1-mutated, HLA-A2-restricted,
T cell receptor with efficient in vitro specificity against NPM1-mutated primary leukemic
blasts and in vivo activity in immunodeficient mice engrafted with a human NPM1-mutated
AML cell line [10]. The advantages of gene therapy are the relatively short time required
for T cell production, and the possibility to introduce the TCR into different T cell subsets
with higher in vivo persistence and antitumor efficacy, such as central memory or stem
cell memory T cells. On the other hand, a gene therapy product could induce more severe
toxicity than somatic cell therapy [48], and be difficult to modulate in older, unfit patients,
or in the early post-transplant setting.

One other problem of ATMP therapy, which has emerged in the past few years in
connection with CAR-T cell therapy, is the development of tumor immune escape by
several mechanisms, including loss of antigen expression [49]. In the case of NPM1mut-
specific products, immune escape is more unlikely, as NPM1 mutation is a driver of
genetic lesion, critical for leukemia cell survival. The use of associated therapies could
provide the means to further broaden the response to leukemia, and avoid development of
immune escape from antigen loss, by lysing leukemia cells in vivo and inducing antigen
spreading [35]. This, in turn, could stimulate either recruited endogenous T cells emerging
from the graft, or some T cells with low NPM1mut fitness present in the bulk ATMP product.
Stimulation with long peptides presented by DCs allowed for expansion of CD4+ T cell
populations alongside CD8+ CTLs. CD4+ T cells in the products, in addition to providing
T cell help to CD8+ CTLs, were also endowed with lytic activity, as we could observe
cytotoxicity mediated by this subset. This characteristic of the NPM1mut-specific CTL
product could be of advantage to counteract immune escape mechanisms developed by
leukemia cells, in particular downregulation of surface HLA class I molecules, necessary
for CD8+ CTL activity. Virus-specific CD4+ CTLs have been proven to play a protective role
in antiviral immunity, when pathogens such as herpesviruses escaped from CD8-mediated
cellular immunity by downregulating the expression of HLA class I on the surface of
infected cells through inhibition of the TAP transporter and/or proteasome degradation
pathways [50]. A similar mechanism has been suggested also in the setting of tumor
immune surveillance [51,52].

The wild-type form of NPM1 (wt-NPM1) is expressed on all cells, including BM-
resident CD34+ hematopoietic stem cells. Although the mutated form is a neoantigen



Cancers 2023, 15, 2731 11 of 14

almost exclusively found in AML [14], and generally expressed in the entire leukemic
population, while not detectable in clonal hematopoiesis, there is a theoretical concern
that NPMmut CTLs, once administered to patients, could recognize wt-NPM1 on non-
leukemic hematopoietic progenitors and mediate BM toxicity. To analyze this potential
cross-reactivity, inhibition assays of BM precursor colony formation were performed by
co-incubation of patients’ bone marrow cells with scaled ratios of NPMmut CTLs, and
subsequent culture. The results of clonogenic assays showed that NPMmut- CTLs did not
significantly affect the growth of patient-derived normal progenitor cells. These data are in
line with a recent report that described a high response to wt-NPM1 by CD8+ CTLs in an
NPM1-mutated AML patient post-HSCT [53]. In this specific patient, the emergence of a
cellular immune response to wt-NPM1 was not accompanied by side effects, such as GVHD
or BM aplasia, and coincided with leukemia control, further suggesting the potential role
and relative safety of NPM1-directed immunity after HSCT.

5. Conclusions

Patients with relapsed or refractory NPM1-mutated AML after allogeneic HSCT or
unfit patients relapsing after chemotherapy are an unmet medical need. Novel targeted
therapies are emerging, and may change the prognosis of these cohorts. However, addi-
tional, complementary strategies, such as mutated-NPM1 specific cellular therapy, could
represent a tool to prevent tumor outgrowth and escape, and further increase the probability
of leukemia control.

Our findings indicate that NPM1mut-CTLs, obtained from patients or healthy donors
and endowed with leukemia-specific activity, may constitute a safe and effective option in
the treatment of patients affected by refractory or relapsed NPM1-mutated AML.
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