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Abstract: We consider the problem of determining the dynamics of the electromagnetic field generated
outside a ball whose charge changes depending on time. We are in conditions of perfect symmetry
and the electric field is considered to be radial. This is not a simplification since, under such a
hypothesis, the magnetic field does not develop. Thus, it is first necessary to find out the appropriate
modeling equations. These are obtained by writing a suitable energy tensor that combines the classical
electromagnetic stress-energy tensor with a special kind of mass tensor. The next step is to show
that it is possible to solve Einstein’s equations by plugging the new tensor on the right-hand side.
Interesting connections with some classical solutions related to black holes are finally established.
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1. Preliminary Considerations

We discuss an elementary electrodynamics problem: the surface of a given ball is
subject to variation of charge and we would like to study how the signal develops at its
exterior. We will work in simplified conditions of perfect radial symmetry. For this reason,
the approach may sound mainly academic, though there are examples of applications
in several areas. From the theoretical viewpoint, the analysis of black holes is a natural
referring topic. From the practical viewpoint, we just mention the case of our Sun. This has
an effective small charge (less than 100 Coulombs [1]) and presents periodic movements
on its surface (see, e.g., [2]). Real-life problems are indeed very challenging; however, we
believe that it is important to understand the difficulties hidden in the study of the most
basic formulation. As a matter of fact, finding the modeling equations ruling the behavior
of the fields outside the ball is not a trivial question, as one would expect, especially if
the surrounding space is void (i.e.: the ball is immersed in a vacuum). It is implicitly
assumed that we look for solutions that develop at a finite speed (commonly that of light).
Expedients suggested by Gauss’s law are not taken into account, since they are based on an
infinite velocity of propagation.

We briefly formalize here the problem as follows. We work in the spherical coordinate
system (r, θ, φ), and we assume that the fields do not depend on the variables θ and φ.
This will ensure perfect central symmetry. As usual, we denote by c the speed of light.
Time-dependent boundary conditions are imposed on a ball of fixed radius. These are
homogeneously distributed on the surface in such a way that the electric field ~E = (E, 0, 0)
is of radial type. As we specified, outside the ball, the function E will continue to depend
only on t and r. Clearly, no magnetic field can be generated in this circumstance. This
means that, if the ball is surrounded by a pure vacuum, we cannot invoke the help of
Maxwell’s equations. Indeed, the Ampère law: ∂~E/∂t = c2curl~B = 0 implies that only
a stationary electric field can be taken into account. In this trivial circumstance, we get
the expression Q/r2, where Q is the fixed charge. A solution of the type Q(t)/r2 is not
acceptable because the whole three-dimensional space would be simultaneously affected
by what happens at the surface of the ball. We claimed instead that the information has to
develop with finite velocity. Thus, it is necessary to build up the proper modeling equations
in order to study the phenomenon.
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We start by introducing the divergence ρ in spherical coordinates:

ρ =
∂E
∂r

+
2E
r

=
1
r2

∂(Er2)

∂r
= div~E (1)

We then assume that the field ~V = (v, 0, 0) represents the radial velocity of propagation
of the signal. The vectors ~E and ~V are parallel, therefore the information develops longitu-
dinally. This sounds unconventional, but represents the reason why the investigation is not
so easy. On the other hand, there are no other ways to proceed.

For simplicity, we take v constant with v ≤ c. If ρ is allowed to be different from zero,
the Ampère law (with ~B = 0) now becomes:

∂~E
∂t

= −ρ~V ⇒ ∂E
∂t

= −ρv (2)

This admits solutions of the type r−2g(vt − r), where g is totally arbitrary. When
g = Q is a constant we return to the classical stationary case. These positions are not
extraordinary if the transmission of the signal happens inside a certain medium allowing
for ρ to be different from zero. They may be considered unorthodox in empty space. We
show in Section 2 that (2) descends naturally from the construction of a suitable stress-
energy tensor, and needs to be coupled with another equation (see (15)).

What we are showing here is another piece of evidence that the standard set of
Maxwell’s equation cannot fully describe the development of electromagnetic fields in
several situations [3–5]. This is particularly true in the inter-space between bodies (not
infinitesimal), dynamically modifying their charge, or in movement (or both the situa-
tions) [6]. Dating back to the pioneering paper in [7], plenty of variants have been proposed
in the search for valuable alternatives. The existing literature is rather rich, so we limit
ourselves to the citation of a few papers: [8–14]. A very recent publication [15] further
remarks on these discrepancies and offers new solutions.

The main message we would like to divulge in the present paper is the following. If
we want the information to travel at finite speeds comparable to that of light, it is necessary
to assume regions of space (also in a perfect vacuum) where div~E 6= 0, even if there are
no physical charges. The elementary case of a capacitor consisting of two infinite parallel
plates represents a viable exercise to verify this statement [16,17].

2. Devising the Modeling Equations

We begin with observing that the following continuity equation holds:

∂ρ

∂t
= −div(ρ~V) = − 1

r2
∂(ρvr2)

∂r
(3)

which is obtained by applying the divergence operator to both terms of Equation (2). The
next step is to express the model equations in tensor form, by the use of four vectors. Among
many others, we suggest [18–20], as possible referring books in general relativity. We pro-
ceed by introducing the system of coordinates in space-time: xα = (ct, r, θ, φ). We then
need to consider the electromagnetic tensor Fαβ. In the special case we are examining, its
non-vanishing entries are F10 = E, F01 = −E, F10 = −E, F01 = E. We also recall that spher-
ical coordinates are characterized by the metric tensor gαβ = diag(1,−1,−r2,−r2 sin2 θ).
In other terms, we have:

(ds)2 = c2(dt)2 − (dr)2 − r2(dθ)2 − r2 sin2 θ(dφ)2 (4)

Moreover, we get:
√−g = r2 sin θ, where g denotes the determinant of the metric

tensor. In this space-time, it is straightforward to compute Christoffel’s symbols

Γ1
22 = −r Γ1

33 = −r sin2 θ Γ3
31 = Γ3

13 = Γ2
12 = Γ2

21 = 1/r
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Γ2
33 = − sin θ cos θ Γ3

23 = Γ3
32 =

cos θ

sin θ
(5)

In addition, the Ricci’s tensor Rαβ is identically zero, as well as the scalar curvature
R. These calculations and the following ones have been also checked with software for
symbolic manipulation.

It is also worthwhile to define the electromagnetic stress-energy tensor Uαβ, that, in the
simplified case we are examining, is diagonal and can be written as a function of E as follows:

U00 = 1
2 E2, U11 = − 1

2 E2, U22 = 1
2 E2r2, U33 = 1

2 E2r2 sin2 θ (6)

U00 = 1
2 E2, U11 = − 1

2 E2, U22 =
E2

2r2 , U33 =
E2

2r2 sin2 θ
(7)

It will be useful to introduce the velocity 4-vector Vα = (c,−v, 0, 0), with its contravari-
ant version Vα = (c, v, 0, 0). We also need a kind of mass tensor Mαβ, akin to that of a
perfect fluid:

Mαβ = µ−1ρ VαVβ + ε−1
0 gαβΠαβ (8)

with Παβ = diag(E ,−p,−p,−p). Here, E denotes an energy density per unit of volume
and p a pressure density per unit of surface. We are assuming to be in a vacuum so that ε0 is
the dielectric constant. If we want to study the case of a different isotropic medium, it will
be enough to change the dielectric constant accordingly. Finally, there is a constant µ which
is dimensionally equivalent to Coulomb/Kg. The magnitude of this constant depends on
the type of application one has in mind. An estimate of µ was provided for example in [5],
Appendix H, and, in that circumstance, it turned out to be approximately of the order of
the ratio between the elementary charge and the electron mass. The multiplicative term µ
is necessary because ρ is not a density of mass, but a density of charge per unit of volume.
This setting is justified by the fact that we want to remain within a pure electromagnetic
context. The information is not transported through the dust of massive particles as it
may happen in some plasma but travels by means of compression and rarefaction waves
altering the divergence of the electric field. By the way, if we also have matter at the exterior
of our ball, appropriate corrections can be easily taken into account.

A global stress-energy tensor, including all the quantities so far examined is arranged
in the following fashion:

Tαβ = ε0

(
Uαβ −Mαβ

)
(9)

We can write it in contravariant version, by taking into account that both ~E and ~V are
radial, so obtaining:

T00 =
ε0

2
E2 − ε0c2

µ
ρ− E T11 = − ε0

2
E2 − ε0v2

µ
ρ− p

T01 = T10 = − ε0cv
µ

ρ T22 =
1
r2

( ε0

2
E2 − p

)
T33 =

T22

sin2 θ
(10)

We are now ready to recover the modeling equation. These are obtained by requiring
(see [18], Formula (41.25)):

∇βTαβ =
1√−g

∂

∂xβ

(√
−g Tαβ

)
+ Γα

γδ Tγδ = 0 (11)

where ∂/∂xβ =
(

1
c

∂
∂t , ∂

∂r , ∂
∂θ , ∂

∂φ

)
. An explicit computation brings to the four equations:

∇βT0β =
ε0

2c
∂E2

∂t
− cε0

µ

(
∂ρ

∂t
+

1
r2

∂(ρvr2)

∂r

)
− 1

c
∂E
∂t

(12)



Appl. Sci. 2022, 12, 7290 4 of 8

∇βT1β = − ε0

2r2
∂(E2r2)

∂r
− ε0

µ

(
∂(ρv)

∂t
+

1
r2

∂(ρv2r2)

∂r

)
− 1

r2
∂(pr2)

∂r
− 2

r

( ε0

2
E2 − p

)

= −ε0ρE− ε0

µ
v
(

∂ρ

∂t
+

1
r2

∂(ρvr2)

∂r

)
− ε0

µ
ρ

(
∂v
∂t

+ v
∂v
∂r

)
− ∂p

∂r
(13)

∇βT2β = 0 ∇βT3β = 0 (14)

Therefore, in (14), the requested relations follow automatically. We also want (12)
and (13) to be zero. The property is obtained thanks to the following impositions. We start
by setting: E = 1

2 ε0E2 = 1
2 ε0|~E|2 and recalling (3). In this way ∇βT0β = 0. In the last

expression in (13), we can still use (3), so that ∇βT1β = 0 implies:

ρ

(
µ−1 D~V

Dt
+ ~E

)
= −ε−1

0
~∇p (15)

This is equivalent to an Euler’s equation for non-viscous fluids, with a forcing term
represented by the electric field. An extension of this equation will be examined in Section 4.

Here, D~V/Dt =
(

∂v/∂t + v ∂v/∂r, 0, 0
)

denotes the substantial derivative. Since we
supposed that v is constant, such a derivative is zero. In particular, Equation (15) takes the
simplified form ∂p/∂r = −ε0ρE. In principle, it is not necessary to enforce that v must be
constant, though in the present paper we will continue to stay under this hypothesis.

Finally, we claim that the two modeling equations are represented by (2) and (15),
where by definition ρ = div~E. They actually couple the two unknowns ~E and ~V. From direct
computation one finds out that E(t, r) = r−2g(vt− r) is actually a solution whatever is g,
that E = ε0g2/2r4, and that p is deduced by integrating the expression:
∂p/∂r = −ε0ρE = −ε0gg′/r4.

Another useful equation is obtained from (2) after scalar multiplication by ~E. This is:

∂E
∂t

= −ε0ρ ~E · ~V (16)

A further interesting relation is obtained by taking the trace of the tensor in (9).
Recalling that the trace of the electromagnetic stress tensor Uαβ is zero, we get:

tr(Tαβ) = −
ε0

µ
ρ(c2 − v2)− E + 3p (17)

3. Solving Einstein’s Equations

We can now express the tensor Tαβ in (9) in a generic metric gαβ and plug it on the
right-hand side of Einstein’s equation:

Gαβ = Rαβ − 1
2 gαβR = χTαβ (18)

where, as usual, Rαβ is the Ricci’s tensor and R = gαβRαβ denotes the scalar curvature.
The magnitude of the dimensional constant χ (meters/joules) is suggested by the type of
application. Note, however, that χ is not in relation with the gravitational constant G, since,
as already remarked in the previous section, there are no physical masses involved in our
study. The sign of χ will be discussed later on. It is known that the trace of Gαβ is equal to
−R. This suggest interesting relations between the scalar curvature and the trace of Tαβ

(see (17) for the case of the metric (4)).
We look for a metric of the form:

(ds)2 = c2 τ2(t, r)(dt)2 − σ2(t, r)(dr)2 − r2(dθ)2 − r2 sin2 θ (dφ)2 (19)
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where τ and σ should be determined as a function of the forcing term E. In other words,
the time-varying electric field emanated by the ball produces alterations of the space-time
geometry that are linked to the solution of (18). We may call them gravitational waves,
though there is no “gravity” in our exercise. Similar settings were considered in [21–23],
for non-static spheres of charged dust. Other related papers are for instance [24,25].

We continue our analysis by observing that
√−g = r2 sin θ τ(t, r)σ(t, r), and by

computing the (non-vanishing) Christoffel’s symbols:

Γ0
00 = − 1

σ

∂σ

∂t
Γ0

11 = σ3 ∂σ

∂t
Γ0

01 = Γ0
10 = − 1

σ

∂σ

∂r

Γ1
00 = − 1

σ5
∂σ

∂r
Γ1

11 =
1
σ

∂σ

∂r
Γ1

01 = Γ1
10 =

1
σ

∂σ

∂t

Γ1
22 = − r

σ2 Γ1
33 = − r sin2 θ

σ2 Γ3
31 = Γ3

13 = Γ2
12 = Γ2

21 =
1
r

Γ2
33 = − sin θ cos θ Γ3

23 = Γ3
32 =

cos θ

sin θ
(20)

The nonzero entries of Einstein’s tensor Gαβ = Rαβ − 1
2 gαβR take the form:

G00 = −τ2

σ2

(
1
r2 −

σ2

r2 −
2

rσ

∂σ

∂r

)
G11 =

1
r2 −

σ2

r2 +
2
rτ

∂τ

∂r

G22 = − r
σ3τ3

(
τ3 ∂σ

∂r
− στ2 ∂τ

∂r
− rστ2 ∂2τ

∂r2 + rσ2τ
∂2σ

∂t2 + rτ2 ∂τ

∂r
∂σ

∂r
− rσ2 ∂τ

∂t
∂σ

∂t

)
G01 = G10 =

2
rσ

∂σ

∂t
G33 = G22 sin2 θ (21)

For a given ~E = (E, 0, 0), we build up the electromagnetic stress-energy tensor Uαβ:

U00 =
E2

2σ2 U11 = − E2

2τ2 , U22 =
r2E2

2σ2τ2 U33 = U22 sin2 θ (22)

Moreover, we need the velocity 4-vectors: Vα = (c, v, 0, 0) and Vα = (cτ2,−vσ2, 0, 0).
Thus, we are ready to set up the mass tensor:

Mαβ =
ρ

µ


c2τ4 −cvτ2σ2 0 0
−cvτ2σ2 v2σ4 0 0

0 0 0 0
0 0 0 0

+
1
ε0


Eτ2 0 0 0
0 pσ2 0 0
0 0 pr2 0
0 0 0 pr2 sin2 θ

 (23)

In the end, we arrive at a set of five differential equations to be solved. To go on, it is
worthwhile to set τ = 1/σ. In this way we are left with only one unknown, for which we
must have:

G00 =
1

r2σ5

(
2r

∂σ

∂r
− σ + σ3

)
= χ

(
ε0E2

2σ2 −
E
σ2 −

ε0ρc2

µσ4

)
G01 = G10 =

2
rσ

∂σ

∂t
= χ

ε0ρcv
µ

G11 = − 1
r2σ

(
2r

∂σ

∂r
− σ + σ3

)
= χ

(
− ε0E2

2
σ2 − pσ2 − ε0ρv2

µ
σ4
)

G22 = − r
σ4

(
2σ

∂σ

∂r
− 3r

(
∂σ

∂r

)2
+ rσ4

(
∂σ

∂t

)2
+ rσ5 ∂2σ

∂t2 + rσ
∂2σ

∂r2

)
= χ

(
ε0E2

2
r2 − pr2

)
(24)
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The equation relative to G33 is trivially obtained from the one corresponding to G22
after multiplication by sin2 θ. We successively evaluate E from the first equation:

E =
ε0E2

2
− 1

χ

[
c
v

2
rσ3

∂σ

∂t
+

1
r2σ3

(
2r

∂σ

∂r
− σ + σ3

)]
(25)

By suitably combining G00 and G11 we may recover p:

p = −E + ε0ρ

µ

(
c2

σ2 + v2σ2
)
= − ε0E2

2
+

1
χ

[
1

r2σ3

(
2r

∂σ

∂r
− σ + σ3

)
− v

c
2σ

r
∂σ

∂t

]
(26)

In such a way, ρ, E , and p are evaluated as functions of the given E and the unknown
σ. These will be substituted into the equation relative to G22. The equation for G33 is
equivalent. After implementing the substitution: σ(t, r) = 1/

√
1 + ω(t, r), and using the

expression of p in (26), we get from the last equation in (24):

1
r

(
−ω

r
− rσ6

(
∂ω

∂t

)2
+

rσ4

2
∂2ω

∂t2 +
r
2

∂2ω

∂r2 +
v
c

σ4 ∂ω

∂t

)
= χε0E2 (27)

where σ2n = 1/(1 + ω)n. This is the final equation to be solved. Unfortunately, we do
not have a closed expression for ω as a function of E. We can, however, make some
considerations. If ω does not depend on t and E = Q/r2, equation (27) reduces to:

− ω

r2 +
1
2

∂2ω

∂r2 = χε0
Q2

r4 (28)

The general solution in this case is ω(r) = −K/r + χε0Q2/2r2, where K is an arbitrary
real number. We have ρ = 0, E = 0 and p = 0. Therefore Mαβ = 0. The final expression
of σ exactly corresponds to that of the Reissner–Nordström metric, where the parameter
K = 2M > 0 is usually related to an effective mass M. This stationary metric simulates a
charged black hole. In the phenomenon we are currently studying there are no physical
masses, and K is just a constant to be fixed according to some boundary conditions. Our
“mass” tensor Mαβ = 0 comes into place in the case of time-dependent fields and somehow
simulates the transfer of information from the surface of the ball towards the exterior.

When E actually depends on time, Equation (27) can be approached with the help
of numerical simulations. By the way, this issue is not within the goals of this paper.
Theoretical considerations can be done for small-varying fields in the neighborhood of the
stationary solution.

Note that Birkhoff’s theorem states that solutions of the vacuum Einstein’s equations,
displaying spherically symmetry, are locally isometric to the Schwarzschild solution, so
they will not generate pure gravitational waves. The term “vacuum” in this context means
the absence of other massive-like bodies. Here the situation is different. Einstein’s equations
are solved with a forcing right-hand side (depending on E) that simulates the oscillating
presence of the electric field. Indeed, any form of energy should in principle be able to
produce a deformation of space-time. Exact gravitational plane waves sharing the same
support as an electromagnetic one were computed in ([4], Section 4.3). This approach is
different from that followed in the historical paper [26], where the equations were solved
in the pure gravitational vacuum. The final solution in that case was rather complicated
(and of difficult interpretation). The authors actually end up with gravitational waves that
were not of plane type, so, part of the paper was devoted to the discussion of the concept
of “planeness”. In the present case, the right-hand side Tαβ is a dynamical forcing tensor,
and, although an explicit solution of (27) is not available, the attached gravitational waves
look perfectly spherical.
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4. Comments

We can provide further observation concerning the stationary solution presented at
the end of the previous section. In this case, Einstein’s equation reduces to:

Gαβ = χε0Uαβ (29)

in which only the electromagnetic stress tensor Uαβ appears on the right-hand side. As
we noted, a general solution has the form: τ(r) =

√
1− K/r + χε0Q2/2r2, σ(r) = 1/τ(r).

This effectively corresponds to the Reissner–Nordström metric (K = 2M) when χ > 0 (note
that the signature of our space is (+,−,−,−)). The existence of τ and σ is guaranteed if r
is large enough and M2 − χε0Q2 ≥ 0. This is an effective restriction when χ is positive,
but can be totally removed by taking χ as negative. As a matter of fact, there is no real
reason to choose a specific sign accompanying the electromagnetic stress-energy tensor,
since unlike astronomical or cosmological applications, there is no sign actually involved
in electromagnetic phenomena. This issue was already discussed in ([4], p. 128), and can
be further reinforced after examining the Kerr–Newman metric [27], simulating a rotating
massive black hole. The metric generalizes the above one and uses a particular coordinates
framework, namely the Boyer–Lindquist coordinates. The explicit expression is:

c2(ds)2 = −
(
(dr)2

∆
+ (dθ)2

)
x2 +

(
c dt− a sin2 θ dφ

)2 ∆
x2 −

(
(r2 + a2)dφ− ac dt

)2 sin2 θ

x2 (30)

where x2 = r2 + a2 cos2 θ, a is a parameter and ∆ = r2 − 2Mr + a2 + Q2. For brevity, we
omitted various dimensional constants. It turns out that, if χ is positive in (29), we get
restrictions on r, bringing to the definition of an “event horizon”. It is also required that
M2 ≥ Q2 + a2 (see [19], p. 879), which may enforce the mass M to be rather large. On the
other hand, if we now define ∆ = r2 − 2Mr + a2 −Q2, we still get solutions to Einstein’s
equation. They correspond to negative values of χ, and the restriction becomes milder, i.e.:
M2 + Q2 ≥ a2. Our suggestion is to adopt the negative sign concerning all tensors that
involve the electromagnetic portion of the phenomenon under study.

As a final remark, we propose the full set of modeling equations, including the
presence of the magnetic field. They are obtained as in (11) by imposing ∇βTαβ = 0, with
Tαβ built on the most general electromagnetic tensor Fαβ. We have:

∂~E
∂t

= c2curl~B− ρ~V
∂~B
∂t

= −curl~E (31)

with ρ = div~E and div~B = 0. In addition, we get:

ρ

(
µ−1 D~V

Dt
+ ~E + ~V × ~B

)
= −ε−1

0
~∇p (32)

Note that the term ~E + ~V × ~B recalls Lorentz’s force. Thus, we are coupling Maxwell’s
equations with those ruling fluid dynamics. This is a very classical approach, especially in
the framework of plasma physics (see, e.g., [28]). The crucial difference is that the equations
above do not necessarily require the presence of massive particles, and they can survive in
a perfect vacuum. One of the advantages is to be able to solve the problem of the radially
pulsating charged ball, which cannot otherwise be dealt with with more standard tools.

5. Conclusions

With the help of a suitable electromagnetic stress-energy tensor combining the classical
one with a special mass tensor, we were able to get a differential model that extends the
usual Maxwell’s one. We applied this to the study of the electromagnetic development of
the fields outside a charged ball displaying time-dependent radial boundary conditions.
By the same equations, the analysis may be extended to other more complex situations.
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We showed that is possible to solve Einstein’s equations by having the new tensor on
the right-hand side. The so obtained space-time metric, which extends already known
solutions, may constitute a further step in the investigation of the properties of black holes.
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