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A SURVEY ON THE CLASSICAL THEORY FOR
KOLMOGOROV EQUATION

FRANCESCA ANCESCHI - SERGIO POLIDORO

We present a survey on the regularity theory for classic solutions to
subelliptic degenerate Kolmogorov equations. In the last part of this note
we present a detailed proof of a Harnack inequality and a strong maximum
principle.
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1. Introduction

Kolmogorov equations appear in the theory of stochastic processes as linear sec-
ond order parabolic equations with non-negative characteristic form. Through-
out this paper we are mainly concerned with degenerate Kolmogorov equations.
In its simplest form, if (Wt)t≥0 denotes a real Brownian motion, the density
p = p(t,v,y,v0,y0) of the stochastic process (Vt ,Yt)t≥0

{
Vt = v0 +σWt

Yt = y0 +
∫ t

0 Vs ds
(1)

is a solution to a strongly degenerate Kolmogorov equation, that is
1
2 σ

2
∂vv p+ v∂y p = ∂t p, t ≥ 0, (v,y) ∈ R2. (2)

In 1934 Kolmogorov provided us with the explicit expression of the density
p = p(t,v,y,v0,y0) of the above equation (see [46])

p(t,v,y,v0,y0) =
√

3
2πt2 exp

(
− (v−v0)

2

t −3 (v−v0)(y−y0−tv0)
t2 −3 (y−y0−ty0)

2

t3

)
t > 0,

(3)
and pointed out that it is a smooth function despite the strong degeneracy of the
equation (2). As it is suggested by the smoothness of the density p, the operator
L associated to equation (2)

L := 1
2 σ

2
∂vv + v∂y−∂t , (4)

is hypoelliptic, in the sense of the following definition, that we state for a general
second order differential operator L acting on an open subset Ω of RN .

HYPOELLIPTICITY. The operator L is hypoelliptic if, for every distributional
solution u ∈ L1

loc(Ω) to the equation L u = f , we have that

f ∈C∞(Ω) ⇒ u ∈C∞(Ω). (5)

Hörmander considered the operator L defined in (4) as a prototype for the
family of hypoelliptic operators studied in his seminal work [39]. Specifically,
the operators considered by Hörmander are of the form

L =
m

∑
k=1

X2
k +Y, (6)
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where m is a natural number and Xk are smooth vector fields of the form

Xk =
N+1

∑
j=1

b j,k(z)∂z j , Y =
N+1

∑
j=1

b j,m+1(z)∂z j k = 1, . . . ,m, (7)

with b j,k ∈C∞(Ω) for every j = 1, . . . ,N+1, k = 1, . . . ,m+1 and Ω is any open
subset of RN+1. The main result presented in [39] is a sufficient condition to the
hypoellipticity of L . Its statement requires some notation. Given two vector
fields Z1,Z2, the commutator of Z1 and Z2 is the vector field:

[Z1,Z2] = Z1 Z2−Z2 Z1.

Moreover, we recall that Lie(X1, . . . ,Xm,Y ) is the Lie algebra generated by the
vector fields X1, . . . ,Xm,Y and their commutators.

HÖRMANDER’S RANK CONDITION. Suppose that

rankLie(X1, . . . ,Xm,Y )(z) = N +1 for every z ∈Ω. (8)

Then the operator L defined in (6) is hypoelliptic in Ω,

Let us consider again the operator L defined in (4) with σ =
√

2 to simplify
the notation. L can be written in the form (6) if we choose

X = ∂v ∼ (0,1,0)T , Y = v∂y−∂t ∼ (−1,0,v)T ,

and the Hörmander’s rank condition is satisfied, as

[X ,Y ] = XY −Y X = ∂y ∼ (0,0,1)T .

As the regularity properties of Hörmander’s operators L are related to a Lie
algebra, it became clear that the natural framework for the regularity theory of
Hörmander’s operators is the non-euclidean setting of Lie groups, as Folland
and Stein pointed out in [31]. Later on, Rothschild and Stein developed a gen-
eral regularity theory for Hörmander’s operators in [69]. We refer to the more
recent monograph by Bonfiglioli, Lanconelli and Uguzzoni [12] for a compre-
hensive treatment of the recent achievements of the theory. We also recall the
book [15] by Bramanti. As far as we are concerned with the operator L , we
show that it is invariant with respect to the non-commutative traslation given by
the following composition law

(t,v,y)◦ (t0,v0,y0) = (t0 + t,v0 + v,y0 + y− tv0), (t,v,y),(t0,v0,y0) ∈ R3.
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Indeed, if w(t,v,y) = u(t0 + t,v0 + v,y0 + y− tv0) and g(t,v,y) = f (t0 + t,v0 +
v,y0 + y− tv0), then

L u = f ⇐⇒ L w = g for every (t0,v0,y0) ∈ R3.

As we will see in the sequel, in several applications the couple (v,y) denotes the
velocity and the position of a particle. For this reason the above operation is
also known as Galilean change of variable.
Another remarkable property of the operator L is its dilation invariance. More
precisely, the operator L is invariant with respect to the following family of
dilations

δr(t,v,y) := (r2t,rv,r3y), r > 0,

with the following meaning: if we define w(t,v,y) = u(r2t,rv,r3y) and g(t,v,y)
= f (r2t,rv,r3y) we have that

L u = f ⇐⇒ L w = r2g for every r > 0.

As we will see in the sequel, this underlying invariance property plays a fun-
damental role in the study of the operator L , even though it does not hold
true for every Kolmogorov operator (see Section 2), as it happens in the family
of uniformly parabolic operators. Indeed, we usually consider parabolic dila-
tions δr(x, t) = (rx,r2t) also when considering the Ornstein-Uhlenbeck operator
L = ∆−〈x,∇〉−∂t .

We conclude this introduction discussing about some applications of the
Kolmogorov equation. First of all, the process (1) is the solution to the Langevin
equation {

dVt = dWt

dYt =Vt dt,

hence Kolmogorov equations are related to every stochastic process satisfying
Langevin equation. In particular, several mathematical models involving linear
and non linear Kolmogorov type equations have also appeared in finance [3],
[9], [10] and [28]. Indeed, equations of the form (2) appear in various models
for pricing of path-dependent financial instruments (cf., for instance, [11] [59]),
where, for example the equation

∂tP+ 1
2 σ

2S2
∂

2
S P+(logS)∂AP+ r(S∂SP−P) = 0, S > 0, A, t ∈ R (9)

arises in the Black and Scholes option pricing problem
{

dSt = µStdt +σStdWt

dAt = St dt,
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where σ is the volatility of the stock price S, r is the interest rate of a risckless
bond and P = P(S,A, t) is the price of the Asian option depending on the price
of the stock S, the geometric average A of the past price and the time to maturity
t.
Moreover, we recall that the Kolmogorov equation is the prototype for a family
of evolution equations arising in kinetic theory of gases which take the following
general form

Yu = J (u). (10)

In this case, we have that u = u(v,y, t) is the density of particles with velocity
v = (v1, . . . ,vn) and position y = (y1, . . . ,yn) at time t. Moreover,

Yu :=
n

∑
j=1

v j∂y j u+∂tu

is the so called total derivative with respect to time in the phase space R2n+1.
J (u) is the collision operator, which can be either linear or non-linear. For
instance, in the usual Fokker-Planck equation (cf. [27], [68]) we have a linear
collision operator of the form

J (u) =
n

∑
i, j=1

ai j ∂
2
vi,v j

u+
n

∑
i=1

ai ∂viu+au

where ai j, ai and a are functions of (x, t); J (u) can also occur in divergence
form

J (u) =
n

∑
i, j=1

∂vi(ai j ∂v j u+biu)+
n

∑
i=1

ai∂viu+au.

We also mention the following non-linear collision operator of the Fokker-
Planck-Landau type

J (u) =
n

∑
i, j=1

∂vi

(
ai j(z,u)∂v j u+bi(z,u)

)
,

where the coefficients ai j and bi depend both on z ∈ R2n+1 and the unknown
functions u through some integral expression. Moreover, this last operator is
studied as a simplified version of the Boltzmann collision operator (cf. [17],
[51]). For the description of wide classes of stochastic processes and kinetic
models leading to equations of the previous type, we refer to the classical mono-
graphies [17], [18] and [26]. For further applications we refer to the article [2]
by Akhmetov, Lavrentiev and Spigler, to the work [71] by Tersenov, and to the
references therein.
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The regularity theory for weak solutions to the Kolmogorov equation with
measurable coefficients in divergence form has been developed during the last
decade and is still evolving. As the aim of this survey is to give an overview of
the established theory, we simply recall some of the main results on this subject.
Operators with VMO coefficients ai j have been studied in [16] by Bramanti,
Cerutti and Manfredini, [57] by Manfredini and Polidoro, and in [65], [66] by
Polidoro and Ragusa. The theory of Kolmogorov operators with measurable
coefficients ai j is developed in the following papers:

• Moser iteration: a first contribution is given by Polidoro and Pascucci
(see [60]) for dilation invariant Kolmogorov operators with measurable
coefficients; later on, Cinti, Pascucci and Polidoro extend this result to the
non-dilation invariant case (see [23]). Finally, the non-dilation invariant
case with lower order coefficients with positive divergence is proved by
the authors and Ragusa (see [6]).

• PoincarÃl’ inequality and Hölder regularity: a weak PoincarÃl’ in-
equality is proved by Wang and Zang in [73] for the dilation invariant case
and in [72] for the non-dilation invariant one. Related results have been
recently proved by Armstrong and Mourrat for the kinetic Kolmogorov-
Fokker-Planck equation in [7].

• Harnack inequality: Golse, Imbert, Mouhot and Vasseur prove the Höl-
der continuity and a Harnack inequality for weak solutions to the kinetic
Kolmogorov-Fokker-Planck equation (see [37]). Based on their results,
The authors and Eleuteri prove a geometric statement for the Harnack
inequality (see [5]).

As far as we are concerned with regularity theory for weak solutions to the
Kolmogorov equation with measurable coefficients in non-divergence form, the
only result available is due to Abedin and Tralli, who prove a Harnack inequal-
ity for this type of operators with additional Cordes-Landis assumption on the
coefficients ai j (see [1]). We finally recall the recent article [33] by Garofalo and
Tralli, where nonlocal operators (−L )s and their stationary counterparts are in-
troduced. In particular, Hardy-Littlewood-Sobolev inequalities, Poincaré-type
inequalities, and nonlocal isoperimetric inequalities are proved in [34], [35],
and [36], respectively.

This paper is organized as follows. Section 2 is devoted to the study of Kol-
mogorov equations with constant coefficients and to the description of the un-
derlying geometry for the study of this kind of equations. Section 3 and Section
4 are devoted to the analysis of Kolmogorov equations with Hölder continuous
coefficients. In Section 3 are presented the main known results concerning the
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fundamental solution, then the Cauchy and the Cauchy-Dirichlet problems are
discussed. In Section 4 mean value forumulas and Harnack type inequalities are
described. This section also contains the detailed proof of a strong maximum
principle for Kolmogorov operators in non divergence form.

2. Kolmogorov operator with constant coefficients

In the sequel of this section we consider the family of Kolmogorov operators of
the form

L :=
N

∑
i, j=1

ai j∂
2
xix j

+
N

∑
i, j=1

bi jxi∂x j −∂t

=Tr(AD2u)+ 〈Bx,Du〉−∂tu, x ∈ RN , t ∈ R,
(11)

where A = (ai j)i, j=1,...,N and B = (bi j)i, j=1,...,N are matrices with real constant
coefficients, A symmetric and non negative. As we explained in Section 1, the
fundamental solution to the degenerate equation (2) can be seen as the density
of the solution to the stochastic differential equation (1). This is also the case
when we consider a higher dimension. Specifically, let σ be a N×m constant
matrix, B as in (11), and let (Wt)t≥0 be a m-dimensional Wiener process. Denote
by (Xt)t≥0 the solution to the following N-dimensional Stochastic Differential
Equation (SDE in short)

{
dXt =−BXt dt +σ dWt

Xt0 = x0.
(12)

Then the backward Kolmogorov operator Kb of (Xt)t≥0 acts on sufficiently reg-
ular functions u as follows

Kbu(y,s) = ∂su(y,s)+
N

∑
i, j=1

ai j∂
2
yiy j

u(y,s)−
N

∑
i, j=1

bi jyi∂y j u(y,s).

where
A = 1

2 σσ
T , (13)

and the forward Kolmogorov operator K f of (Xt)t≥0 is the adjoint K∗b of Kb,
that is

K f v(x, t) =−∂tv(x, t)+
N

∑
i, j=1

ai j∂
2
xix j

v(x, t)+
N

∑
i, j=1

bi jxi∂x j v(x, t)+ tr(B)v(x, t),

for sufficiently regular functions v. Note thatK f operator agrees with L in (11)
up to a multiplication of the solution by exp(t tr(B)). Also note that, because
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of (13), it is natural to consider in (11) a symmetric and non negative matrix A.
When the matrix A is strictly positive, the solution (Xt)t≥0 of the SDE (12) has
a density p = p(t − s,x,y) which is a solutions of the equations Kb p = 0 and
K f p = 0 in the following sense. For every (x, t) ∈ RN+1, the function u(y,s) :=
p(t− s,x,y) is a classical solution to the equation Kbu = 0 in Rn×]−∞, t[ and,
for every (y,s) ∈RN+1, the function v(x, t) = p(t− s,x,y) is a classical solution
to K f v = 0 in Rn×]s,+∞[. This is not always the case when A is degenerate.
In the sequel we give necessary and sufficient conditions on A and B for the
existence of a density p for the stochastic process (Xt)t≥0. These conditions
are also necessary and sufficient for the hypoellipticity of L . In order to state
the afore mentioned conditions, we introduce some further notation. Following
Hörmander (see p. 148 in [39]), we set, for every t ∈ R,

E(t) = exp(−tB), C(t) =
∫ t

0
E(s)AET (s)ds. (14)

The matrix C(t) is symmetric and non-negative for every t > 0, nevertheless it
may occur that it is strictly positive. If this is the case, then C(t) is invertible
and the fundamental solution Γ(x0, t0;x, t) of L is

Γ(x, t;ξ ,τ) = Γ(x−E(t− τ)ξ , t− τ), (15)

where Γ(x, t) = Γ(x, t;0,0). Moreover, Γ(x, t) = 0 for every t ≤ 0 and

Γ(x, t) =
(4π)−

N
2√

detC(t)
exp
(
−1

4
〈C−1(t)x,x〉− t tr(B)

)
, t > 0. (16)

The last notation we need to introduce allows us to write the operator L in the
form (6). To do that, we recall that σ =

(
σ jk
)

j=1,...,N
k=1,...,m

is a matrix with constant

coefficients, and we set

Xk :=
1√
2

N

∑
j=1

σ jk∂x j , k = 1, . . . ,m, Y :=
N

∑
i, j=1

bi jxi∂x j −∂t . (17)

This allows us to rewrite the operator L in the form (6) L = ∑m
j=1 X2

j +Y . The
following result holds true.

Proposition 2.1. Consider an operator L of the form (11), and let σ be a N×m
constant matrix such that A writes as in (13). Let X1, . . . ,Xm, and Y be the vector
fields defined in (17). Then the following statements are equivalent

C1. (Hörmander’s condition): rankLie(X1, . . . ,Xm,Y )(x, t) = N +1 for every
(x, t) ∈ RN+1;
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C2. Ker(A) does not contain non-trivial subspaces which are invariant for B;

C3. C(t)> 0 for every t > 0, where C(t) is defined in (14);

C4. (Kalman’s rank condition): rank
(
σ ,Bσ , . . . ,BN−1σ

)
= N;

C5. for some basis of RN the matrices A and B take the following block form

A =

(
A0 O
O O

)
(18)

where A0 is a symmetric strictly positive m0×m0 matrix, with m0 ≤ m,
and

B =




∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗




=




B0,0 B0,1 . . . B0,κ−1 B0,κ
B1 B1,1 . . . Bκ−1,1 Bκ,1
O B2 . . . Bκ−1,2 Bκ,2
...

...
. . .

...
...

O O . . . Bκ Bκ,κ




(19)
where every block B j is a m j×m j−1 matrix of rank m j with j = 1,2, . . . ,κ .
Moreover, the m js are positive integers such that

m0 ≥ m1 ≥ . . .≥ mκ ≥ 1, and m0 +m1 + . . .+mκ = N (20)

and the entries of the blocks denoted by ∗ are arbitrary.

When the above conditions are satisfied, then L is hypoelliptic, its fundamental
solution Γ defined in (15) and (16), is the density of the solution (Xt)t≥0 to (12),
and the problem (21) is controllable.

The equivalence between C1 and C2 is proved by Hörmander in [39]. The
equivalence between C1, C2, C3 and C5 can be found in [50] (see Proposi-
tion A.1, and Proposition 2.1). The equivalence between C3 and C4 was first
pointed out by Lunardi in [55].

Remark 2.2. The condition C4 arises in control theory and it is related to the
following controllability problem. For x0,x1 ∈ RN and t0, t1 ∈ R with t0 < t1,
find a “control” ω ∈ L1([t0, t1],Rm) such that

{
ẋ(t) =−Bx(t)+σω(t),
x(t0) = x0, x(t1) = x1,

(21)

where σ , B are the same matrices appearing in (12). It is known that a solution
to the above control problem exists if, and only if, Kalmann’s rank condition
holds true (see [75]).
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Remark 2.3. We discuss the meaning of the matrix C(t).

• From the SDEs point of view, 2C(t) is the covariance matrix of the solu-
tion (Xt)t≥0 to the SDE (12). In general, (Xt)t≥0 is a Gaussian process and
its density p is defined on RN when its covariance matrix is positive def-
inite. If this is not the case, the trajectories of (Xt)t≥0 belong to a proper
subspace of RN .

• The matrix C(t) has a meaning also for the optimal control point of view.
Indeed, it is known that

〈C(t− t0)−1 (x−E(t− t0)x0) ,x−E(t− t0)x0〉= inf
∫ t

t0
|ω(s)|2 ds,

where the infimum is taken in the set of all controls for (21) (see [53],
Theorem 3, p. 180). In particular, when (x0, t0) = (0,0) the optimal cost is
〈C(t)−1x,x〉, a quantity that appears in the expression for the fundamental
solution Γ in (16). As we will see in the sequel, this fact will be used to
prove asymptotic bounds for positive solutions to Kolmogorov equations
(see (52) in Theorem 3.3).

In view of the above assertions, the equivalence of C3 and C4 can be interpreted
as follows. A control ω ∈ L1([t0, t1],Rm) for the problem (21) exists if, and only
if, the trajectories of the Stocastic Process (Xt)t≥0 reach every point of RN .

2.1. Lie Group

In this Section we focus on the non-Euclidean invariant structure for Kolmo-
gorov operators of the form (11). This non commutative structure was first used
by Garofalo and E. Lanconelli in [32], then explicitly written and thoroughly
studied by E. Lanconelli and Polidoro in [50]. Here and in the sequel we de-
note by K, the family of Kolmogorov operators L satisfying the equivalent
conditions of Proposition 2.1. We also assume the basis of RN is such that the
constant matrices A and B have the form (18) and (19), respectively.

We now define a non commutative algebraic structure on RN+1 introduced
in [50], that replaces the Euclidean one in the study of Kolmogorov operators.

LIE GROUP. Consider an operator L in the form (11) and recall the notation
(14). Let

G= (RN+1,◦), (x, t)◦ (ξ ,τ) = (ξ +E(τ)x, t + τ). (22)

Then G is a group with zero element (0,0), and inverse

(x, t)−1 := (−E(−t)x,−t). (23)
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For a given ζ ∈ RN+1, we denote by `ζ the left traslation defined as

`ζ : RN+1→ RN+1, `ζ (z) = ζ ◦ z.

Then the operator L is left invariant with respect to the Lie product ◦, that is

L ◦ `ζ = `ζ ◦L or, equivalently, L (u(ζ ◦ z)) = (L u)(ζ ◦ z) , (24)

for every u sufficiently smooth.

We omit the details of the proof of the above statements as they are elemen-
tary. We remark that, even though we are interested in hypoelliptic operators
L , the definition of the Lie product ◦ is well posed wether or not we assume
the Hörmander’s condition. Also note that

(ξ ,τ)−1 ◦ (x, t) = (x−E(t− τ)ξ , t− τ), (x, t),(ξ ,τ) ∈ RN+1, (25)

then the meaning of (15) can be interpreted as follows:

Γ(x, t;ξ ,τ) = Γ
(
(ξ ,τ)−1 ◦ (x, t)

)
. (26)

Among the class of Kolmogorov operators K, the invariant operators with re-
spect to a certain family of dilations (D(r))r>0 play a central role. We say that
L ∈K is invariant with respect to (D(r))r>0 if

L (u◦D(r)) = r2D(r)(L u) , for every r > 0, (27)

for every function u sufficiently smooth. This property can be read in the ex-
pression of the matrix B (see Proposition 2.2 of [50]).

Proposition 2.4. Let L be an operator of the family K. Then L satisfies (27)
if, and only if, the matrix B as this form

B0 =




O O . . . O O
B1 O . . . O O
O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O



. (28)

In this case

D(r) = diag(rIm0 ,r
3Im1 , . . . ,r

2κ+1Imκ
,r2) forevery r > 0, (29)

where Im j denotes the identity matrix in Rm j . In the sequel we denote by K0 the
family of dilation-invariant operators belonging to K.
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It is useful to denote by (D0(r))r>0 the family of spatial dilations defined as

D0(r) = diag(rIm0 ,r
3Im1 , . . . ,r

2κ+1Imκ
) forevery r > 0. (30)

HOMOGENEOUS LIE GROUP. If the matrix B has the form (28), we say that the
following structure

G0 =
(
RN+1,◦,(D(r))r>0

)
(31)

is a homogeneous Lie group. In this case, because D0(r)E(t)D0(r) = E(r2t)
is verified when B has the form (28), the following distributive property holds

D(r)(ζ ◦ z) = (D(r)ζ )◦ (D(r)z), D(r)(z−1) = (D(r)z)−1. (32)

Remark 2.5. A measurable function u on G0 will be called homogeneous of
degree α ∈ R if

u(Dr(z)) = rαu(z) for every z ∈ RN+1.

A differential operator X will be called homogeneous of degree β ∈ R with
respect to (Dr)r≥0 if

Xu(Dr(z)) = rβ (Xu)(Dr(z)) for every z ∈ RN+1,

and for every sufficiently smooth function u. Note that, if u is homogeneous of
degree α and X is homogeneous of degree β , then Xu is homogeneous of degree
α−β .
As far as we are concerned with the vector fields of the Kolmogorov operators
as defined in (17), we have that X1, . . . ,Xm are homogeneous of degree 1 and
Y is homogeneous of degree 2 with respect to (Dr)r≥0. In particular, L =

∑m
j=1 X j +Y is is homogeneous of degree 2.

Remark 2.6. The presence of the exponents 1,3, . . . ,2κ +1 in the matrix D can
be explained as follows. The usual parabolic dilation in the first m0 coordinates
of RN and in time is due to the fact that L is non degenerate with respect to
x1, . . . ,xm0 . The remaining coordinates appear as we check the Hörmander’s
condition. For instance, consider the Kolmogorov operator

L = ∂
2
x1
+ x1∂x2 + x2∂x3−∂t = X2

1 +Y.

To satisfy the Hörmander condition we need κ = 2 commutators ∂x2 = [X1,Y ] =
X1Y −Y X1 and ∂x3 = [[X1,Y ],Y ]. Because Y needs to be considered as a sec-
ond order derivative, we have that ∂x2 and ∂x3 are derivatives of order 3 and 5,
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respectively. On the other hand, the matrices A, B and D0(r) associated to this
operator are

A =




1 0 0
0 0 0
0 0 0


 , B =




0 0 0
1 0 0
0 1 0


 , D0(r) =




r 0 0
0 r3 0
0 0 r5


 .

The same argument can be applied to operators that need κ > 2 steps to satisfy
Hörmander’s rank condition.

The integer numbers

Q := m0 +3m1 + . . .+(2κ +1)mk, and Q+2 (33)

will be named homogeneous dimension of RN with respect to (D0(r))r>0, and
homogeneous dimension of RN+1 with respect to (D(r))r>0, because we have
that

detD0(r) = rQ and detD(r) = rQ+2 for every r > 0.

We now introduce a homogeneous semi-norm of degree 1 with respect to the
family of dilations (D(r))r>0 and a quasi-distance which is invariant with re-
spect to the group operation ◦.
Definition 2.7. For every z = (x, t) ∈ RN+1 we set

‖z‖= |t| 12 + |x|, |x|=
N

∑
j=1
|x j|

1
q j , (34)

where the numbers q j are associated to the dilation group (D(r))r>0 as follows

D(r) = diag
(
rq1 , . . . ,rqN ,r2) .

The semi-norm ‖·‖ is homogeneous of degree 1, that is

‖D(r)z‖= r‖z‖ for every r > 0,z ∈ RN+1.

Because every norm is equivalent to any other in RN+1, other definitions have
been used in the literature. For instance in [56] it is chosen the following one.
For every z = (x1, . . . ,xN , t) ∈ RN+1 \ {0} the norm of z is the unique positive
solution r to the following equation

xq1
1

r2q1
+

xq2
2

r2q2
+ . . .+

xqN
N

r2qN
+

t2

r4 = 1. (35)

Note that, if we choose (35), the set
{

z ∈RN+1 : ‖z‖= r
}

is a smooth manifold
for every positive r, which is note the case for (34).

Based on Definition 2.7, in the following we introduce a quasi-distance d :
RN+1×RN+1→ [0,+∞[ (see Definition 2.9 below). This means that:
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1. d(z,w) = 0 if and only if z = w for every z,w ∈ RN+1;

2. for every compact subset K of RN+1, there exists a positive constant CK ≥
1 such that

d(z,w)≤CKd(w,z);

d(z,w)≤CK (d(z,ζ )+d(ζ ,w)) , for every z,w,ζ ∈ K.
(36)

The proof of (36) is given in Lemma 2.1 of [30]. Definition 2.9 is given for
general non-homogeneous Lie groups. This requires the notion of principal
part operator discussed in the next section. We point out that the constant CK

doesn’t depend on K in the case of homogeneous groups (see Proposition 2.1 in
[56]).

2.2. Principal part operator

In the last part of this Section we show that the dilation invariant operators
are the blow-up limit of the operator belonging to K. In order to identify the
appropriate dilation, we denote by L0 the principal part operator of L obtained
from (11) by substituting the matrix B with B0 as defined in (28), that is

L0 = div(AD)+ 〈B0x,D〉−∂t . (37)

Since L0 is dilation-invariant with respect to (D(r))r>0, we define Lr as the
scaled operator of L in terms of (D(r))r>0 as follows

Lr := r2 D(r) ◦L ◦D(1/r) = Tr(AD2)+ 〈Brx,D〉−∂t , (38)

where Br = D(r)BD(1/r) is given by

Br =




r2B0,0 r4B0,1 . . . r2κB0,κ−1 r2κ+2B0,κ
B1 r2B1,1 . . . r2κ−2Bκ−1,1 r2κBκ,1
O B2 . . . r2κ−4Bκ−1,2 r2κ−2Bκ,2
...

...
. . .

...
...

O O . . . Bκ r2Bκ,κ



. (39)

Clearly Lr =L for every r > 0 if and only if B = B0, and the principal part L0
of L is obtained as the limit of (38) as r→ 0.

The invariance structures of the operator L also reveal themselves in the
expression of the fundamental solution Γ. In particular, as noticed above, Γ is
translation invariant, as it satisfies the identity (26). As far as we are concerned
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with the dilation invariance, the fundamental solution Γ0 of L0 is a homoge-
neous function of degree −Q with respect to the dilation (D(r))r>0, that is

Γ0(D(r)z) = r−QΓ0(z) forevery z ∈ RN+1 \{0}, r > 0, (40)

where Q is the spatial homogeneous dimension of RN+1 introduced in (33).
Moreover, the expression of Γ0 writes in terms of D0(r). Indeed, the matrix
C(t) defined in (14) satisfies the following identity

C(t) = D0(
√

t)C(1)D0(
√

t) forevery t > 0,

and

Γ0(x, t) =
CN

t
Q
2

exp
(
−1

4〈C−1(1)D0

(
1√
t

)
x,D0

(
1√
t

)
x〉
)
,

where CN is the positive constant

CN = (4π)−
N
2 (detC(1))−

1
2 .

We refer to [50], [47], [49] for the proof of the above statements. Eventually,
Theorem 3.1 in [50] provides us with a quantitative comparison between Γ and
Γ0.

Theorem 2.8. Let L be an operator of the class K and let L0 be its principal
part as defined in (37). Then for every K > 0 there exists a positive constant
ε > 0 such that

(1− ε)Γ0(z)≤ Γ(z)≤ (1+ ε)Γ0(z) (41)

for every z ∈ RN+1 such that Γ0(z)≥ K. Moreover, ε = ε(K)→ 0 as K→+∞.

Note that the above result doesn’t hold true in the set
{

Γ0 <K
}

(see formula
(1.30) in [50]).

We now introduce the quasi-distance d for a generic Lie group G. In the
following definition “◦” denotes the traslation associated to L , and the norm
‖·‖ is the one associated to L0.

Definition 2.9. For every z,w ∈ RN+1, we define a quasi-distance d(z,w) in-
variant with respect to the translation group G0 as follows

d(z,w) = ‖z−1 ◦w‖, (42)

and we denote by Br(z) the d−ball of center z and radius r.
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Definition 2.10. Let α be a positive constant, α ≤ 1, and let Ω be an open subset
of RN+1. We say a function f : Ω−→ R is Hölder continuous with exponent α

in Ω with respect to the groups G = (RN+1,◦) and (D(r))r>0 (in short: Hölder
continuous with exponent α , f ∈Cα(Ω)) if there exists a positive constant k > 0
such that

| f (z)− f (ζ )| ≤ k d(z,ζ )α foreveryz,ζ ∈Ω.

To every bounded function f ∈Cα(Ω) we associate the norm

| f |α,Ω = sup
Ω
| f | + sup

z,ζ∈Ω
z6=ζ

| f (z)− f (ζ )|
d(z,ζ )α

.

Moreover, we say a function f is locally Hölder continuous, and we write f ∈
Cα

loc(Ω), if f ∈Cα(Ω′) for every compact subset Ω′ of Ω.

Remark 2.11. Let Ω be a bounded subset of RN+1. If f is a Hölder continuous
function of exponent α in the usual Euclidean sense, then f is Hölder continuous
of exponent α . Vice versa, if f ∈ Cα(Ω) then f is a β−Hölder continuous in
the Euclidean sense, where β = α

2κ+1 and κ is the constant appearing in (19).

3. Kolmogorov operator with Hölder continuous coefficients

In this section we consider Kolmogorov operator in non-divergence form in
RN+1

L =
m0

∑
i, j=1

ai j(x, t)∂ 2
xix j

+
m0

∑
j=1

b j(x, t)∂x j + 〈Bx,D〉− ∂t , for(x, t) ∈ RN+1

(43)
with continuous coeficients ai j’s and b j’s. As in the parabolic case, the classical
theory for degenerate Kolmogorov operators is developed for spaces of Hölder
continuous functions introduced in Definition 2.10. We remark that this def-
inition relies on the Lie group G in (22), that is an invariant structure for the
constant coefficients operators. Even though the non-constant coefficients oper-
ators in (43) are not invariant with respect to G, we will rely on the Lie group
invariance of the model operator

∆m0 +Y =
m0

∑
j=1

∂
2
x j
+ 〈Bx,D〉− ∂t , (44)

associated to L . Indeed, this is a standard procedure in the study of uniformly
parabolic operators. We next list the standing assumptions of this section:

(H1) B = (bi, j) is a N×N real constant matrix of the type (19), with blocks B j

of rank m j and ∗−blocks arbitrary;
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(H2) A = (ai j(z))i, j=1,...,m0 is a symmetric matrix of the form (18), i.e. ai j(z) =
a j,i(z) for i, j = 1, . . . ,m0, with 1 ≤ m0 ≤ N. Moreover, it is positive
definite in Rm0 and there exist a positive constant λ such that

1
λ

m0

∑
i=1
|ξi|2 ≤

m0

∑
i, j=1

ai j(z)ξiξ j ≤ λ

m0

∑
i=1
|ξi|2

for every (ξ1, . . . ,ξm0) ∈ Rm0 and z ∈ RN+1;

(H3) there exist 0 < α ≤ 1 and M > 0 such that

|ai j(z)−ai j(ζ )| ≤M d(z,ζ )α , |b j(z)−b j(ζ )| ≤M d(z,ζ )α ,

for every z,ζ ∈ RN+1 and for every i, j = 1, . . . ,m0.

Note that, if m0 = N, the operator L is uniformly parabolic and B =O. In par-
ticular the model operator (44) is the heat operator and we have d

(
(ξ ,τ),(x, t)

)

= |ξ − x|+ |τ− t|1/2, so that we are considering the parabolic modulus of con-
tinuity.
In the sequel we refer to the Assumption (H3) by saying that the coefficients
ai j’s and b j’s belong to the space Cα introduced in Definition 2.10. We next
give the definion of classic solution to the equation L u = f under minimal reg-
ularity assumptions on u. A function u is Lie differentiable with respect to the
vector field Y defined in (17) at the point z = (x, t) if there exists and is finite

Yu(z) := lim
s→0

u(γ(s))−u(γ(0))
s

, γ(s) = (E(−s)x, t− s). (45)

Note that γ is the integral curve of Y from z. Clearly, if u ∈C1(Ω), with Ω open
subset of RN+1, then Yu(x, t) agrees with 〈Bx,Du(x, t)〉−∂tu(x, t) considered as
a linear combination of the derivatives of u.

Definition 3.1. A function u is a solution to the equation L u = f in a domain
Ω of RN+1 if there exists the Euclidean derivatives ∂xiu,∂xix j u ∈C(Ω) for i, j =
1, . . . ,m0, the Lie derivative Yu ∈C(Ω), and the equation

m0

∑
i, j=1

ai j(z)∂ 2
xix j

u(z)+
m0

∑
j=1

b j(z)∂x j u(z) +Yu(z) = f (z)

is satisfied at any point z = (x, t) ∈Ω.

The natural functional setting for the study of classical solutions is the space

C2,α(Ω) =
{

u ∈Cα(Ω) | ∂xiu,∂
2
xix j

u,Yu ∈Cα(Ω), for i, j = 1, . . . ,m0

}
,

(46)
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where Cα(Ω) is given in Definition 2.10. Moreover, if u ∈ C2,α(Ω) then we
define the norm

|u|2+α,Ω := |u|α,Ω +
m0

∑
i=1
|∂xiu|α,Ω +

m0

∑
i, j=1
|∂ 2

xix j
u|α,Ω + |Yu|α,Ω. (47)

Clearly, the definition of C2,α
loc (Ω) follows straightforwardly from the definition

of Cα
loc(Ω). A definition of the space Ck,α(Ω) for every positive integer k is given

and discussed in the work [58] by Pagliarani, Pascucci and Pignotti, where a
proof of the Taylor expansion for Ck,α(Ω) functions is given. It is worth noting
that the authors of [58] require weaker regularity assumptions for the definition
of the space C2,α than the ones considered here in (46).
As in the uniformly elliptic and parabolic case, fundamental results in the clas-
sical regularity theory are the Schauder estimates. We recall that Schauder es-
timates for the dilation invariant Kolmogorov operator (i.e. where the matrix
B = B0) with Hölder continuous coefficients were proved by Manfredini in [56]
(see Theorem 1.4). Manfredini result was then extended by Di Francesco and
Polidoro in [30] to the non-dilation invariant case.

Theorem 3.2. Let us consider an operator L of the type (43) satisfying as-
sumptions (H1), (H2), (H3) with α < 1. Let Ω be an open subset of RN+1,
f ∈ Cα

loc(Ω) and let u be a classical solution to L u = f in Ω. Then for every
Ω′ ⊂⊂Ω′′ ⊂⊂Ω there exists a positive constant C such that

|u|2+α,Ω′ ≤C
(

supΩ′′ |u| + | f |α,Ω′′
)
.

A more precise estimate taking into account the distance between the point
and the boundary of the set Ω can be found in [56] (see Theorem 1.4) for the
dilation invariant case. We omit here this precise statement because it requires
the introduction of further notation. We also recall that analogous Schauder
estimates have been proved by several authors in the framework of semigroup
theory, where they consider solutions which are not classical in the sense of
Definition 3.1. Among others, we refer to Lunardi [55], Lorenzi [54], Priola
[67], Delarue and Menozzi [26].

3.1. Fundamental Solution and Cauchy Problem

The existence of a fundamental solution Γ for the operator L satisfying the
assumptions (H1), (H2) and (H3) has been proved using the Levi’s parametrix
method. The first results of this type are due to M. Weber [74], to Il’In [40]
and to Sonin [70] who assumed an Euclidean regularity on the coeficients ai j’s
and b j’s. Later on, Polidoro applied in [63] the Levi parametrix method for the
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dilation inviariant operator L (i.e. under the additional assumption that B has
the form (28)), then Di Francesco and Pascucci removed this last assumption in
[29].
The Levi’s parametrix method is a constructive argument to prove existence and
bounds of the fundamental solution. For every ζ ∈RN+1, the parametrix Z( · ,ζ )
is the fundamental solution, with pole at ζ , of the following operator

Lζ =
m0

∑
i, j=1

ai j(ζ )∂
2
xix j

+ 〈Bx,D〉 − ∂t . (48)

The method is based on the fact that, if the coeficients ai j’s are continuous and
the coefficiens b j’s are bounded, then Z is a good approximation of the funda-
mental solution of L , because

L Z(z,ζ ) =
m0

∑
i, j=1

(ai j(z)−ai j(ζ )) ∂
2
xix j

Z(z,ζ )+
m0

∑
j=1

b j(z)∂x j Z(z,ζ ),

at least as z is close to the pole ζ . We look for the fundamental solution Γ as a
solution of the following Volterra equation

Γ(x, t,ξ ,τ) = Z(x, t,ξ ,τ)+
∫ t

τ

∫

RN
Z(x, t,y,s)G(y,s,ξ ,τ)dyds, (49)

where the unknown function G is obtained by a fixed point argument. It turns
out that

G(z,ζ ) =
+∞

∑
k=1

(L Z)k(z,ζ ), (50)

where (L Z)1(z,ζ ) = L Z(z,ζ ) and, for every k ∈ N,

(L Z)k+1(x, t,ξ ,τ) =
∫ t

τ

∫

RN
L Z(x, t,y,s)(L Z)k(y,s,ξ ,τ)dyds.

Let’s point out that Z is explicitly known by formulas (15) and (16), then the
equations (49) and (50) give explicit bounds for Γ and for its derivatives (see
equations (52) and (63) below). We summarize here the main results of the
articles [63] and [29] on the existence and bounds for the fundamental solution.

Theorem 3.3. Let L be an operator of the form (43) under the assumptions
(H1), (H2), (H3). Then there exists a fundamental solution Γ(·,ζ ) to L with
pole at ζ ∈ RN+1 such that:

1. Γ(·,ζ ) ∈ L1
loc(RN+1)∩C(RN+1 \{ζ});
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2. for every ϕ ∈Cb(RN) the function

u(x, t) =
∫

RN
Γ(x, t;ξ ,0)ϕ(ξ )dξ ,

is a classical solution of the Cauchy problem
{

L u = 0, (x, t) ∈ RN×R+

u(x,0) = ϕ(x) (x, t) ∈ RN .
(51)

3. For every (x, t),(ξ ,τ) ∈ RN+1 such that τ < t we have that
∫

RN

Γ(x, t,ξ ,τ) dξ = 1;

4. the reproduction property holds for every (y,s) ∈ RN+1 with τ < s < t:

Γ(x, t,ξ ,τ) =
∫

RN

Γ(x, t,y,s)Γ(y,s,ξ ,τ)dy;

5. for every positive T and for every Λ > λ , with λ as in (H1), there exists
a positive constant c+ = c+(Λ,λ ,T ) such that

c−Γ−(z,ζ )≤Γ(z,ζ )≤ c+ Γ+(z,ζ ) foreveryz,ζ ∈RN+1, 0< t−τ <T,
(52)

for every (x, t),(ξ ,τ) ∈ RN+1 with 0 < t− τ < T . Here, Γ+ and Γ− are,
respectively, the fundamental solutions of the following operators:

L + = λ∆m0 + 〈Bx,D〉−∂t and L − = λ
−1∆m0 + 〈Bx,D〉−∂t .

Once the uniqueness of the Cauchy problem is guaranteed, points 3. and
4. of the above theorem will follow from point 2. The lower bound in (52) is
proved by using the Harnack inequality presented in Theorem 4.3 and following
the technique introduced by Aronson and Serrin [8] for the classic parabolic
case. We remark that property 3. of Theorem 3.3 doesn’t hold unless we require
further regularity assumptions on the coefficients ai j’s and b j’s needed to define
the formal adjoint L ∗ of L .

In view of (51), the fundamental solution is the most natural tool to deal with
the Cauchy problem associated to the equation L u = f . For a given positive T
we denote by ST the strip of RN+1 defined as follows

ST = RN×]0,T [,
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and we look for a classical solution to the Cauchy problem
{

L u = f inST ,

u(·,0) = ϕ inRN ,
(53)

with f ∈ C(ST ) and ϕ ∈ C(RN). Once again in view of (51) it is clear that
growth condition on f and ϕ are required to ensure existence and uniqueness
for the solution to (53). The following result is due to Di Francesco and Pascucci
in [29].

Theorem 3.4. Let L be an operator of the form (43) under the assumptions
(H1), (H2), (H3). Consider the Cauchy problem (53) with ϕ ∈ C(RN) and
f ∈ Cα(Ω), in the sense of Definition 2.10. Let us suppose for some positive
constant C

| f (x, t)| ≤C eC|x|2 |ϕ(x)| ≤C eC|x|2 .

for every x ∈ RN and 0 < t < T . Then there exists 0 < T0 ≤ T such that the
function

u(x, t) =
∫

RN

Γ(x, t,ξ ,0)ϕ(ξ )dξ −
t∫

0

∫

RN

Γ(x, t,ξ ,τ) f (ξ ,τ)dξ dτ. (54)

is well defined for every (x, t) ∈ RN×]0,T0[. Moreover, it is a solution to the
Cauchy problem (53) and the initial condition is attained by continuity

lim
(x,t)→(x0,0)

u(x, t) = ϕ(x0), for every x0 ∈ RN .

Uniqueness results for the Cauchy problem (53) can be found in [64], [29]
and [30]. Later on, Cinti and Polidoro proved in [24] the following result.

Theorem 3.5. Let L be an operator of the form (43) under the assumptions
(H1), (H2), (H3). If u and v are two solutions to the same Cauchy problem (53)
satisfying the following estimate

T∫

0

∫

RN

(|u(x, t)|+ |v(x, t)|) e−C
(
|x|2+ 1

tβ

)
dxdt <+∞ (55)

with 0 < β < 1, then u≡ v.

We eventually quote the main uniqueness result of [30], that doesn’t require
any growth assumptions on the solutions u and v.

Theorem 3.6. Let L be an operator of the form (43) under the assumptions
(H1), (H2), (H3). If u and v are two non-negative solutions to the same Cauchy
problem (53), with f = 0 and ϕ ≥ 0, then u≡ v.
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3.2. The Dirichlet problem

In the sequel Ω will denote a bounded domain of RN+1. For every f ∈ C(Ω)
and ϕ ∈C(∂Ω,R), we consider the Dirichlet problem for the operator L with
Hölder continuous coefficients

{
L u = f in Ω,

u = ϕ on ∂Ω.
(56)

This problem has been studied by Manfredini in [56] in the framework of the
Potential Theory. In accordance with the usual axiomatic approach, we denote
by HΩ

ϕ the Perron-Wiener-Brelot-Bauer solution to the Dirichlet problem (56)
with f = 0. In order to discuss the boundary condition of the problem (56) we
say that a point z0 ∈ ∂Ω is L−regular for Ω if

lim
z→z0

HΩ
ϕ (z) foreveryϕ ∈C(∂Ω). (57)

The first result for the existence of a solution to the Dirichlet problem (56) for
an operator L with Hölder continuous coefficiens is proved by Manfredini in
[56], Theorem 1.4.

Theorem 3.7. Let L be an operator in the form (43) satisfying conditions (H1),
(H2), (H3), and assume that the matrix B has the form (28). Suppose that
f ∈Cα(Ω) and ϕ ∈C(∂Ω). Then there exixts a unique solution u ∈C2,α

loc (Ω) to
the Dirichlet problem (56). The function u is a classical solution to L u = f in
Ω, and lim

z→z0
u(z) = ϕ(z0) for every L−regular point z0 ∈ ∂Ω.

The assumption that the matrix B is of the form (28) has been introduced
to simplify the problem and seems to be unnecessary. Indeed, this condition
is removed in [30], where a specific family of open sets Ω is considered. The
uniqueness of the solution follows straightfarwardly from the following weak
maximum principle that can be found in the proof of Proposition 4.2 of [56].

Theorem 3.8. Let L be an operator in the form (43) satisfying conditions (H1),
(H2), (H3), and assume that the matrix B has the form (28). Let Ω be a bounded
open set of RN+1, and let u be a continuous function in Ω, such that ∂x j u,∂

2
xix j

u,
for i, j = 1, . . . ,m0 and Yu are continuous in Ω. If moreover

{
L u≥ 0 in Ω,

u≤ 0 on ∂Ω,

then u≤ 0 in Ω.
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In order to discuss the boundary regularity of Ω, we recall that the analogous
of the Bouligand theorem for operators L has been proved in [56]. Specifically,
a point z0 ∈ ∂Ω is L−regular if there exists a local barrier at z0, that is there
exists a neighborhood V of z0 and a function w ∈C2,α(V ) such that

w(z0) = 0, w(z)> 0 for z ∈Ω∩V \{z0} and L w≤ 0 in Ω∩V.

Let z0 be point belonging to ∂Ω. We say that a vector ν ∈RN+1 is an outer nor-
mal to Ω at z0 if there exists a positive r such that B(z1,r|ν |)∩Ω = {z0}. Here
B(z1,r|ν |) is the Euclidean ball centered at z1 = z0 + rν and radius r|ν |. Note
that this definition doesn’t require any regularity on ∂Ω and several linearly in-
dependent vectors are allowed to be outer normal to Ω at the same point z0. The
following result proved in [56] gives a very simple geometric condition for the
boundary regularity of Ω and is in accordance with the Fichera’s classification
of ∂Ω.

Theorem 3.9. Let L be an operator in the form (43) satisfying conditions (H1),
(H2), (H3). Consider the Dirichlet problem (56), and let z0 ∈ ∂Ω. Assume that
ν is an outer normal to Ω at z0. Then it holds

• if 〈A(z0)ν ,ν〉 6= 0, then there exists a local barrier at z0;

• if 〈A(z0)ν ,ν〉 = 0, and 〈Y (z0),ν〉 > 0 then there exists a local barrier at
z0;

• if 〈A(z0)ν ,ν〉= 0, and 〈Y (z0),ν〉< 0 then z0 is non regular.
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The following more refined condition extends the Zaremba cone criterium. Let
Ū be an open set of RN and let t̄ > 0. We denote by ZŪ ,t̄(z0) the following
tusk-shaped cone

ZŪ ,t̄(z0) := {z0 ◦Dr(x̄,−t̄) | x̄ ∈ Ū ,0 ≤ r ≤ 1} .

Theorem 3.10. Let L be an operator in the form (43) satisfying conditions
(H1), (H2), (H3), and assume that the matrix B has the form (28). Consider
the Dirichlet problem (56), and let z0 ∈ ∂Ω. If there exist Ū and t̄ such that
ZŪ ,t̄(z0)∩Ω = {z0}, then there exists a local barrier at z0.

Theorems 3.9 and 3.10 have been first proved in [56] assuming that the
matrix B has the form (28), this assumption has been removed from Theorem
3.9 in [30]. We also recall the work [52] by Lascialfari and Morbidelli, where a
quasilinear problem is considered, and the article [41] by Kogoj for a complete
treatment of the potential theory in the study of the Dirichlet problem for a
general class of evolution hypoelliptic equations.

Recently, Kogoj, Lanconelli and Tralli prove in [44] a characterization of the
L −regular boundary points for constant coefficients operators L of the form
(11). Their main result is stated in terms of a series involving L −potentials of
regions contained in RN+1 \Ω, within different level sets of Γ, the fundamental
solution of L . Specifically, if F is a compact subset of RN+1, then VF denotes
the L −equilibrium potential of F . That is,

VF(z) = lim inf
ζ→z

WF(ζ ), z ∈ RN+1, (58)

where if L (RN+1) denotes the family of L −super harmonic functions in RN+1

WF := inf
{

v : v ∈ L (RN+1),v ≥ 0inRN+1,v ≥ 1inF
}

. (59)
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Theorem 3.10. Let L be an operator in the form (43) satisfying conditions
(H1), (H2), (H3), and assume that the matrix B has the form (28). Consider
the Dirichlet problem (56), and let z0 ∈ ∂Ω. If there exist Ū and t̄ such that
ZŪ ,t̄(z0)∩Ω = {z0}, then there exists a local barrier at z0.

Theorems 3.9 and 3.10 have been first proved in [56] assuming that the
matrix B has the form (28), this assumption has been removed from Theorem
3.9 in [30]. We also recall the work [52] by Lascialfari and Morbidelli, where a
quasilinear problem is considered, and the article [41] by Kogoj for a complete
treatment of the potential theory in the study of the Dirichlet problem for a
general class of evolution hypoelliptic equations.

Recently, Kogoj, Lanconelli and Tralli prove in [44] a characterization of the
L−regular boundary points for constant coefficients operators L of the form
(11). Their main result is stated in terms of a series involving L−potentials of
regions contained in RN+1 \Ω, within different level sets of Γ, the fundamental
solution of L . Specifically, if F is a compact subset of RN+1, then VF denotes
the L−equilibrium potential of F . That is,

VF(z) = lim inf
ζ→z

WF(ζ ), z ∈ RN+1, (58)

where if L (RN+1) denotes the family of L−super harmonic functions in RN+1

WF := inf
{

v : v ∈L (RN+1),v≥ 0inRN+1,v≥ 1inF
}
. (59)

Moreover, for given µ ∈]0,1[,z0 ∈ ∂Ω, and for every positive integer k we de-
note by Ωc

k(z0) the set

Ωc
k(z0) :=

{
z ∈ RN+1 \Ω |

( 1
µ

)k logk ≤ Γ(z0;z)≤
( 1

µ

)(k+1) log(k+1)
}
.

We then have (Theorem 1.1, [44]).

Theorem 3.11. Let L be an hypoelliptic operator in the form (11), let Ω be a
bounded open subset of RN+1 and let z0 ∈ ∂Ω. Then z0 is L−regular for ∂Ω if
and only if

+∞

∑
k=1

VΩc
k(z0)(z0) = +∞. (60)

We remark that this criterion is sharper than the Zaremba cone condition,
moreover it provides us with a necessary regularity condition. On the other
hand, it only applies to constant coefficients operators in the form (11).
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4. Mean value formulas, Harnack inequalities and Strong Maximum
Principle

In the first part of this section we consider divergence form operators acting on
functions u = u(x, t) ∈C2,α(Ω) as follows

L u =
m0

∑
i, j=1

∂xi

(
ai j(x, t)∂x j u

)
+

m0

∑
j=1

b j(x, t)∂x j u + 〈Bx,Du〉− ∂tu, (61)

under the structural assumptions (H1), (H2), (H3). Moreover, we suppose the
following additional assumption for the first order derivatives holds true:

(H4) for every i, j = 1, . . . ,m0 the derivatives ∂xiai j(x, t) ∂x j b j(x, t) exist and are
bounded Hölder continuous functions of the exponent α in (H3).

The reason to consider classical solutions to divergence form operators is that
the adjoint L ∗ of L is well defined and the function Γ∗(x, t,ξ ,τ) = Γ(ξ ,τ,x, t)
build via the parametrix method is the fundamental solution of L ∗.

4.1. Mean value formula

The mean value formula we present here is based on the Green’s identity and on
the fundamental solution to L and is derived in the same way as for the classic
parabolic case. In order to give the precise statement we need to introduce some
notation. For every r > 0 and for every z0 ∈ RN+1, we denote by Ωr(z0) the
super-level set of the fundamental solution Γ of L defined as

Ωr(z0) :=
{

z ∈ RN+1 | Γ(z0;z)> 1
r

}
. (62)

We remark that Γ is constructed via the parametrix method as the sum of a series
of functions (see (49) and (50)), then the definition of the set Ωr(z0) is implicit.
However the parametrix method provides us with the following local estimate,
useful to identify Ωr(z0). For every ε > 0 there exists a positive K such that

(1− ε)Z(z0,ζ ) ≤ Γ(z0,ζ ) ≤ (1+ ε)Z(z0,ζ ) (63)

for every ζ ∈RN+1 with Z(z0,ζ )≥K, where Z is the fundamental solution asso-
ciated to the operator Lζ defined in (48) and its explicit expression is available.
Moreover, every super-level set of Z is bounded whenever B has the form 28.
This fact and Theorem 2.8 imply that Ωr(z0) is bounded for every sufficiently
small positive r.
Mean value formulas for constant coefficients operators in the form (11) have
been proved by Kuptsov [47], Garofalo and Lanconelli [32], then by Lanconelli
and Polidoro [50]. Later on, Polidoro considers operators L with HoÌĹlder
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continuous coefficients in [63] and proves mean value formulas for operators
L of this kind under the qualitative assumptions that the coefficients of L are
smooth.

Theorem 4.1. Let L be an operator in the form (43) satisfying conditions (H1),
(H2), assume the coefficients ai j are smooth and that the matrix B has the form
(28). Let u be a solution to L u = 0 on Ω. Then, for every z0 ∈ Ω such that
Ωr(z0)⊂Ω, we have

u(z0) =
1
r

∫

Ωr(z0)

M(z0;z)u(z)dz.

Here

M(z0;z) =
〈A(z)DxΓ(z0;z) , DxΓ(z0;z)〉

Γ2(z0;z)
. (64)

As in Theorem 3.7, the assumption that the matrix B has the form (28) has
been introduced to simplify the problem and seems to be unnecessary. We fi-
nally remark that mean value formulas analogous to the one stated in Theorem
4.1, where the kernel (64) is replaced by a bounded continuous one, have been
proved in [47], [32], [50] and [63]. Lastly, we recall a recent paper by Cu-
pini and Lanconelli [25], where the authors give a general proof of Mean Value
formulas for solutions to linear second order PDEs, only based on the local
properties of the fundamental solution.

4.2. Harnack inequality

The first proofs of Harnack type inequalities for Kolmogorov operators have
been derived using mean value formulas, and are due to Kuptsov [47] [48]. This
result has been improved by Garofalo and Lanconelli (see Theorem 1.1 in [32])
for some specific constant coefficients operators of the type (11). Their approach
follows the ideas introduced for the heat equation by Pini [62] and Hadamard
[38] in their seminal works. Later on, Lanconelli and Polidoro proved the Har-
nack inequality for every operator (11) considered in Section 2. The statement
of this result requires a further notation. For every positive ε we denote

Kr(z0,ε) := Ωr(z0)∩
{
(x, t) ∈ RN+1 | t ≤ t0− εr2/Q

}
. (65)

We recall here Theorem 5.1 in [50].

Theorem 4.2. Let L be an operator of the form (11) satisfying the equivalent
conditions of Proposition 2.1. Then there exist three positive constants c,r0 > 0
and ε , only dependent on L , such that

sup
z∈Kr(z0,ε)

u(z) ≤ cu(z0), (66)
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for every non negative solution u to L u = 0 in an open subset Ω of RN+1, for
every z0 ∈Ω such that Ω2r(z0)⊂Ω and for every r ∈]0,r0[.

The same result has been proved in [63] for variable coefficients operators
(61) satisfying (H1)- (H4), with B in the form (28). We point out that the geom-
etry of the above Harnack inequality is quite complicated. The natural analogy
between the parabolic case and the Kolmogorov case is restored in [50], where
the Harnack inequality is written in terms of cylinders (see equation (69) below).
Here and in the following, we consider the unit box Q defined as

Q=]−1,1[N×]−1,0[. (67)

Moreover, for given constants α,β ,γ,δ with 0 < α < β < γ < 1 and 0 < δ < 1,
we set

Q+ = D0(δ )
(
]−1,1[N

)
×]−α,0[, Q− = D0(δ )

(
]−1,1[N

)
×]− γ,−β [.

(68)
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Based on the translation and on the dilation respectively defined in (22) and
(29), we introduce for every r > 0 the cylinders

Qr := D(r)Q = {D(r)(x, t) | (x, t) ∈ Q}
Qr(x0, t0) := (x0, t0)◦Qr

= {(x0, t0)◦D(r)(x, t) | (x, t) ∈ Q}

centered at the origin and at a point (x0, t0) ∈ RN+1, respectively. Analogously,
we define

Q+
r (x0, t0) := (x0, t0)◦D(r)Q+, Q−

r (x0, t0) := (x0, t0)◦D(r)Q−.

Given the above notation, we recall that in Theorem 5.1 of [50] is proved a
Harnack inequality analogous to (66), where the sets Ω2r(z0) and Kr(z0,ε) are
replaced by cylinders. Specifically, we have

sup
z∈Q−

r (z0)

u(z) ≤ cu(z0), (69)

whenever Qr(z0) ⊂ Ω. We next quote the most general Harnack inequality for
operators in non-divergence form as defined in (43) proved in [30].

Theorem 4.3. Let L be an operator of the form (43) satisfying (H1)-(H3).Then
there exist positive constants c,r0,α,β ,γ and δ , only dependent on the param-
eters of the assumptions (H1)-(H3), such that

sup
z∈Q−

r (z0)

u(z) ≤ c inf
z∈Q+

r (z0)
u(z), (70)

for every non negative solution u to L u = 0 in an open subset Ω of RN+1, for
every z0 ∈ Ω such that Qr(z0) ⊂ Ω and for every r ∈]0,r0[.
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Based on the translation and on the dilation respectively defined in (22) and
(29), we introduce for every r > 0 the cylinders

Qr := D(r)Q= {D(r)(x, t) | (x, t) ∈Q}
Qr(x0, t0) := (x0, t0)◦Qr

= {(x0, t0)◦D(r)(x, t) | (x, t) ∈Q}
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Given the above notation, we recall that in Theorem 5.1 of [50] is proved a
Harnack inequality analogous to (66), where the sets Ω2r(z0) and Kr(z0,ε) are
replaced by cylinders. Specifically, we have

sup
z∈Q−r (z0)

u(z) ≤ cu(z0), (69)

whenever Qr(z0) ⊂ Ω. We next quote the most general Harnack inequality for
operators in non-divergence form as defined in (43) proved in [30].

Theorem 4.3. Let L be an operator of the form (43) satisfying (H1)-(H3).Then
there exist positive constants c,r0,α,β ,γ and δ , only dependent on the param-
eters of the assumptions (H1)-(H3), such that

sup
z∈Q−r (z0)

u(z) ≤ c inf
z∈Q+

r (z0)
u(z), (70)

for every non negative solution u to L u = 0 in an open subset Ω of RN+1, for
every z0 ∈Ω such that Qr(z0)⊂Ω and for every r ∈]0,r0[.

In spite of their local nature, Harnack inequalities are essential tools for the
proof of non-local results. Among them, we find the Liouville theorems proved
by Kogoj and Lanconelli in [42, 43] and the ones proved by Kogoj, Pinchover
and Polidoro in [45]. Moreover, they are also used to derive asymptotic esti-
mates for positive solutions by a repeated application of them. Harnack chains
are the tool needed to prove this kind of estimates.

HARNACK CHAIN. We say that a finite sequence (x0, t0),(x1, t1), . . . ,(xk, tk)
is a Harnack chain if there exist positive constants r0,r1, . . . ,rk−1 such that
Qr j(x j, t j) ⊂ Ω and (x j+1, t j+1) ∈ Qθr j(x j, t j) for j = 0, . . . ,k− 1, so that, by
the repeated use of the Harnack inequality, we obtain

u(xk, tk)≤ cu(xk−1, tk−1)≤ ·· · ≤ cku(x0, t0),

for every non-negative solution u to L u = 0 in Ω.

In particular, a first application of this tool can be found in the proof of
Proposition 4.9 in the following subsection, where Harnack chains are used to
prove a geometric version of Theorem 4.3. Further applications can be found in
the papers by Polidoro [61], Di Francesco and Polidoro [30], Boscain and Poli-
doro [14] and Cibelli and Polidoro [19] to obtain asymptotic estimates for the
fundamental solution. We also recall the work by Cinti, Nyström and Polidoro
[21, 22] where a boundary Harnack inequality is proved.
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4.3. Strong Maximum Principle

The most general statement of the strong maximum principle for subsoltions
to Kolmogorov equations is proved by Amano in [4]. It extends the Bony’s
maximum propagation principle [13] to a wide family of possibly degenerate
operators with coefficients ai j ∈C1, among which we find the ones in the form
(43). To our knowledge, a proof of the strong maximum principle for operators
of the form (43) with continuous coefficients ai j’s is not available in literature,
even though it is expected to be true. For this reason, in the following we de-
rive from Theorem 4.3 a strong maximum principle for solutions to L u = 0,
assuming that the coefficients ai j’s are Hölder continuous.

In order to state the strong maximum principle, we introduce the notion of
L -admissible curve and that of L -admissible set. Recall that to every operator
L in the form (43) we associate the model operator (44), which can be written
in the Hörmander form

m0

∑
j=1

X2
j +Y, with X j = ∂x j for j = 1, . . . ,m0.

Definition 4.4. Let L be an operator of the form (43), satisfying assumptions
(H1)-(H3). We say that a curve γ : [0,T ]→ RN+1 is L -admissible if is abso-
lutely continuous and

γ̇(s) =
m0

∑
k=1

ωk(s)Xk(γ(s))+Y (γ(s))

for almost every s ∈ [0,T ] and with ω1,ω2, . . . ,ωm0 ∈ L1[0,T ].

Definition 4.5. Let Ω be any open subset of RN+1, and let L be an operator of
the form (43), satisfying assumptions (H1)-(H3). For every point (x0, t0) ∈ Ω
we denote by A(x0,t0)(Ω) the attainable set defined as

A(x0,t0)(Ω) =

{
(x, t) ∈Ω | there exists an L − admissible curve

γ : [0,T ]→Ω such that γ(0) = (x0, t0) and γ(T ) = (x, t)

}
.

Whenever there is no ambiguity on the choice of the set Ω we denote A(x0,t0) =
A(x0,t0)(Ω).

We are now in position to state the strong maximum principle.

Theorem 4.6. Let Ω be any open subset of RN+1, and let L be an operator
of the form (43), satisfying assumptions (H1)-(H3). Let u ≥ 0 be a solution to
L u = 0 in Ω. If u(x0, t0) = 0 for some point (x0, t0) ∈ Ω , then u(x, t) = 0 for
every (x, t) ∈A(x0,t0).
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We remark that the attainable set A(x0,t0) strongly depends on the domain Ω.
For instance, when Ω agrees with the unit box Q=]−1,1[2×]−1,0[ we have

A(0,0,0) =
{
(x1,x2, t) ∈Q | |x1| ≤ |t|

}
. (71)
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FIG. 3 - A(0,0,0)(Q) WITH Q =]−1,1[2×]−1,0[.For the proof of this fact we refer to [20], Proposition 4.5, p.353. Moreover,
the statement of Theorem 4.6 is optimal. Indeed, in Proposition 4.5 of [20] it is
also shown that there exists a non-negative solution u to L u = 0 in Q such that
u(x, t) = 0 for every (x, t) ∈A(0,0), and u(x, t)> 0 for every (x, t) ∈Q\A(0,0).

In order to prove Theorem 4.6, we first need to prove the following interme-
diate result.

Theorem 4.7. Let L be an operator of the form (43) satisfying (H1)-(H3), and
let Ω be an open subset of RN+1. For every z0 ∈ Ω, and for any compact set
K ⊆ int

(
A(x0,t0)

)
, there exists a positive constant CK , only dependent on Ω, z0,

K and on the operator L , such that

sup
z∈K

u(z) ≤ CK u(z0),

for every non negative solution u to L u = 0 in Ω.

We then obtain, as a direct consequence, the proof of the Strong Maximum
Principle stated in Theorem 4.6. In order to achieve this program, we introduce
a further notation and we recall a lemma, whose proof can be found in Lemma
2.2 of [14]. Given β ,δ as in the definition of Q− and for every z ∈ RN+1, r > 0
we set

Q̃ :=]−1,1[N+1 Q̃r(x0, t0) := (x0, t0)◦D(r)Q̃;

K− = D0(δ )
(
]−1,1[N

)
×
{
− β+γ

2

}
K−r (x0, t0) := (x0, t0)◦D(r)K−.
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Lemma 4.8. Let γ : [0,T ]→ RN+1 be an L−admissible path and let a,b be
two constants s.t. 0 ≤ a < b ≤ T . Then there exists a positive constant h, only
depending on L , such that

∫ b

a
|ω(τ)|2δτ ≤ h =⇒ γ(b) ∈ K−r (γ(a)), with r =

√
2

b−a
β + γ

.

Note that K−r (z) is a subset of Q−r (z), then Lemma 4.8 implies Q−r (γ(a)) is
an open neighborhood of γ(b). Our first result of this section is a local version
of Theorem 4.3, whose proof only relies on the Harnack chains and on Lemma
4.8.

Proposition 4.9. Let z0 be a point of Ω, an open subset of RN+1. For every
z ∈ int

(
Az0

)
there exist an open neighborhood Uz of z and a positive constant

Cz such that
sup
Uz

u ≤ cz u(z0)

for every non-negative solution u to L u = 0 in an open subset Ω of RN+1.

Proof. Let z be any point of int
(
Az0

)
. We plan to prove our claim by construct-

ing a finite Harnack chain connecting z to z0. Because of the very definition
of Az0 , there exists a L−admissible curve γ : [0,T ]→ Ω steering z0 to z. Our
Harnack chain will be a finite subset of γ([0,T ]). As Q̃r(x0, t0) is an open neigh-
borhood of (x0, t0), for every s ∈ [0,T ] we can set

r(s) := sup
{

r > 0 : Q̃r(γ(s))⊆Ω
}
. (72)

Note that the function (72) is continuous, then it is well defined the positive
number

r0 := min
s∈[0,T ]

r(s). (73)

Moreover Qr(γ(s))⊂ Q̃r(γ(s)), then

Qr(γ(s))⊆Ω for every s ∈ [0,T ] and r ∈]0,r0]. (74)

On the other hand, we notice that the following function is (uniformly) contin-
uous in [0,T ]

I(s) :=
∫ s

0
|ω(τ)|2dt, (75)

then there exists a positive δ0 such that δ0 ≤ β r0 and that
∫ b

a
|ω(τ)|2dt ≤ h for every a,b ∈ [0,T ], such that 0 < a−b≤ δ0, (76)
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where h is the constant appearing in Lemma 4.8.
We are now ready to construct our Harnack chain. Let k be the unique positive
integer such that (k−1)δ0 < T , and kδ0 ≥ T . We define {s j} j∈{0,1,...,k} ∈ [0,T ]
as follows: s j = jδ0 for j = 0,1, . . . ,k− 1, and sk = T . As noticed before, the
equation (76) allows us to apply Lemma 4.8. We then obtain

γ(s j+1) ∈Q−r0
(γ(s j)) j = 0, . . . ,k−2, γ(sk) ∈Q−r1

(γ(sk−1)), (77)

for some r1 ∈]0,r0]. We next show that (γ(s j)) j=0,1,...,k is a Harnack chain and
we conclude the proof. We proceed by induction. For every j = 1, . . . ,k−2 we
have that γ(s j+1) ∈ Q−r0

(γ(s j)). From (74) we know that Qr0(γ(s j)) ⊆ Ω, then
we apply Theorem 4.3 and we find

u(γ(s j+1))≤ sup
Q−r0 (γ(s j))

u≤ c inf
Q+

r0 (γ(s j))
u≤ cu(γ(s j).

As a consequence, we obtain

u(γ(sk−1))≤ cu(γ(sk−2))≤M2u(γ(sk−3))≤ . . .≤ ck−1u(γ(0)).

We eventually apply Theorem 4.3 to the set Qr1(γ(sk−1))⊆Ω and we obtain

sup
Uz

u ≤ ck u(z0),

where Uz =Q−r1
(γ(sk−1)). As we noticed above,Q−r1

(γ(sk−1)) is an open neigh-
borhood of γ(T ). This concludes the proof.

PROOF OF THEOREM 4.7. Let K be any compact subset of int(Az0). For every
z ∈ K we consider the open set Uz appearing in the statement of Proposition 4.9.
Clearly we have

K ⊆
⋃

z∈K

Uz.

Because of its compactness, there exists a finite covering of K

K ⊆
⋃

j=1,...,mK

Uz j ,

and Proposition 4.9 yields

sup
Uz j

u≤Cz j u(z0) j = 1, . . . ,mK .

This concludes the proof of Theorem 4.7, if we choose

CK = max
j=1,...,mK

Cz j .
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�

PROOF OF THEOREM 4.6. If u is a non-negative solution to L u = 0 in Ω and K
is a compact subset of int(Az0), then supK u≤CKu(z0). If moreover u(z0) = 0,
we have u(z) = 0 for every z ∈ K and, thus, for every z ∈ Az0 . The conclusion
of the proof then follows from the continuity of u. �
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