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Abstract: In the last few years, fog computing has been recognized as a promising approach to
support modern IoT applications based on microservices. The main characteristic of this application
involve the presence of geographically distributed sensors or mobile end users acting as sources
of data. Relying on a cloud computing approach may not represent the most suitable solution in
these scenario due to the non-negligible latency between data sources and distant cloud data centers,
which may represent an issue in cases involving real-time and latency-sensitive IoT applications.
Placing certain tasks, such as preprocessing or data aggregation, in a layer of fog nodes close to
sensors or end users may help to decrease the response time of IoT applications as well as the
traffic towards the cloud data centers. However, the fog scenario is characterized by a much more
complex and heterogeneous infrastructure compared to a cloud data center, where the computing
nodes and the inter-node connecting are more homogeneous. As a consequence, the the problem of
efficiently placing microservices over distributed fog nodes requires novel and efficient solutions.
In this paper, we address this issue by proposing and comparing different heuristics for placing the
application microservices over the nodes of a fog infrastructure. We test the performance of the
proposed heuristics and their ability to minimize application response times and satisfy the Service
Level Agreement across a wide set of operating conditions in order to understand which approach is
performs the best depending on the IoT application scenario.

Keywords: fog computing; microservices chain; IoT applications; service placement; heuristics

1. Introduction

Fast-evolving and latency-sensitive Internet of Things (IoT) applications are becoming
increasingly popular in several different contexts, ranging from modern smart cities to
Industry 4.0 with IIoT [1,2]. In recent years, a significant number of IoT applications have
migrated from the monolithic architecture to the microservice paradigm due to the nu-
merous benefits of such an approach, for instance, improved elasticity and flexibility [3–5].
Furthermore, we are observing increasing popularity of distributed fog computing systems
as architectures to support modern IoT applications [6–8]. These systems, thanks to the
presence of widespread fog nodes [9], are characterized by the possibility of bringing
computational resources closer to end users or sensors, with the consequent advantage of
lower latency and response times with respect to traditional cloud computing systems.

In this paper, we focus on the case of IoT applications consisting of multiple inter-
connected microservices that can be deployed independently of each other in any of the
available resource nodes. The presence of microservices as computing units rather than
monolithic applications significantly complicates the service placement problem [10] due
the large number of potential microservice/resource combinations. Moreover, unlike
the cloud, fog architectures are geographically distributed system, with communication
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network-related delays between fog nodes that are usually not negligible, exacerbating the
need for accurate and efficient deployment of microservices over the system resources.

Because the problem of optimally placing chained microservices of an IoT application
over the distributed fog nodes is NP-hard, in this paper we focus on developing solutions
based on heuristics that are able to solve the placement problem within short execution
times. Specifically, we present three different heuristics for microservice placement in a
distributed fog scenario and compare their performance in order to evaluate their efficiency
in minimizing IoT applications response times and satisfying SLAs. In particular, we
consider a greedy heuristic developed starting from a solution applied to the problem of
allocating virtual machines over the physical nodes of a cloud data center [11–13] along
with two further meta-heuristics. To summarize, in this paper we present:

• A greedy heuristic based on a modified version of the Modified Best Fit Decreasing
(MBFD) [11] algorithm;

• A metaheuristic based on a Genetic Algorithm (GA) [14,15];
• A metaheuristic based on the Variable Neighborhood Search (VNS) [16] algorithm.

The contributions of this paper are twofold. First, starting from the analytical frame-
work used to model the microservice chain placement problem over distributed fog nodes
defined in [5], we adapt the above heuristics, already used for optimization problems in
other contexts such as virtual machine allocation over cloud physical servers [11,14], to the
problem of microservice placement over the nodes of a fog system. It is worth noting that
this adaptation is not straightforward due to the complexity introduced by the presence
of microservice chains and network latency; the details of the adaptation are highlighted
in Section 3. Second, we carry out a thorough experimental evaluation focusing on the
parameter sensitivity and stability of the proposed solutions. The heuristics performance
comparison is carried out over a wide range of parameter settings, with the aim of de-
termining whether one heuristic dominates the others in all the considered scenarios or
whether the best performing alternative depends on specific conditions. The performance
evaluation considers significant metrics, such as the response time of the service chain, the
average number of hops in the chain deployments, and the Jain index, to measure the load
balancing among the fog nodes.

The rest of this paper is structured as follows. Section 2 introduces the general
description of microservice placement in the distributed context of a fog computing system.
Section 3 defines the microservice placement problem and describes the three considered
heuristics. Section 4 presents a performance comparison of the heuristics based on a wide
range of experiments. Finally, Section 5 concludes the paper with a few closing remarks.

2. Background and Problem Definition

This section presents a general description of the microservice allocation problem in a
fog computing system.

2.1. Reference Scenario

The fog computing paradigm typically involves the deployment of services close to the
source of data that needs to be processed or to the application’s end users. Unlike the cloud
computing context, this scenario is characterized by high heterogeneity of resources such as
computational capacity of nodes and network delays for inter nodes communications. We
assume that fog nodes are computing nodes with a non-negligible computational capacity.
Each node can provide several services concurrently, for example, by using containerized
environments. To better explain our vision, consider fog nodes can be considered as similar
to computing elements placed alongside mobile phone antennas, rather than battery-
operated motes in a sensor network. In this context, we focus on the application microservice
placement issue, that is, the problem of how to best allocate microservices on the distributed
fog nodes with the objective of minimizing the application response time and satisfying the
SLAs. The inputs to the problem are:

• A list of applications with related SLAs;
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• A set of fog nodes, along with their computational capacity;
• A demand for applications with short-to-mid term expected load that is known

a priori.

We assume that microservices can be stateful, meaning that migrating or re-deploying
them in a short time span is not feasible. Even if requests from a single client, i.e., a sensor
or a user, are difficult to predict, we assume that the overall incoming request rate either
remains stable through time or changes slowly. This means that the time frame for a service
deployment is on the order of tens of minutes up to one hour, and that the system load
can be considered constant for that time. It is worth noting that this provides an order of
magnitude for the time needed to solve the optimization problem, that is, it should reach a
solution within a time frame of minutes.

In this scenario, we assume that each IoT application is modeled as a microservice chain
that consists of multiple (at least two) independent and interconnected microservices. With-
out loss of generality, we model a service chain c as an ordered sequence of microservices
mi, i ∈ 1, 2, ...n. The microservice chain length is the number of microservices composing
the chain.

As examples of applications that can be supported by our solution, we propose two
chains of microservices. First, monitoring and logging of sensor data in an industrial
plant. In this application (1), the chain is composed of (1a) data collection, (1b) data
validation, (1c) data smoothing to remove outliers, (1d) alert triggering, and (1e) data
logging. Second, traffic surveillance application based on smart traffic lights. In this case
(2), the microservices are (2a) image collection, (2b) car identification, (2c) plate number
recognition and anonymization, and (2d) data logging to a database.

The microservices in a service chain may be allocated over one or over multiple fog
nodes, and a fog node may host microservices belonging to different service chains. Fog
nodes may have different computational capabilities, and are interconnected with each
other by means of heterogeneous high-speed network.

The final objective is to define an optimal microservice placement that meets appli-
cations’ SLAs. To this end, as a main performance metric we consider the application’s
service response time, that is, the time passing between the end user request and the receipt of
the application’s reply. This metric is influenced by different elements, with the following
being the most important: (i) the application request load, (ii) the average service time of
the microservices in the service chain, and (iii) the computing capability of the fog nodes.
Furthermore, it is important to mention that the presence of chains of microservices may
lead to higher levels of complexity in the concept of SLAs, for example, where issues about
availability are concerned. In this paper, we focus on SLAs based on the average service
time of the microservices composing the chain; however, more complex SLAs could be
included in the model and evaluated in future works.

In the scientific literature, several studies have proposed mechanisms for service place-
ment over the geographically distributed nodes of a fog infrastructure starting from the sim-
plifying assumption that an IoT application consists of only a single microservice [17–19]. A
lower number of studies have considered IoT applications modeled as microservice chains
to be placed over the fog nodes. An example of such proposed solutions are those based
on completely distributed approaches [20,21]. The study in [20] sought to optimize energy
consumption and communication costs by exploiting a game-theoretic approximation
approach. In [21], a cooperative scheme allowed fog nodes to identify the best amount of
requests to be forwarded and processed by each other to improve the response time. On
the other hand, a centralized approach was presented in [22], where the authors formulated
a mixed-integer nonlinear programming problem with the objective of minimizing the
completion time of applications by jointly considering task placement and scheduling.

In this paper, we focus on centralized approaches relying on heuristics able to cope
with the nonlinear nature of the optimization problem used to minimize the response time
of the service chains. One of the presented heuristics, based on Genetic Algorithms, was
presented by the authors in our previous paper [5], while the other two heuristics are novel
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proposals to address the microservice placement problem in fog computing contexts. The
proposed heuristics are described in detail in Section 3.

2.2. Problem Definition

We now define the problem of microservice placement in a fog computing infras-
tructure. In order to formalize the optimization problem, we introduce the symbols and
notation in Table 1.

Table 1. Notation and parameters for the proposed model.

Model Parameters

M Set of microservices
F Set of fog nodes
C Set of service chains

λm Incoming rEquation rate to microservice m
λ f Incoming rEquation rate to fog node f
λc Incoming rEquation rate to service chain c
Λ Incoming global request rate
Sm Avg. service time for microservice m
σm Standard deviation of Sm
Pf Computational power of fog node f
W f Avg. waiting time on fog node f
S f Avg. service time on fog node f
σf Standard deviation of Sm
R f Avg. response time for fog f
Rc Avg. response time for service chain c

TSLA
c SLA of service chain c

om1,m2 Services order of execution in a chain
δ f1, f2 Network delay between nodes f1 and f2

Model indices

f Fog node
c Service chain
m Microservice

Decision variables

xm, f Allocation of microservice m to fog node f

The goal of the optimization problem is to minimize the average response time of each
service chain; thus, the objective function in Equation (1) is a weighted sum of the response
time for every considered service chain. The weights wc, ∀c ∈ C are chosen such that
∑c wc = 1. One possible approach, which we use in this paper, is to consider the weight
of every service chain proportional to its activation frequency λc, that is, wc = λc/Λ with
Λ = ∑c λc, although other solutions can be adopted without altering the general validity
of the model.

min obj(X) = ∑
c∈C

wcRc (1)

subject to:

∑
f∈F

xm, f = 1 ∀m ∈ M, (2)

λ f S f < 1 ∀ f ∈ F , (3)

Rc < TSLA
c ∀c ∈ C, (4)

xm, f = {0, 1}, ∀m ∈ M, f ∈ F , (5)
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The optimization problem is characterized by three constants. Equation (2) means that
every microservice is allocated to one and only one fog node. Equation (3) forces every fog
node not to be in an overload condition (λ f S f is the load on fog node f ). The model can be
extended to cope with additional constraints, such as available memory on the fog nodes
or I/O limits; for the sake of simplicity, we focus here on a model with as few constraints
as possible. The last model constraint, Equation (4), requires that the SLA of each service
chain be respected. In this paper, we consider

TSLA = K · ∑
m∈c

Sm (6)

where K is a coefficient.
The last constraint, Equation (5), captures the Boolean nature of the decision variable xm, f .
The objective function of the optimization problem requires a model for the response

time of a service chain. To this end, we must consider that the invocation of a generic
service chain c can be described as a sequence of the wait time, service time, and network
delay for every fog node hosting a service belonging to that chain. Therefore, we can model
the response time Rc of service chain c, that is, the component of the sum in Equation (1),
using Equation (7):

Rc = ∑
m∈c

∑
f∈F

xm, f ·W f + ∑
m∈c

Sm+

+ ∑
m1,m2∈c

∑
f1, f2∈F

om1,m2 · xm1, f1 · xm2, f2 · δ f1, f2 (7)

where om1,m2 is the order of execution of microservices in c. In particular, om1,m2 = 1 ⇐⇒
m1 ≺ m2, meaning that service m1 is invoked just before service m2 in the service chain.

It is worth noting that our simplified approach to describing network delay can be
explained by considering that, in the reference scenario, fog nodes are connected with
reliable network links. The network delay δ f1, f2 can be expressed as the latency plus the
transmission time. In modern networks (often called Long Fat Networks), latency can
be on the order of milliseconds or tens of milliseconds even for high speed networks,
while transmission time is the product of the available bandwidth (in the orders of tens or
hundreds of MBit/s) and message length. Considering the OpenAPI standard in which
most microservices consume JSON tuples, we assume the message length to be relatively
small and scarcely variant, which explains our modeling choices.

The last part of the model concerns the waiting time W f on fog node f . For this, we
must consider that a generic fog node hosting multiple microservices experiences a service
time that is a mixture of distributions, each of which refers to a single microservice. The
resulting waiting time can be expressed using the Pollaczek–Khinchin equation (8):

W f =
S2

f + σ2
f

2
·

λ f

1− λ f S f
. (8)

The service time of a mixture of distributions can be described using its mean value
(Equation (9)) and standard deviation (Equation (10)):

S f =
1
Pf
· ∑

m∈M
xm, f

λm

λ f
Sm (9)

σ2
f =

(
1

P2
f
· ∑

m∈M
xm, f

λm

λ f
(S2

m + σ2
m)

)
− S2

f (10)

where λ f = ∑m∈M xm, f λm is the total incoming load on node f .
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The underlying assumption of Equation (8) is that the product form can be used to
describe the queuing system of the fog infrastructure. However, this assumption is not
always valid. Indeed, in case where the service times of the involved microservices cannot
be expressed through exponential distributions, the resulting arrival process cannot be
defined with an exponential distribution. In such cases, a G/G/1 model should be used in
Equation (8) instead of a M/G/1 model. Unfortunately, there are no closed-form solutions
to represent the inter-arrival time of a queuing server following the G/G/1 model. An
M/G/1 model approximating the system’s behaviour may be exploited in cases where
multiple microservices are located on a fog node or where the service times of the microser-
vices present a standard deviation close to the mean value. The presented performance
model is accurate as long as the system is close to these assumptions.

In light of the previous observations, Equation (8) can be used to describe the microser-
vice chain response time as the sum of the following contributions: the sum of waiting
times on the fog nodes, sum of service times, and network delays due to data transfer
among two subsequent microservices in the service chain.

To evaluate the performance of a microservice placement solution, in this paper we
consider the following metrics:

• Heuristic execution time;
• Service chain response time;
• Number of hops normalized against the length of the service chain;
• Jain index.

A detailed definition of the evaluation metrics is provided in Section 4.

3. Heuristics for Microservice Placement

In this section, we describe three heuristics for placing IoT application microservices
over the nodes of a fog infrastructure. It is worth noting that we focus on algorithms
based on a flat approach, which is typically suitable for cases in which a medium-sized set
of fog nodes is involved in the placement solution. Indeed, considering a very large set
of fog nodes when placing microservices of the same application chain would require a
hierarchical or semi-hierarchical approach, which is typically not advisable due to the high
latency between more distant fog nodes.

3.1. Modified Best Fit Decreasing

The Modified Best Fit Decreasing (MBFD) algorithm is a heuristic exploited in [11]
to solve a server consolidation problem aimed at optimizing the placement of virtual
machines on physical hosts for optimal energy and resource consumption. Because of the
similar nature of the problem, we decided to implement an adapted version of MBFD to
address the microservice allocation problem in fog computing infrastructures described
in Section 2.2. In this adaptation, instead of mapping VMs onto hosts, microservices are
mapped onto fog nodes.

As in the original algorithm [11], the adapted MBFD shown in Algorithm 1 follows a
greedy approach.

The input structures are two lists that contain all the data of the fog nodes and
microservices (e.g., fog node capacity) required to compute the solution. The main loop
(defined in line 1) iterates on all the microservices ordered by mean service time; the
motivation for this choice is to start the mapping process with the most demanding services.
This is the same as in the original MBFD algorithm, and does not consider the impact of
network delays in a distributed system.

Next (line 5–11), the algorithm iterates over the fog nodes, trying to place the microser-
vice on each fog node. For every possible mapping, the SLA and the other constraints are
checked to verify whether the solution is acceptable. In the case of an acceptable solution,
the objective function is computed according to Equations (1) and (7). In this way, the best
placement for that microservice is found and added to the solution being built. It is worth
noting that the main difference from the original MBFD algorithm lies in the objective
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function. The objective function is the only part of the algorithm that considers network
effects. Therefore, we expect this algorithm to provide higher quality solutions in cases
where the network effect is not the main driver of optimal microservice placement.

Algorithm 1 Modified Best Fit Decreasing

INPUT: msList: list of microservices, f ogList: list of fog nodes
OUTPUT: mapping: mapping of micro service over fog nodes

1: for ms ∈ decreasing_sort(msList) do
2: mapping[ms]← None
3: best_obj← None
4: new_mapping← mapping
5: for f ∈ f ogList do
6: new_mapping[ms]← f
7: if sla_ok(solution) & constraints_ok(solution) then
8: obj← compute_obj_function(mapping)
9: if best_obj = None‖obj < best_obj then

10: mapping[ms]← f
11: best_obj← obj

The Compute_solution function (Algorithm 2) calculates the object function described
in Section 2.2 based on the fog and chain parameters of the new mapping.

Finally, the algorithm determines whether new_solution is a better solution by checking
the following:

• The Service Level Agreement is respected (4): this constraint is represented by the
mean service time multiplied by a constant k (usually 10), as in Section 4.

• Resources are used in a proper way: as an example, the remaining capacity of the fog
nodes in a solution should not be less than zero.

• The objective function in (1) in new_solution is better than the older one in current_solution;
as network delays are considered, MBFD can balance the placement using awareness
of the delay between nodes.

The result of Algorithm 1 is the list of all microservices mapped over the fog nodes.

Algorithm 2 compute_obj_function

INPUT: mapping: mapping of microservices on fog nodes
OUTPUT: Objective function for a given solution

for each f ogList do
for each chainList do

if Λ != 0 then
calculate S f , σf and R f

else
S f , σf and R f all equals to 0

for each chainList do
calculate Rc based on the m’s mapping

calculate object function

3.2. Genetic Algorithms

Genetic Algorithms (GAs) are a class of heuristics used to solve a plethora of problems,
including allocation problems in Edge and Fog computing [14,15].

The main characteristics of a genetic algorithm can be summarized as follows. A chro-
mosome represents a solution modeled as a sequence of genes, where each gene represents a
single parameter of the solution. The system starts from a population of individuals that are
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initially generated at random and then evolve through generations. Individuals represent
possible problem solutions.

Considering the microservice allocation problem described in Section 2.2, a chromo-
some is set of M = ‖M‖ genes, where M is the number of considered microservices. The
value of each gene is an integer number ∈ [1, F], with F = ‖F‖ being the number of fog
nodes. To map the decision variable xm, f on the genes, we can define the mth gene as
gm = { f : xm, f = 1}. The proposed definition satisfies Equations (2) and (5), ensuring that
a microservice m is allocated on one fog node and not more.

Each individual is associated with a fitness score that is calculated through the objective
function (Equation (1)) and the evolution of the generations is guided by the individuals’
fitness scores. Due to constraints in (3) and (4) regarding the overload of fog nodes and the
respect of SLAs, not every chromosome (solution) is acceptable. However, we prefer to let
the population evolve while not excluding unacceptable solutions in order to exploit the
capability of GAs to investigate a wide range of configurations. To take into account the
two constraints, we choose to add corresponding penalty factors to the objective function,
resulting in the following:

obj∗(X) = ∑
c∈C

wcRc + Pol + PSLA (11)

where Pol = S∗f (1 + λ f − 1 ∗ S f ) if overload occurs, with S∗f being an arbitrary high value
of the service time for a fog node. In a similar way, we define a penalty for SLA violations
as PSLA = S∗c (Sc/TSLA), with S∗c representing an arbitrary high value of the service time of
a microservice chain. The aim of the penalties is to eliminate individuals which violate the
constraints. The choice to define both the penalties as proportional to the seriousness of the
corresponding constraint violation is useful in cases where the population includes a great
fraction of individuals with unacceptable values, as individuals with the worst values are
the first to be eliminated.

The generations evolve by applying different genetic operators, such as mutation,
crossover, and selection. We exploit a random mutation operator able to randomly modify a
single gene in a chromosome; in this way, we can explore new possibilities in the solution
space. Moreover, we apply a uniform crossover operator which combines two parent individ-
uals into two new individuals. As a last step, we apply a tournament selection approach to
identify individuals that should be included in the next generation based on their associated
fitness score.

For the implementation of the algorithm, we rely on the DEAP (DEAP: Distributed
Evolutionary Algorithms in Python library https://deap.readthedocs.io/en/master/, ac-
cessed on 24 June 2023). We tune the GA parameters through preliminary tests; specifically,
the mutation probability is set to Pmut = 0.8% and the crossover probability to Pcx = 0.8%.
Moreover, we consider a population of 60 individuals with a number of generations equal
to 600. This experimental setup is consistent with previous experiments in similar con-
texts [19].

3.3. Variable Neighborhood Search

The Variable Neighborhood Search (VNS) algorithm [16] is a metaheuristic optimiza-
tion algorithm that aims to find high quality solutions to combinatorial optimization
problems. It combines elements of the local search and diversification strategies to effi-
ciently explore the solution space. The VNS algorithm works by iteratively improving
candidate solutions through a combination of local search and perturbation. It starts with
an initial solution, then performs a series of neighborhood explorations and improvements.
At each iteration, it explores a nearby solution obtained by making small modifications
to the current solution. The algorithm applies a local search procedure within each neigh-
borhood to find the best solution within that neighborhood. If an improvement is found,
the algorithm moves to that new solution. If no improvements are achieved, VNS intro-
duces a perturbation in order to make more radical changes to the current solution. The

https://deap.readthedocs.io/en/master/
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target of this phase is to escape from the current local optima and explore new regions. In
solving this problem, we use two structures for the local search and two structures for the
perturbation phase:

1. N1 Algorithm 3: randomly select a leaf node f1, the farthest microservice m1 allocated
to f1, the nearest fog node f2 to m1, and the sensor m2 allocated to f2 nearest to f1. If
this new solution is feasible, swap m1 and m2 from their respective fog nodes.

2. N2 Algorithm 4: denote Fon as the set of active fog nodes; calculate the load of each fog

node j ∈ Fon as rj =
λj

µj
, then the average load of the active fog nodes as r̃ =

(∑j∈Fon rj)

|F| .

Randomly select f1 ∈ Fon with load r1 > r̃. Next, select the farthest microservice m1
allocated to f1, then choose the node with the lowest load r2 < r̃ that is close to m1.
Now, if feasible, remove m1 from f1 and place it on f2.

Algorithm 3 Group Close Sensors
Function Bring_Near(x)

f1 ← RandomlySelectFogFromSolution() Random choose a fog node from the solution.
m1 ← FarthestMicroserviceInF1() Get the farthest microservice allocated in F1.
f2 ← ClosestFogToMicroservice() Select the closest fog node to the selected microservice.
m2 ← ClosestMicroserviceToF1() Select the closest microservice from F1.
if Feasible(x, f1, f2, m1, m2) then

x ← Swap(x, f1, f2, m1, m2) return x′

else
return x

Algorithm 4 Load-Based Microservice Migration
Function Reduce_Load(x)

fon ← GetActiveFogNodesList()
for j← 1 to | fon| do

rj ← ComputeNodeLoad()

ravg ← ComputeAverageLoad()
f1 ← RandomlySelectBusyNode() Select fog node with load r̄ > r
m1 ← FarthestMicroserviceInF1() Get the farthest microservice allocated in F1.
f2 ← GetLowestNearNode() Select the node with lowest r̄ < ravg and near m1
if Feasible(x, f1, f2, m1) then

x′ ← Allocate(x, f1, f2, m1) Remove m1 from f1 and allocate it on f2.
return x′

On the other hand, the structure used in the perturbation phase is as follows:

1. L1: perform every possible microservice exchange on the fog nodes.
2. L2: perform every possible allocation of microservices on the fog nodes.

The proposed VNS solution is represented as a recursive dictionary; each position
represents a service chain and contains a dictionary that associates the microservice with
the fog node on which it is located. A fog node that does not appear in any dictionary
value is considered to be a turned-off node. The outer dictionary has a size |C|, while each
position in the inner dictionary has a size |MC|. The initial solution of the VNS is created
by allocating the microservices of the same chain to the same fog node.

When the initial solution is created, the objective function is calculated on the current
solution. This is used to guide the VNS. A solution x′ is considered admissible with respect
to the solution x if the objective function calculated on x′ is strictly lower than the objective
function calculated on x.

The algorithm iterates over the set Nk until no further improvement is possible dur-
ing the descent phase using the Lk structures. It terminates when no further improve-
ments can be made. The solution tree is fully explored through systematic neighborhood
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changes, resulting in a global optimum for the proposed minimization problem at the end
of the algorithm.

4. Experimental Results
4.1. Experimental Setup

In this section, we present a set of experiments aiming to assess the capability of the
considered heuristics to find efficient solutions to the microservice placement problem in a
fog infrastructure. To this end, we evaluate the effectiveness and efficiency of the previously
proposed algorithms.

In order to perform our analysis, we generate several random problems with prede-
fined characteristics and evaluate the time required to achieve a solution together with the
quality of the solutions found by the different heuristics.

For this analysis, we relied on a virtualized system using XCP-NG as the hypervisor
and running on an Intel Xeon Gold 6252 N CPU with a 2.30 GHz clock speed. The
optimization algorithms were run on a VM with one vCPU and 8 GB of RAM (The presence
of a single vCPU is not a problem for these algorithms, as they are not inherently parallel).

Figure 1 presents an example of a problem along with its deployment. The data flows
in the logical organization of the services are represented by solid lines. The data flows from
sensors to services are depicted in blue and the data exchanged by chained microservices
in a service chain in black. The mapping of logical elements over the infrastructure is
represented in dashed lines: yellow for links from sensors to the fog nodes and red for the
deployment of services over the fog nodes.

Figure 1. Example of the generated problem.

Each problem is defined in terms of the following:

• Service chain length Lc, that is, the number of microservices composing a chain;
• The service time of a service chain Sc;
• The average network delay δ between two fog nodes;
• Overall infrastructure load ρ;
• The problem size, that is, the number of fog nodes and service chains considered.

Throughout this analysis, as an efficiency metric we consider the time required to
solve a problem; the quality of the solution is represented by several metrics. The most
straightforward metric is the the response time of the service chains. However, to provide
a deeper understanding of the solution, we additionally consider the average number
of hops in the chain deployments normalized against the chain length (with a range of
[0, 1]). Another critical performance metric of interest is the Jain index, a fairness measure
that quantifies the ability of the genetic algorithm to achieve load balancing over the
fog infrastructure. The Jain index is defined as J = 1/(1 + CoV(ρ f )

2), where ρ f is the
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utilization of each node f ∈ F and CoV(·) is the coefficient of variation, i.e., the ratio
between standard deviation and mean, computed over all fog nodes. An index of 1 means
perfect balancing, while a lower value means that the load is unevenly distributed among
the fog nodes.

In this analysis, we consider chains of equal length, that is, Lc = |{m ∈ c}| is constant
∀c ∈ C. The impact of this parameter is evaluated in Section 4.4. In the other analyses, we
consider chains composed of five microservices.

The overall system load is defined as

ρ = ∑
c

λcLc ·
∑c Sc

∑ f Pf
, (12)

which means that the loads have ranges in the interval ρ ∈ [0, 1]. The impact of this
parameter is studied in Section 4.3. In the other analyses we fix ρ = 0.6, which corresponds
to medium utilization of the infrastructure.

Concerning the problem size and according to the notation introduced in Table 1, the
number of nodes can be identified as |F |, while the number of chains is |C|. As default
values used unless otherwise specified, we consider a set of ten fog nodes supporting four
service chains.

For this analysis, we assume that the SLA is set to 10× the service time of the chain,
which is a common value used in cloud applications; i.e., in Equation (6), we consider
K = 10. In our experiments, this SLA is automatically satisfied as long as no overload occurs,
motivating our choice to not perform any specific analysis with respect to this parameter.

4.2. Heuristic Scalability

The first test aims to evaluate the ability of the proposed algorithms to scale with the
problem size.

In Figure 2, we present a comparison of the heuristics’ execution time as a function of
the number of fog nodes. Here, it is worth recalling that in order to keep the load even, we
increase the number of service chains to be allocated along with the number of fog nodes.

Figure 2. Heuristic execution times.

A first result is the clearly different execution times of the various algorithms. The
genetic algorithm is significantly slower than the alternatives, with an execution time
roughly in the interval of 50–80 s as the problem size increases. The response time for the
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VNS algorithm is always below 10 s, and the execution time for the MBFD heuristic is
almost negligible.

The poor performance of the GA heuristic is related to the large population of indi-
viduals used to explore the solution space and the large number of generations used to
converge towards a solution. The VNS algorithm instead limits the number of solutions
to be explored by defining small neighborhoods that can be explored quickly. Indeed, the
execution time of the VNS algorithm only depends on the service chain length. Finally, the
greedy heuristic of the MBFD algorithm is extremely fast, as it does not need to iterate over
multiple possible solutions nor let a population evolve through generations.

For every algorithm, the execution time grows linearly with the problem size, that is,
the number of nodes and the number of service chains considered. This can be explained
by considering that the evaluation of the objective function requires a time that increases
linearly with the problem size due to the summations in Equations (1) and (7).

A second aspect related to scalability is the stability of the solution quality with respect
to the problem size. Figure 3 evaluates the response time of the solutions of the different
algorithms as a function of the problem size.

Figure 3. Response time vs. infrastructure size.

It can be observed that the MBFD algorithm provides stable performance with a
response time that does not change with the problem size. On the other hand, the genetic
algorithm and the VNS algorithms suffer a degradation in the quality of the solutions as
the problem size grows due to the small size of the solution space that the algorithms
are able to explore. The problem is particularly evident for the VNS algorithm, which is
outperformed even by the MBFD heuristic.

4.3. Impact of System Load

We now evaluate the quality of the solutions provided by the different algorithms.
The first analysis concerns the impact of the system load ρ on the solution response time.

Figure 4 shows the average response time and its variance over the repeated experi-
ments as a function of the global system load ρ. It can be observed that the performance of
the proposed solutions are absolutely comparable for low values of ρ. As the utilization
increases, we observe a growth in the response time and the variance of the value over
different iterations. This result is compatible with previous studies based only on GAs [5].
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Figure 4. Response time vs. system load ρ.

The MBFD algorithm provides remarkably good performance in high load conditions.
The reasons behind this behavior can be explained from the graphs in Figure 5. In particular,
in Figure 5a it can be observed that the Jain index is generally good for every value of
ρ. For MBFD this is natural, as the algorithm is explicitly designed to guarantee good
load balancing, ensuring good performance even if the algorithm does not explicitly the
global response time take into account. At the same time, in Figure 5b the number of hops
increases for every algorithm as the load grows. This occurs because it becomes more
and more difficult to place the microservices close one to the other as the risk of incurring
overload increases.

(a) Jain index (b) Normalized hops

Figure 5. Impact of the system load ρ.

4.4. Impact of Service Chain Length

Another evaluation of the solution quality concerns how the response time of a solution
depends on the service chain length.

In Figure 6, it can be observed that the response time and its variance both decrease as
the length of the service chain grows. This effect has been pointed out in [5], and is due to
the presence of large microservices that can bring a fog node close to the overload condition
even on their own.
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Figure 6. Response time vs. service chain length.

This effect can be observed in Figure 7a as well, where the Jain index is quite low for
short service chains. Again, we observe that the load balancing approach of the MBFD
algorithm provides good load balancing even in the case of short service chains (i.e., the
blue line is higher than the other lines in the leftmost part of the graph), explaining the
relatively low response time in Figure 6. At the same time, from Figure 7b it can be observed
that the MBFD algorithm is not very effective at reducing the number of hops to avoid
unnecessary network delays, as shown by the blue line in the graph. In a similar manner,
the genetic algorithm does not perform well from this point of view due to the large space
to be explored and its completely random approach to exploration of the solution space.
Instead, the VNS algorithm, takes advantage of the neighborhood definition based on the
problem characteristic, and can provide fast and accurate searching of the solution space,
as indicated by the high Jain index in Figure 7a, and the low number of hops in Figure 7b,
which together explain the low response time in Figure 6.

(a) Jain index (b) Normalized hops

Figure 7. Impact of service chain length.

4.5. Summary of Experiments

Throughout our experiments, we evaluated the time required by each algorithm to
solve the problem, with the MBFD heuristic being the fastest by at least one order of
magnitude compared to VNS and GA being the slowest at one order of magnitude slower
than VNS. The fast execution of MBFD results in lower quality results, with an average
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response time that can be nearly 30% higher compared to the best solution found. As
the problem size grows, the GA and VNS heuristics tend to have worse performance,
with VNS providing the worst quality solutions for large problems (+40% response time).
It can be observed that as the the average load on the infrastructure grows, the MBFD
heuristic outperforms the other approaches thanks to its focus on load balancing. This
effect is additionally observed when short chains of microservices can lead to significant
load unbalancing.

To summarize, while GA is the slowest to find a solution, it provides quite stable
performance. While VNS is significantly faster than GA, it can provide poor quality
solutions for large problems. Finally, MBFD is the fastest to obtain a solution and its
load balancing-oriented operation ensures high quality solutions when load balancing is a
critical factor, such as when the whole infrastructure is in a condition of high load or when
certain heavy microservices can on their own determine a near-overload condition on a fog
node, such as in the case of short microservice chains.

5. Conclusions

Assuming IoT applications modeled as chains of microservices, we propose a com-
parison of heuristics to optimize the placement of microservices over the nodes of a fog
infrastructure. Our model considers both the network delay effect and the impact of com-
putational load over the achieved performance while taking into account the inherent
heterogeneity in the service time of the various microservices and in the computation
power of each fog node. A thorough experimental evaluation was carried out considering
different metrics such as the response time of the service chain, the average number of
hops in the chain deployments, and the Jain index to measure the achieved load balancing
among the fog nodes, with a final goal of understanding which heuristic is better suited to
specific scenarios. Our future research directions span both modeling of complex problems
and SLA formulations and evaluation to test our approach with realistic fog applications
through small-scale prototypes and large-scale simulations.
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