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 Introduction 
 

During the past decade, EEG-correlated fMRI has been used to map 

haemodynamic changes correlated with the occurrence of epileptiform 

discharges in focal and generalised epilepsies (Salek-Haddadi et al., 2003; 

Salek-Haddadi et al., 2006; Laufs 2007; Gotman et al., 2006). In focal 

epilepsy, the localising information thus obtained has been found to be 

broadly concordant with the location of the sources inferred from other 

electro-clinical data and EEG source reconstruction (Lemieux et al., 2001; 

Benar et al., 2006). In contrast, generalised epileptiform discharges, such as 

generalised spike-wave (GSW) complexes seen on the EEG traces, are 

commonly associated with widespread haemodynamic changes in the 

neocortex and sub-cortical regions (Laufs et al., 2006; Hamandi et al., 2006). 

Given the temporal resolution of fMRI, of the order of a few seconds, one 

must assume that these maps are representative of haemodynamic changes 

taking place over entire discharges. As a consequence, they are not 

informative with respect to the electrophysiological processes that underlie the 

different components of such GSW1 complexes. On the other hand, the 

problem of localizing these processes from the EEG remains a difficult 

challenge due to the widespread nature of the pattern which is thought to 

reflect rapidly propagating neural activity over a large part of the cortex. This 

is in addition to a fundamental difficulty of the EEG inverse problem namely 

that the underlying current sources cannot be estimated uniquely from EEG 

scalp measurements without invoking priors or constraints. 

EEG/MEG inverse solutions differ in the nature of their priors, which should 

ideally be specific to the neuronal phenomenon at hand. For instance, 

assuming that the underlying active network consists of a few focal sources 

has been used to justify equivalent current dipoles (ECD) localisation methods 

(Sherg and Ebersol, 1993). ECD solutions applied to the analysis of focal 

epileptic spikes have proven relatively concordant with both fMRI statistical 

maps (see e.g. Korjenova  2001) and intracranial electrode recordings (Merlet 

and Gotman, 1999). However, this class of inverse solutions can be 
                                                 
1 Within GSW discharges, the spike is thought to reflect neural excitation and the 
wave the inhibition (Niedermeyer and Lopes da Silva, chap 13). 



 

 

misleading in presence of spatially extended sources (see e.g. Kobayashi et 

al., 2005). In contradistinction, distributed linear (DL) methods aim at 

estimating the amplitude of a predefined highly dense ensemble of dipoles, 

typically spread over the cortical sheet (Dale and Sereno, 1993). Usually, 

additional spatial and/or temporal constraints are used to finesse the under-

determination of DL inverse solutions (see e.g. Daunizeau et al., 2007b). In 

this context, fMRI-derived spatial priors are thought to significantly improve 

the spatial resolution of DL inverse solutions, particularly if the inverse 

technique is able to account for the potential mismatch between EEG and 

fMRI sources (see e.g. Daunizeau et al., 2008 for a comprehensive review of 

EEG/fMRI information fusion).   

Recently, such probabilistic DL source reconstruction methods using spatial 

priors derived from fMRI statistical parametric maps (SPMs) have been 

developed (see e.g. Daunizeau et al., 2005; Sato et al., 2005; Daunizeau et 

al., 2007a). Most of these techniques fall into a Bayesian framework, which 

provides an estimation of the current sources (posterior probability maps or 

PPMs, see e.g. Friston et al., 2007) and allows for generic model comparison, 

through the computation of the model evidence/marginal likelihood (see e.g. 

Trujillo-Barreto et al., 2005 or Mattout et al., 2006).  

Source reconstruction using DL and ECD models from high-density EEG have 

already been applied to GSW, suggesting a focal frontal origin for the spike 

and broader frontal generator for the wave (Holmes et al., 2004; Tucker et al., 

2007), broadly in line with earlier work (Lemieux and Blume 1983; 

Niedermeyer and Lopes da Silva, 2004). This encouraging preliminary result, 

along with previous work on both EEG-correlated fMRI data analysis and 

fMRI-constrained EEG source reconstruction, has led us to develop a 

principled probabilistic technique dedicated to identifying the respective 

networks involved in the respective generation of the spike and wave 

components of GSW complexes from EEG and fMRI data.  

In Daunizeau et al., 2005, we have proposed a Bayesian model comparison 

scheme for assessing the relevance of fMRI-derived spatial priors in 

probabilistic EEG source reconstruction. In Grova et al., 2008, we have 

applied this method in the context of focal interictal spike localization, using 

EEG-correlated fMRI statistical parametric maps (SPMs). 



 

 

In this work, we systematize and extend this method to cope with multi-

regions EEG-correlated fMRI SPMs, by means of the Expectation-

Maximization (EM) algorithm (see e.g. Friston et al., 2008). The method is 

designed to take advantage of the spatial resolution of fMRI and the temporal 

resolution of EEG, and consists of the three following steps: 

(i) Deriving the static EEG-correlated fMRI SPM. Due to the low 

temporal resolution of fMRI compared to EEG, the resulting map of 

activations can be taken to reflect multiple aspects of the EEG 

events of interest such as the generators of the spike and the wave 

for the specific case of GSW. 

(ii) Building the cortical source space partitions that are associated with 

every combination of the activated regions. 

(iii) Using Bayesian model comparison to identify the most likely source 

space partition with respect to the spike and the wave component of 

the EEG scalp measurement of GSW complexes, respectively. 

We demonstrate the potential of this method in an analysis of multi-modal 

EEG-fMRI data acquired in a patient affected by idiopathic generalized 

epilepsy (IGE) with frequent absence seizures. 



 

 

Methods 
 

Patient clinical history 

We studied a right-handed 23 year-old man (written informed consent and 

ethics committee approval obtained) affected by juvenile absence epilepsy 

(JAE; onset age 12y) with frequent absence seizures (2-3 episodes per week) 

and rare (fewer that one per year) generalized tonic clonic seizures. He was 

born by a caesarean section three weeks preterm; he was well at birth and his 

developmental milestones were within normal limits. He has no history of 

febrile convulsions, brain injury or other risk factors for the development of 

epilepsy. His father’s mother was diagnosed with temporal lobe epilepsy at 

the age of 58. 

Neurological examination and morphological MRI scans (at 1.5T and 3T) were 

normal.  

Previous EEG recordings showed a normal background interrupted by 2.5-3 

per second generalized spike-and-wave activity with anterior predominance, 

facilitated by hyperventilation.  There was no response to photic stimulation. 

The patient was treated with AED, in mono-therapy or association 

(Ethosuximide, Lamotrigine, Levetiracetam and Valproate) without achieving 

complete control of the absences.  

At the time of our investigations, the patient was taking Levetiracetam 

2500mg/day and Valproate 1000mg/day. The EEG showed frequent 

spontaneous and hyperventilation-related generalized spike-and-wave (GSW) 

discharges lasting between <1 and 20 s; clinically, the longest discharges 

(more than 15 seconds) were accompanied by psychomotor arrest and eyelid 

blinking.  

 

Simultaneous EEG-fMRI acquisition 

The head was immobilized using a vacuum cushion. Thirty-two channels of 

EEG were recorded using the MR-compatible BrainCap electrode cap and 

recording system (Brainproducts, Munich, Germany; cap: Falk Minow 

Services, Herrsching-Breitbrunn, Germany), along with bipolar 

electrocardiogram and MR scanner synchronisation signal (Krakow et al., 

2000). Four hundred and four T2*-weighted single-shot gradient-echo 



 

 

echoplanar images (EPI; TE/TR: 40/3000, 21 interleaved axial slices of 5 mm 

thickness, acquired parallel to the inter-commissural line, FOV 24 x 24 cm, 64 

x 64 matrix) were recorded with continuous, simultaneous EEG, on a 3 Tesla 

Horizon EchoSpeed MRI scanner (General Electric, Milwaukee, WI, USA). 

The patient was asked to rest with his eyes closed and to keep still. Two 20-

minute fMRI sessions were acquired. A high-resolution T1-weighted scan was 

also acquired. 

 

EEG data pre-processing 

The BrainVision software package (http://www.brainproducts.com/) was used 

to correct the EEG traces from both gradient- and pulse-related artefacts. 

Both the MRI gradient and the cardiac pulse artefact removal algorithms are 

based on artefact template subtraction (the latter using the ECG signal for 

modelling the artefact template). 

For the purpose of the fMRI analysis, the onset and offset times of GSW 

discharges were marked and recorded on the artefact-corrected EEG traces.  

For the purpose of the EEG source reconstruction, we analysed those events 

in an “event-related potential” (ERP) fashion, as follows: 

The GSW typical discharges lasted for a few seconds (see the GSW 

discharges lasting for 18 seconds on Figure 1) and contained a series of 

spike-wave events. We identified two different event types, namely (i) the 

spike and (ii) the slow wave. We manually selected a representative spike and 

slow wave, using the SPM8 EEG data review functionality, as templates for 

detection of spikes and waves throughout the recording. A new list of events 

of each type was then obtained for all data window in the EEG traces whose 

correlation coefficient with each of the templates exceeded 0.95. Finally, we 

averaged the detected events, obtaining typical ERP responses. 

 

fMRI analysis 

The FMRI data were processed and analysed using the SPM5 software 

package (www.fil.ion.ucl.ac.uk/spm/). After discarding the first four image 

volumes, the EPI time series were realigned, and spatially smoothed with a 

cubic Gaussian Kernel of 8 mm full width at half maximum and normalised to 

MNI space. 



 

 

A general linear model was used to assess the presence of regional GSW-

related BOLD changes. The marked GSW events were represented as 

variable-duration blocks from GSW onset to cessation (block design). 

Motion-related effects were included in the GLM in the form of 24 regressors 

representing the 6 scan realignment parameters and a Volterra expansion of 

these, plus Heaviside functions for large motion effects (Friston et al., 1996; 

Salek-Haddadi et al., 2006; Lemieux et al., 2007).  An additional set of 

confound regressors was included to account for pulse-related signal changes 

(Liston et al., 2006). The model is based on an over-complete basis set 

expressing a linear relationship between cardiac-related MR signal and the 

phase of the cardiac cycle and has been validated anatomically and its effect 

on efficiency of the estimation of the effects of interest. It is generally 

considered good practice to model as many confounding effects as possible, 

leading to increased confidence in the results [Lund et al, 2006], which may 

be particularly important in studies of individual patients. 

The GSW event blocks were convolved with the canonical hemodynamic 

response function (HRF), its temporal derivative (TD) and dispersion 

derivatives (DD), to form regressors testing for GSW-related BOLD changes. 

Significant BOLD signal changes correlated with GSW were assessed using 

an F-contrast across the three regressors of interest. The resulting SPM was 

thresholded at p< 0.05, corrected for multiple comparisons (Friston et al., 

1991). 

 

Building empirical fMRI-derived priors for the EEG inverse problem 

We performed fMRI-constrained source reconstruction for the averaged spike 

and wave, respectively, on the cortical surface, taken to be the canonical 

cortical mesh provided by the SPM software package.  

According to the DL framework, each EEG dataset y  is assumed to be 

generated from a linear mixture of d  dipoles of unknown amplitudeθ , whose 

positions and orientations are those of the vertices of the SPM canonical 

cortical surface. Within that framework, the locations of the underlying 

extended sources are defined by those connected set of vertices (spatial 

components) which have a significant activity. This means that prior 



 

 

knowledge about the position of the underlying extended sources is translated 

into higher prior activity power for the corresponding spatial components. As 

fully detailed in (Daunizeau et al., 2005), we can use an increased prior 

variance over these spatial components to cast fMRI-derived source location 

knowledge within a Bayesian treatment of the DL framework. In this work 

though, we slightly depart from this perspective and associate an unknown 

variance hyperparameter on the prior variance of each of these spatial 

components. The Bayesian probabilistic generative model m  is then fully 

specified by the number and composition of spatial components of the source 

space. It is these spatial components and the ensuing model space we want 

to explore. This means we want to identify the combination of spatial 

components that is the more plausible with respect to the measured scalp 

EEG data.  This is important, because we a priori do not know which subset of 

fMRI clusters have generated the EEG data. From a Bayesian perspective 

however, this is simply a matter of model comparison: we can use the model 

evidence to identify the source space partition that is the most likely to have 

generated the EEG data. 

 

First, we interpolated the 3D volumic thresholded fMRI SPM on the canonical 

cortical surface of the SPM software. The interpolation kernels were based on 

Voronoï cells centred on each cortical mesh vertex (see e.g. Grova et al., 

2006), and constrained to lie within the limits of a 3D-volumic grey matter 

mask. Then, we identified the connected components of the thresholded fMRI 

activation map on the cortical manifold. To do so, we applied standard 

mathematical morphology (closing and erosion on the cortical manifold, see 

e.g. Soille 1999) to obtain K  anatomically connected clusters around each 

local maximum of the interpolated SPM. This furnished a set of K  spatial 

components with compact support, each components corresponding to an 

active cluster extracted from the fMRI SPM. 

 

Having obtained K  cortical patches, we then build the 2K  generative models 

m(c)  ( c = 1,...,2K ) that correspond to each and every combination of these 

clusters. These models contain from one to K  spatial components, each of 



 

 

which is associated with a diagonal covariance component, having non-zero 

elements only for dipoles belonging to the corresponding cluster (see 

Appendix I). In addition to the fMRI-derived spatial components, each 

generative model m(c)  includes two “whole-brain” prior covariance 

components, i.e. (i) the identity matrix (yielding the standard “minimum norm” 

DL source reconstruction algorithm) and (ii) the discrete Laplacian operator 

(yielding the “maximum smoothness” inverse solution). 

This parameterization of the models m(c)  assumes that the structure of 

cortical activity is composed of a sum of independent spatial processes, i.e. 

both a smooth and a rough active field (which are spread over the whole 

cortical surface) and a set of patchy sources (with bounded spatial support) 

whose power profile is given by the fMRI activation score2 (Daunizeau et al., 

2005).  

We refer the interested reader to the Appendix 1 for more details about the 

construction of the Bayesian probabilistic generative model that associates 

weighted prior covariance components to the above fMRI-derived and “whole-

brain“ spatial components. 

The contribution of each of these processes to the underlying cortical activity 

structure is unknown a priori, and is estimated from the data.  We have done 

this using the ReML (restricted Maximum Likelihood) algorithm of the SPM 

software package, which is a stand-alone MATLAB code that aims at inverting 

this class of generative models (see e.g. Mattout et al., 2006, Friston et al., 

2007).  In brief, we use ReML to estimate covariance hyperparameters at both 

the sensor and source levels, yielding both an estimate of the cortical sources 

and an approximation to the model evidence ( )( )cp y m . 

The latter is then used for comparing the different source partitions m(c) , and 

to derive the best model source subset for the spike and the slow wave of 

GSW, respectively. This means we invert (using ReML) the 2K  generative 

models m(c)  ( c = 1,...,2K ) that correspond to the different combinations of 

spatial components, and identify the more plausible source partition ( *)cm  in 

                                                 
2 Weighting the covariance components with respect to the SPM score allows to 
accounting for the spatial profile of these extended sources. 



 

 

terms of its model evidence ( )( )cp y m , as approximated by ReML for both 

datasets (spike and slow wave). 

We refer the reader to the Appendix 2 for a simulated experiment highlighting 

the expected properties of the proposed probabilistic approach. 
 
 
Results 
 

EEG-correlated fMRI results: 

Good quality EEG was obtained after off-line artefact subtraction. During the 

first EEG-fMRI session one typical 2.5-3 Hz GSW discharge, 18 seconds 

long, was recorded (see Figure 1).  

The rest of the EEG showed a normal awake background with continuous 9-

Hz posterior alpha rhythm. Following the experiment, the patient said that he 

had a “seizure” during the scanning session.  

fMRI data analysis showed a significant bilateral thalamic activation (greater 

on the left), and a significant (yet diffuse) cortical deactivation. The 

deactivation pattern involved the precuneus bilaterally (BA7), left posterior 

cingulate cortex (BA30), middle temporal gyrus bi-laterally (BA37), right 

cuneus (BA18), left superior frontal gyrus (BA8) and bilateral (more left) 

medial frontal gyrus (BA10) (see Figure 2).  

 

 

fMRI-constrained EEG source reconstruction: 

K = 7  anatomically connected BOLD clusters were obtained (see Figure 2), 

which were used for fMRI-constrained EEG source reconstruction. We then 

calculated the posterior probabilities of each of the 2K = 128  source space 

partitions (consisting of all different combinations of the 7 BOLD clusters), 

conditional upon the spike and the slow wave, respectively. The results are 

shown in Figure 3, and a summary table (Table 1) is given bellow: 

 

 

 



 

 

 

 

 Spike Slow wave 

Posterior probability 

of the most likely 

source partition(s) 

1st : p = 0.956 

2d : p = 0.044 

1st : p = 0.996 

Most likely source 

partition(s) 

1st : Left and right middle 

temporal gyrus, left 

medial frontal gyrus. 

2d : Left and right middle 

temporal gyrus, right 

medial frontal gyrus. 

1st : Left and right middle 

temporal gyrus. 

 

Table 1: fMRI-constrained EEG source reconstruction: Bayesian model 

comparison results. 

 

First, we note that the non fMRI-constrained EEG source reconstructions 

prove significantly less probable than the best fMRI-constrained source 

reconstructions. However, the non fMRI-constrained inverse solution was 

more likely than most of the other fMRI-constrained inverse solutions 

(F = −170.8  for the spike and F = −168.4  for the slow wave). This was the 

case for both the spike and the slow wave components of the GSW 

discharge. This is important, because the plausibility of the best fMRI-

constrained inverse solution cannot be explained only by the reduction of the 

effective degrees of freedom (due to the prior spatial constraint). This means 

that the best fMRI-derived source space partition is likely to have generated 

the EEG scalp measurement (see Daunizeau et al., 2005). Second, among 

the 128 models tested, the posterior probability distribution over source space 

partitions significantly identifies one best model for both the spike and the 

slow wave components of the GSW complex. For both the spike and the wave 

components, the best model contains the left and right middle temporal gyri. 

However, the spike component most likely source space partition also 

contains the left medial frontal gyrus (the second best model adds the right 

frontal medial gyrus, see Figure 3). In other terms, the frontal activity present 



 

 

during the spike seems to be inhibited during the slow wave component of the 

ictal GSW discharges. 

For completeness, Figure 4 shows the non fMRI-constrained source 

reconstructions for both the spike and the slow wave. In summary, the level of 

matching of the non fMRI constrained source reconstruction with the most 

plausible sets of fMRI regions is questionable, but there seems to be a similar 

trend in terms of the specific activation of the orbitofrontal cortices (only during 

the spike). First, the activity spreads over almost the whole cortical sheet, 

which is due to the nature of the regularization. Second, both the spike and 

the slow wave reconstruction exhibit patterns of activity in the left and right 

anterior temporal lobes and around the left and right prefrontal cortices. These 

patterns might be partially explained by the two (left and right) parieto-occipital 

fMRI sources. Third, the spike source reconstruction shows a pattern of 

activity on the left and right orbitofrontal cortices, which corresponds to the 

two frontal fMRI clusters (most likely partition and 2d most likely partition, 

Figure 3).  



 

 

Discussion 
In this work we presented a novel approach to identify the generators of brain 

activity captured using simultaneous EEG-fMRI based on probabilistic 

Bayesian EEG source model comparison using fMRI-derived regional priors. 

Application of the method to the spike and wave components during an ictal 

GSW discharges demonstrated a different origin of the two components. That 

is, both the spike and the wave components were generated by bilateral 

temporal-parietal cortex activity, but the left medial frontal gyrus source 

(indentified during the spike) disappeared during the following slow wave of 

the GSW complex. This is consistent with early involvement of the 

ventromedial frontal cortex during the spike discharges of absence seizure in 

line with previous studies (see Tucker et al 2007, Holmes et al 2004).  

To the best of our knowledge, this work demonstrates the first application of 

Bayesian multimodal EEG-fMRI modelling to the fine spatio-temporal 

characterization of the neural correlates of generalized epilepsy ictal activity. 

The method combines asymmetrical EEG-correlated fMRI statistical analysis 

and fMRI-constrained probabilistic EEG source reconstruction. Note that 

these results could not have been obtained using standard (non fMRI-

constrained) source reconstruction, which was significantly less plausible than 

the best fMRI-constrained inverse solutions. This is very likely to be due to the 

under-determination of the EEG inverse problem, which causes the source 

estimates to be highly uncertain (which is taken into account by Bayesian 

model likelihood measures). In comparison, fMRI-constrained inverse 

solutions show a lower degree of uncertainty, at the cost of constraining the 

solution to resembling the fMRI profile of activation. Bayesian model 

comparison works because Bayesian model likelihood quantifies the potential 

conflict between the prior and the likelihood. In other terms, the best fMRI-

derived source partition confirms the spatial information that can be extracted 

from the EEG data, which makes it more plausible than the non fMRI-

constrained inverse solution. 

In general, the precision of these results, in terms of effective spatio-temporal 

resolution, can then be thought of as a consequence of a well-balanced 

combination of the respective spatio-temporal resolutions of EEG and fMRI. 

However, one cannot expect the same spatial resolution to hold for both fMRI 



 

 

analysis and EEG source reconstruction (even constrained by fMRI spatial 

information). This is because there are numerous confounds that intrinsically 

limit the spatial resolution of any source reconstruction technique. First of all, 

the definition of the spatial model (the so-called gain matrix, see Appendix) 

relies on a number of well-known approximations, e.g. imperfect spatial 

realignment of the electrodes, crude geometrical model of the tissue 

conductivity, potential misspecification of the position and orientation of the 

distributed dipoles on the cortical sheet. These approximations contribute to 

the loss of spatial resolution that could theoretically be achieved by any 

source reconstruction technique. Secondly, the inverse technique itself is 

limited by its sensitivity to the underlying prior assumptions and by the level of 

measurement noise corrupting the data. In the general case, it is very difficult, 

if not impossible, to quantify the expected spatial resolution of source 

reconstruction (see e.g. Baillet, Riera et al. 2001 or Darvas 2004). When 

using fMRI spatial information, we argue that the minimum requirements of 

good practice are (i) to use fMRI clusters that match the expected spatial 

resolution, (ii) to construct a test statistics that accounts for the spatial 

uncertainty. A weaker form of (i) is simply met by homogenizing the size of the 

clusters to the average fMRI cluster size, which we did. The latter requirement 

is more difficult, since we cannot quantify the expected spatial precision. 

However, the Bayesian marginal likelihood accounts at least for the 

uncertainty arising from the inverse problem difficulties. Since the added 

spatial uncertainty arising from the forward problem is identical for all 

compared models, it should only lead to an overconfident (as opposed to 

biased) model comparison. This means that the test statistics are correct in 

average, but artificially inflate the evidence in favour of the more plausible 

model. 

It is also worth mentioning the potential difficulties related to the practical 

implementation of this method. Among them, we found very difficult to derive 

a fully automated pre-processing step, for both the EEG scalp data and the 

interpolation and cortical manipulation (dilatation/erosion) of fMRI clusters. 

Concerning the effect of quality degradation of the EEG recorded during 

scanning on the inverse solution, we have recently demonstrated the validity 

of source estimation based on EEG data recorded during fMRI using the 



 

 

same artefact correction methodology as employed in this study3 [Vulliemoz 

et al, 2009]. Furthermore, the fMRI activation map does not have the same 

topology when considered in 3D-volumic (native) space or in 2D-surfacic 

(cortical) space. So far, the default mathematical morphology applied on the 

cortical surface teased apart the different parts of the interpolated fMRI 

clusters that were covering opposite sides of a sulcus. These highly nonlinear 

operations can nonetheless be sensitive to the topology of the fMRI activation 

map in its 3D-volumic (native) space4. These effects also interact with the 

actual definition of the spatial covariance components of the generative 

models (see Appendix 1). On the whole, we believe that improvements in pre-

processing should lead to increased robustness of the proposed 

methodology. 

Also, we did not discuss so far the potential influence of “missed” sources, i.e. 

of source that could underlie the EEG data but are not part of the set of 

activated fMRI clusters. To our knowledge, the probabilistic framework we 

propose seems to be partly robust to potential missed sources, in the sense 

that we expect it to favour the “whole-brain background” (no cluster) model 

whenever the missed source is clearly expressed in the data (see simulated 

experiment in Appendix 2). This reproduces the results highlighted in 

Daunizeau et al., 2005 and in Phillips et al., 2005, that both use similar 

hierarchical Bayesian techniques. However, it should be noted that this is a 

matter of sensitivity, in the sense that the fMRI-missed source could still 

potentially be missed if its contribution to the EEG data is weak. Conducting a 

comprehensive analysis of the sensitivity of this method is beyond the scope 

of the present article, but we expect the method to be further extended and 

assessed in future publications. 

 

Although limited to a single case, the result supports the hypothesis of 

different neurophysiological mechanisms underlying the generation of spike 

versus wave components of GSW discharges. Earlier electrophysiological 
                                                 
3 Note that some biases in model comparison might appear due to data perturbations 
introduced by EEG artefact removal algorithms. 
4 This is why we have developed a semi-automatic variant of the interpolation 
method, whereby the user can control the mathematical morphology applied to the 
interpolated fMRI clusters. 



 

 

studies in generalized penicillin epilepsy of the cat indicated that the spike 

corresponds to short periods of increased cortical excitation whereas the 

wave component comes from longer-lasting periods of intense cortical 

inhibition (see Gloor, 1977).  

Our results suggest that left medial frontal region contains hyperexcitable 

neurons. This cortical hyperexcitation was confirmed by a transcranial 

magnetic stimulation study (see Gianelli et al. 1994) in patients with IGE, 

where motor evoked potentials were recorded simultaneously with the spike 

and the wave component of the GSW complex. While a decrease stimulation 

threshold has been found when the stimulus was time-locked to the spike, a 

threshold increase has been documented during the slow wave. This data 

confirms the experimental results reporting a wave component corresponding 

to long periods of inhibition. Besides the different electrophysiological genesis, 

several GSW source analyses have shown distinctive brain regions implied in 

the generation of the component spike versus the component slow wave. 

Studying the poly-spike and wave complex of patients affected by juvenile 

myoclonic epilepsy (JME), Rodriguez and colleagues (2002) identified a 

bilateral current source in the medial frontal gyrus corresponding to the spike 

and multiple sources in different cortical regions corresponding to the wave. 

Interestingly, as in our case, temporal lobe sources were observed when the 

slow wave were analysed. Advanced methods of EEG source analysis have 

been applied to identify the brain regions involved in generation of spike 

versus slow wave within GSW discharges. Recently, Tucker and colleagues 

(2007) applied advanced methods of electrical source analysis to dense array 

EEG (256-channel) recordings of GSW in 5 patients with absence spells. 

They demonstrated a highly stereotyped localization of the spike component 

within the midline frontal cortex in all cases. Similar results were obtained in 5 

patients with IGE (see Holmes et al., 1994) using a different source analysis 

method. Both studies also demonstrated a wide and symmetrical fronto-

temporal network engagement during the slow wave component of the GSW 

complex. We found involvement of the posterior temporal regions in relation to 

the slow wave. The conclusions of other authors on the electrical mapping of 

GSW are in line with our result. Ernst Rodin (1999) mapped Current Source 

Density during 25 absences and demonstrated independent fields for the 



 

 

spike and slow wave, the former anterior (prefrontal and fronto-polar) and the 

latter posterior (parieto-occipital). Lemieux and Blume (1983) reported that the 

“slow wave were more diffuse, more symmetrical distribution and more 

posteriorly centred than either spikes and troughs.”   

The neurophysiological mechanisms to explain the findings presented in this 

study remain speculative. It is of interest that the identified network only 

includes two major sources (frontal and temporal-parietal). This seems to 

support, as previously reported (Holmes et al., 2004; Tucker et al., 2007), that 

absences are not truly generalized but they involved selective cortical 

networks. Moreover, our results are consistent with abundant evidence, both 

in animals and humans (see Bancaud J et al., 1974; Lüders H et al., 1984; 

Amor et al., 2005) suggesting a primary role of ventromedial frontal cortex in 

the generation of GSW, although our analysis does not address causality 

directly. Lastly, our findings are coherent with the putative role of the 

prefrontal cortex during absences5 (Pavone and Niedermayer, 1995). 

 

In conclusion, our novel approach to EEG-fMRI data fusion has proved useful 

in identifying fMRI-derived EEG source partitions more plausible than the non 

fMRI-constrained inverse solutions. Model comparison within the Bayesian 

framework has allowed us to identify specific and distinct generator partitions 

for the spike and wave components of the 3Hz spike-wave complex. 

 

 

 

                                                 
5 In particular it has been proposed that absences are the result of a transitory 
suspension of the working memory, a preliminary function of the prefrontal cortex, 
with immediate restoration of consciousness when the absence finishes. 
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Software note 
All the routines and ideas described in this paper can be implemented with the 

academic freeware SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 



 

 

Appendix I: Bayesian modelling of the EEG inverse problem. 
 

In this section, we describe the probabilistic (generative) model through which 

we introduce fMRI-derived spatial priors in the EEG inverse problem, and its 

inversion. 

We start with a 2-levels hierarchical linear model of EEG data  Y ∈° n× s  over n  

channels and s  samples: 

 

YY L

θ

θ ε
θ ε
= +
=

          (1) 

 

where n dL ×∈  is a known gain or lead-field matrix and d sθ ×∈  are the 

unknown source dynamics at d  dipoles.  In the following, the gain matrix has 

been computed according to a three-sphere conductor head model (De 

Munck 1988), given the known electrode positions on the scalp and the 

canonical cortical mesh of SPM. The electrode positions were realigned to the 

canonical space using standard anatomical landmarks (nasion, left hear and 

right hear fiducials) whose 3D positions with respect to the electrodes were 

also given. The subsequent realignment accuracy is of the order of the 

centimeter. This is not critical, since this is bellow the expected spatial 

resolution of the probabilistic source reconstruction method. The relevance of 

these spatial precision concerns to the proposed EEG-fMRI fusion approach 

is discussed further in the discussion section. 

The terms n s
Yε

×∈  and d s
θε

×∈  represent random fluctuations in channel 

and source space, respectively. Their respective spatial covariance are 

mixtures of known covariance components { },yQ Q Qθ=  at each level, 

controlled by unknown hyperparameters { },y θλ λ λ= . The first-level 

hyperparameters yλ  encode the covariance of measurement error (which we 

assume spherical, i.e. y nQ I= ). Similarly, 2K
θλ

+∈  is a vector that encodes 

the contribution of 2K +  prior covariance components6 ( )1 2 2, ,..., KQ Q Q Qθ θ θ θ
+= . 

                                                 
6 Here, K  is the number of fMRI active clusters (see bellow). 



 

 

These covariance components will be specified as functions of the fMRI SPM 

(see bellow). 

Equation 1 allows us to specify a full generative model m  whose parameters 

and hyperparameters we seek to infer. This model comprises a likelihood and 

priors: 

 

( ) ( )( )
( ) ( )( )
( )

, , ,

, 0,

1

y y yp y m N L

p m N

p m
θ θ θ

θ λ θ λ

θ λ λ

λ

= Σ

= Σ

∝

       (2) 

 

where we used noninformative (flat) priors for the hyperparameters, and 

where the covariance matrices satisfy: 

 

( ) ( )
( ) ( ) ( ) ( )1 1 2 2 2 2

exp

exp exp ... exp

y y y n

K K

I

Q Q Qθ θ θ θ θ θ θ θ

λ λ

λ λ λ λ + +

Σ =

Σ = + + +
    (3) 

 

Expectation-maximization (EM) inversion of this model proceeds in two steps. 

First, the M-step optimizes the hyperparameters, having integrated out the 

parameters. The E-step then reduces to a single iteration, after convergence 

of the M-step, yielding both an approximated posterior density over the 

parameters and hyperparameters ( ),q θ λ , and a lower bound to the log-model 

evidence F  (Beal et al.,2003): 

 

( ) ( ) ( )
( )

( )
,

log , log log ,

log
q

F p y p q

p y m
θ λ

θ λ θ λ θ λ= + −

≤
     (4) 

 

The approximation to the log-evidence F  is called the free-energy, and 

accounts for both model fit and complexity. This is important, since the 

different fMRI-derived priors we have to compare do not have the same 

number of parameters. To compare the different prior source partitions (see 

methods section), we simply look at the difference in free-energy. By 



 

 

convention, a difference in log-evidence of about three or more is taken as 

strong evidence in favour of the more plausible model, since it corresponds to 

an odd-ration of 95% (Kass et al., 1995).  

This probabilistic model and its EM inversion (see Friston et al., 2007 for a 

detailed description) has been used in many different contexts, including 

different variants of EEG source reconstruction (see e.g. Phillips et al. 2005, 

Mattout et al. 2006 and Friston et al. 2007). It is also worth mentioning that it 

is a stand alone function of the academic software package SPM, which is 

freely available on the web (http://www.fil.ion.ucl.ac.uk/spm/). A pseudo-code 

version of it is given bellow: 

 

Until convergence: 
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end 

 

 

 

 

 

 

 

 

     (5) 

 

Note that the derivatives required to actually implement this EM scheme 

simplify greatly in our case, because the data are a linear function of the 

source intensities θ  (see e.g. Mattout et al., 2006). 

 



 

 

In the context of fMRI-constrained EEG source reconstruction, we associate 

each of the interpolated clusters kC  ( 1,...,k K= ) with a diagonal covariance 

component, having non-zero elements only for dipoles belonging to the 

corresponding cluster, i.e.: 
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where ( )SPMF i  is the square root of the interpolated SPM F-score at the ith 

vertex of the SPM canonical cortical mesh. Using the local fMRI significance 

score allows accounting for modulations in the spatial profile of the spatial 

components. However, alternative definitions of the spatial components could 

be proposed, including flat spatial profile (no spatial weighting) or local 

smoothness (using a finite support Laplacian operator). To our knowledge, 

this choice does not significantly impact on the final model comparison 

results.  

We also added two standard covariance components, namely the identity 

matrix and the discrete Laplacian operator ∆ , to further regularize the inverse 

solution (see e.g. Mattout et al., 2006). 

All these covariance components then enter the source prior in the generative 

model required by the EM scheme above. Any combination of fMRI clusters 

(i.e. any source space partition) will then be associated with a posterior 

probability (on model space), given each and every dataset (spike and wave): 
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        (7) 

 

where i
jF  is the free energy of the ith source space partition, conditional on the 

jth dataset (j=1: GSW spike, j=2: GSW slow wave). 



 

 

Both free-energies and posterior probabilities are given in Figure 3. 

 

 

Appendix II: simulated experiment 
  

In this section, we describe a simulated experiment we designed to inspect 

the properties of the proposed Bayesian model comparison method. This 

simulated experiment is a simplification of the evaluation strategy that was 

developed in Daunizeau et al. 2005, in which we assessed the response of 

the statistical framework to various perturbations of the fMRI-derived location 

prior. 

We randomly picked two spatially extended sources over the cortical surface, 

and generated scalp EEG data (SNR = 10) corresponding to a mixture of 

these two sources (see Equation 1). The gain matrix was similar to that used 

for the real EEG data whose analysis is described in the main body of this 

manuscript. The two clusters and the corresponding EEG scalp data can be 

seen on Figure 5. 

We then constructed four models, namely: cluster 1, cluster 2, clusters 1+2, 

and no cluster. We then applied the proposed method to two distinct data time 

windows (see Figure 5): The first data window was expressing the only 

contribution of cluster 1, whereas the second data window only contained 

signal originating in cluster 2. 

Figure 6 shows the results of the Bayesian model comparison for the first data 

window. As expected, the more probable model was the model containing 

only the first cluster. Moreover, the model containing only the second cluster 

was less plausible than the model containing no cluster. This means that the 

method preferred the whole-brain background component alone to a model 

containing a spatial component that was not found in the scalp data (cluster 

2). This is important, since the no fMRI prior (whole-brain background model) 

would have been favoured to the wrong fMRI-derived prior (cluster 2 + whole-

brain background). Note also that the estimated cortical activity under the 

whole-brain background model spreads over the cluster 1 and extends further 

apart from it, due to the nature of the regularization (see Figure 6). In 

contradistinction, the estimated cortical activity under the model containing 



 

 

cluster 1 (and the whole-brain background) is sharp and focused on cluster 1, 

again due to the nature of the regularization (note also the difference in terms 

of maximum power of the two solutions). This means that the cortical activity 

is much better estimated under the latter model. 

 

Finally, Table 2 summarizes the results for both datasets (1 and 2): 

 

 models 

 cluster 1 cluster 2 clusters 1+2 no cluster 

dataset 1 -3.71x102 -4.51x102 -3.72x102 -4.50x102 

dataset 2 -2.43x102 -1.93x102 -1.94x102 -2.42x102 

Table 2: log-model evidences of each pair of model and dataset.  

 

It can be seen that for whatever the dataset, the model containing clusters 1 

and 2 is always the second most plausible model, and that the “whole-brain 

background” model (no cluster) is always second least plausible. In addition, 

the true model (cluster 1 for dataset 1 and cluster 2 for dataset 2) is always 

favoured. Also, the wrong model (cluster 2 for dataset 1 and cluster 1 for 

dataset 2) is always the least probable of all models. This form of double 

dissociation basically means that: 

- if the spatial components include the true source, the true source (and 

only the true source) is favoured; 

- if the spatial components do not include the true source, the “whole-

brain background” model is favoured. 

These results both reproduce and extend the findings reported in Daunizeau 

et al. 2005, since the method reported in the above reference boils down to 

the relative comparison of the full (clusters 1+2, with identical associated 

hyperparameters) model to the “whole-brain background” (no cluster) model. 

However, we are now in a position to assess the specificity of the method with 

respect to each of the individual fMRI clusters, which could not have been 

done before. 

 

 



 

 

 

   

 

 

 

 



 

 

Figure legends 
 

 

Figure 1. Spike and slow wave: scalp EEG data. 
Left: 32-channels EEG recorded inside the scanner after MR artefact 

subtraction, showing the prolonged (20 sec) generalized spike and wave 

discharge (3 Hz).  
Top right: coregistrated GSW complexes (channel P7) and subsequent 

evoked (average) response. 

Bottom right: respective scalp topologies of the spike (left) and slow wave 

(right) evoked responses at their respective peak. Note the overall (reversed) 

similarity of the components, probably indicating a partial common set of 

generators. 

 

Figure 2. Spike and slow wave: fMRI data. 
Top-left: SPM{F} from the same patient overlaid onto T1 MNI image (p<0.05 

FWE-corrected). BOLD response shows bilateral thalamic activation, left 

precuneus, left limbic lobe (showed by cross hair), bilateral middle temporal 

gyrus, left superior frontal gyrus, left medial frontal gyrus, deactivations (brain 

regions identification were done giving Talairach coordinates (see e.g. 

http://ric.uthscsa.edu/project/talairachdaemon.html). 

Bottom-left: the SPM canonical cortical mesh, onto which the 3D-volumic 

SPM was interpolated. 

Top-right: the SPM field interpolated on the cortical surface, shown on the 

inflated SPM canonical cortical mesh. 

Bottom-right: The 7 fMRI clusters that were used for fMRI-constained EEG 

source reconstruction, after morphological operations (thresholding, closing 

and erosion of the thresholded field). 

 

Figure 3. Spike and slow wave: results. 
Top-left: Free-energies (EM approximation to the log-Bayesian model 

likelihood, see Appendix I) of the 127 different source space partitions derived 

from each fMRI cluster combination (blue: spike, red: slow wave). The stars 

indicate the significantly most plausible fMRI-derived source partition. For the 



 

 

spike, the diamond indicates the second most plausible fMRI-derived source 

partition. The dashed lines show the free-energy of non fMRI-contrained 

inverse solution, for the spike (blue) and the slow wave (red), respectively. 

Note that, despite being significantly less likely than the most plausible fMRI-

derived source partitions, the non fMRI-constrained inverse solutions still win 

over the vast majority of fMRI-derived source partitions.  

Bottom-left: Posterior probabilities of the 127 different source space partitions 

derived from each fMRI cluster combination (blue: spike, red: slow wave). 

These are basically normalized model likelihoods (see Appendix I). The stars 

indicate the significantly most plausible fMRI-derived source partition. For the 

spike, the diamond indicates the second most plausible fMRI-derived source 

partition. Note the flatness over the rest of the source partitions, with a 

posterior probability bellow 10-3 (this also holds for the non fMRI-constrained 

inverse solution). 

Top-right: the two best source space partitions for the spike component of the 

GSW complex. These two solutions only differ by the laterality of the active 

medial frontal gyrus. 

Bottom-right: the best source space partitions for the slow wave component of 

the GSW complex. This set of bilateral temporal-parietal clusters is common 

to both he spike and the wave components. 

 

Figure 4. Spike and slow wave: non fMRI-constrained estimates 
Top row: top, bottom, front and back views of the “whole-brain background” 

(non fMRI-constrained) source reconstruction of the spike component. 

Bottom row: top, bottom, front and back views of the “whole-brain 

background” (non fMRI-constrained) source reconstruction of the slow wave 

component. 

The estimated cortical activity power under the “whole-brain background” (no 

cluster) model is basically similar to a standard minimum norm estimate 

(MNE) of cortical activity. 

 

Figure 5. Simulated experiment: simulation set-up 



 

 

Left: simulated 32-channels EEG, showing two components (data windows 1 

and 2), respectively associated with two different simulated underlying cortical 

sources. 

Right: two simulated cortical sources (cluster 1: right frontal lobe, cluster 2: left 

temporal lobe) and their respective topology on the scalp EEG data. 

 

Figure 6. Simulated experiment: results for data window 1 
Top-left: Free-energies (EM approximation to the log-Bayesian model 

likelihood, see Appendix 1) of the 3 different source space partitions derived 

from each cluster combination (cluster 1, 2 and 1+2). The stars indicate the 

significantly most plausible source partition. The green dashed lines show the 

free-energy of non fMRI-contrained inverse solution. Note that, despite being 

significantly less likely than the most plausible fMRI-derived source partitions, 

the non fMRI-constrained inverse solutions still win over the worst source 

partition (cluster 2 only).  

Bottom-left: Posterior probabilities of the 3 different source space partitions 

derived from each cluster combination. These are basically normalized model 

likelihoods (see Appendix 1). The stars indicate the significantly most 

plausible source partition. 

Top-right: the estimated cortical activity power under the most plausible 

source space partition (cluster 1 only). 

Bottom-right: the estimated cortical activity power under the “whole-brain 

background” (no cluster) model. This is basically similar to a standard 

minimum norm estimate (MNE) of cortical activity. 
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