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We present accurate and up-to-date constraints on the complete set of dimension five and six operators
with scalar, fermion and vector dark matter (DM). We find limits using LHC monojet data, spin
independent and spin dependent direct searches, relic density and CMB, and show the interplay between
high and low energy data in setting bounds on the parameter space. In order to properly compare data taken
at different energies, we take into account the effect of the running and mixing of operators. We also take
into account the local density uncertainties affecting direct detection data, and apply EFT validity criteria
related to the cut on the invariant mass of DM pair production at the LHC, which turns out to be especially
important for the case of vector DM. Finally, we estimate the potential of the future LHC runs to probe DM
parameter space.

DOI: 10.1103/PhysRevD.99.015006

I. INTRODUCTION

Understanding the nature of dark matter (DM) is one of
the greatest puzzles of modern particle physics and cos-
mology. Although overwhelming observational evidences
from galactic to cosmological scales point to the existence
of DM [1–3], after decades of experimental effort only its
gravitational interaction has been experimentally con-
firmed. Currently, no information is available on the DM
properties, such as its spin, mass, interactions other than
gravitational, symmetry responsible for its stability, number
of states associated to it, and possible particles that would
mediate the interactions between DM and the standard
model (SM) particles. If DM is light enough and interacts

with SM particles directly or via some mediators with a
strength beyond the gravitational one, its elusive nature can
be detected or constrained in different ways:

(i) from direct production at colliders, resulting in a
signature exhibiting an observed SM object, such as
jet, Higgs, Z, or photon, that recoils against the
missing energy from the DM pair [4–7];

(ii) via the relic density constraint obtained through the
observations of cosmic microwave background
(CMB) anisotropies, such as those of WMAP and
PLANCK collaborations [1,8];

(iii) from DM direct detection (DD) experiments, which
are sensitive to elastic spin independent (SI) or spin
dependent (SD) DM scattering off nuclei [9–12];

(iv) from DM indirect detection searches, that look for
SM particles produced in the decay or annihilation
of DM present in the cosmos, both with high
energies observables (gamma-rays, neutrinos,
charge cosmic rays) produced in the local Universe
[13–18], and by studying the effects of energy
produced by DM annihilation in the early universe
on the properties of the CMB spectrum [1,19,20].

In this work we obtain the present constraints on three
scenarios for the DM particles: complex scalars (ϕ), Dirac
fermions (χ), and complex vectors (Vμ). In order to describe
the interactions of the new states, we parametrize the DM
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interactions with the SM quarks and gluons as an effective
field theory (EFT) that contains a complete set of operators
of dimension six or less. Notice the presence of the
coupling g� in the definition of the effective operators,
which we insert according to the naive dimensional
analysis [21]. Moreover, for the vector DM case we choose
the parametrization suggested in Ref. [22] that takes into
account the high energy behaviour of the scattering
amplitudes that are enhanced by an energy factor
ðE=mDMÞ for every longitudinal vector DM polarization.
Here, our goal is to explore the complementarity of the

collider and noncollider experiments mentioned above for
all DM EFT operators and DM spin listed in Table I
[22–24] for DM masses in the GeV-TeV range; for lighter
DMmasses see e.g., [25]. For the sake of consistency of our
analyses, we obtain the present constraints from the LHC
data taking into account the validity of the EFT [26–28]
using the prescription of Ref. [29]; see Sec. IV for details.
Furthermore, the correct comparison between the LHC and
noncollider bounds requires that we consider in our
analyses the running of the EFT operators from the TeV
scale down to the GeV one. This is important because
the running of operators leads to mixing between them
at low energy which can give rise to stronger DM DD
limits [30–36].
As it is well known, the DM DD searches are plagued by

the uncertainty on the local DM density [37–42] which
propagates to the limits on the DM DD cross sections
reported by the experiments, inducing variations up to one
order of magnitude. Here we estimate the impact of this
uncertainty on the DM bounds, presenting three scenarios
that range from a conservative to a more optimistic one. On
the other hand, indirect constraints from CMB are unaf-
fected by the usual unknowns related to the DM density
profile within structures. For this reason, we also include
the CMB data in our analyses that lead to more robust
limits.
This paper is organized as follows: in Sec. III we study the

running of the EFT DM operators from the TeV to the GeV
scale and the effect of their mixing, while we present our
analyses framework and available constraints in Sec. IV.
Section V contains our main results for all operators in
Table I that show the complementarity of the collider and
non-collider constraints. Finally, we draw our conclusions
in Sec. VI.

II. THEORETICAL SETUP

In this work, we assume that for all the operators from
Table I the DM current is coupled with the same strength to
the SM currents for all quark flavors or the gluon field
strength (and its dual). This assumption is specific for
scalar and pseudoscalar SM currents since an alternative
approach can also take place, where the respective cou-
plings contain quark masses as an additional factor in the

TABLE I. Minimal basis of operators of dimension six or less
involving only complex scalar DM (ϕ), Dirac fermion DM (χ) or
complex vector DM (Vμ) interacting with SM quarks (q) or
gluons. Here we denote the field strength tensor of the gluons as
Gμν and its dual as G̃μν. We show the Wilson coefficients at the
scale Λ. Details on their running can be found in Sec. III.

Complex scalar DM

g2�
Λ ϕ†ϕq̄q [C1]
g2�
Λ ϕ†ϕq̄iγ5q [C2]

g2�
Λ2 ϕ†i∂μ

↔
ϕq̄γμq

[C3]

g2�
Λ2 ϕ†i∂μ

↔
ϕq̄γμγ5q

[C4]

g2�
Λ2 ϕ†ϕGμνGμν

[C5]
g2�
Λ2 ϕ†ϕG̃μνGμν

[C6]

Dirac fermion DM

g2�
Λ2 χ̄χq̄q [D1]

g2�
Λ2 χ̄iγ5χq̄q [D2]
g2�
Λ2 χ̄χq̄iγ5q [D3]

g2�
Λ2 χ̄γ5χq̄γ5q [D4]
g2�
Λ2 χ̄γμχq̄γμq [D5]

g2�
Λ2 χ̄γμγ5χq̄γμq [D6]
g2�
Λ2 χ̄γμχq̄γμγ5q [D7]

g2�
Λ2 χ̄γμγ5χq̄γμγ5q [D8]
g2�
Λ2 χ̄σμνχq̄σμνq [D9]

g2�
Λ2 χ̄σμνiγ5χq̄σμνq [D10]

Complex vector DM

g2�m2
DM

Λ3 V†
μVμq̄q [V1]

g2�m2
DM

Λ3 V†
μVμq̄iγ5q [V2]

g2�m2
DM

2Λ4 iðV†
ν∂μVν − Vν∂μV

†
νÞq̄γμq [V3]

g2�m2
DM

2Λ4 ðV†
ν∂μVν − Vν∂μV

†
νÞq̄iγμγ5q [V4]

g2�m2
DM

Λ3 V†
μVνq̄iσμνq

[V5]

g2�m2
DM

Λ3 V†
μVνq̄σμνγ5q

[V6]

g2�mDM
2Λ3 ðV†

ν∂νVμ þ Vν∂νV†
μÞq̄γμq [V7P]

g2�m2
DM

2Λ4 ðV†
ν∂νVμ − Vν∂νV†

μÞq̄iγμq [V7M]

g2�mDM
2Λ3 ðV†

ν∂νVμ þ Vν∂νV†
μÞq̄γμγ5q [V8P]

g2�m2
DM

2Λ4 ðV†
ν∂νVμ − Vν∂νV†

μÞq̄iγμγ5q [V8M]

g2�mDM

2Λ3 ϵμνρσðV†
ν∂ρVσ þ Vν∂ρV

†
σÞq̄γμq [V9P]

g2�mDM
2Λ3 ϵμνρσðV†

ν∂ρVσ − Vν∂ρV
†
σÞq̄iγμq [V9M]

g2�mDM
2Λ3 ϵμνρσðV†

ν∂ρVσ þ Vν∂ρV
†
σÞq̄γμγ5q [V10P]

g2�mDM
2Λ3 ϵμνρσðV†

ν∂ρVσ − Vν∂ρV
†
σÞq̄iγμγ5q [V10M]

g2�m2
DM

Λ4 V†
μVμGρσGρσ

[V11]

g2�m2
DM

Λ4 V†
μVμG̃ρσGρσ

[V12]
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form of mq=Λ (see, e.g., [23,43]). In our study we take into
account (and it is important to do this) that operators with
scalar or pseudoscalar quark currents (such as C1, C2, D1,
D2, D3, D4, V1, and V2) run with the QCD scale as quark
mass, such that at low energies the operators scale as

1

Λn →
mqðμÞ

mqðμLHCÞ
1

Λn ; ð1Þ

where μLHC ∼ TeV is the scale at which the operator is
generated and n ¼ 1, 2 is a coefficient to get the correct
dimension for the different operators. One should stress that
the ratio of Wilson coefficients is scale-independent since
all quark masses are renormalized by the same factor. We
also take into account the analogous running of the gluon
operators

1

Λn →
αsðμÞ

αsðμLHCÞ
1

Λn ð2Þ

in spite of the fact that they do not contain explicit αs
dependence.
Let us note that the operators for vector DM have also

additional factor ðmDM
Λ Þn (n ¼ 1, 2—depending on the

operator) which provides the same high-energy asymptotic
for all operators with the fixed power of Λ as discussed
in Ref. [22].
In our framework we do not consider operators where the

DM couples to leptons and electroweak bosons without
loss of generality. Such operators are not expected to
introduce new leading signatures at the LHC, but could
significantly lower down relic density and respectively
increase the lower limit on Λ. On the other hand relic
density can be strongly decreased by additional BSM
content which could be involved into coannihilation with
DM or by nonthermal (e.g., freeze-in) origin of DM which
will also lead to increase of the upper limit on Λ. Therefore
various model assumptions could lead to the same increase
of the lower limit on Λ and therefore larger values of Λ
should not be excluded in general by relic density con-
straints. From this point of view we find the conservative
(minimal value) of the upper limit on Λ from the relic
density evaluation and compare it with the lower limit on Λ
from DM direct detection and LHC data.

III. DIRECT DETECTION AND RUNNING
EFFECT OF THE EFT OPERATORS

In this section we demonstrate the importance of the
running of the operators for the DM DD constraints. As we
know, in quantum field theory radiative corrections may be
important to properly assess the phenomenological impli-
cations of a model. In the case of DM EFT this is even more
so, because (i) the bounds on the parameter space involve
experiments with very different energy scales, and (ii) the
Wilson coefficients can vary substantially between the
typical LHC energies (a few TeV) and the typical energies

of DM DD experiments (below the GeV). The first
radiative effects to be considered were the QCD ones
[30–32], while only later it has been realized that EW loops
could be important as well [33–36,44].
In our discussion we will make use of the renormaliza-

tion of currents [32], which we found fits best the purpose
of our study. As can be seen from Table I, all the operators
are written as a product

O ¼ JAχ JASM; ð3Þ

where A denotes some combination of Lorentz indexes and
Jχ and JSM are currents constructed out of DM and SM
fields only. Since we suppose χ (and hence Jχ) to be a gauge
singlet, only the renormalization of the SM currents has to be
computed. The lowest dimensional currents considered in
this work are the dimension 3 and 4 operators1

Jd¼3 ¼ fq̄γμq; q̄γμγ5q; q̄q; q̄γ5qg;
Jd¼4 ¼ fGμνGμν; G̃μνGμνg; ð4Þ

where q denotes any of the SM quarks and G is the gluon
field. At the low energies involved in the DM DD experi-
ments, the relevant degrees of freedom are nucleons and
nuclei, rather than quarks and gluons. For this reason, we
should match the amplitudes involving quarks and gluons
with matrix elements involving nucleons (see e.g., [45,46]
and Table II for some of the operators).
Let us start with the scalar quark current. The matrix

elements at zero momentum transfer are [47,48]

hNjmqðμÞq̄qjNi ¼ mNf
ðNÞ
Tq ;

hNjmQðμÞQ̄QjNi ¼ 2

27
mNf

ðNÞ
TG ; ð5Þ

for light (q ¼ u, d, s) and heavy quarks (Q ¼ c, b, t),
respectively. In the above equation, N stands either for

proton p or neutron n. The quantity fðNÞ
Tq amounts to the

light quark contribution to the nucleon mass mN , while

fðNÞ
TG ¼ 1 −

P
qf

ðNÞ
Tq . Notice that both the quark condensate

TABLE II. Operators for WIMP-nucleon SI interactions. Even
and odd refer to the properties with respect to quark/antiquark
exchange.

WIMP spin Even operators Odd operators

SI 0 4mDMϕϕ
†N̄N 2ið∂μϕϕ

† − ϕ∂μϕ
†ÞN̄γμN

1=2 2χ̄χN̄N 2χ̄γμχN̄γμN
1 4mDMV�

μVμN̄N 2iðV†α∂μVα − Vα∂μV
†
αÞN̄γμN

1There are two dimension 2 currents which are gauge singlets,
Bμν and H†H, which however do not mix under renormalization.
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and the running mass depend on the scale μ, in such a way
that their product is scale independent. As a consequence,
the form factors are also scale independent. The light
quarks form factors are known from hadron spectroscopy
and lattice calculations. In our numerical analysis we use
the quark scalar form factors presented in micrOMEGAs
[49]. Using the matrix elements of Eq. (5) the DM-nucleon
spin independent (SI) cross section can be written as

σSI ¼ 4λ2

π

�
mNmDM

mN þmDM

�
2

; ð6Þ

where λ is an operator dependent coefficient that will be
defined below.
To discuss the importance of the running, let us discuss

the example of the C1 operator. We will suppose that such
operator is generated at the scale Λ ∼ μLHC ∼ TeV with
Wilson coefficient g2�. As already explained, the q̄q
operator runs as the inverse of the quark mass, in such a
way that the C1 operator at an arbitrary scale μ looks like

g2�
Λ
ðϕ†ϕÞ

� X
q¼u;d;s;c;b;t

mqðμÞ
mqðμLHCÞ

ðq̄qÞ
�
: ð7Þ

The same is true for the D1 and V1 operators, and the λ
coefficient of Eq. (6) reads

λðNÞ
C1 ¼ mNg2�

4mDMΛ

�X
q

fðNÞ
Tq

mqðμLHCÞ
þ 2

27
fðNÞ
TG

X
Q

1

mQðμLHCÞ
�
;

λðNÞ
D1 ¼mNg2�

2Λ2

�X
q

fðNÞ
Tq

mqðμLHCÞ
þ 2

27
fðNÞ
TG

X
Q

1

mQðμLHCÞ
�
;

λðNÞ
V1 ¼mNm2

DMg
2�

4Λ3

�X
q

fðNÞ
Tq

mqðμLHCÞ
þ 2

27
fðNÞ
TG

X
Q

1

mQðμLHCÞ
�
;

ð8Þ

where N ¼ n, p.
A similar effect is present for the operators involving the

GμνGμν current (C5 and V11). In this case, the matrix
element of the gluon current is [47,48]

hNjαsðμÞGμνGμνjNi ¼ −
8π

9
mNf

ðNÞ
TG ; ð9Þ

and the combination αsðμÞGμνGμν (and hence the form
factor) is scale independent. Suppose now that the C5
operator is generated at the Λ scale with Wilson coefficient
g2�. At an arbitrary scale μ, the operator looks like

αsðμÞ
αsðμLHCÞ

g2�
Λ2

ðϕ†ϕÞðGμνGμνÞ: ð10Þ

The same result applies to the V11 operator. The λ
coefficients of Eq. (6) reads

λðNÞ
C5 ¼ −

2π

9
g�f

ðNÞ
TG

mN

αsðμLHCÞΛ2mDM
;

λðNÞ
V11 ¼ −

2π

9
g�f

ðNÞ
TG

mNmDM

αsðμLHCÞΛ4
: ð11Þ

In principle, in addition to the running of the individual
Wilson coefficients, a mixing between operators is gen-
erated [30–33]. However, for operators involving the
fmqq̄q; GμνGμνg currents the mixing was found to be
numerically unimportant [33].
Let us now turn to the analysis of the fq̄γμq; q̄γμγ5qg

currents. In this case, the mixing between operators can be
numerically important. Let us consider for instance the
operators involving the q̄γμγ5q axial vector current, i.e., the
operators C4, D7-D8, V4. These operators are responsible
for spin dependent DM scattering at DD experiments, with
bounds much weaker than those of spin independent
experiments. Nonetheless, the q̄γμγ5q axial vector current
mixes with the q̄γμq vector current during the running, and
a SI cross section is generated [33–35]. Suppose for
instance the C4 operator is generated at the Λ scale above
the top mass

L ¼ g2�
Λ2

ðϕ†i∂μ

↔
ϕÞ

�X
q

ðq̄γμγ5qÞ þ
X
Q

ðQ̄γμγ5QÞ
�
; ð12Þ

where the sum is taken over all light (q) and heavy (Q)
quark flavors. Then, using the results of Refs. [33–35], the
operators present in the Lagrangian at the DD scale are

L ≃
�
1 −

3αt
2π

log

�
μLHC

mt

�
þ � � �

�
g2�
Λ2

ðϕ†i∂μ

↔
ϕÞðūγμγ5uÞ

þ
�
1þ 3αt

2π
log

�
μLHC

mt

�
þ � � �

�
g2�
Λ2

ðϕ†i∂μ

↔
ϕÞðd̄γμγ5dþ s̄γμγ5sÞ

þ ð3 − 8s2wÞ
�
αt
2π

log

�
μLHC

mt

�
þ � � �

�
g2�
Λ2

ðϕ†i∂μ

↔
ϕÞðūγμuÞ

þ ð3 − 4s2wÞ
�
−
αt
2π

log

�
μLHC

mt

�
þ � � �

�
g2�
Λ2

ðϕ†i∂μ

↔
ϕÞðd̄γμdþ s̄γμsÞ; ð13Þ
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where we show only the most relevant contribution, coming
from top loops. In the previous expression, αt ≡ y2t =4π,
with yt the top Yukawa coupling. Notice that the top
contribution is present only down to the top scale, where
the top quark is integrated out. As already stressed, in
addition to the SD operators of the first two lines, the
running has generated the SI operators of the last two lines.
Even though the Wilson coefficients of the SI operators are
smaller than those of the SD ones, it has been shown in
Ref. [35] that they are sufficient to put bounds on g2�=Λ2

which are up to a factor of 100 stronger with respect to the
typical bounds that can be obtained from SD experiments
(i.e., considering only the operators in the first two lines).
This shows clearly the importance of the running in setting
consistent bounds on the parameter space of the DM EFT.
Let us point out however that for the effect to be numerically
relevant, it is instrumental for the coupling between the DM
and the top currents to be switched on inEq. (13). If this is not
the case, the SI operators are still generated in the running,
but with much smaller Wilson coefficients and weaker
bounds (see Ref. [35] for more details). In the analysis of
Sec. V we will numerically implement the running and the
mixing of the currents using the runDM code [33–35,50],
which takes into account all the contributions.
We also perform analysis of DM direct detection signals

from operators whose contribution is momentum sup-
pressed. These operators vanish in the limit of zero
momentum transfer limit, but they are not exactly negli-
gible at actual DM DD experimental transferred energies in
10–100 KeV energy range. We have used XENON100
constraints [51] on the relevant non-relativistic nucleon
operators O6, O7, O10, O11, O12 and Refs. [46,52] to
translate them into limits on C4, C6, D2, and D10 operators
for scalar and fermions DM. Since XENON100 are very
sensitive only to O10, O11, and O12 nucleon operators, the
only non-negligible constraints can be set on D2 and D10
operators as we discuss below in Sec. V. Since, to the best
of our knowledge, there is no studies on connection of
vector DM operators to nonrelativistic operators, we did not
produce the respective limits of vector DM.

IV. ANALYSIS SETUP AND CONSTRAINTS

In this section we describe the analysis setup and
constraints used in this study. In particular we delineate
the limits originating from CMB, direct detection experi-
ments, and collider searches.
Direct and indirect detection constraints are affected by

uncertainties of astrophysical nature. On one hand, the
scattering of DM off nuclei on the Earth depends on the
DM local density and velocity distributions around Earth.
On the other hand, the DM self-annihilation rate in our
galaxy depends on its particle density distribution therein.
For what is concern of this paper, whenever possible we
make the conservative choice to select targets that
can reduce as much as possible the uncertainties, and

thoroughly account for the remaining ones. In practice, this
means that: (i) for indirect searches we adopt CMB limits,
as the energy injection of DM annihilation is unaffected by
the usual unknowns related to DM density profile within
structures; (ii) for direct searches we explicitly take into
account the systematic effects generated by the astrophysi-
cal uncertainties in the determination of the local DM
density ρ0.

A. CMB constraints

The observation of byproducts of DM annihilation
(or decay) in astrophysical targets can be used to determine
(or constrain, in case of missing observations) relevant
DM properties such as its mass and annihilation cross
section. Such bounds depend on the unknown DM dis-
tribution within the astrophysical objects chosen as targets.
A detailed analysis has shown that, choosing the CMB as
target, the leading signal of DM annihilation is produced
around redshift z ∼ 600 [53]. This makes the CMB a
quantitatively competitive channel for indirect searches
[1,19,20], since at z ∼ 600 the DM has not fallen into
structures yet, and the observation is free from the usual
astrophysical sources of uncertainties (density profile
within a halo, distribution and density of subhalos, mass
of the smallest bound halo). Moreover, additional sources
of systematics affecting the CMB constraints have also
been thoroughly examined [54,55], and shown to affect the
results below the sensitivity needed for this paper. In the
following, we will neglect them leaving our conclusions
unaltered.
In order to set the CMB bounds on the quantity of our

interest Λ, we first obtain the observational bound on the
thermally averaged annihilation cross-section at redshift
600:

pann ¼
X
j

fjð600; mDMÞ
hσvijð600Þ

mDM
; ð14Þ

where hσvijð600Þ is the thermally averaged partial anni-
hilation cross section for the jth channel at redshift 600 and
fjðz;mDMÞ is the fraction of annihilation energy that is
absorbed by the plasma at redshift z. The quantity pann is
constrained by Planck TT, TE, EE, and lowP data [1]:

pann < 4.1 × 10−28
cm3

s GeV
at 95% C:L:; ð15Þ

and the values of the variable fjðz;mDMÞ are taken
form Ref. [56].
In order to bound the new physics scale Λ, we numeri-

cally compute the velocity dependent annihilation cross
section with micrOMEGAs [45], obtaining the relationship
between hσvijð600Þ and Λ for each effective operator and
each final state. It may be noted that for those operators for
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which the s–wave process is dominating, the thermally
averaged cross section is constant2 and hσvijð600Þ ¼
hσvijð0Þ. On the other hand, for those operators in which
the p–wave contribution dominates the annihilation cross
section, the CMB bound is almost ineffective, since it is
suppressed by the low TCMB temperature. A possible bound
in this case can be obtained from the big bang nucleosyn-
thesis (BBN), since this process happens at TBBN ∼MeV.
As shown in Refs. [57,58], the bounds on hσvi are
generically weaker than those obtained from the CMB,
and we have explicitly checked that in all the cases in which
the CMB bound is ineffective, the BBN bound is also not
relevant.

B. DM direct detection constraints

The determination of the DM mass and elastic scattering
cross section in a DM DD experiments is affected by
uncertainties associated to the flux of DM particles crossing
the Earth. Although the uncertainties on the Sun’s relative
motion with respect to the Galactic Center, or the exact
morphology of the Galactic bulge, do not affect the con-
clusion of the presence of a sizable component of DM at the
Sun’s location [37], they impact the reconstruction of the
DM profile throughout the Milky Way [38]. More specifi-
cally, two sources of uncertainties are relevant for DM DD
experiments: the local DM density3 and velocity distribu-
tion [40–42,59]. Although relevant, their effect is often
overlooked in putting DD bounds on the parameter space of
a model. The shape of the velocity distribution is known to
sizeably affect the results of different types of detectors
through their sensitivity to different DM masses. In
particular, it is important to note the large uncertainty in
the tail of the velocity distribution which is essential for DD
uncertainty especially for low DMmasses. Based on results
from cosmological simulations of galaxy formation, it
has been recently argued that the shape of the velocity
distribution is well approximated by a Maxwell-Boltzmann
one. This is so especially when baryonic processes are
taken into account (in the numerical simulations of Galaxy
formation in cosmological context) and in spite of the
remarkable variation in the central value of the distribution
as a function of the halo mass, e.g., Ref. [42]. It has also
been recently shown that the effect of variation of DM DD
rates from the variation of the central value of such
distribution can be overcome by the variation of the
Galactic uncertainties, see Ref. [60]. For the purpose of

this paper, we have decided to follow closely the analysis
in Ref. [60]. In particular, we consider three possible
values ρ0¼ 0.06GeV=cm3, ρ0 ¼ 0.3GeV=cm3 and ρ0 ¼
1.8 GeV=cm3. These values correspond to the lowest and
highest possible values of local relic density ρ0, resulting
from the uncertainties in the determination of R0 and v0, the
values of Galactic parameters, [60], while the central value
of ρ0 is used by the experimental collaborations. Using this
range for ρ0 we apply the experimental bounds stemming
from Xenon1T SI searches [61] and from PandaX-II SD
analyses [62]. In our analysis we not take into account the
effects of the possible existence of a dark disk or stellar
streams with associated dark matter content, which are
expected to affect the low and high end of the velocity
distribution respectively, but whose actual existence is
currently debated, and virtually impossible to account
for correctly as of today.
We have also taken into account uncertainties in

XENON1T DM DD limit related to the different detector
sensitivity for different v0 values as well as values of the
escape velocity, vesc and found non-negligible effects for
mDM below 10 GeV which lead to modification of the
bounds on Λ by a factor up to two. To find these
uncertainties we follow the following procedure. The
values of the circular velocity v0 corresponding to the
determination of ρ0 ¼ 0.06 GeV=cm3, and 1.8 GeV=cm3

where v0 ¼ 180 km=s, and 312 km=s, respectively, see
[60]. For central value of ρ0 ¼ 0.3 GeV=cm3 we use value
v0 ¼ 220 km=s which is usually adopted by most Direct
Detection collaborations. DM DD limit for low DMmasses
is especially sensitive to the value maximal velocity vesc of
DM particles related to the finite value galactic mass. The
value varies within the (498 km=s–608 km=s) range [40].
For our analysis we have chosen vesc ¼ 498 km=s because
it provides more conservative exclusion. Using results of
Xenon1T experiment [61] obtained for v0 ¼ 220 km=s
we have recalculated limits for v0 ¼ 180 km=s and
v0 ¼ 312 km=s which we present in Fig. 1. In case of

FIG. 1. Variation of DM DD limits from XENON 1T recalcu-
lated for different v0 and vesc velocities for ðvmin

esc ; vmax
esc Þ ¼

ð498 km=s; 608 km=sÞ.

2We remind the reader that the thermally averaged cross
section is given by

hσvi ¼ haþ bv2 þ � � �i ¼ aþ 3

2
b

T
mDM

þ � � �

with T the temperature at which the process is computed.
3See Ref. [39] for a recent and thorough review.
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v0 ¼ 312 km=s we also show the limit obtained for
vesc ¼ 608 km=s. For smaller v0 dependence on this
parameter is not too strong. One can see that for small
DM masses of the order of 5 GeV the XENON1T limit on
the cross section fluctuates by factor of 5 upwards for small
values of v0 (low values of ρ0) and by factor 5 downwards
for large values of v0 (large values of ρ0).
In addition, when we obtain DD bounds, we also take

into account the relic density constraint. Direct detection
experiments constrain DM particles assuming that their
relic density matches the one of the cold DM component.
The simplest way to compute the detection rates is to
rescale the DM density distribution according to the
prescription

ρi ≡ ρ0min

�
1;

Ωi

ΩDM

�
; i ¼ ϕ; χ; V; ð16Þ

where ρ0 is the local DM density, Ωχ is the theoretical relic
density obtained via micrOMEGAs for every operator
listed in Table I and ΩDM ≃ 0.12 from Ref. [1].

C. Collider constraints

In the upcoming sections, we also present bounds coming
from collider searches. In order to perform the required
simulations, we implemented the different effective oper-
ators independently in FEYNRULES [63] and LANHEP [64]
and generated the signal using MADGRAPH5_AMC@NLO
[65]. The hadronization and parton showering was done
using PYTHIA 6.4 [66], with subsequent detector simulation
performed using MADANALYSIS5 [67] and DELPHES [68].
In order to obtain the limits on the scale Λ we consider

the CMS analysis of final state presenting jets and missing
transverse energy [5] based on data obtained at 13 TeV with
an integrated luminosity of 35.9 fb−1. This analysis was
performed as a counting experiment in 22 independent
signal regions characterized by (i) Emiss

T > 250 GeV,
(ii) one jet with pjet

T > 100 GeV and (iii) jηjj < 4.5. In
order to simulate the DM contribution to this process we
studied

pp → jþ ðϕϕ; χχ; VVÞ ð17Þ

for all operators in Table I. As it is well known, higher
dimensional operators such as the ones in our EFT can lead
to perturbative partial wave unitarity violation at high
energies, signaling a maximum value of the center of mass
energy for its applicability. Therefore, in order to guarantee
the validity of the EFTwe impose in our simulation that the
invariant mass of the DM pair Mχχ;ϕϕ;VV satisfies [29]:

Mχχ;ϕϕ;VV < Λ: ð18Þ

In our statistical analysis we use the simplified likelihood
approach given in Ref. [69], taking into account the full

correlation and covariance matrix provided in [5]. More
specifically, we defined the likelihood function

LðΛ; g�; θÞ ¼
Y
i

ðsiðΛ; g�Þ þ bi þ θiÞnie−ðsiðΛ;g�ÞþbiþθiÞ

ni!

× e−ð12θTV−1θÞ; ð19Þ

where the siðΛ; g�Þ is the expected number of events of the
DM signal in ith bin, bi is the respective number of
background events and ni is the number of observed
events. In our case the signal cross section for each bin
is a function of the coupling g� and the scale Λ. For
practical purposes we consider three different benchmark
values for g� ¼ 4π, 6, and 1. The systematic uncertainties
of the SM backgrounds and the DM signal are treated as
nuisance parameters and they are approximated by zero-
mean Gaussian variables θi and a covariance matrix V.
We define our test statistic function as

TSðΛÞ≡
(
−2 ln LðΛ;θ̂ΛÞ

LðΛ̂;θ̄Þ Λ̂ ≤ Λ

0 Λ̂ > Λ
; ð20Þ

where θ̂Λ is a θ vector that minimizes the logarithm of
Eq. (19) for a given value of Λ. On the other hand, Λ̂ and θ̄
are the values of Λ and of the θ vector that globally
minimize the logarithm of Eq. (19). We find the upper limit
on the scale of the mediator varying Λ until TSðΛÞ ¼ 4.4

In addition to the present limits we also perform a
projection of the CMS reach for an integrated luminosity of
300 fb−1. For this projection we assume a Gaussian like-
lihood, that the number of background events scales with
the luminosity and that the uncertainty on the background
scales as the square root of the luminosity. We set a lower
background limit to be 1% of the background, based on
postfit numbers with respective background error provided
by ATLAS and CMS [5,70].

V. RESULTS

A. Noncollider constraints

In this section we present combined noncollider con-
straints for all operators under study. In particular, we
obtain the bounds originating from DM DD searches,
indirect DM searches from the CMB and relic density
assuming the freeze-out mechanism and standard cosmol-
ogy. The results in this section are obtained with three
different tools: micrOMEGAs [49], a modified version of
the code released with [46] and runDM [33–35,50].

4Here we neglect the small difference between 2σ exclusion
and 95% C.L. exclusion.
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1. Complex scalar DM

We start presenting in Fig. 2 the results for complex
scalar DM. In all the panels, the area below the three blue
curves represents the region excluded by SI DM DD
experiments, taking into account the uncertainty on the
local DM density as discussed in Sec. IV B. The shaded
blue region is the conservative exclusion, while the middle

and upper contours correspond to the center (namely the
one used by the experimental collaboration) and the most
optimistic exclusions, respectively. The dashed yellow line
corresponds instead to the region of parameter space in
which the predicted relic density matches the DM density
observed by the Planck collaboration. Above the dashed
yellow curve, the predicted relic density is larger than the

FIG. 2. Noncollider constraints on the scalar C1–C6 operators, as indicated in the panel box: (i) constraints from SI DM DD searches
(excluding the shaded blue region below the lowest blue contour), (ii) constraints from relic density (excluding the region above the
yellow dashed line), (iii) constraints from the CMB (excluding the shaded green area below the solid green line) and (iv) constraints from
the validity of the EFT (excluding the shaded grey area, where Λ < 2mDM). The central and upper blue contour represent the central and
lower values of the DM local density (see Sec. IV B).
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experimental one. The computation is done assuming that
the observed DM relic density is associated with only one
particle, interacting with the SM via only one of the
effective operators listed in Table I. The region excluded
by the CMB measurement is indicated by a shaded green
area below the solid green line. Finally, the grey-shaded
region represents the region Λ < 2mDM, excluded by the
requirement of the validity of the EFT.
From Fig. 2(a) we can learn that the C1 operator is

strongly constrained by SI DM DD searches since this
operator leads to a cross section that is neither velocity nor
transferred-momentum suppressed. In fact, we can see from
this panel that any scale Λ below 1000 TeV is excluded
even for mDM ¼ 1 TeV. Moreover, the other two blue
contours associated with the astrophysical uncertainties
show that the bounds can be tightened by almost an order of
magnitude. Therefore, it is important to be conservative to
make a robust exclusion of the parameter space, as we do in
the present work. We can also see from Fig. 2(a) that the
relic density data exclude Λ above 20 TeV for all DM mass
range under consideration, since in this region the ϕ particle
would over-close the universe. Notwithstanding, one
should note that this bound is quite model dependent,
e.g., adding an additional particle that could coannihilate
with the DM could change the relic density dramatically.
Finally, the CMB measurement leads to quite strong
bounds that exclude Λ below 1–10 TeV for g⋆ ¼ 1,
depending on the DM mass. This is due to the fact that
the C1 operator gives rise to s-wave annihilation cross
section, which is strongly constrained by the CMB bound.
We show in Fig. 2(b) the noncollider constraints on the

operator C2. As expected, the CMB and relic density
bounds on C2 are identical to those on C1. The SI DM DD
constraints are absent, since this operator violates parity. As
mentioned in the end of Sec. III, the limits on the relevant
C4, C6 momentum suppressed operators from DM direct
and indirect detection searches are quite negligible (of the
order of 10 GeV on Λ) so we do not present them here.
The limits on DD for the operator C4 originate from the
running. Therefore the complementary limit from CMB
plays a crucial role for these operators, excluding the
parameter space below the solid green line for g⋆ ¼ 1.
The unconstrained window can be tightened for DM
masses above ≃20 GeV using the relic density information
if we assume that there is no process that leads to DM co-
annihilation.
We display in Fig. 2(c) the limits for the operator C3, that

contains a vector quark current. The bounds coming from
SI DM DD are weaker than those on the operator C1 since
C3 is a dimension six operator, while C1 is dimension five.
The uncertainty on this constraint is roughly a factor of 3
due to the higher dimensionality of the operator. Moreover,
the annihilation cross section for the C3 operator is velocity
suppressed (p–wave), therefore the effect on the CMB
spectrum is negligible. The complementarity of the relic

density and DD DM bounds completely rule out WIMP
models that give rise at low energy to this operators only.
The bounds on the C4 operator, that contains a pseu-

dovector quark current, are shown in Fig. 2(d). At variance
with the operator C2, the SI DM DD limits are non-
vanishing for operator C4 since the running and mixing
effects play an important role; for further details see
Sec. III. Notice that the sudden drop of the SI DM DD
constraint around mDM ≃ 200 GeV is due to the rescaling
of the DM density distribution given in Eq. (16). Similarly
to the operator C3, C4 is also velocity suppressed, and
consequently it is not constrained by the CMB.
Finally, Figs. 2(e) and 2(f) present the noncollider

bounds for the C5 and C6 operators, involving the gluon
field strength. As we can see, there is no SD or SI DD
bound on C6 due to its parity violating nature. The bound
on C5 is instead important, given the large gluon content of
the proton. For DM masses below 10 GeV, the bound is
comparable to the one on the C3 operator. For larger
masses, the bound weakens because the SI cross section is
suppressed by an additional factor of m2

DM with respect to
the C3 case [see Eq. (11)]. Still, the SI bound is always the
dominant one, in the region in which the EFT is valid. The
constraints of the operator C6 are instead much weaker,
since it does not contribute to SI DM DD, being dominated
by the CMB data and relic density.
From Fig. 2 we can notice that the slope of the CMB

constraint is negative for the C1 and C2 operators, in contrast
with it being positive for C5 and C6. This happens because
the leading term for the annihilation cross section is inde-
pendent of the DM mass for C1 and C2, while it is propor-
tional to the DMmass squared for C5 and C6. This picture is
generic—if the amplitude for DM pair annihilation is not
velocity suppressed, then using dimensional analysis one
finds that: (a) for dimension five operators, the annihilation
cross section is constantwith respect to theDMmass, leading
to the slight negative slope because the “effective” photon
spectrum for the CMB constraint drops with the invariant
mass; (b) for dimension six operators the annihilation cross
section is proportional to M2

DM and one observes positive
slope in ðMDM;ΛÞ plane for the CMB constraint.

2. Dirac fermion DM

In Fig. 3 we present the noncollider constraints for the
operators D1–D4, that exhibit scalar or pseudoscalar
interactions of fermion Dirac DM with quarks. From this
figure we can see the operator D1 is strongly constrained by
the SI DMDD searches while the operators D2, D3, and D4
have weaker constraints from DD searches since they
give rise either to momentum suppressed spin-dependent
interactions (D3 and D4) or to momentum suppressed spin-
independent cross section (D2). Using XENON100 con-
straint on O11 we have found the respective limit on D2
operator which we present in Fig. 3(b). One can see that
bound on D2 from DD can be larger than the one from
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CMB. On the other hand, bounds from DD on the operators
D3 and D4 are much weaker and not presented here. Notice
that the uncertainty of the SI DM DD limits on D1 is of the
order of 3 since this operator is of dimension six; this is true
for all operators D1–D10. The CMB data lead to con-
straints on the operator D2 and D4 since they exhibit an
s-wave annihilation cross section, while D1 and D3 are not
bound by CMB due to their p-wave cross sections. The relic
density constraint set a strong upper bound on the operators
D2, D3 and D4 and rule out the operator D1 unless there is
a mechanism to avoid the overproduction of DM in the
early universe. As before, the theoretical consistency of our
framework, i.e., the EFT validity region, becomes impor-
tant just for large DM masses.
We show in Fig. 4 the noncollider limits on the fermion

operators D5–D8, which contain vector and axial vector
currents. The SI DM DD bound on the D5 operator is very
strong, since its SI cross section is unsuppressed. On the
other hand, the constraints on the operator D6 are milder,
since its SI cross section is both velocity and nuclear recoil
momentum suppressed. The operator D7 has in principle
only SD cross sections. However, as discussed in Sec. III,
the running from the higher scale mixes the operators D7
and D5, leading to SI limits on D7. The same is true for the

D8 operator, which in the running to low energy mixes into
D6. Notwithstanding, the strongest limits on D8 come from
the PandaX-II SD searches [62], since the D6 SI cross
section is momentum suppressed in contrast with the D8
SD one. We can see from the Fig. 4 that the CMB data put
stronger constraints on the D5 and D7 operators since they
lead to unsuppressed s-wave annihilation cross sections.
The limits on the operators D8 are much weaker since its
s-wave cross section is dumped by a factor m2

q=m2
DM, while

the operator D6 is not limited due to its p-wave annihilation
cross section.
Finally, we show in Fig. 5 the noncollider limits on the

operators D9 and D10 which exhibit tensor currents. The
DD cross section due to operator D9 is spin dependent,
however, it is not suppressed. Notice that the conservative
limit on D9 is restricted to a very narrow DM mass range.
To understand this result, it is interesting to compare the
operators D8 and D9, since they have the same low energy
limit. Despite the numerical coefficient of D9 being twice
the one of D8 [46], the constraints on D8 are stronger than
the ones on D9 because the bounds on the latter are
weakened by the rescaling in the relic density given in
Eq. (16). On the other hand bounds on D10 operator from
DD constraints are not negligible even in spite of the fact

FIG. 3. As in Fig. 2, for the fermion operators involving scalar and pseudoscalar currents D1–D4.
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that DD rates are momentum suppressed. Similar to the
case of D2 operator we use XENON100 constraints on
O10–O12 nonrelativistic operators to find the limit on D10
operator presented in Fig. 5(b). One can see that this limit is
weaker than the one on D2 but not negligible. The CMB

bound on both operators D9 and D10 is important in part
of the parameter space, since these operators exhibit
s-wave annihilation cross sections. Moreover, for both
operators, the relic density leaves only a small window
below Λ ∼ 10 TeV unconstrained.

FIG. 4. As in Fig. 2 for the D5–D8 fermion operators, involving vector and vector-axial currents. The solid red lines and the respective
shaded area indicate the SD DM DD bounds from PandaX-II. The uncertainty due to the different values of the local DM density is
presented in an analogous way as for SI DM DD.

FIG. 5. As in Fig. 2 for the D9–D10 fermion operators involving tensor currents.
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Before concluding, let us observe that also in the fermion
DM case the CMB bound has positive slope, as was
happening in the case of the C5 and C6 operators.
Again, this is due to the fact that when the annihilation
cross section is not velocity suppressed, it grows as m2

DM.

3. Vector DM

Before we present the noncollider bounds on vector DM
we would like to stress that the operators V1–V12 exhibit
high energy asymptotic behaviors that correspond to
dimension-seven and -eight operators [22], and therefore
we included additional powers of mDM=Λ in their para-
metrization; see Table I. With this parametrization the
limits on Λ from the LHC and noncollider experiments are
of the same order as the one for scalar and fermion DM
operators; for further details see Ref. [22].
We present the noncollider limits on the effective

operators containing vector DM in Fig. 6. When the
exclusion plots are very similar, e.g., as is the case for
the V2, V6, V9M, and V10M operators, we show only one
representative plot. Let us discuss these results starting with
DD bounds. The most stringent SI constraints are on the V1
and V3 operators, since these operators lead to nonsup-
pressed SI cross sections. We can see from panels 6(a) and
6(c) that for g⋆ ¼ 1, the constraint on Λ can reach 10 TeV
for large DM masses around ≃1 TeV. Another operator for
which the SI constraints are relevant is V4, although it
exhibits a pseudo-vector quark current. Notwithstanding, it
develops a small mixing with the V3 operator due to the
running from the scale Λ to the 1 GeV scale. As can be seen
from Fig. 6(d), the SI DD limits on V4 are weaker than
those on V1 or V3; still, they dominate the constraints for
DM masses in the range ≃20–300 GeV. Also the V11
operator is quite constrained by SI searches, which are the
dominant bound for mDM ≲ 500 GeV (notice that,
although the bounds on V11 and V12 are presented in
the same panel, the SI bound applies only to the V11
operator, since V12 is parity-violating and do not contribute
to the SI cross section). The other twelve operators
involving vector DM either do not contribute to SI
processes or their contributions are velocity/momentum
suppressed, and consequently, are not bound by SI DM DD
searches. It is interesting to observe that the astrophysical
uncertainties amount to a factor of 2.
The SD DM DD data can be used to constrain a few

operators that lead to SD cross sections that are unsup-
pressed. We can see from Fig. 6(g) that for the V9P and
V10P operators, the most constraining limits in the DM
mass range≃20–200 GeV stem from SDDMDD searches.
On the other hand, the SD bounds on the operator V5, see
Fig. 6(e), are rather weak. Nevertheless, it can be the most
stringent one for DM masses between 10 and 50 GeV
depending on the local DM density.
The CMB data constrain operators exhibiting s-wave

DM annihilation channels that, in the case of vector DM,

are V1, V2, V5, V6, V9M, V10M, V11, and V12. In the
case of the operator V1, the DM bounds are looser than the
ones coming from SI DMDD, as we can see from Fig. 6(a).
On the other hand, for the operator V5, the CMB limits
are tighter than the conservative SD DM DD ones; see
Fig. 6(e). For the remaining operators constrained by CMB
data, i.e., V2, V6, V9M, V10M, and V12 the CMB bounds
are the more robust ones on these operators as we can learn
from Figs. 6(b) and 6(h). Nevertheless, the analyses of the
relic density predicted by the operators in the last class
indicate that vector operators are either ruled out (V1, V3,
V4, V9P, and V10P) or very strongly constrained (V2, V5,
V6, V7M, V7P, V8M, V8P, V9M, V10M, V11, and V12).
As remarked before, these last limits can be evaded with
simple modifications of the model.
It is interesting to notice that the operators V7P, V7M,

V8P, and V8M are only bound by the relic density data and
EFT validity region, as we can see from Fig. 6(f).5

B. LHC sensitivity and its complementarity
to noncollider constraints

In this section we present the LHC bounds on all the
operators listed in Table I in the ðmDM;ΛÞ plane, analo-
gously to what has been done for the non-collider con-
straints in the previous section. Applying the analysis
described in Sec. IV C we obtain limits on the DM EFT
operators using the CMS monojet and mono W=Z
(hadronically decaying) searches [5] at LHC Run 2 with
an integrated luminosity of 35.9 fb−1. Moreover, we also
assess the LHC potential to probe the DM EFT for a
projected integrated luminosity of 300 fb−1.
Our results are shown in Figs. 7–11. In these figures, the

red shaded area represents the LHC exclusion region at
95% CL for g⋆ ¼ 1. Furthermore, the area inside the solid
orange (blue) curve is excluded at 95% CL by the presently
available CMS monojet data for g⋆ ¼ 6 (g⋆ ¼ 4π). For the
sake of comparison, we also display in these figures the
excluded region for g⋆ ¼ 1 due to noncollider searches,
represented by the light purple shaded area. We do not
include the relic density constraints into the “noncollider”
excluded area since these bounds are model-dependent and
can easily be evaded, e.g., by the addition of coannihilating
DM partners. The region where the EFT approach is not
valid (Λ > 2mDM) is represented by the grey triangle in the
right bottom side of the figures. Finally, the regions inside
the dashed red, orange and blue curves represent our
estimates for the future 95% CL exclusion by the LHC
with 300 fb−1, taking g⋆ ¼ 1, 6 or 4π, respectively.
A common feature of the monojet excluded regions is

that it exhibits upper and lower limits in Λ for a fixed DM

5The relic density bounds shown correspond to the ones on
V7M and V8M. The limits on V7P and V8P are very similar
differing by the fact that the line describing this limit starts at
mDM ∼ 20 GeV.
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FIG. 6. Noncollider constraints (DD, CMB, relic density, and validity of the EFT) for the operators involving vector DM. We group the
operatorswithsensiblysimilarbounds.TheconventionsaresameofFig.4.Notice that inpanel (h) theSIboundappliesonlyto theV11operator.
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mass. The lower limit is caused by the cut given in Eq. (18),
that guarantees that the EFT is applied only within its
validity limit. Furthermore, this cut has an important effect
when the bound on Λ is low. On the other hand, for higher
values of Λ (above few TeV) the impact of this cut on the
cross sections is negligible for scalar operators. We will see
below that there are also important differences in the effects
of this cut for different DM spin cases since the DM pair

invariant mass distributions depend strongly on the DM
spin, as discussed in Ref. [22].

1. Complex scalar DM

We present in Fig. 7 the CMS monojet bounds on the
EFT operators C1–C6 that contain scalar DM states. From
the top left panel of this figure, we can learn that the LHC

FIG. 7. LHC monojet constraints on EFT operators with scalar DM, as indicated in each panel. The area inside the red, orange, and
blue solid curves is excluded by current LHC data at 95% CL for g⋆ ¼ 1, 6 and 4π, respectively. The projected LHC limits for 300 fb−1

are indicated by dashed thin lines. The combined exclusion regions from CMB and DM DD searches for g⋆ ¼ 1 are given by the light-
purple area below the purple curve. The grey triangular region marks the region where the EFT approach is not valid.
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data is able to exclude up to DM masses of ≃70 GeV for
Λ≲ 600 GeV and g⋆ ¼ 1. We can also see how these
bounds evolve with the coupling g⋆: as g⋆ varies, the upper
limit on Λ does not scale as g2⋆ as naively expected. The
reason for this behavior is the cut in Eq. (18), that reduces
more significantly the available phase space for smaller g⋆
since this is associated to smaller Λ upper limits. This
behavior is true for all operators containing vector and
pseudo-vector quark currents. Moreover, this panel shows
that the conservative noncollider bounds are the strongest
ones for g⋆ ¼ 1 This situation persists even when a larger
integrated luminosity is accumulated.
The top right panel of Fig. 7 shows the collider bounds

on the operator C2. As we can see, the collider limits on C1
and C2 are the same. Moreover, the most stringent limits on
this operators originates from noncollider data, irrespective
of the integrated luminosity. In addition, from the middle
left panel of this figure we see that results for the operator
C3 are similar to the ones for C1 and C2, except that the
collider limit on Λ is reduced.
The scale of Λ which the LHC can probe for scalar DM

EFToperators strongly depends on the effective operator: it
is about 0.6 TeV for the C1 and C2 operators, it is only
about 0.3 TeV for the C3 and C4 operators, and it is about
3 TeV for the C5 and C6 operators. The LHC searches are
the least sensitive for the operators C3 and C4 for two
reasons: first of all, these operators contain explicit
momentum dependence through the derivative, and LHC
cuts on the monojet are not hard enough to enhance this
operator. Second, the invariant DM pair mass distribution is
shifted to higher values than for other scalar DM operators
(see detailed discussion in Ref. [22]), therefore the cut
given by the Eq. (18) reduces their signal more then for
other EFT operators with scalar DM.
From Fig. 7 we can also see that LHC plays an important

complementary role in probing the DM parameter space for
the C4 and C6 operators. Notice that the LHC searches are
especially important to test the operator C6 that involve
gluons. In fact, the sensitivity of noncollider experiments to
the EFT parameter space for this operator is very poor, as
one can see from Fig. 7(f). Moreover, even for the operators
C1, C2, and C3, the LHC could help elucidate the nature of
DM by independently probing the DM parameter space,
especially if some DM signals would take place at collider
and noncollider experiments.
In the case that the DM interactions are stronger, e.g.,

g⋆ ¼ 4π, we can scale the CMB and DD limits shown in
Fig. 7 by g2⋆ (g⋆) for dimension 5 (6) operators to compare
with the LHC results. The conclusions for g⋆ ¼ 4π are the
same as the ones above for g⋆ ¼ 1, except for the range of
masses where the DM DD is dominant that shrinks to the
interval 20–140 GeV. Moreover, we project that the LHC
limits on C4 will be the strongest ones for an integrated
luminosity of 300 fb−1.

2. Dirac fermion DM

From Fig. 8 we can see that the LHC monojet data
exclude DM masses up to ≃150–200 GeV and Λ ≲
900 GeV for the operators containing scalar and pseudo-
scalar quark currents and g⋆ ¼ 1. Furthermore, in the case
of effective operators containing vector and pseudovector
quark currents, the LHC excluded region is slightly larger
for g⋆ ¼ 1: mDM ≲ 200 GeV and Λ≲ 1.1 TeV. In the case
of couplings approaching the strongly interacting regime
(g⋆ ¼ 4π) the exclusion region is extended to mDM ≲
2 TeV and Λ≲ 20 TeV for all operators D1–D8.
Figure 8 also allows us to see the complementarity

between the collider and noncollider searches. First of all,
the DM SI DD bounds are more stringent than the LHC
ones for operators that possess unsuppressed contributions
to DM SI DD, i.e., D1 and D5; see panels (a) and (e) of this
figure. On the other hand, the LHC bounds are stronger
than the noncollider ones for the operators D6 and D8 since
these operators only exhibit velocity suppressed contribu-
tions to DM SI DD searches. The same conclusion applies
to the operator D3 that is not limited by neither the CMB
data nor the DD searches. Moreover, the CMB data and the
LHC monojet searches complement nicely each other for
the operators D2, D4, and D7 because the LHC searches
dominates the bounds for DMmasses smaller than≃50 GeV
while the CMB limits are stronger above this mass.
Figure 9 depicts the LHC limits on the operators D9 and

D10 that contain a tensor quark current. The LHC monojet
searches excludes the region mDM ≲ 600 GeV and Λ ≲
3 TeV for these operators. For larger couplings g⋆ ¼ 4π the
region is expanded to mDM ≲ 2 TeV and Λ≲ 35 TeV. For
the operator D9 and g⋆ ¼ 1, the CMBbounds dominates in a
small region for mDM ≳ 600 GeV while the LHC limits are
stronger below this mass. The most stringent bounds on
the operator D10 have three different sources depending on
the DM mass for g⋆ ¼ 1. At low DM masses ≃15 GeV the
bounds are dominated by the LHC searches while for heavier
masses ≳300 GeV the most important constraints come
from the CMBdata. On the other hand, the SI limits aremore
stringent in the mass window 15≲mDM ≲ 300 GeV.
As for the case of scalar DM, DD and CMB limits

on the Dirac fermion DM rescale as g2⋆ (g⋆) for dimension
5 (6) operators. In the case of g⋆ ¼ 4π the region where the
CMB constraints are more stringent than the collider ones
on D2, D4, D7, and D10 changes to DM masses in excess
of 350, 350, 400, and 620 GeV respectively. In the case of
the other effective operators for Dirac fermion DM the
conclusions remain the approximately the same for the
value of g⋆.

3. Vector DM

We display in Figs. 10 and 11 the present constraints
on vector DM operators that stem from the LHC monojet
searches. Notice that the LHC cross sections do not change
significantly whenwe replace a current by the corresponding
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FIG. 8. Constraints from the LHC monojet searches on the operators D1–D8 that contain Dirac fermion DM. The conventions are as
in Fig. 7.
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pseudo one. Consequently, we do not present the results for
the pseudocurrents unless their noncollider constraints are
different.
From the top panels of Fig. 10 we learn that the LHC

monojet constraints on the operators V1 and V2 are equal:

for g⋆ ¼ 1, the excluded region is given bymDM ≲ 40 GeV
and 100 ≤ Λ ≤ 400 GeV. As g⋆ increases to 4π, the
excluded region becomes mDM ≲ 2 TeV and 100 ≤ Λ ≤
9000 GeV. Notice that the lower limit onΛ does not depend
on the coupling g⋆. Since the V1 contribution to the SI DM

FIG. 10. Constraints from LHC monojet searches on the EFT operators V1, V2, V3, and V4 that exhibit vector DM. The conventions
are as in Fig. 7.

FIG. 9. Constraints from the LHC monojet searches on the operators D9 and D10 that contain Dirac fermion DM. The conventions are
as in Fig. 7.
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DD is unsuppressed the strongest bound on this operator
comes from the DD searches. On the other hand, for the
operator V2, the collider and noncollider limits are clearly
complementary: the collider limits dominate for DMmasses
smaller than 40GeVwhile theCMBdata give rise to themost
stringent limits at DM masses larger than 40 GeV. The
operators V3 and V4 do not lead to any collider limit for
g⋆ ¼ 1 even for a larger integrated luminosity (300 fb−1),
therefore, the noncollider limits are the most important ones,
showing again the synergy between low and high energy

data. This lack of sensitivity on these operators for g⋆ ¼ 1
originates from the shape of the invariant mass distribution
of the DM pairs that is shifted towards high values. Con-
sequently, the EFT validity cut in Eq. (18) discards a large
fraction of the events in this case. This reduction of number of
signal events is overcome only for larger values of coupling
g⋆ ¼ 6 (4π) for which the LHC reach can be mDM ≲ 600
(900) GeV and Λ≲ 2.5 (4) TeV.
The top left panel of Fig. 11 displays the LHC monojet

constraints on the operators V5 and V6, which are identical.

FIG. 11. Constraints from LHC monojet searches on the EFT operators V5, V6, V7M, V8M, V7P, V8P, V9M, V10M, V9P, V10P,
V11, and V12 that exhibit vector DM. The conventions are as in Fig. 7.
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For g⋆ ¼ 1 the LHC bounds are the most stringent on these
operators for DM masses up to ≃180 GeV and λ≲
600 GeV while the CMB limits play an important role
just in a small DM mass range around 200 GeV. On the
other hand, we can see from the right top panel of this
figure, that the operators V7M and V8M are not bound at
all for g⋆ ¼ 1. In the collider case the reason is the same
behind the null results for the operators V3 and V4. These
operators can only be probed by the LHC monojet searches
for higher values of g⋆.
The left middle panel of Fig. 11 contains the bounds on

the operators V7P and V8P that are only constrained by the
LHC monojet searches that exclude the narrow region
mDM ≲ 100 GeV and 250≲ Λ≲ 450 GeV for g⋆ ¼ 1. For
higher values of the coupling, e.g., g⋆ ¼ 4π this region is
substantially expanded to mDM ≲ 1.3 TeV and 250≲ Λ≲
6500 GeV. Once again the lower limit on Λ depends on g⋆
and on the integrated luminosity. The limits on the
operators V9M and V10M are equal and are shown in
the right middle panel of Fig. 11. In this case we witness a
nice complementarity between high and low energy data
for these operators for g⋆ ¼ 1. On one hand, the LHC
monojet data excludes the region mDM ≲ 70 GeV and
130≲ Λ≲ 300 GeV. On the other hand, the CMB bounds
are the strongest ones for mDM ≳ 65 GeV.
We can see from the left lower panel of Fig. 11 that the

limits on the operators V9P and V10P are rather loose,
however, the noncollider and collider ones are comple-
mentary. The LHC monojet data exclude the area mDM ≲
40 GeV and 160≲ Λ≲ 280 GeV, while the SD DM DD
searches are more relevant for DM masses in the range 40–
100 GeV. Moreover, the excluded area is increase for larger
values of g⋆ or for larger integrated luminosities. Last, but
not least, the limits on the operators V11 and V12 are
presented in the lower right panel of this figure. In this case,
the monojet constraints are more stringent than the direct
detection (valid only for the operator V11) and CMB ones,
excluding a large fraction of the parameter space for
g⋆ ¼ 1: mDM≲400GeV and 200≲Λ≲1200GeV. Notice
that these are the only operators that the Λ lower limits
changes for higher couplings or integrated luminosities.
In brief, from Figs. 10 and 11 we learn that LHC is

sensitive to a substantial numbers of operators containing
vector DM, such as V2, V5 V6, V7P, V8P, V9-V12 which
can not be probed at all or are poorly bound with non-
collider searches. The LHC limits strongly depend on
the type of the operator ranging from few hundred GeV
(V1, V2, V5,V6, V7P, V8P, V9M, V9P, V10M, V10P) to
about 1.3 TeV (V11,V12). Moreover, we also assess the
impact of the EFT validity cut in Eq. (18) for vector DM, a
fact that was not explored in previous studies.
In this scenario, the DD and CMB constraints rescale at a

fixed DMmass as g2=3⋆ and g1=2⋆ for operators suppressed by
Λ3 and Λ4 respectively. For g⋆ ¼ 4π, the dominance of the
CMB bounds on the operators V2, V5/V6, V9M/V10M,

and V11/V12 occurs for DM masses larger than 920, 1000,
850, and 1500 GeV respectively. Moreover, the collider
limits on V3 are more stringent than the DD ones for
mDM ≤ 50 GeV. For the other vector DM operators, the
conclusions remain the same for the upper bounds on Λ.
Nevertheless, there is a beautiful complementarity between
the noncollider and LHC searches since the former exclude
the region of small Λ that the collider searches do not cover
due to the validity of the EFT.

VI. CONCLUSIONS

In this work we have presented accurate and up-to-date
constraints on the complete set of dimension five and six
operators connecting SM quarks and gluons with a DM
candidate, which can be a complex scalar, a Dirac fermion
or a complex vector.
We have performed a comprehensive analyses of the

complementarity between collider and noncollider searches
to probe DM parameter space, including LHC monojet
data, bounds from SI and SD direct searches, relic density
limits and CMB indirect constraints due to the injection of
energy produced by DM annihilation in the early universe.
Since the characteristic energy scale for LHC and direct
searches differs by about six orders of magnitude, to
correctly evaluate the experimental sensitivity to the DM
EFToperators we have taken into account their running and
mixing from the TeV scale to the GeV one. This effect is
especially important for operators with pseudo-vector SM
quark current (C4, D6, D7, and V4 in Table I) which,
mixing into operators with vector SM quark current,
develop a SI cross section. Another important point has
been to take into account the realistic uncertainty in the DM
DD searches limits due to the uncertainty on the local DM
density. In some cases, the uncertainty can quantitatively
shift the bounds by roughly one order of magnitude, an
important result that must be taken into account to properly
address the excluded parameter space. As for indirect
searches, we have chosen to present only the bounds
coming from CMB data, since they are not plagued by
uncertainties on the DM distribution. These bounds are
particularly important when the direct detection rates are
suppressed. We have also found that the EFT validity
criteriaMDM;DM < Λ plays an important role for the case of
vector DM, when the invariant mass of the DM pair
MDM;DM is typically larger than in the case of scalar and
fermion DM, and there is no collider bound for relatively
small values of Λ.
Our updated bounds are summarized in Figs. 7–11 for all

the operators listed in Table I. In the case of scalar DM we
have found an important synergy between the different
experiments: while for the operators C1 and C3 (with scalar
and vector quark currents, respectively) the most stringent
bounds stem from SI searches, the best limits on the C6
operator (describing DM-DM-Gluon-Gluon interactions)
come from the LHC mono-jet data, since this operator is
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very weakly constrained by DD rates because it is parity
odd. At the same time, the most important constraints on
the C2 operator come from the CMB data, while the limits
on C4 are dominated by the LHC searches at low mDM and
by SI bounds for large DM mass values.
The overall picture for the Dirac fermion DM is similar

to the one of scalar DM: there is a synergy between the
collider and noncollider searches. The strongest limits on
the D1 and D5 operators are due to the SI searches, while
the LHC mono-jet data put the strongest constraints on the
D3, D6 and D8 operators. On the other hand, the operators
D2, D4, and D9 are bounded by the LHC monojet searches
at small DM masses, while at larger masses the CMB data
dominate the limits.6 At the same time, the best limits on
the D7 and D10 operators are defined by the interplay of the
LHC searches, direct detection data and CMB constraints,
depending on the DM mass.
In the case of vector DM we can also see an important

complementarity between the different experiments to probe
DM parameter space. The most stringent limits on the V1,
V3, andV4Wilson coefficients are set bySI searches.On the
other hand, the LHC monojet data provides the strongest
bounds on the V5, V6, V7P, V8P, V11, and V12 operators
for any value of the DM mass. Furthermore, there is a
synergy between the LHC and CMB data in probing the V2,
V9M and V10M operators in different DM mass regions.
One should also note the interplay between the LHC
monojet searches and the SD bounds in bounding the
V9P and V10P operators. We have also found that notwith-
standing of combination of all data there are no limits on the
operators V7M and V8M for g⋆ ¼ 1. There is one more
important point to stress about the interplay of different data
in probing vector DM operators: the lack of the LHC
sensitivity to small values of Λ discussed above in
Sec. V B 3 is complemented by the potential of CMB data
to probe this region. This complementarity is manifest for
many operators (V1, V2, V3, V4, V9M, V10M, V9P, V10P,
V11, and V12), for which CMB data partly or completely
cover the lower Λ region which LHC is unable to probe.

As a general remark, in our analysis we have assumed
that just one operator is nonvanishing at a time, which may
or may not be the case depending on the underlying theory
realized in nature. Nevertheless, our studies can be easily
adapted to some specific scenario where the integration of
heavy mediators can lead to more than one non-vanishing
Wilson coefficient. For instance, a t-channel scalar media-
tor coupled to fermion DM would generate a ðχ̄qÞðq̄χÞ
effective operator. After a Fierz transformation, this oper-
ator can be written as a combination of the fermion
operators D1, D4, D5, D8, and D9 [22]. According to
Fig. 8, it is clear that in this case the most stringent bounds
would be set by SI searches, so that at least in first
approximation the bound on ðχ̄qÞðq̄χÞ coincides with the
bound on D1. Of course, the validity of such a procedure
must be analyzed case by case.
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