
1.  Introduction
Alternate bars are characterized by a sequence of large-scale deposition bumps and scour holes that occupy 
alternate sides of the channel, showing diagonal fronts as in the example of Figure 1. The formation of alternate 
bars in rivers is important from an engineering perspective, as they can affect navigability, enhance bank erosion 
and interact with instream engineering structures (e.g., Claude et al., 2014). Moreover, bar formation represents 
a fascinating example of self-sustained morphodynamic process, which has been considered a precursor for the 
formation of river meandering and braiding (e.g., Fredsoe, 1978), and a main driver for channel widening (e.g., 
Repetto et al., 2002) and for the formation of channel bifurcations (e.g., Redolfi et al., 2016).

A large number of laboratory experiments demonstrated that downstream-migrating alternate bars tends to spon-
taneously form in straight channels of constant width (e.g., Crosato et  al.,  2012; Fujita & Muramoto,  1982; 
Ikeda, 1984; Jaeggi, 1984; Lanzoni, 2000; Nelson & Morgan, 2018; Redolfi et  al., 2020). This kind of bars, 
often referred to as “free alternate bars,” are frequently observed in rivers (e.g., Adami et al., 2016; Church & 
Rice, 2009; Ferguson et al., 2011; Jaballah et al., 2015; Rodrigues et al., 2015; Serlet et al., 2018), especially in 
channelized, gravel-bed rivers.

Two- and three-dimensional mathematical models have been employed to investigate different morphodynam-
ic characteristics of free alternate bars, including: the effect of sediment heterogeneity (Cordier et  al.,  2019; 
Lanzoni & Tubino, 1999; Qian et al., 2017; Rodrigues et al., 2015); the effect of flow variability (Hall, 2004; 
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Plain Language Summary  Free alternate bars are sequences of erosion and deposition areas that 
often appear in rivers. Their characteristic downstream movement often represents a problem for the river 
management, as bars can affect navigation, erode banks and affect the functioning of engineering structures. In 
this study, we derive and test a simple formula to predict whether free alternate bars are expected to form in a 
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Tubino,  1991); the interaction between free and forced (or hybrid) bars (Duró et  al.,  2016; Tubino & Semi-
nara, 1990); the effect of suspended sediment load (Bertagni & Camporeale, 2018; Federici & Seminara, 2006; 
Tubino et  al.,  1999); the transition from alternate bars to to three-dimensional oblique dunes (Colombini & 
Stocchino, 2012); the morphodynamic effect of vegetation (Bertagni et al., 2018; Caponi et al., 2019; Jourdain 
et al., 2020).

Mathematical modeling allowed for the identification of the essential processes needed to reproduce free bar for-
mation. They revealed that three-dimensional effects such as helical motion or flow separation are of secondary 
importance, so that the process of bar formation can be effectively predicted by means of depth-averaged, two-di-
mensional shallow water and Exner equations. Specifically, linear stability analyses (Callander, 1969; Colombini 
et al., 1987; Fredsoe, 1978; Parker, 1976) demonstrated that even for a straight channel of constant width the ba-
sic, uniform-flow solution is inherently unstable, which leads from the spontaneous formation of long, three-di-
mensional bed deformations representing free alternate bars. Moreover, these theoretical analyses provided an 
useful criterion to determine marginal stability conditions, which are mainly controlled by the channel width-to-
depth ratio. Specifically, bars are expected to form when the width-to-depth ratio exceeds a critical threshold that 
depends on other river characteristics (primarily relative roughness and Shields number).

Nevertheless, the mathematical complexity of the problem limited the derivation of explicit, physically based 
expressions for the critical aspect ratio as a function of the controlling parameters, as also recently highlighted by 
Crosato & Mosselman (2020). As a consequence, application of the theory currently requires either to numerical-
ly solve a dispersion relation involving complex numbers, or to rely on plots made available by different authors, 
with limited possibility to explore the space of parameters and the effect of different transport and friction formu-
lae. A possible alternative is based on empirical criteria proposed in the literature (e.g., Ahmari & Da Silva, 2011; 
Jaeggi, 1984; Muramoto & Fujita, 1978; Yalin & Da Silva, 2001). Despite being originally formulated in different 
ways, empirical relations can be re-expressed in terms of the threshold value of the width-to-depth ratio that needs 
to be exceeded to enable the formation of bars. However, the empirical nature of these criteria makes it difficult 
to extend predictions out of the set of conditions for which they are derived. Moreover, empirical relations do not 
allow for isolating the effect of the individual physical parameters, and to assimilate information that may come 
from site-specific estimations of hydraulic roughness or sediment transport relations.

More fundamentally, the mathematical complexity highly limited the possibility to provide a satisfactory phys-
ical explanation of the mechanism of bar instability. A first tentative explanation was proposed by Einstein & 
Shen (1964), who suggested that bars may form as a consequence of helical motion, possibly reinforced by the 
presence of rough banks. However, subsequent models have conclusively demonstrated that neither three-dimen-
sional flow nor rough banks are essential for capturing the bar instability mechanism. More recent explanations 
(Nelson, 1990; Tubino et al., 1999) are given in terms of the divergence of the flow field around bars, due to a sort 
of topographic steering. However, the mechanism that produces this flow field has not been clarified. Therefore, 
a complete physical description of the instability process is essentially missing.

In this study, we consider a simplified version of the governing equations, in order to: (a) derive a simple, explicit 
expression for predicting bar stability conditions and validate it by means of existing laboratory experiments; (b) 
provide a physically based explanation of the bar formation mechanism.

Figure 1.  Example: downstream-migrating alternate bars in the Alpine Rhine River in Switzerland, 47°02′ N, 09°29′ E, 
April 02, 2012. From Google Earth, Digital Globe (2021). Flow is from left to right.
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The study is organized as follows: in Section  2, we define the governing 
equations and we specify the fundamental assumptions; in the Results Sec-
tion 3, we introduce the simple criterion for predicting the formation of free 
alternate bars, we test it against existing laboratory data, and we provide a 
physical explanation of the bar formation mechanism; in Section 4, we dis-
cuss model hypotheses and associated limitations. Finally, details about the 
derivation of the explicit expression for the critical aspect ratio are reported 
in Appendix A.

2.  Mathematical Formulation
2.1.  The Governing Equations

We consider an infinitely long channel, with straight, fixed banks and rec-
tangular cross-section of width W, whose bottom is formed by cohesionless 
particles with representative (e.g., median) grain size d. We adopt a two-di-
mensional, mobile-bed, depth-averaged shallow water model (e.g., Colom-
bini et al., 1987; Parker, 1976; Siviglia et al., 2013), which can be written 
as a nonlinear differential system of four equations in the four dependent 
variables U, V, D, and H (longitudinal and transverse velocity, water depth 

and water surface elevation), in the independent variables x, y (planimetric coordinates) and t (time). As sketched 
in Figure 2, the origin of the Cartesian system of reference is positioned at the right bank, and elevations are 
calculated with respect to a sloping plane having longitudinal gradient S0. Under quasi-steady approximation 
(i.e., assuming that the flow field adapts instantaneously to variations of the bed topography), the depth-averaged 
equations that express the conservation of momentum, liquid and solid mass read:

𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑔𝑔𝑔𝑔0 + 𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜏𝜏𝑥𝑥
𝜌𝜌𝜌𝜌

= 0,� (1a)

𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜏𝜏𝑦𝑦
𝜌𝜌𝜌𝜌

= 0,� (1b)

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕 𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,� (1c)

(1 − 𝑝𝑝)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕

= 0,� (1d)

where p is the sediment porosity, g is the gravitational acceleration, η = H − D is the bed elevation, and the cou-
ples {τx, τy} and {qsx, qsy} indicate the components of the shear stress and the sediment transport, respectively.

The set of four differential equations is then completed by specifying closure relationships. Specifically, the two 
components of bed shear stress are estimated as follows:

{𝜏𝜏𝑥𝑥, 𝜏𝜏𝑦𝑦} = 𝜌𝜌𝑈𝑈
2

𝑐𝑐2
{sin 𝛾𝛾𝑞𝑞, cos 𝛾𝛾𝑞𝑞} , tan 𝛾𝛾𝑞𝑞 =

𝑉𝑉
𝑈𝑈
,� (2)

where c is the dimensionless Chézy coefficient (a function of the relative submergence D/d) and γq is the angle of 
the velocity vector 𝐴𝐴 ⃖⃖⃗𝑈𝑈  . The components of sediment transport are expressed as:

{𝑞𝑞𝑞𝑞𝑥𝑥, 𝑞𝑞𝑞𝑞𝑦𝑦} =
√

𝑔𝑔Δ𝑑𝑑3Φ(𝜃𝜃) {sin 𝛾𝛾𝑠𝑠, cos 𝛾𝛾𝑠𝑠} ,� (3)

where Δ is the relative submerged weight of the sediment and Φ is the dimensionless sediment flux, which is 
considered to be a function of the Shields number θ (e.g., Meyer-Peter & Muller, 1948; Parker, 1990). The angle 
of the sediment transport vector, γs, is computed by taking into account the deflection exerted by the lateral bed 
slope, by means of the following expression (e.g., Blondeaux & Seminara, 1985; Engelund, 1981):

sin 𝛾𝛾𝑠𝑠 =
𝑞𝑞𝑞𝑞𝑦𝑦
|⃖⃖⃖⃗𝑞𝑞𝑞𝑞|

= sin 𝛾𝛾𝑞𝑞 −
𝑟𝑟

√

𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,� (4)

Figure 2.  View of the channel of width W, showing the system of reference, 
{x, y, z}, and the two components of the velocity vector, {U, V}. The water 
surface elevation H is given by the sum of the bed elevation η and the water 
depth D. All the elevations are calculated with respect to the reference, z = 0, 
plane having a constant downstream gradient S0.



Water Resources Research

REDOLFI

10.1029/2021WR030617

4 of 20

where r is a dimensionless empirical coefficient (see Baar et al., 2018).

Despite neglecting three-dimensional flow structures, this model has been proven to be able to capture the es-
sential characteristics of river alternate bars, at least in conditions where most of the sediment is transported as 
bedload (e.g., Blondeaux & Seminara, 1985). Specifically, linear solutions allow for calculating bar formation 
conditions, while weakly nonlinear and fully nonlinear theories enable for reproducing bar height and to estimate 
other bar properties.

2.2.  The Key Hypothesis

The present manuscript is founded on the key hypothesis that the deformation of the free surface due to the incip-
ient formation of bars is negligible. More precisely, we assume that: (a) the pressure term g ∂H/∂x in the Equation 
of longitudinal momentum 1a, and (b) the variation of H when computing the bed elevation as η = H − D in 
Equations 1d and 4, are both negligible. It is worth noticing, however, that variations of the free surface elevation 
are still considered in the Equation of transverse momentum 1b, in which the pressure term g ∂H/∂y can not be 
disregarded.

This hypothesis has been used to model the formation of forced steady bars in rivers (e.g. Crosato & Mos-
selman, 2009; Struiksma et al., 1985), and constitutes the basis for the so-called second order models for the 
evolution of meandering channels (see Camporeale et al., 2007). The appropriateness of adopting this hypothesis 
for modelling the evolution of free migrating bars is suggested by visual inspection of experimental data, where 
fluctuations are usually small, even at relatively high values of the Froude number (García & Niño, 1993). Moreo-
ver, it is indirectly indicated by the weak dependence of alternate bars on Froude number (Wilkinson et al., 2008), 
as characteristic of processes where the influence of free surface variations is small.

In the following Section 3, the comparison with the complete model and the validation against experimental data 
are used to demonstrate the suitability of this key hypothesis for predicting bar stability conditions. Moreover, in 
Section 4, we will discuss about the physical reasoning of why water surface deformation is negligible for typical 
hydrodynamic conditions on river bars.

2.3.  Expression for the Critical Width-to-Depth Ratio

Neglecting the deformation of the free surface elevation allows for deriving an explicit formula for determining 
the possibility of migrating alternate bars to form, depending on channel characteristics and flow conditions. To 
this aim, we first need to specify a reference depth D0 and the associated reference Shields number θ0, which is 
given by the following uniform-flow relationship:

𝜃𝜃0 =
𝑆𝑆0𝐷𝐷0

Δ 𝑑𝑑
.� (5)

Bars formation primarily depends on the channel aspect ratio, which for historical reasons is here defined as half 
the width-to-depth ratio, namely:

𝛽𝛽 = 𝑊𝑊
2𝐷𝐷0

.� (6)

Specifically, when the aspect ratio exceeds a critical threshold value (βC) the initial, plane-bed configuration is 
unstable, and alternate bars are expected to spontaneously form (Colombini et al., 1987).

A very simple formula for this critical aspect ratio can be obtained by: (a) linearizing the governing equations, 
(b) considering the first mode of the Fourier expansion of the solution, (c) analyzing the time development of 
an initially small bed perturbation, (d) determining the set of parameters for which this initial perturbation tends 
to grow, eventually leading to finite-amplitude alternate bars. Considering that these mathematical procedure 
is rather standard and straightforward, we prefer avoid cluttering this section with a large number of equations. 
Therefore, we reported all the mathematical details in Appendix A, here providing only the final result of the 
linear stability analysis, which gives the following expression:

�� = �0
2

[

�(�0)
�

(1 + 2��) −
1

�20�2

]−1∕2

,� (7)
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where the empirical coefficient r can be assumed equal to 0.3 and λ is the dimensionless wavenumber, defined as 
λ = πW/L, with L indicating the bar wavelength. Differently from the complete model of Colombini et al. (1987) 
our approach does not allow for estimating the bar wavenumber, which needs to be given as an input. However, 
considering a constant value λ = 0.45 is sufficient to produce accurate results for a range of conditions. The sym-
bol ξ indicates a function on the reference value of the Shields number (see Equation A14b), which depends on 
the choice of the sediment transport formula. Specifically, considering the sediment transport formula of Parker 
(1978) it reads:

�(�0) =

√

�0
�2

(

9 ���
�0 − ���

+ 2
)

, ��� = 0.03.� (8a,b)

Similarly, the reference dimensionless Chézy coefficient c0 and the associated cD coefficient (Equation A6b) 
depend on the choice of the friction formula. Adopting the widely used logarithmic expression (Engelund & 
Hansen, 1967) gives:

�0 = 6 + 2.5 log
( 1
2.5

�0

�

)

, �� = 2.5
�0

,� (9a,b)

where the ratio D0/d represents the relative submergence. Alternatively, the friction coefficients can be calculated 
from the Manning formula as follows:

𝑐𝑐0 =
𝐷𝐷1∕6

0

𝑛𝑛
√

𝑔𝑔
, 𝑐𝑐𝐷𝐷 = 1∕6,� (10)

where the Manning coefficient n needs to be estimated on the basis of the bed roughness.

3.  Results
3.1.  Why Do Free Bars Form? A Physical Explanation

The hypothesis of negligible variations of the water surface elevation allows for a great simplification of the 
problem, as needed to physically understand the mechanisms that drive the formation and suppression of free 
alternate bars.

3.1.1.  The Bar-Forming Mechanism

We consider the depth-averaged Equation of the streamwise momentum 1a, where we neglect the transverse flux 
of longitudinal momentum (second term), as appropriate when studying the initial stages of bar development (see 
Appendix A):

𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑔𝑔𝑔𝑔0 − 𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜏𝜏𝑥𝑥
𝜌𝜌𝜌𝜌

.� (11)

By discarding the term related to the water surface deformation (i.e., according to our fundamental hypothesis), 
the above Equation 11, once multiplied by ρD, reads:

𝜌𝜌𝜌𝜌𝜌𝜌𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

⏟⏞⏟⏞⏟
Inertia

= 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌0
⏟⏟⏟

Weight

− 𝜏𝜏𝑥𝑥
⏟⏟⏟

Friction

,
� (12)

which simply states that any imbalance between the longitudinal component of the water weight and the bottom 
friction necessarily produces a flow acceleration or deceleration.

In plane-bed conditions the flow is uniform, weight and friction keep in balance (i.e., τx = ρgDS0) and no ac-
celeration/deceleration occur. In this case, the sediment transport is also uniform, so that neither erosion nor 
deposition appear. Conversely, if a three-dimensional perturbation of the bed is introduced, the flow is no longer 
uniform. Let us consider for example a deposition bump at one side of the channel (i.e., a three-dimensional bed 
disturbance), having a length of several times the channel width and an initially small height (Figure 3). Since the 
free surface deformation is negligible, the depth over the deposition bump does clearly reduce, and the weight 
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of the water column decreases. Considering that the friction term does not substantially change until the flow 
velocity varies (it is actually possible to assume τx to be constant, as discussed later), the decrease of weight does 
necessarily produce a flow deceleration (∂U/∂x < 0). This implies a spatial decrease in the sediment flux and 
an associated deposition, which increases the height of the initial bed disturbance. Similarly, a scour hole would 
produce an increase of depth and water weight, which in turn would lead to flow acceleration, spatial increase of 
sediment flux and further erosion. This represents a self-sustained instability mechanism, which ultimately leads 
to the formation of the large-scale, finite-amplitude bedforms called free bars.

It is worth highlighting that the above-described mechanism is only valid for a three-dimensional bed perturba-
tion, where the flow has enough space to move laterally around the obstacle without significant deformation of 
the free surface. Conversely, if the bed perturbation was purely two-dimensional, the flow would be obliged to 
entirely transit over the bedform, and the momentum balance would be affected by the pressure terms associated 
with the variations of the free surface. In these conditions, the shallow-water-Exner model invariably gives a 
suppression of the perturbation, which indicates that the basic uniform flow is always stable.

3.1.2.  The Bar-Suppressing Mechanism

The main contrasting mechanism is due to the gravitational effect on the direction of the bedload transport: the 
sediment tends to be deviated by an angle γs that depends on the lateral slope according to Equation 4. As illustrat-
ed in Figure 4 this deviation produces a transverse sediment flux toward the lower part of the cross-section (bar 
pools). This mechanism tends to suppress three-dimensional bedforms, eventually leading to flat-bed conditions 
if no other, constructive forces exist.

Specifically, the transverse flux of sediment (qsy) predicted by Equation 4 is proportional to the lateral slope 
∂η/∂y. This represents the characteristic relation of diffusive processes, where the mass flux depends on the gra-
dient, and is directed in the opposite direction (e.g., Crank, 1979). As any diffusive process, the bed adaptation 
follows a timescale that is proportional to the square of the domain size (i.e., T ∝ W2). For example, considering 
a purely transverse bed deformation (no variations along the longitudinal direction - no constructive forces) the 
time needed to attain flat-bed conditions is proportional to the square of the channel width. This indicates that 
the bar-suppressing mechanism is more intense in relatively narrow channels, which justifies the presence of a 

Figure 3.  Illustration of the physical mechanism that sustains the bar growth. The generic, initially small, three-dimensional 
deposition bump located near the right bank (see contour lines in the plan view) produces a decrease of the local water depth 
(D) and an associated reduction of tracting force due to the weight of the water column (ρgDS0). The imbalance between the 
reduced water weight and the bed friction τx necessarily produces a flow deceleration (UOUT < UIN), which induces further 
deposition, thus producing a self-sustained bar growth.
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lower threshold of the channel aspect ratio (βC). More precisely, this explains why an exponent −1/2 appears 
in the expression for the critical aspect ratio 7 (i.e., the stability condition depends on the square of β, see also 
Equation A14a).

In physical terms, this quadratic dependence can be easily understood by considering that channel width has a 
twofold effect. First, transverse bed gradient and the associated transverse flux of sediment are inversely propor-
tional to the channel width. Second, the volume of sediments that needs to be laterally transferred is proportional 
to the width itself. Consequently, bed flattening in wider channel needs a larger mass transfer with a lower flux, 
therefore requiring a much longer time.

3.2.  When Do Free Bars Form? Results From the Simplified Criterion

The explicit expression for the critical aspect ratio 7 derived above provides a simple criterion for bar formation. 
Specifically, migrating alternate bars are predicted to form when the aspect ratio β exceeds the critical threshold 
βC, while in the opposite case plane-bed conditions are expected, despite the possible development of low-relief 
oblique dunes (e.g., Redolfi et al., 2020) or other kind of small-scale bedform.

As illustrated in Figure 5, the critical aspect ratio initially increases with the 
Shields number while it tends to slightly decrease when θ0 exceeds 0.21, 
value at which the function ξ(θ0) is minimum. Moreover, βC significantly 
increases for higher values of the relative submergence, which according to 
Equation 9a are associated with higher values of the Chézy coefficient c0. In 
general, predictions by our simplified expression are very similar to those 
resulting from the complete model of Colombini et al. (1987). Specifically, 
the critical aspect ratio shows a maximum relative error of 2.8% (for relative-
ly high θ0 and the low D0/d), which seems acceptable for most applications.

A further simplification can be obtained by neglecting the term 𝐴𝐴 1∕(𝑐𝑐20𝜆𝜆
2) in 

Equation 7, which gives a wavelength-independent stability condition. From 
a physical point-of-view, this means discarding the effect of velocity varia-
tions on the bed shear stress τx. If compared with the complete model of Co-
lombini et al. (1987) this further reduced model leads to a maximum relative 
error of 4.5% within the range of parameters of Figure 5, which reduces to 
3.2% when focusing on Fr < 1 cases only. Ultimately, a maximal simplifica-
tion arises when considering also cD = 0, which implies assuming spatially 
invariant bed shear stress (i.e., τx = const). Though this may appear as an 
extreme hypothesis, it actually leads to a maximum relative error of about 
16% with respect to the complete model, which indicates that variations of 
the shear stress play a secondary role in the above-described bar instability 
mechanism.

Figure 4.  Effect of the gravitational pull on a laterally sloping bed, which produces a downward deviation of the sediment 
flux 𝐴𝐴 ⃖⃖⃖⃗𝑞𝑞𝑞𝑞 with respect to the flow velocity vector 𝐴𝐴 𝑈̂𝑈 as illustrated in the plan view (a). As a result, the sediment flux tends 
to laterally move toward the most depressed areas, as illustrated in the cross-sectional view (b), which tends to flatten the 
bed. The timescale of the bed adaptation (T) is proportional to the square of the channel width (W) as typical of diffusive 
processes, which makes the bar-suppressing mechanism much more effective in relatively narrow channels.

Figure 5.  Critical aspect ratio resulting from the complete model of 
Colombini et al. (1987) (dashed lines) and by Equation 7 (solid lines), 
depending on Shields parameter (θ0) and relative submergence (D0/d). 
Migrating alternate bars are expected to form when the channel aspect ratio 
β = W/(2D0) exceeds the critical threshold βC. The maximum relative error of 
the simplified model is 2.8%, which reduces to 1.6% when limiting the space 
of parameters to cases where the Froude number is lower than 1.
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Comparison against experimental data

Comparison between our formula and experimental data is performed by considering the data set reported by Co-
lombini et al. (1987), encompassing experimental data from Kinoshita (1961), Ashida & Shiomi (1966), Chang 
et al.  (1971), Sukegawa (1971), Muramoto & Fujita (1978), Ikeda (1982), Jäggi (1983) here expanded by in-
cluding the more recent laboratory experiments by García & Niño (1993), Lanzoni (2000), Ahmari & Da Silva 
(2011), Crosato et al. (2011), Garcia et al. (2015), Redolfi et al. (2020), for a total of 416 experiments. The forma-
tion of alternate bars was observed in 288 cases, where in the remaining 128 either plane bed or other bedforms 
(dunes, antidunes, or diagonal bars) were observed.

As illustrated in Figure 6 our simple formula is able to correctly classify most of the experimental outcomes, 
as most of the experiments with alternate bars fall in the region β > βC while the remaining cases are often 
characterized by β < βC. More specifically, 364 experiments (87.5%) are correctly classified, 35 (8.4%) can 
be designated as “false negative” (bars are observed to form, despite β < βC) and 17 (4.1%) “false positive” 
(bars do not develop, despite β > βC). It is worth highlighting that this result is obtained without any specific 
calibration of the empirical coefficient r or distinct choice of the sediment transport formula. In this sense, 
additional information about the sediment transport (e.g., measured transport rate) would enable for specifi-
cally calibrating the model parameters for each set of experiments, which is expected to improve the overall 
accuracy of the predictions.

The capability of Equation 7 to reproduce experimental results is then compared with analogue results from the 
application of the complete model and of the empirical criteria by Muramoto & Fujita (1978), Jaeggi (1984), 

Figure 6.  Comparison between our bar formation criterion and the data set of laboratory experimental observations. Red 
triangles indicate conditions at which alternate bars were observed, while blue circles refers to other bed configurations, 
including plane-bed, diagonal bars, dunes and antidunes. Free alternate bars are expected to form when points fall above the 
dashed line that indicates the critical aspect ratio βC. The histograms represent the frequency distribution of the experiments 
depending on Shields number (lower plot) and scaled width-to-depth ratio β/βC (right plot).
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Yalin & Da Silva (2001) and Ahmari & Da Silva (2011), whose expressions 
are reported in Appendix B. To this aim, we first consider classic indicators 
of classification performance, namely the accuracy (ACC) and the balanced 
accuracy (BA) (see Tharwat, 2018), which are defined as follows:

��� = ��� +���

����
, �� = 1

2

(

���

��� +���
+ ���

��� +���

)

,� (13a,b)

where N indicates the number of true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) cases, whose sum equals the to-
tal number of cases Ntot. We considered all the experimental data, except 
those having a severely limited bed mobility, due to low Shields number 
(θ0 < 0.03) or bed armoring. Results reported in Table 1 suggest that our 
formula gives essentially the same performance as the complete model of 
Colombini et al. (1987), which is overall better with respect to the other em-
pirical criteria.

The above accuracy indicators are merely based on a binary (bars-no bars) classification but do not take into 
account the “degree of stability” predicted by the different cases. For example, experiments that are very close to 
the threshold are expected to be easily misclassified, so that an error in this case is less important that an error oc-
curring in highly stable or unstable conditions. To overcome this limitation, we propose an indicator that accounts 
for the (logarithmic) distance of the incorrectly classified measurements from the critical threshold:

��� =
∑

{�� ,��}|log(�∕�� )|
∑

|log(�∕�� )|
,� (14)

where FP and FN indicate the set of false positive and false negative results, so that the parameter Dev ranges 
from zero to one, with lower values indicating a good prediction. The observed values reported in Table 1 show 
that our formula provides similar results as the complete model of Colombini et al. (1987), with significantly less 
deviation than the other existing criteria.

4.  Discussion
In this study, we provide a novel explanation of the physical mechanism that leads to the spontaneous formation 
of free alternate bars in rivers. Surprisingly, this mechanism turns out to be extremely simple, to the point that it 
can be described as an imbalance between water weight and bottom friction, which causes deceleration near the 
top of bars and consequent further deposition. Specifically, the analysis of the two-dimensional solution of the 
shallow water model is to some extent simpler than its one-dimensional counterpart, as in the latter pressure terms 
due to the water surface deformation are rarely negligible. The bar formation is clearly counteracted by the effect 
of the lateral slope on the sediment transport, which tends to suppress bars (Fredsoe, 1978; Seminara, 2010). In 
this perspective, our analysis highlights the strong (i.e., quadratic) dependence of this effect on the channel width, 
which represents the hallmark of diffusive processes.

Neglecting variations of the free surface elevation allows for obtaining an explicit expression for calculating 
the critical width-to-depth ratio with an error of a few percent with respect to the complete model of Colombini 
et al. (1987). Comparison with an unprecedented number of laboratory experiments, encompassing more than 
400 experimental runs from the existing literature, reveals that our explicit formula enables prediction of the bar 
formation in the vast majority of cases. Specifically, the resulting accuracy is comparable to that of the complete 
model and better with respect to existing empirical criteria. It is not our intention here to discuss what is the best 
criteria, as the answer is likely to depend on the specific objective of the analysis, on the availability of data and 
on the field of application. However, we find relevant to here highlight the main strengths of physically based 
expressions, which are directly derived from the equations of Newtonian mechanics through well-defined and 
testable assumptions. Following this reductionist approach (see Seminara & Bolla Pittaluga, 2012), the effect 
of all the essential parameters, including those that are normally fixed (e.g., the gravitational acceleration) is 

ACC (%) BA (%) Dev (%)

Muramoto & Fujita (1978) 83.2 86.1 8.1

Jaeggi (1984) 80.3 82.3 15.8

Yalin & Da Silva (2001) 77.4 64.6 11.8

Ahmari & Da Silva (2011) 75.2 61.3 11.7

Colombini et al. (1987) 87.0 87.2 5.2

Present formula 7 87.5 87.3 5.0

Note. ACC and BA indicate accuracy and balanced accuracy (Equations 13a,b), 
while Dev is the indicator defined by Equation 14.

Table 1 
Classification Performance of Different Bar Predictors
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embodied, and can be directly associated with the underlying physical processes. In particular, our derivation 
allows for clarifying the following effects:

•	 �the decrease of the critical aspect ratio for lower values of the relative submergence D0/d (i.e., for low values 
of the Chézy parameter c0) can be mechanically explained by considering that to maintain comparable values 
of Shields number and water depth on a rougher bed, weight and bottom friction need to be higher (i.e., the 
slope must be higher). In such conditions, any imbalance between the two terms on the right hand side of 
Equation 12 is expected to produce a stronger accelerations/decelerations, which reinforces the bar-forming 
mechanism;

•	 �the Shields number shows two distinct and opposite effects. On the one side, increasing θ0 makes the bar-form-
ing mechanism less effective, as it reduces the sensitivity of the sediment transport to variations of velocity 
(i.e., the coefficient ΦT, see Appendix A). On the other side, increasing θ0 weakens the bar-suppressing mech-
anism, as it reduces the deflection of the sediment transport predicted by Equation 4. While the former effect 
dominates at moderate values of the Shields number, the latter prevails when θ0 > 0.21, which explains the 
nonmonotonic trend of βC appearing in Figure 5;

•	 �higher values of the empirical parameter r enhance the bar-suppressing mechanism, as they are associated 
with a stronger deflection of the sediment transport (see again Equation 4). Therefore, the critical aspect ratio 
clearly increases with r.

Knowing the effect of all the individual parameters allows for adapting the formula to the specific sediment 
transport and flow friction conditions, by assimilating information from measurements or antecedent studies. For 
example, if field calibrated values of the Manning coefficient are available it is possible to bypass Equation 9a, 
and to directly compute c0 from the Manning coefficient. This may be particularly important for the design and 
the interpretation of numerical simulations, as in this case our formula can be adapted to consider the same fric-
tion and sediment transport formulas, and exactly the same value of the parameter r.

4.1.  The Key Hypothesis: Physical Reasoning and Limitations

The appropriateness of neglecting free surface deformation is evident from the comparison between results of 
the simplified and the complete model illustrated above. However, here we would like to analyze the reason for 
which this hypothesis can be accepted, depending on the characteristic scales of the problem. A reader who is not 
interested to deepen this topic can directly jump to Section 4.2.

The validity of this hypothesis for modeling forced bars has been justified by Struiksma et al. (1985) by con-
sidering that when the Froude number is small, variations of the free surface elevation are small with respect to 
variations of the bed elevation. In these conditions, it is possible to introduce the so-called rigid-lid assumption, 
which allows for computing variations of water depth on the basis of variations of the bed topography. However, 
this does not explain why variations of the free surface elevation can be neglected from the longitudinal momen-
tum balance 1a, as the term g ∂H/∂x generally remains finite when Fr → 0, representing the pressure gradient that 
appears under the rigid-lid assumption. For this reason, we found important to further discuss the possibility to 
neglect this term when modeling both free migrating bars (present paper) and forced (or hybrid) bars (Campore-
ale et al., 2007; Crosato & Mosselman, 2009).

Here, we show that this simplification is generally valid for the case of three-dimensional bed deformations hav-
ing a longitudinal scale of several channel widths, as typically the case of all river alternate bars. Though this can 
be demonstrated by a mathematically rigorous perturbation approach, an analogous result can be found by simply 
evaluating the order of magnitude of the main terms of the fundamental conservation equations. Specifically, if 
we denote with 𝐴𝐴 𝐷̃𝐷 and 𝐴𝐴 (𝑈̃𝑈 𝑈 𝑉𝑉 ) the order of magnitude of the depth and velocity components, the continuity Equa-
tion 1c gives:

𝑉𝑉 𝐷̃𝐷
Δ𝑦̃𝑦

∼ 𝑈̃𝑈𝐷̃𝐷
Δ𝑥̃𝑥

,� (15)

where 𝐴𝐴 Δ𝑥̃𝑥 and 𝐴𝐴 Δ𝑦̃𝑦 are the longitudinal and the transverse scales of variation. Indicating with Λ the ratio Δx/Δy, 
Equation 15 can be expressed as:
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𝑉𝑉 ∼ 𝑈̃𝑈
Λ
,� (16)

which reveals that the magnitude of the transverse velocity decreases with the longitudinal scale.

The Equation of transverse momentum 1b suggests that transverse acceleration and lateral inclination of the free 
surface have the same order magnitude, namely:

𝑔𝑔Δ𝐻̃𝐻
Δ𝑦̃𝑦

∼ 𝑈̃𝑈 𝑉𝑉
Δ𝑥̃𝑥

,� (17)

where 𝐴𝐴 Δ𝐻̃𝐻 indicates the order of magnitude of the free surface variations. Combining Equations 17 and 16 gives:

𝑔𝑔Δ𝐻̃𝐻
Δ𝑥̃𝑥

∼ 𝑈̃𝑈 𝑉𝑉
Δ𝑥̃𝑥

1
Λ

∼ 𝑈̃𝑈 𝑈̃𝑈
Δ𝑥̃𝑥

1
Λ2

,� (18)

which implies that the gravitational term in the Equation of longitudinal momentum 1a is negligible when Λ is 
sufficiently large. The above condition (18) can be equivalently expressed in the Froude number as follows:

Δ𝐻̃𝐻
̃𝐹𝐹 𝐹𝐹2𝐷̃𝐷

∼ 1
Λ2

, 𝐹𝐹 𝐹𝐹2 = 𝑈̃𝑈 2

𝑔𝑔𝐷̃𝐷
,� (19a,b)

Figure 7.  Effect of the bar wavelength on transverse velocity (V) and water surface deformation (ΔH), obtained by imposing 
a double-sinusoidal bed deformation of dimensionless amplitude A and wavelength L (a), and solving the linearized shallow 
water equations. Specifically, panels (b) and (c) report maximum values of V/U and ΔH/(Fr2D) for increasing values of L/W, 
considering an unitary dimensionless amplitude and two extreme values of the reference Froude number Fr. The solid lines 
refer to the complete linear solution, while the dashed line indicates the (Froude-independent) solution from our simplified 
model. For the typical wavelength of both free and forced/hybrid bars (shaded areas) the three lines tend to converge, which 
indicates the appropriateness of the fundamental hypothesis. The dotted line indicates the typical wavenumber λ = 0.45 we 
adopted when applying Equation 7. Example with β = 12 and D0 /d = 100.
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To test this conclusion we consider a periodic, double-sinusoidal bed deformation of amplitude A and wavelength 
L (Figure 7a). In this case, the longitudinal and transverse scales of variations (𝐴𝐴 Δ𝑥̃𝑥 and 𝐴𝐴 Δ𝑦̃𝑦 ) can be quantified as 
the distance between wave crest and trough (L/2 and W), so that their ratio Λ is given by L/(2W) = π/(2λ). We 
then computed the two-dimensional flow field by analytically solving Equations 1a–c under the hypothesis of 
small perturbations (linear analysis), by varying the wavelength of the bed oscillation (L) and the Froude number 
Fr, keeping all the other flow parameters invariant. Results illustrated in Figure 7 confirm that when increasing 
the value L/W (i.e., the value of Λ) transverse velocity and variations of the water surface elevation decrease, as 
predicted by Equations 16 and 19a. Moreover, for characteristic wavelengths of free migrating bars (L/W from 5 
to 12, with typical value around 7, corresponding to λ = 0.45) and forced bars (L/W > 12) the complete solution 
is nearly independent of the Froude number, and is correctly reproduced by the simplified model, which corrob-
orates the hypothesis of negligible free surface deformation.

This explains why alternate bars are essentially independent of the Froude number, to the point that they are 
weakly sensitive to the transition from sub- to super-critical flow regimes (Wilkinson et al., 2008). In this per-
spective, it is interesting to notice that this property has been recently observed by Ragno et al. (2021) for bifur-
cation-confluence loops, where the river splits in two anabranches than then rejoin downstream. This suggests 
that the weak dependence on the Froude number may represent a rather general, remarkable property of three-di-
mensional morphodynamic systems, such as multi-thread braided rivers, where the water flow is free to laterally 
move across bars and among different anabranches.

Similarly, the present analysis justifies why shorter three-dimensional bedforms like oblique dunes or diagonal 
bars (see Colombini & Stocchino, 2012) are instead significantly influenced by the Froude number. This is also 
the case of two-dimensional bed deformations, for which the independence of the Froude number is achieved 
only when the length scale of the bed slope variations is longer than the length of the backwater profiles (i.e., the 
so-called backwater length), so that the flow inertia is negligible and the morphological evolution is essentially 
diffusive (e.g., Paola, 2000; Redolfi & Tubino, 2014; Shaw & McElroy, 2016).

Ultimately, this analysis reveals that the model simplification adopted in this manuscript is possible thanks to 
the peculiar characteristic of bars being long, three dimensional bedforms, which allows the flow to deflect 
around bars without producing significant deformation of the water surface, even at moderate Froude num-
bers. For this reason, this hypothesis is usually not satisfied for two-dimensional bed deformations, for which 
the flow is obliged to surmount the bedforms, thus producing mechanically significant variations of the free 
surface.

4.2.  Limitations and Future Perspectives

This study demonstrates that neglecting variations of the free surface elevation allows for a satisfactory predic-
tion of the formation of free bars. However, it is worth highlighting that, differently from the complete linear 
theories (e.g., Colombini et al., 1987), our model does not enable to determine the bar wavelength, because it 
predicts a monotonically increasing instability for decreasing bar wavelength. This is clearly related to the fact 
that, as demonstrated in Section 4.1, the key assumption is not valid for relatively short wavelengths. However, 
this limitation does not prevent for an accurate prediction of the critical aspect ratio, for two reasons: (a) the 
wavenumber resulting from complete theories is relatively constant, so that its average value λ = 0.45 can be 
considered representative (b) the critical aspect ratio resulting from Equation 7 is weakly sensitive to variations 
of the wavenumber, to the point that even setting λ → ∞ (i.e., neglecting the term 𝐴𝐴 1∕(𝑐𝑐20𝜆𝜆

2) ) gives an error of a 
few percent only.

Our expression for the marginal stability condition is meant for predicting the formation of alternate (i.e. first 
mode) bars only, and does not provide indications about the transition to higher bar modes (i.e., central or mul-
tiple-row bars) that is expected in wider channels (Crosato & Mosselman, 2009; Fredsoe, 1978). Our approach 
could be easily extended to predict the growth rate of higher modes, which would allow us to determine the most 
unstable bar mode depending on conditions (see Tubino et al., 1999). However, this clearly goes beyond the 
purpose of the paper.

When applying our formula to rivers, the following question arises: “how to select an appropriate value of dom-
inant, formative discharge that can be adopted to represent the bar response?”. Previous works usually rely on 
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either the bankfull discharge (e.g., Ahmari & Da Silva, 2011; Crosato & Mosselman, 2009, 2020) or on the 
discharge with 2-year return period (e.g., Adami et  al.,  2016), as commonly suggested for reproducing river 
morphodynamic processes. However, a specific methodology to derive formative conditions for migrating bars 
has been recently proposed by Carlin et al. (2021), who suggested that free bars are expected to form when the 
average growth rate, calculated over all the possible discharge states, is positive, namely:

Ω = ∫

∞

0
Ω �� �� > 0,� (20)

where fQ indicates the probability density function of the flow events. In this perspective, our analysis provides 
all the necessary information for directly computing the bar growth rate Ω as a function of discharge by means 
of Equation A13.

Finally, the present analysis is limited to conditions where most of the sediment is transported as bedload, as 
reproducing the effect of suspended load on bar stability requires a more sophisticated model, based on either a 
non-equilibrium stress-transport relation (Bertagni & Camporeale, 2018; Federici & Seminara, 2006) or on a ful-
ly three-dimensional approach (Tubino et al., 1999). However, our model allows for qualitatively explaining the 
increase of bar instability observed in suspension-dominated channels: since the suspended load is substantially 
not affected by the gravitational pull predicted by Equation 4, the bar-suppressing mechanism is expected to be 
weaker, which promotes bar formation.

5.  Conclusions
Neglecting the deformation of the water surface in the classic two-dimensional shallow water and Exner model 
allowed for a considerable simplification of the mathematical description of the process of bar formation, which 
facilitated the physical understanding of the phenomenon. This led to the following conclusions:

•	 �The physical mechanism that leads to a self-sustained development of free migrating bars is surprisingly 
simple, as it results from an imbalance between water weight and bottom friction. Specifically, if a rela-
tively long, three-dimensional, deposition bump is introduced, water depth and associated weight reduce, 
which produces a flow deceleration and further deposition. The same but reversed mechanism occurs in 
three-dimensional pools, where the increase of water depth produces acceleration and further scour. This 
bar-forming instability process tends to be counteracted by the effect of the gravitational pull on the bed 
particle transported as bed load. The importance of this bar-suppressing effect increases quadratically when 
reducing the channel width, which explains why bar formation is strongly discouraged when the channel 
width-to-depth ratio is low.

•	 �An explicit, physically based formula for predicting conditions for the formation of free alternate bars 
can be derived. Testing based on a very large number of laboratory experiments, suggests that the formu-
la we propose is on average more accurate than existing empirical predictors. Moreover, the physically 
based derivation of the formula allows for assessing the effect of all the essential parameters that concur 
in determining bar stability, and it is therefore suitable to be adapted and extended to a wide range of 
conditions.

•	 �The hypothesis of negligible deformation of the water surface is intimately related to two essential character-
istics of bars: (a) the three-dimensional structure; (b) the long longitudinal extension, which allow for a gentle 
deviation of the flow, without significant variations of the water surface elevation. For this reason it does not 
apply to two-dimensional or comparatively short three-dimensional bedforms, such as two-dimensional dunes 
or oblique dunes. Ultimately, this hypothesis implies a that the Froude number plays a negligible role in the 
formation of bars. This suggests that a substantial independence of the Froude parameter may be a general, 
remarkable property of all morphodynamics systems characterized by a three-dimensional bed topography, 
such as multi-thread braided rivers.
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Appendix A:  Derivation of an Explicit Expression for the Critical Aspect Ratio
The linear stability analysis of the system of partial differential equations 1 is obtained by considering small 
perturbations with respect to a reference, undisturbed flow, here denoted with the subscript 0. Specifically, we 
consider an expansion of the dependent variables in the form:

𝑈𝑈 = 𝑈𝑈0 [1 + 𝑈𝑈 ∗
1 ],� (A1a)

𝑉𝑉 = 𝑈𝑈0 [0 + 𝑉𝑉 ∗
1 ],� (A1b)

𝐷𝐷 = 𝐷𝐷0 [1 +𝐷𝐷∗
1],� (A1c)

𝐻𝐻 = 𝐷𝐷0 [0 +𝐻𝐻∗
1 ],� (A1d)

where 𝐴𝐴 𝐴𝐴 ∗
1 , 𝑉𝑉

∗
1 , 𝐷𝐷

∗
1 ,𝐻𝐻

∗
1 represent the dimensionless perturbations.

Moreover, it is convenient to express also the independent variables in dimensionless form. Specifically, plani-
metric coordinates are scaled with half the channel width (Colombini et al., 1987), namely:

�∗ = �
�∕2

, �∗ =
�

�∕2
,� (A2a,b)

while time is made dimensionless by means of the Exner timescale (i.e., that naturally arising from the sediment 
continuity equation), namely:

�∗ = �
��0

(1 − �)�0�∕2
.� (A3)

Substituting the above expressions in the system of four differential Equations 1, considering the closure rela-
tions 2–4, and neglecting the nonlinear terms, gives the following linear system:
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��∗ +
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������
1

��2
��∗

1

��∗ +
�
�20

[
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where the reference Froude number and aspect ratio are given by:

�� = �0
√

��0

, � =
�∕2
�0

.� (A5a,b)

The dimensionless coefficients ΦT and cD, which measure the nonlinearity of the response of bedload and flow 
friction to variations of Shields number and water depth, are defined as:

Φ� = �0
Φ0

�Φ
��

|

|

|

|�=�0
, �� = �0

�0
��
��

|

|

|

|�=�0

,� (A6a,b)

and their explicit expression depends on the choice of the sediment transport and friction formulae.

The spatial variations of the free surface elevations can be neglected from the water and sediment continuity 
equations, and from the longitudinal momentum equations (red-crossed terms). Conversely, they are still im-
portant to satisfy the equation of transverse momentum, as the water surface deformation is needed to guide the 
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lateral flow movement. However, this simplification allows for decoupling the problem, as Equations A4a,c,d 
can be resolved independently from Equation A4b. Moreover, isolating the term ∂V1/∂y from the water continuity 
Equation A4c and substituting it into the Exner Equation A4d allows for reducing Equations A4a,c,d into the 
following differential system of two equations in the two unknowns U1 and D1:

�� ∗
1

��∗ +
�
�20

[

2� ∗
1 −�∗

1(1 + 2��)
]

= 0,� (A7a)
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𝛽𝛽
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𝜃𝜃0
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1
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+ 2Φ𝑇𝑇
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1

𝜕𝜕𝜕𝜕∗ − 2Φ𝑇𝑇 𝑐𝑐𝐷𝐷
𝜕𝜕𝜕𝜕∗

1

𝜕𝜕𝜕𝜕∗ = 0.� (A7b)

Considering the simplified shallow water equations, we look for a wavelike solution where spatial variations 
assume the form of a double sinusoid as illustrated in Figure 7a. Specifically:

� ∗
1 = �̂ exp[���∗ + (Ω − ��)�∗]cos(��∗∕2) + �.�.,� (A8a)

�∗
1 = �̂ exp[���∗ + (Ω − ��)�∗]cos(��∗∕2) + �.�.,� (A8b)

where 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝑑𝑑  are complex coefficients, 𝐴𝐴 𝐴𝐴 =
√

−1 denotes the imaginary unit, c.c. Indicates the complex conju-
gate. The real coefficients Ω and ω represent the dimensionless growth rate and angular frequency, while λ is the 
dimensionless longitudinal wavenumber, defined as λ = πW/L, where L is the bar wavelength.

Substituting Equations A8a,b into the system of linear Equations A7a,b leads to a system of algebraic equations 
in the unknowns 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝑑𝑑  that can be expressed in the following matrix form:

⎡

⎢

⎢

⎢

⎣

�� + �1 �2
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�̂

�̂
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⎥
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⎦

=

⎡

⎢

⎢

⎢

⎣

0

0

⎤

⎥

⎥

⎥

⎦

,
� (A9)

where the “a” coefficients are defined as in Camporeale et al. (2007), namely:

𝑎𝑎1 = 2𝛽𝛽∕𝑐𝑐20 , 𝑎𝑎2 = −(1 + 2𝑐𝑐𝐷𝐷)𝛽𝛽∕𝑐𝑐20 , 𝑎𝑎4 = 2Φ𝑇𝑇 , 𝑎𝑎5 = −2𝑐𝑐𝐷𝐷Φ𝑇𝑇 , 𝑎𝑎6 =
𝑟𝑟

𝛽𝛽
√

𝜃𝜃0
.� (A10)

A non-trivial solution of the homogeneous linear system A9 exists when the determinant of the matrix of coeffi-
cients vanishes, which gives:

Ω − 𝑖𝑖𝑖𝑖 = −𝑖𝑖𝑖𝑖(1 − 𝑎𝑎5) −
𝜋𝜋2

4
𝑎𝑎6 + 𝑎𝑎2(1 − 𝑎𝑎4)

𝑖𝑖𝑖𝑖
𝑎𝑎1 + 𝑖𝑖𝑖𝑖

,� (A11)

whose real part reads:

Ω = −𝜋𝜋2

4
𝑎𝑎6 + 𝑎𝑎2(1 − 𝑎𝑎4)

𝜆𝜆2

𝑎𝑎21 + 𝜆𝜆2
,� (A12)

which, substituting the coefficients A10, provides an expression for the bar growth rate Ω, namely:

Ω = −𝜋𝜋2

4
𝑟𝑟

𝛽𝛽
√

𝜃𝜃0
+ (1 + 2𝑐𝑐𝐷𝐷)

𝛽𝛽
𝑐𝑐20
(2Φ𝑇𝑇 − 1) 𝜆𝜆2

4𝛽𝛽2∕𝑐𝑐40 + 𝜆𝜆2
.� (A13)

As illustrated in Figure A1, the resulting growth rate monotonically increases with the bar wavenumber λ. This 
prevents the possibility of determining the most unstable wavenumber, which needs to be provides as an input 
parameter. Considering the typical value λ = 0.45 the simplified model gives a growth rate that is similar to the 
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maximum growth rate given by the complete model, which suggests its capability to correctly reproduce the 
formation of free alternate bars.

Marginal stability conditions are found by setting zero growth rate (Ω = 0) in Equation A13, which gives:

4�2
�

�20

[

�(�0)
�

(1 + 2��) −
1

�20�2

]

= 1, �(�0) =

√

�0
�2

(2Φ� − 1),� (A14a,b)

from which it is easy to derive an explicit expression for the critical aspect ratio βC.

Appendix B:  Critical Aspect Ratio According to Empirical Free Bars Predictors
In this section, we re-express existing empirical criteria in terms of the critical width-to-depth ratio, as needed for 
a direct comparison with our formula 7.

B1.  The Criterion of Muramoto & Fujita (1978)

This criterion for the formation of free alternate bars can be written as (see Jaeggi, 1984):

𝐷𝐷0∕𝑑𝑑
(𝑊𝑊 ∕𝑑𝑑)0.67

< 0.45.� (B1)

Once expressed in terms of the channel aspect ratio, Equation B1 reads:

� > �� = 1
2
0.45−1∕0.67

(�0

�

)1∕0.67−1
= 1.647

(�0

�

)0.493
,� (B2)

which depends on the relative submergence D0/d as illustrated in Figure B1.

Figure A1.  Dimensionless growth rate as a function of the dimensionless wavenumber λ according to the complete model 
of Colombini et al. (1987) (dashed line) and our Equation A13 (solid line). The above scale indicates the corresponding 
dimensionless wavelength L/W. The dotted line indicates the typical wavenumber λ = 0.45 we adopted when applying 
Equation 7. Example with β = 10, θ0 = 0.1, and D0/d = 200.
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B2.  The Criterion of Jaeggi (1984)

The bar formation criterion provided Jaeggi (1984) (see their Equation 8), translated in our notation, reads:

�
��

< 2.93 log
(

�
��

�
�

)

− 3.13
(�
�

)0.15
,� (B3)

which can be also rewritten in terms of the channel aspect ratio β as:

2.93 log
(

�
��
2�

)

− 3.13
(�0

�
2�

)0.15
− �

��
> 0.� (B4)

Despite not allowing for deriving an explicit expression, Equation B4 can be numerically solved to obtain the 
critical aspect ratio βC.

However, it is worth highlighting that a critical aspect ratio does not always exist. This can be noticed by analyz-
ing the left hand side of the inequality B4, which does not increase monotonically with β but it shows a maximum 
when:

� = � �
�0

, � = 1
2

( 2.93
3.13 ⋅ 0.15

)1∕0.15
= 1.00 ⋅ 105.� (B5a,b)

A critical value of the aspect ratio exists only if the maximum value is positive, as given by substituting B5a 
into B4:

2.93 log
(

�
��
2� �

�0

)

− 2.93
0.15

− �
��

> 0,� (B6)

which can be expressed in terms of the relative submergence as follows:

�0

�
< �

��
�2 exp

(

− 1
2.93

�
��

)

, �2 = 2� exp
(

− 1
0.15

)

= 254.5.� (B7a,b)

Figure B1.  Critical aspect ratio for the formation of free migrating bars according to the empirical criteria of Muramoto & 
Fujita (1978) (dotted line), Jaeggi (1984) (solid lines, depending on the Shields number θ0), Yalin & Da Silva (2001) (dashed 
line) and Ahmari & Da Silva (2011) (dashed-dotted line). For all the criteria, bars are expected to form when the width-to-
depth ratio exceeds the critical threshold.
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For Shields numbers in the range 1 − 6 times θi, as usually the case of gravel bed rivers at bankfull condi-
tions (Parker, 1978), Equations B7a,b give minimum values of D0/d between 181 and 274. For higher relative 
submergence D/d, Equation B4 is never satisfied, which implies that bars are not expected to form regardless of 
the value of β (see Figure B1). It is worth noticing, however, that this prediction seems essentially a mathematical 
artifact, as the empirical formula was derived from observations in conditions of relatively low submergence 
(D0/d < 30).

B3.  The Criterion of Yalin & Da Silva (2001)

This criterion is based on the empirical definition of a threshold value of the channel aspect ratio that only 
depends on the relative submergence (D0/d). Specifically, it can be expressed by means on the following piece-
wise-linear function:

𝛽𝛽𝐶𝐶 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
8
𝐷𝐷0

𝑑𝑑
if 𝐷𝐷0

𝑑𝑑
< 100

12.5 if 𝐷𝐷0

𝑑𝑑
>= 100

,� (B8)

with alternate bars expected to form when β > βC.

B4.  The Criterion of Ahmari & Da Silva (2011)

This criterion can be regarded as an updated version of Yalin & Da Silva (2001), where the constant aspect ratio 
for high values of D0/d is slightly reduced, and where a third branch of the solution is introduce to consider a 
decrease of the critical width-to-depth ratio for small values of the relative submergence. Specifically, the authors 
proposed the following piecewise-linear function:

�� =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

12.5
(�0

�

)−0.55
if �0

�
< 26.69

1
13

�0

�
if 26.69 <= �0

�
< 130

10 if �0

�
>= 130

.� (B9)

A comparison among the different expressions is illustrated in Figure B1.

Data Availability Statement
All experimental data are available at https://bitbucket.org/Marco_Redolfi/free_bars_analysis.
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