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Abstract: In recent times, pollution has emerged as a significant global concern, with European regu-
lations stipulating limits on PM 2.5 particle levels. Addressing this challenge necessitates innovative
approaches. Smart low-cost sensors suffer from imprecision, and can not replace legal stations in
terms of accuracy, however, their potential to amplify the capillarity of air quality evaluation on the
territory is not under discussion. In this paper, we propose an AI system to correct PM 2.5 levels
in low-cost sensor data. Our research focuses on data from Turin, Italy, emphasizing the impact
of humidity on low-cost sensor accuracy. In this study, different Neural Network architectures
that vary the number of neurons per layer, consecutive records and batch sizes were used and
compared to gain a deeper understanding of the network’s performance under various conditions.
The AirMLP7-1500 model, with an impressive R-squared score of 0.932, stands out for its ability to
correct PM 2.5 measurements. While our approach is tailored to the city of Turin, it offers a systematic
methodology for the definition of those models and holds the promise to significantly improve the
accuracy of air quality data collected from low-cost sensors, increasing the awareness of citizens and
municipalities about this critical environmental information.

Keywords: air quality; neural network; low-cost sensors; laser-scattering technology; PM; multilayer
perceptron

1. Introduction

In recent times, the issue of pollution has become a significant concern for
humanity [1,2]. Exposure to particulate matter (PM) poses significant health risks, with
strong associations established between PM exposure and cardiopulmonary morbidity and
mortality, and lung cancer [3]. Fine particles, specifically those with a diameter of 2.5 µm or
smaller, raise specific concerns because of their heightened toxicity, ability to penetrate the
lungs deeply, and prolonged presence within the respiratory system [4,5]. Beyond health
impacts, PM 2.5 also contributes to environmental problems such as reduced visibility,
ecological damage such as soil nutrient depletion and acid rain effects, as well as material
deterioration, exemplified by the discolouration of cultural landmarks [6–8]. In response
to this mounting concern, European regulations and U.S. National Ambient Air Quality
Standards (NAAQS) [9,10] have implemented stringent measures. These actions involve
the establishment of rigorous standards that limit the number of days in a year when PM 2.5
and 10 levels can exceed defined thresholds. Furthermore, they have enforced restrictions
on particulate matter emissions from a wide range of sources in various industries.

The concentrations of PM exhibit inherent spatial and temporal variations, leading
to differing personal exposure levels [11]. To tackle this challenge and expand the mon-
itored areas, various initiatives have been undertaken to create affordable PM sensor
networks [12–15]. Usually, these networks employ low-cost sensors that offer advantages
such as scalability, real-time data, and citizen science participation; while these widely
distributed sensors cannot completely replace reference stations in terms of accuracy, they
play a vital role in advancing air quality research [16–18].
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There are various types of low-cost (LC) sensors designed for measuring pollutants,
broadly classified into gases and particulate matter [19–21]. In the context of our paper,
we focus on PM low-cost sensors that employ laser scattering techniques to estimate
particle size and number concentrations, which are subsequently converted into mass
concentrations using proprietary algorithms.

Laser scattering methods have limitations in accuracy compared to more expensive
reference instruments. Moreover, low-cost sensors may be sensitive to environmental
factors such as humidity, temperature, and atmospheric pressure, which can influence
sensor performance and be susceptible to interference from other pollutants or sources,
leading to erroneous readings. Artificial intelligence methods have demonstrated their
effectiveness in enhancing the precision of low-cost sensor measurements. Many of these
approaches involve a calibration procedure that requires positioning the low-cost sensors
close to reference stations [22,23] and then aligning the data exploiting machine-learning
techniques or neural networks.

In this paper, we address the issue of a calibration of low-cost PM sensors using
Multilayer Perceptron (MLP) networks, which have a track record of outperforming other
algorithms in similar scenarios, as highlighted in [24]. Our objective is to establish a basis for
future research initiatives, starting with Turin’s city, Italy. We aim to introduce a systematic
methodology applicable to training neural networks in diverse settings beyond our initial
study area.

Our research encompasses several key components:

1. Data Understanding and Assembling: Our first step involves the assembly of a
comprehensive dataset. We collect data from multiple sources, including five low-
cost sensors and one reference station. The resulting dataset is designed to capture
the temporal patterns inherent in the data and to consider the influence of various
meteorological factors on the detected concentrations;

2. Neural Network Training: We train various neural network models, using the assem-
bled dataset. These models are designed to minimise the error introduced by the
low-cost sensor in estimating PM 2.5 concentrations. Different hyperparameters to
identify the optimal model configuration were explored and compared.

3. Results Comparison: A comparative analysis of the best-performing model has been
conducted, and additional insights and considerations derived from our findings
are provided.

The rest of the paper is organised as follows. In Section 2, we describe the devices used
in the study, elucidate the process of dataset creation, and introduce the MLP architectures
employed. Section 3 delves into the tests carried out and provides an analysis of the results
achieved through a comparison of different architectures. Sections 4 and 5 are dedicated to
the discussion and conclusions, respectively, drawing upon our discoveries and providing
valuable insights for potential avenues of future research.

2. Materials and Methods

This section delves into the air quality sensor characteristics employed in the study
and the main challenges related to their deployment, the creation of a dataset designed to
capture the temporal nature of the sensor data and the neural network architecture used in
our research.

2.1. Air Quality Sensors

In the context of our research, we have access to observations obtained from five low-
cost devices, named Arianna and produced by Wiseair [25] , located in Turin; positioned
near a Tecora Sequential Unit, a reference station that allows the automated and sequential
collections of the atmospherical PM; and installed and managed by Arpa Piemonte [26,27].
These devices were placed in a green area, distanced from the most congested streets.
The dataset covers four months, with three devices deployed for two months between
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March and April and the remaining two devices collecting data for two months from
October to November.

Each Arianna device includes an SPS30 sensor [28,29] and sensors for measuring
relative humidity (RH) and temperature. SPS30 employs laser scattering technology (see
Section 2.1.1) to measure PM 1, PM 2.5, PM 4, and PM 10 concentrations, giving in output
both number and mass concentration. Unfortunately, the number concentration was not
available at the time of this study. Specifications relative to PM 2.5 are reported in Table 1.

Table 1. SPS30 specifications related to PM 2.5.

Parameter Conditions Value Units

Mass concentration range - 0 to 1000 µg/m3

Mass concentration size range PM 2.5 0.3 to 2.5 µm

Mass concentration precision for
PM 2.5

0 to 100 µg/m3 ±10 µg/m3

100 to 1000 µg/m3 ±10 % m.v. *

Maximum long-term mass
concentration precision limit drift

0 to 100 µg/m3 ±1.25 µg/m3/year
100 to 1000 µg/m3 ±1.25 % m.v./year

Number concentration range - 0 to 3000 #/cm3

Number concentration size range PM 2.5 0.3 to 2.5 µm

Number concentration precision for
PM 2.5

0 to 1000 #/cm3 ±100 #/cm3

1000 to 3000 #/cm3 ±10 % m.v.

Maximum long-term number
concentration precision limit drift

0 to 1000 #/cm3 ±12.5 #/cm3/year
1000 to 3000 #/cm3 ±1.25 % m.v./year

Lifetime 24 h/day operating >10 years

Temperature range - 10 to 40 ◦C

Relative humidity - 20 to 80 %
* % m.v. means “% of the measured value”.

In summary, this study incorporates a range of features, including PM 2.5 concen-
trations (µg/m3), RH and temperature (%), and temperature (◦C), and integrates these
with additional meteorological factors such as atmospheric pressure (hPa), cloud coverage
(%), and wind speed (m/s). These features are the most significant in the context of air
quality monitoring. Pressure affects air density, which, in turn, impacts the dispersion of
particulate matter in the air. Cloud coverage is related to RH [30]. Temperature plays a
main role in influencing RH, which is a major concern in this study. Wind speed affects the
dispersion of particles. All of these factors have the potential to influence the state of air
quality over time.

An important aspect to consider is that when Arpa station records raw data below
the detection limit, the result is assumed to be equal to half of the detection limit. This
approach is referred to as a medium bound technique (when the concentration of a target
substance is below the detection limit, it is typically considered to be estimated as half of
the detection limit). As a result, the Agency introduces a lower limit in the ground truth
data, which is set at 4 µg/m3 in this case.

2.1.1. Laser-Scattering Technology

In the realm of air quality monitoring, various types of low-cost sensors have been
employed to measure pollutants, particularly PM. We categorise the instruments used as
optical particle sensors (OPS), which can be further classified into two primary types: neph-
elometers and optical particle counters (OPC) [31]. Nephelometers operate by measuring
particles collectively, capturing light scattered by all particles across a wide range of angles.
In contrast, OPC detects particles individually. A simple laser scattering example is given in
Figure 1. From the light scattered, by applying the Mie theory, it is possible to calculate the
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equivalent particle diameter and the number of particles with different diameters per unit
volume. The data collected are then converted into particle mass concentration, expressed
in units of micrograms per cubic meter (µg/m3).

Figure 1. Simple diagram of laser scattering technology.

The term low-cost sensor encompasses a wide range of technologies, ranging from
sensors that cost tens of dollars to those with higher price tags, sometimes reaching a few
thousand dollars. In contrast, reference stations are significantly more expensive, often
exceeding tens of thousands of dollars in cost.

Current state-of-the-art research primarily focuses on data collected from sensors
priced below a few hundred dollars. These sensors are affordable for citizens, making them
accessible, but they also come with a level of simplicity. The straightforward technology
used in these sensors presents challenges in accurately detecting PM concentrations.

Table 2 compares various low-cost PM sensors frequently discussed in the literature [31–37].
These sensors are recognised for their simplicity and affordability but lack additional technology
to counteract the impact of external factors, including meteorological conditions.

Table 2. A comparison of PM low-cost laser-scattering sensors.

Model Make Technology PM Detected Output Approximate Cost
(USD)

SDS011 [38] Nova Laser scattering
OPC PM 2.5, PM 10 Particle mass

concentration 30

SPS30 [39] Sensirion Laser scattering
OPC

PM 1, PM 2.5,
PM 4, PM 10

Particle count and
mass concentration 50

HPMA115C0 Honeywell Laser-based light
scattering

PM 1, PM 2.5,
PM 4, PM 10

Particle mass
concentration 80

HPMA115S0 [40] PM 2.5, PM 10

OPC-N2/OPC-
N3 [41] Alphasense Laser scattering

OPC
PM 1, PM 2.5,

PM 10
Particle mass
concentration 500

In contrast, Table 3 highlights devices that combine low-cost sensors with supplemen-
tary technologies. For instance, the device employed in this study, named Arianna, features
an SPS30 sensor, RH and temperature sensors, and a filter to exclude larger external objects,
such as insects, from entering the device. It is worth noting that Arianna does not include
an air conditioning system, as it relies on solar panels for power, which limits its energy
resources. In contrast, the other devices in Table 3 use such technology to reduce humidity,
a critical factor that will be discussed further in Section 2.1.2.
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Table 3. A comparison of PM devices.

Model Make Air Conditioner
or Built-in Heater Technology PM Detected Output

Arianna Wiseair [25] No Laser scattering
OPC

PM 1, PM 2.5,
PM 4, PM 10

Fine particle
counts and mass

concentration

10,000/12,000 [42,43] Particle Plus
Yes (humidity and

condensation
control)

Optical light
scattering

PM 0.3, PM 0.5,
PM 1, PM 2.5,
PM 5, PM 10

Fine particle
counts and mass

concentration

AM520 [44] SidePak Yes (Inlet
conditioner)

Light-scattering
laser photometers

PM 0.8, PM 1, PM
2.5, PM 4, PM 10

Particle mass
concentration

AQMesh [45] Environmental
Instruments Yes Light-scattering

OPC
PM 1, PM 2.5,

PM 10
Particle mass
concentration

Although the inclusion of a drying system is essential for accuracy, it increases the
cost, making these devices less accessible to the general public. In fact, as shown in Table 2,
low-cost sensors are remarkably affordable. In contrast, the devices presented in Table 3 are
significantly more expensive, often exceeding thousands of dollars due to their heightened
complexity. The cost of these devices may vary depending on factors such as the quantity
sold and whether they are available for purchase or exclusively for rental.

2.1.2. Hygroscopicity Issue

One significant challenge faced by these low-cost sensors is their susceptibility to
various influencing factors, particularly the impact of humidity [46,47].

When humidity levels increase, the low-cost sensor reports higher PM 2.5 values than
the actual concentration. This stems from the hygroscopic nature of airborne particles [48,49].
As illustrated in Figure 2, when RH, indicated by the red line, exceeds a certain threshold,
there is a noticeable increase in the reported PM 2.5 values, represented by the blue
and orange lines. This increase in PM 2.5 concentration, as observed in the low-cost
sensor data, deviates significantly from the measurements obtained from the reference
station, shown in black. This discrepancy arises from the humidity being attracted and
held via either absorption or adsorption from the surrounding environment, leading to
particle size expansion. Consequently, the low-cost sensor detects an elevated number of
PM 2.5 particles, resulting in inaccurate measurements.

Figure 2. Comparison of PM levels measured by two low-cost sensors (represented by blue and or-
ange lines) with data from the Arpa reference station (black line), accompanied by RH measurements
(red) and an RH threshold of 70% (dotted red line).
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Simply eliminating or truncating these humidity-induced spikes is an inadequate
solution, particularly in areas with elevated humidity levels, as it would lead to a substantial
loss of data. When referring to elevated humidity levels, we mean RH exceeding 70% [48].
However, it is essential to emphasise that this threshold may vary based on the specific
sensor in use. Experiments have demonstrated that low-cost devices equipped with dryers
at their inlets measured an average of 64% lower PM 2.5 concentrations with elevated
humidity levels compared to sensors without these dryers [50]. This underscores the
critical importance of mitigating fluctuations in sensor readings induced by humidity [51].
However, it is important to note that the addition of a dryer increases the cost of the sensor
and may not always be a feasible solution (see Tables 2 and 3).

More comprehensive approaches involve calibration or mitigation of the hygroscopic-
ity effect, which involves developing models capable of effectively addressing this issue
while potentially addressing other external factors contributing to erratic sensor readings.

2.1.3. Calibration Challenges

Previous research has extensively explored the influence of variables such as RH and
temperature on sensor performance [46,52,53]. These studies have underscored the pressing
need for correction models to rectify inaccuracies in sensor data induced by humidity.

Nevertheless, it is important to be aware that calibration challenges may arise when
models are trained in one location but are later deployed in different places [54]. This can
be attributed to variations in pollutant sources and environmental contexts, which can
result in significant spatiotemporal differences. To tackle this issue, methods like corrective
functions have been proposed [11,55,56]. Corrective functions are particularly valuable
when only humidity and PM data are available. They derive a correction coefficient based
on humidity levels to reduce detected PM concentrations. While they can be fine-tuned
by calibrating against a reference station, this step is not always mandatory. Alternatively,
an approach involves optimizing function parameters minimizing the correlation between
humidity and PM concentration.

Another challenge includes the need for sensor maintenance, typically involving
recalibration approximately twice a year [57]. Additionally, many of these techniques
address mass concentration, aligning with the focus of our study. However, it is worth
noting that directly considerate particle counts could offer advantages [58,59], as it sidesteps
potential complexities associated with the conversion from counts to mass, and because a
larger particle size translates into a shift of particles into a smaller diameter bin and not in a
real diminishing of particle mass. Data frequency is another factor to consider, as reference
stations often provide data daily or hourly, limiting the potential for real-time monitoring
and fine-grain frequency accuracy.

Our study leverages neural networks as superior models for improving the accuracy
of PM concentrations [24], particularly for sensor data affected by the hygroscopicity issue
in high humidity regions (see Section 2.1.2). In these conditions, traditional linear correction
methods often prove inadequate. In contrast to simpler methodologies, however, MLPs
introduce certain limitations. These encompass reduced interpretability of the model’s
decision-making process, potentially constraining their utility in quantitative applications.
Furthermore, the intricacies associated with model design and the meticulous fine-tuning
of hyperparameters contribute to the challenges posed by this approach.

Our research aims to develop a systematic methodology for future research in this
field. However, like other calibration techniques, this approach is dependent on the
specific location for which it is trained. To address this local aspect, a potential solution
could involve collecting data from the same sensor model deployed in different locations.
Currently, this poses a challenge due to the scarcity of resources for co-locating low-cost
sensors with reference stations.
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2.2. Dataset Assembly

To handle the dissimilarity in data frequencies between the low-cost devices (gener-
ating four data entries per hour) and the reference station (providing one data entry per
hour), we implemented a data augmentation strategy. Instead of averaging the low-cost
device data on an hourly basis, and downsizing the dataset, we opted for upsizing the
dataset, as reported in Figure 3. We replicated the ground truth values for each input vector
originating from the low-cost devices based on the timestamp proximity.

Figure 3. Dataset augmentation phase.

This approach allows you to maintain a consistent and synchronised dataset, even
though the low-cost devices generate data more frequently than the reference station. By
generating four corresponding input vectors for each hour of data collected by the reference
station, we ensure that the data from the low-cost devices is still represented accurately in
relation to the hourly measurements from the reference station.

This technique can be useful when working with data sources with varying sampling
frequencies and can help ensure that all data sources are comparable and synchronised for
further analysis or modelling.

As previously mentioned, each data record from low-cost devices comprised six
distinct features (PM 2.5, RH, temperature, pressure, wind speed, and cloud coverage), and
a timestamp indicating the temporal aspect.

To improve our ability to account for the temporal context, we developed a dataset
structure that connects multiple consecutive historical records, which we refer to as a
loopback, associated with the same device, as illustrated in Figure 4. The ground truth
value for each input vector was determined based on the PM 2.5 reading from Arpa
corresponding to the final observation within the interval. This process was systematically
executed for every entry in the dataset.

We consistently applied this approach to all the devices under investigation and
integrated the results into a unified dataset. As a result, each entry was enriched with
valuable temporal insights.

Then, the dataset was partitioned into training (75%) and test sets (25%), and a shuf-
fling process was applied to the data during this segmentation. It is worth noting that a
sensible precaution, which was not integrated into this research, would involve taking
into account the data’s temporal characteristics to prevent closely related data points from
ending up in both the training and test sets.

The dataset in our study remains unprocessed, and no additional steps have been
taken. It is worth mentioning that potential future steps could involve outlier removal, for
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which we may utilise techniques described in [60,61]. Furthermore, the dataset has not
been normalised, and it is noteworthy that, in our results, normalization led to inferior
performance.

Figure 4. Dataset construction schema with a loopback of 4.

2.3. MLP Architectures

Our approach involves a systematic exploration of various neural network architec-
tures, each characterised by a unique set of hyperparameters. The primary evaluation
metric for their performance is the coefficient of determination, denoted as R2.

All these architectures have a consistent input size, which is six times the length of the
loopback, as there are six features involved. They generate a single neuron output, given
the regression nature of the task. The architectural diversity primarily revolves around
variations in depth and width.

We conducted experiments using architectures with depths ranging from six to eight
layers, maintaining uniform layer widths throughout. Each architecture consisted of a
linear layer followed by a Rectified Linear Unit (ReLU) activation function.

In the training process, we employed the L1 Error Loss. Additionally, we introduced
a variant of the architecture in which the last hidden layer contained half the number of
neurons, specifically when working with seven or eight layers. In total, we considered five
distinct architectures, collectively referred to as AirMLP. The nomenclature is based on the
layer count, the presence of an “h” denoting half neurons in the last layer, and the number
of neurons per layer. For example, an architecture with seven layers and 500 neurons per
layer is labelled as AirMLP7-500.

Furthermore, we investigated the potential advantages of the dataset normalization
and the inclusion of a batch normalization layer, which normalises data across batches while
learning affine parameters. Our experimentation revealed significant findings, indicating
that the inclusion of a batch normalization layer, without prior dataset normalization,
yielded superior results.

No other regularization techniques were applied.

3. Results

Since we utilised multilayer perceptron architectures, a key consideration was finding
the right network size that achieves a harmonious blend of excellent performance, prevent-
ing overfitting, and handling computational demands. This prompted us to investigate a
range of architectures with different combinations of hyperparameters.

We established a systematic and comprehensive pipeline that facilitated the training
of each network with a unique combination of hyperparameters. Specifically, we focused
on two key hyperparameters: the number of consecutive old records used to create the new
dataset, the loopback, and the number of neurons per layer. These parameters collectively
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defined the specific architecture of the model being trained. Furthermore, we conducted
experiments using three different batch sizes to assess their impact during training.

The hyperparameter values under consideration were as follows: the number of neu-
rons per layer spanned from [300, 500, 700], the number of consecutive records fluctuated
between [6, 12, 20], and batch sizes covered [64, 256, 512]. We assessed these hyperpa-
rameter combinations across five distinct architectures, resulting in a total of 135 potential
configurations, each requiring training and evaluation. This thorough method enabled
us to acquire a more profound insight into the network’s performance across a range
of conditions.

In Table 4, the R2 scores corresponding to each architecture evaluated on the test
set, alongside different sets of hyperparameters, is provided. Each column in the table
represents the results obtained for various combinations of batch size and consecutive
records, with the column name structured as batch size : loopback number. It is important
to note that the values presented are not averages of multiple test results; instead, they
represent a single measurement for each configuration.

Table 4. R2 score on models trained differently. The meaning of the first row is [batch size]:[num
records].

Model Neurons 64:6 256:6 512:6 64:12 256:12 512:12 64:20 256:20 512:20

AirMLP6 300 0.801 0.772 0.752 0.827 0.793 0.758 0.859 0.812 0.788
500 0.833 0.801 0.769 0.863 0.830 0.808 0.884 0.841 0.821
700 0.862 0.821 0.780 0.878 0.853 0.819 0.901 0.858 0.849

AirMLP7 300 0.811 0.780 0.760 0.847 0.805 0.778 0.865 0.823 0.801
500 0.844 0.814 0.770 0.883 0.838 0.815 0.888 0.859 0.826
700 0.857 0.826 0.813 0.886 0.855 0.841 0.904 0.871 0.848

AirMLP8 300 0.801 0.775 0.751 0.848 0.805 0.773 0.878 0.830 0.812
500 0.840 0.807 0.792 0.884 0.848 0.809 0.901 0.862 0.842
700 0.885 0.848 0.807 0.896 0.876 0.826 0.905 0.883 0.859

AirMLP7h 300 0.797 0.768 0.738 0.836 0.876 0.826 0.856 0.825 0.805
500 0.833 0.789 0.778 0.872 0.833 0.808 0.887 0.853 0.812
700 0.848 0.823 0.796 0.883 0.855 0.829 0.910 0.860 0.844

AirMLP8h 300 0.808 0.760 0.769 0.853 0.819 0.785 0.876 0.836 0.807
500 0.851 0.822 0.803 0.873 0.836 0.808 0.887 0.859 0.841
700 0.867 0.832 0.810 0.887 0.867 0.840 0.916 0.867 0.848

The data in the table highlights some noteworthy trends. First and foremost, increasing
the loopback consistently results in better performance. This is a valuable insight as it
suggests that capturing longer-term temporal dependencies enhances the network’s ability
to correct PM 2.5 values. Conversely, increasing the batch size tends to lead to a decrease in
the R2 value. This implies that smaller batch sizes might be more effective in training the
neural network.

Furthermore, the number of neurons per layer and the depth of the network, indicated
by the number of layers, impacts performance. Increasing the number of neurons per layer
within the network often results in better R2 values. Keeping a constant number of neurons,
deeper networks tend to yield higher R2 values. This suggests that having a more complex
model with a higher capacity for learning intricate patterns is beneficial.

As highlighted in the results, the optimal configuration for each model consists of
a higher number of neurons per layer and a batch size of 64. However, to gain a more
comprehensive understanding, we should investigate the effects of further increasing the
number of neurons per layer and assess whether this leads to the onset of overfitting. This
analysis will help us strike a balance between model complexity and performance, ensuring
that we do not compromise generalization capabilities while seeking optimal performance.
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Analyzing the loss graph reveals several valuable insights. Firstly, during the initial
training attempts, it becomes evident that overfitting is not a prevalent issue, as demon-
strated in Figures 5–7. This observation suggests that there is room to consider increasing
the network size without immediate concerns about overfitting.

Furthermore, the loss graph unveils two significant insights. When a larger batch size
is employed, the network converges more rapidly and smoothly, but at the cost of a higher
loss value, ultimately leading to poorer performance. Conversely, when a smaller batch
size is used, the network achieves convergence at a lower loss value, even with an identical
number of neurons.

The continuous descent of the loss curves implies that there is potential for further
enhancement in the model’s performance. Rather than employing a fixed number of
epochs for training, as demonstrated in this study, the implementation of an early stopping
technique warrants consideration and could yield substantial benefits.

Figure 5. AirMLP8-700 loss with a batch size of 64, test L1 value of 2.732.

Following our initial assessment, which identified the most effective hyperparameter
set for each model as a batch size of 64, a loopback of 20 consecutive records (indicating
the inclusion of 19 past observations in addition to the current one being corrected), and
700 neurons per layer, it becomes imperative to investigate the potential benefits of further
increasing the number of neurons per layer.

In pursuit of this objective, we carried out additional training sessions for all five
models, using varying neuron counts of 900, 1100, and 1500 per layer, while maintaining a
consistent 20 consecutive records and a batch size of 64. As depicted in Table 5, it is evident
that the model achieves optimal performance with seven layers and 1500 neurons in each
layer. This observation holds for different neuron counts as well, signifying that employing
seven layers seems adequate for representing this regression task effectively.
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Figure 6. AirMLP8-700 loss with a batch size of 256, test L1 value of 2.976.

Figure 7. AirMLP8-700 loss with a batch size of 512; test L1 value of 3.461.
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Table 5. Performance with a batch size of 64, and a loopback of 20, increasing the number of neurons
per layer.

Model Neurons R2

AirMLP6 900 0.901
1100 0.912
1500 0.926

AirMLP7 900 0.919
1100 0.926
1500 0.932

AirMLP8 900 0.917
1100 0.928
1500 0.925

AirMLP7h 900 0.915
1100 0.921
1500 0.927

AirMLP8h 900 0.917
1100 0.921
1500 0.923

The outcomes depicted in Figure 8 are rather remarkable, as they reveal not only
enhancements in terms of the R2 metrics but also significant improvements in the loss
reduction process during training. The loss curves now exhibit a smoother descent, and
they converge to lower values compared to the previous configurations. These findings
strongly indicate that augmenting the number of neurons per layer has exerted a positive
influence on both the model’s predictive performance and its training stability.

Figure 8. AirMLP7-1500 loss. Batch size of 64 and a loopback of 20.

Upon inspecting the figures, it becomes evident that there is still no indication of
overfitting throughout the training process. Notably, the AirMLP7-1500 model performs
well, potentially serving as a solid foundation for further exploration.
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While it is tempting to increase the network’s dimensions even further, it is imperative
to carefully weigh the trade-off between potential performance enhancements, which may
be modest, and the accompanying escalation in computational requirements.

Evaluating the AirMLP7-1500 model’s performance on the test dataset involves con-
trasting its predicted results with the actual values. To highlight this, we drew the predicted
test scatter plot in Figure 9. The ideal scenario is when these predicted values (blue dots)
perfectly align along the diagonal line (the red line in Figure 9), indicating that the model’s
predictions match the reference station’s actual values. Any deviations from this diag-
onal line signify, instead, the magnitude of prediction errors and provide insights into
the model’s performance. The Figure shows a strong correlation between the predicted
values generated by the model and the original values (ground truth); indeed, the predicted
values are closely clustered around the diagonal line. This suggests that the neural network
AirMLP7-1500 is effective in accurately predicting PM 2.5 concentrations.

The figure also shows a negative consequence of the lower threshold applied to the
data by the Arpa Agency (described in Section 2.1) is visible in the left-bottom part of
the plot. The data equal to such threshold are horizontally aligned at y = 4, and the NN
reproduce this threshold, visible at x = 4.

Now, let us examine a secondary test dataset comprising consecutive data from a
few days, which is not part of the training set. The PM 2.5 values originally recorded and
the PM 2.5 values generated by the AirMLP7-1500 model are contrasted with the ground
truth (Arpa), as illustrated in Figure 10 and Figure 11, respectively. This analysis will offer
insights into the model’s ability to adapt to novel, unobserved days and its performance in
a real-world context beyond the training data.

The first thing you may notice is the notable improvement in sensor data alignment
compared to Arpa when introducing the predictions from the AirMLP7-1500 model. More-
over, the predictions do not exhibit any unusual behaviour, indicating a smooth correction
of the data.

Some minor observations are that in both Figures 10 and 11, the Arpa line displays
plateaus due to the replication of data to match the 15-min low-cost granularity frequency,
and in Figure 11, there are instances where the model does not precisely reconstruct certain
peaks. For instance, around day 25, the neural network entirely misses a peak, and near
day 90, it anticipates one. These discrepancies may be attributed to the data augmentation
method employed, which might lack access to the exact PM concentration values.

Figure 9. Comparison between predicted results and actual values from the AirMLP7-1500 model on
the test dataset (blue dots).
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Figure 10. Original vs. Arpa ground truth data.

Figure 11. AirMLP7-1500’s predicted output vs. Arpa ground truth data.

A particular aspect that can be noticed is the lower threshold imposed by Arpa through
the medium bound technique, as discussed in Section 2.1, which is learned by the neural
network. This lower threshold is visible in Figures 10 and 11 in the line representing Arpa.
It does not reach a PM concentration of 0 but is imposed at 4 µg/m3.

These outcomes are indicators of the model’s generalization capabilities and provide
further evidence that the network does not suffer from overfitting. They highlight the
robustness of the model and its ability to provide accurate PM 2.5 estimates, reinforcing its
potential for real-world applications in air quality monitoring.



Sensors 2023, 23, 9446 15 of 19

4. Discussion

In this Section, we explore significant discoveries, potential implications, and future
directions.

The results, provided in Section 3, underscored the capability of MLPs to effectively
represent and address the problem. These networks yield commendable R2 scores. It is
important to note that overfitting is not observed in this context, affirming the robustness
of the models. Furthermore, the batch size significantly influenced performance, with
larger batch sizes leading to a decrease in performance. On the other hand, employing a
wider network with 1500 neurons per layer proved to be the optimal choice. Additionally,
networks with seven or eight layers demonstrated a better performance. The inclusion of a
loopback mechanism, allowing the network to consider a longer history of data, proved to
be advantageous. The performance results indicate that leveraging more historical data
leads to improved model accuracy.

Regarding the influence of RH, our study emphasizes the significant impact of hu-
midity on the accuracy of low-cost PM 2.5 measurements. When RH surpasses a threshold
of 70%, low-cost sensors tend to overestimate PM 2.5 levels. This distortion can under-
mine the reliability of air quality assessments, highlighting the limitations of such data in
pollution-related decision-making.

Among the models, the AirMLP7-1500 model stood out, achieving an impressive R2

score of 0.932. The achieved R2 result aligns with the performance of neural networks
reported in the existing literature, which typically surpasses 0.9 [24]. This again under-
scores the potential for AI-based correction methods to enhance the accuracy of low-cost
sensor data.

The proposed method is not without limitations, particularly in terms of dataset
shuffling and augmentation techniques. The specular pattern between training loss and
test loss is shown in all the loss figures. This phenomenon could likely be attributed to the
initial shuffling of data, which may not have adequately accounted for the presence of very
similar data points in both the training and test sets. Further investigation and refinement
of the data splitting and shuffling procedures could potentially mitigate this issue and
provide a more accurate representation of the model’s performance on unseen data.

Additionally, in the context of handling Arpa reference station data, rather than the
current approach of oversampling and repeating values to achieve finer granularity from
1 h to 15 min frequency, it is crucial to explore alternative strategies. One such strategy
involves developing a weighted mean between the value at a given time point and the
subsequent hour’s value. This exploratory approach holds the potential to not only enhance
the quality of the ground truth data but also mitigate the erroneous reconstruction of peaks.

An important limitation to acknowledge is that the proposed correction models are tai-
lored to a specific location and a particular set of low-cost devices. As previously highlighted,
applying these models to different sensors or locations may yield sub-optimal results.

Numerous promising avenues for future research emerge from this study. One imme-
diate direction is to investigate the impact of further increasing the model’s complexity, with
a focus on balancing improved performance with computational resources. Regularization
techniques like dropout could also be explored to enhance model robustness.

Considering seasonality when training PM 2.5 correction models is another promis-
ing direction. Seasonal variations in air quality are a well-known phenomenon [62,63].
By training separate models tailored to different seasons, it is possible to capture and
correct seasonal variations in PM 2.5 measurements. Moreover, incorporating temporal
information into the dataset is a strategy that can further enhance the network’s ability
to differentiate between diverse environmental contexts. This could involve including
features such as day of the week, time of day, or even specific holidays or events that might
impact air quality. By accounting for both seasonality and temporal dynamics, the models
can become more adaptive and provide accurate corrections across various environmental
scenarios. This approach aligns with the idea of developing context-aware models that
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tailor their corrections based on the prevailing conditions [64], ultimately advancing the
effectiveness of low-cost sensor data in air quality monitoring.

In addition, extending the models’ evaluation to new, unseen data from diverse geo-
graphical locations is essential to assess their generalization capabilities [65]. This would
help determine the models’ adaptability to varying environmental conditions. Incorporat-
ing data from low-cost laser scattering sensors manufactured by different companies is also
an important consideration. Different sensor models may exhibit unique characteristics
and behaviours. Testing the models with data from various sensor manufacturers can help
validate their robustness and ensure that they perform effectively across a spectrum of
sensor types.

Beyond correction, the models developed here could be adapted for anomaly detec-
tion, helping to identify unusual PM 2.5 readings that may indicate pollution events or
sensor malfunctions. Additionally, transitioning from correction to prediction could enable
the forecasting of future PM 2.5 levels based on atmospheric conditions, contributing to
proactive pollution management at the installation site.

Overall, the findings of this research provide valuable insights into the potential of
neural networks, specifically MLPs, in improving the accuracy of low-cost sensor measure-
ments. The study’s results contribute to the broader understanding of machine learning
techniques in air quality monitoring and provide a foundation for further exploration and
application in this field.

5. Conclusions

In this paper, we have addressed a critical challenge, which is improving the accuracy
of PM 2.5 measurements acquired from low-cost devices equipped with an SPS30 sensor
using MLP networks.

Our research employed data collected from five distinct low-cost devices for five
months. These devices were located near a Tecora Arpa reference station in Turin. The
data underwent augmentation to align with the low-cost device granularity, and it was
provided to the neural networks in its raw form.

Remarkably, the AirMLP7-1500 model, which consists of seven layers, each containing
1500 neurons, and includes a loopback of 20, achieved an impressive R2 score of 0.932,
effectively mitigating the impact of hygroscopicity.

The significance of this study provides the foundation for a systematic methodology
that can be adapted for training similar models in various environmental contexts. This
level of customization is a key strength, as it enables the model to effectively capture the
complex relationships between local atmospheric parameters and the accurate detection of
PM 2.5 concentration levels.

Looking ahead, our work opens the door to further investigations. These avenues
include exploring the impact of increasing network complexity while guarding against
overfitting, the application of regularization techniques, and enhanced data preprocessing
before the training phase. Considerations such as seasonality, improved data preprocessing,
and extending the applicability of the models to various geographical locations and sensor
types are also promising directions for future research.

We argue that this study serves as a solid foundation for broader and more versatile
inquiries within the realm of air quality monitoring and correction, setting the stage for
further advancements in this critical field.
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