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Abstract

We investigate collineation groups of a finite projective plane of odd order fixing an oval

and having two orbits on it, one of which is assumed to be primitive. The situation in which

there exists a fixed triangle off the oval is considered in detail. Our main result is the following.

Theorem. Let p be a finite projective plane of odd order n containing an oval O: If a collineation

group G of p satisfies the properties:

(a) G fixes O and the action of G on O yields precisely two orbits O1 and O2;
(b) G has even order and a faithful primitive action on O2;
(c) G fixes neither points nor lines but fixes a triangle ABC in which the points A; B; C

are not on the oval O;

then nAf7; 9; 27g; the orbit O2 has length 4 and G acts naturally on O2 as A4 or S4:
Each order nAf7; 9; 27g does furnish at least one example for the above situation; the

determination of the planes and the groups which do occur is complete for n ¼ 7; 9; the
determination of the planes is still incomplete for n ¼ 27:
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1. Introduction

A collineation group of a projective plane is said to be irreducible if it fixes no
point, line or triangle of the plane. The possible structures and actions of irreducible
collineation groups of finite projective planes were investigated by Hering who was
able to prove a classification theorem under the hypothesis that the group contains
non-trivial perspectivities, see [12–14].

Hering’s results have often played a relevant role in the study of collineation
groups of finite projective planes of odd order fixing an oval. For example, Hering’s
classification theorem was the main tool in the study of transitive ovals: as a matter
of fact, the sole assumption of transitivity on the points of the oval does imply both
irreducibility and the existence of non-trivial perspectivities in several meaningful
instances, see [3,4].

Some recent papers have singled out interesting situations in which the given
collineation group is neither transitive on the oval nor irreducible on the plane, see
[1,9–11], with examples both in desarguesian and non-desarguesian planes.

It is the purpose of the present paper to investigate the case of a reducible
collineation group fixing an oval and a triangle. More specifically, let G be a
collineation group of a finite projective plane p of odd order n and let O be an oval of
p: The group G is assumed to satisfy the following properties:

(a) G fixes O and the action of G on O yields precisely two orbits O1 and O2;
(b) G has even order and a faithful primitive action on O2;
(c) G fixes neither points nor lines but fixes a triangle ABC in which the points A; B;

C are not on the oval O:

Our main result is the following.

Theorem 1. Let p be a finite projective plane of odd order n containing an oval O: If a

collineation group G of p satisfies properties (a)–(c), then nAf7; 9; 27g; the orbit O2 has

length 4 and G acts naturally on O2 as A4 or S4:

The only examples of the above situation in which the group G is isomorphic
to A4 occur in the desarguesian plane of order 7, in the desarguesian plane of
order 9 and in the Hughes plane of order 9. Examples in which the group G is
isomorphic to S4 occur in the desarguesian plane of order 9, in the Hughes plane of
order 9, in the desarguesian plane of order 27 and in the Figueroa plane of order 27.
The only order for further possible examples is n ¼ 27: we have not attempted a
complete search yet.

2. Preliminaries

We begin by recalling that a group action on a given set is said to be faithful if the
kernel of the action is trivial.
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Lemma 1 (Wielandt [19]). Let H be a collineation group of a finite projective plane p
and let D be one of its point-orbits. Let N be a normal subgroup of H: If N fixes a point

of D then D is pointwise fixed by N: If H acts primitively on D then either N fixes D
pointwise or N is transitive on D: In the latter case if N is an abelian minimal normal

subgroup of H then it is regular on D:

If H is a collineation group of a finite projective plane and X is a subset of H; we
denote by FixðXÞ the substructure consisting of the points and lines which are fixed
by every collineation in X :

Lemma 2. Let H be a collineation group of a finite projective plane p fixing an oval O:
Assume H fixes at least three points on O: Then FixðHÞ is a subplane p0 of p and the

fixed points of H on O form an oval O0 in p0: If the order of p is odd then so is the order

of p0:

Proof. The tangents through two points of O which are fixed by H meet at a point
which is also fixed by H and so there exists a quadrangle which is pointwise fixed by
H: Then we know that FixðHÞ is a subplane p0: Let O0 be the subset of O consisting
of the points which are fixed by H: Clearly O0 is an arc in p0: If P lies on O0 and cP

denotes the unique tangent to O in p; then H fixes cP and so cP is a line of p0: If c is
another line in p0 through P; then c must be a secant to O through P; since c and P

are fixed by H; we see that H must also fix the further point Q at which c meets O;
consequently Q lies in p0 and c is a secant to O0 in p0: We have shown that O0 is an
arc in p0 with a unique tangent at each one of its points, which means O0 is an oval in
p0:

Assume p has odd order and let P; Q; R be three distinct points on O0: If the order
of p0 is even, then the tangents to O0 at these points pass through the nucleus of O0 in
p0: At least one of these three lines, say c; must therefore be a secant to O in p: Let X

denote the further point of intersection of c with O; since c is fixed by H; so is X ;
which means X is in p0 and consequently c is a secant to O0 in p0; a
contradiction. &

Useful information can usually be obtained on a collineation group of a finite
projective plane which is known to contain central collineations. A non-trivial
perspectivity fixing an oval in a projective plane of odd order is an involutory
homology, [3, Proposition 2.1].

Lemma 3. An involutory homology of a finite projective plane of odd order fixing a

subplane must induce an involutory homology on the subplane.

For the rest of this section p denotes a finite projective plane of odd order n with
an oval O and G denotes a collineation group of p satisfying the following properties:

(a) G fixes O and the action of G on O yields precisely two orbits O1 and O2;
(b) G has even order and a faithful primitive action on O2:
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The following lemma is an adjustment of [4, Lemma 4.1] to our situation.

Lemma 4. Assume jO1jX2: If G possesses an elementary abelian normal subgroup M

of odd order, then G contains some involutory homology.

Proof. Write jMj ¼ pe with p an odd prime and e a positive integer. By assumption
(b) the group M acts non-trivially on O2 and consequently M is regular on O2 by
Lemma 1, yielding in particular jO2j ¼ pe:

Assume M has no fixed point in O1: Then M is fixed-point-free on O and M can
therefore fix only interior points and exterior lines. In addition, p divides the length
of each M-orbit on O1; hence p divides jO1j and consequently p divides jOj ¼ n þ 1:
Since n is odd we obtain the relations gcdðp; nÞ ¼ gcdðp; n � 1Þ ¼ 1 which in turn
imply gcdðp; nðn � 1Þ=2Þ ¼ 1: We conclude that M fixes at least one interior point L

and at least one exterior line c:
Suppose that M fixes an exterior line c0 different from c; then M fixes c-c0;

furthermore, M fixes at least two more points on each line c and c0 because
gcdðp; nÞ ¼ gcdðp; n � 1Þ ¼ 1; hence FixðMÞ is a subplane in this case and the same
conclusion holds if M fixes an interior point other than L: We have shown that
FixðMÞ either consists of a single interior point and a single exterior line or is a
subplane consisting entirely of interior points and exterior lines. In either case an
involutory collineation h in G must fix some line c in FixðMÞ because h normalizes
M and therefore fixes FixðMÞ setwise. If h is a Baer involution, then since jO2j is odd,
h must fix some point in O2 and so Case II of [3, Proposition 2.2] occurs, in particular
no point of FixðhÞ is interior and no line is exterior, a contradiction.

Assume that M fixes some point of O1: Lemma 1 shows that M fixes O1 pointwise.
Since jO2j ¼ pe is odd and jOj ¼ jO1j þ jO2j is even, we have that jO1j is odd, in
particular jO1jX3: Lemma 2 yields now that FixðMÞ is a subplane of odd order and
O1 is an oval in FixðMÞ; whence jO1j is even, a contradiction. &

Proposition 1. If jO1jX2 and jO2jX3 then G contains some involutory homology. If

jO1j ¼ 3 and jO2jX3 then n ¼ 5 and the group G is isomorphic to S3 fixing an interior

point and acting sharply 2-transitively on each orbit O1 and O2:

Proof. Assume all involutions in G are Baer involutions. By [3, Proposition 2.5] the
Sylow 2-subgroups of G are cyclic. If M is a minimal normal subgroup of G; then by
[15, IV Satz 2.8] it is elementary abelian and its order is either odd or equal to 2. By
assumption (b) the group M acts non-trivially on O2 and consequently M is regular
on O2 by Lemma 1.

The case jMj ¼ 2 yields jO2j ¼ 2; which is excluded. If jMj is odd then Lemma 4
yields the assertion.

Assume now jO1j ¼ 3 and put O1 ¼ fA1;A2;A3g: Since jOj ¼ jO1j þ jO2j is even
we see that jO2j is odd. Since an involutory homology fixes 0 or 2 points on O; each
involutory homology in G fixes exactly one point in O1: since this point cannot be the
center of the involutory homology, it must lie on its axis. Let h and h0 be two distinct
involutory homologies of G fixing the same point in O1; say A1: Since both h and h0
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interchange the tangents to O through A2 and A3; we see that the common point P of
these tangents is fixed by h and h0: Both involutory homologies h and h0 have thus the
line PA1 as axis, and that contradicts the fact that distinct involutory homologies
fixing O have distinct axes, see [3, Proposition 2.1 (2)].

Since G acts transitively on O1; we conclude that there exist in G exactly three
involutory homologies h1; h2; h3 such that each one of them fixes precisely one point
in O1 and distinct involutory homologies fix distinct points. No two such involutory
homologies commute, as the center of one of them does not lie on the axis of the
other and we may assume the labelling to be such that Ai is the fixed point of hi on
O1 for i ¼ 1; 2; 3:

Consider the normal subgroup H ¼ /h1; h2; h3S of G: The involutory homologies
h1; h2; h3 induce the 2-cycles ðA2;A3Þ; ðA1;A3Þ; ðA1;A2Þ on O1 respectively and
consequently H induces the symmetric group S3 on O1:

The next step consists in showing that H acts faithfully on O1: The relation
h1h2h1 ¼ h3 implies that /h1; h2S contains h3 and therefore H ¼ /h1; h2S is a
dihedral group as it is generated by two involutions. The relations h1h2h1 ¼ h3;
h2h1h2 ¼ h3 yield now that h1h2 has order 3 and so H has order 6, consequently H is
isomorphic to S3 and the action of H on O1 is faithful.

Each involutory homology has precisely one fixed point in O2; hence H cannot fix
O2 pointwise and so H must be transitive on O2 by Lemma 1. If XAO2 is fixed by an
involutory homology in H; we have that the stabilizer HX has order at least 2,
consequently jO2j ¼ jH : HX jp3: We have thus jO2j ¼ 3; which together with jO1j ¼
3 yields n ¼ 5:

We have S3DHpG and G is faithful on O2; hence H ¼ GDS3 and since each
collineation of order 3 of PGð2; 5Þ fixes precisely one point, we see that G has one
fixed point which is an interior point. &

3. Main result

Let p be a finite projective plane of odd order n with an oval O and let G be a
collineation group of p satisfying properties (a)–(c) stated in the Introduction. The
pointwise stabilizer of fA;B;Cg in G will be denoted by G0: We note that since G

fixes no point, it must be transitive on fA;B;Cg and so G0 is a proper normal
subgroup of G:

Assumption (c) excludes the possibilities jO1j ¼ 1; 2, jO2j ¼ 1; 2 and so we may
assume that both relations jO1jX3; jO2jX3 hold. Proposition 1 shows that if jO1j ¼
3 then G has a fixed point and so this case is excluded as well.

From now on we shall thus assume jO1j43; jO2jX3: It follows then from
Proposition 1 that G contains involutory homologies. We recall that an involutory
homology fixing an oval in a finite projective plane of odd order is uniquely
determined by its center or by its axis respectively, see [3, Proposition 2.1]. In our
situation, it is immediately seen that if the center is one of the vertices of the triangle
then the axis is the opposite side and, similarly, if the axis is one of the sides of the
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triangle then the center is the opposite vertex. The next basic step is to show the
existence of involutory homologies in G0:

Proposition 2. The group G contains involutory homologies with center and axis on the

fixed triangle ABC:

Proof. Assume G contains no involutory homology with center or axis on ABC;
each involutory homology in G then fixes ABC setwise but not pointwise and
therefore each such involutory homology will have its axis through one of the
vertices and its center on the opposite side. Since the vertex is not fixed by G; we have
that G induces at least two distinct involutions on fA;B;Cg: We have shown
G=G0DS3:

Assume G0 ¼ fidg:We have then GDS3; whence jO1jp6 and since the action of G

on O2 is primitive we get jO2j ¼ 3: Altogether we have n þ 1 ¼ jOjp9 and so
nAf3; 5; 7g: If n ¼ 3; then jO2j ¼ 3 yields jO1j ¼ 1 which is excluded. If n ¼ 5; then
jO2j ¼ 3 yields jO1j ¼ 3 and Proposition 1 shows that G fixes a point, which is
excluded by assumption (c). Assume n ¼ 7; from jO2j ¼ 3 and jOj ¼ n þ 1 ¼ 8 we
obtain jO1j ¼ 5 and so O1 cannot be an orbit under S3; a contradiction. We have
shown the property G0afidg:

Let M be a minimal normal subgroup of G:We want to prove that we may assume
MpG0: If not we have jMj ¼ 3; then since M is regular on O2 we have jO2j ¼ 3: If
M fixes some point in O1; then M fixes O1 pointwise by Lemma 1; the relation
jO1j43 and Lemma 2 yield then that O1 is an oval in the proper subplane FixðMÞ of
odd order. It follows from jO1j ¼ n � 2 that the order of this subplane is n � 3; which
is even, a contradiction. We have shown that M is fixed-point-free on O1: In
particular each M-orbit on O1 has length 3 and the relation n 
 2 mod 3 holds. It

follows from n2 þ n þ 1 
 1 mod 3 that M fixes some point of p: The group M

cannot have a unique fixed point in p; otherwise, since M is normal in G; such a
point would also be fixed by G; which is excluded by assumption (c). Let P; Q be
distinct fixed points of M on p: The relation n 
 2 mod 3 shows that M fixes at least
two lines through P other than PQ; similarly, M fixes at least two lines through Q

other than PQ; consequently M fixes a quadrangle pointwise, that is FixðMÞ is a
proper subplane of p: Since M has no fixed points on O; each point of FixðMÞ is
interior and each line of FixðMÞ is exterior. Since M is normal in G; we see that
FixðMÞ is left invariant by G and so, in particular, FixðMÞ is left invariant by any
involutory homology h in G; which therefore induces an involutory homology on
FixðMÞ by Lemma 3, in particular the center and the axis of h lie in FixðMÞ:
Furthermore, setting O2 ¼ fX ;Y ;Zg; we have that h must fix at least one of the
points of O2; say Z: As the center of h cannot lie on the oval O; we see that Z must be
on the axis of h; which is thus a secant line, contradicting the fact that each line of
FixðMÞ is exterior. We conclude that the possibility jMj ¼ 3 is also ruled out.

Since G acts faithfully on O2; the group M does not fix O2 pointwise and so
Lemma 1 shows that M is transitive on O2: Furthermore, since G0 contains no
involutory homologies, [3, Proposition 2.5] applies and so the Sylow 2-subgroups of
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G0 are cyclic. It follows from [15, IV Satz 2.8] that M is elementary abelian and jMj
is either 2 or pe for some odd prime p and positive integer e: In addition, M is regular
on O2:

If jMj ¼ 2 then we have jO2j ¼ 2 which is not the case. Hence jO2j ¼ pe and
jO1j ¼ n þ 1� pe is also odd. If M fixes a point of O1; then Lemma 1 shows that O1 is
pointwise fixed by M: The relation jO1j43 and Lemma 2 yield then that O1 is an
oval in the proper subplane FixðMÞ of odd order, contradicting the fact that jO1j is
odd. We conclude that M is fixed-point-free on O1; whence p divides jO1j and
consequently p also divides jOj ¼ n þ 1: Since n is odd, that yields gcdðp; nÞ ¼
gcdðp; n � 1Þ ¼ 1: Furthermore, M is fixed-point-free on O and so each fixed point of
M is interior and each fixed line of M is exterior.

We can now state that FixðMÞ is a subplane. As a matter of fact M fixes fA;B;Cg
pointwise; since gcdðp; n � 1Þ ¼ 1 we see that M must fix at least one line c through
A other than AB; AC; similarly if P is the point of intersection of c with BC; we see
that M must fix at least one point D on c other than A and P: The points A; B; C; D

form a quadrangle and are in FixðMÞ; showing that FixðMÞ is a subplane.
Since M is normal in G; each involutory homology h in G fixes FixðMÞ setwise and

hence induces an involutory homology on FixðMÞ by Lemma 3, in particular the
center and the axis of h lie in FixðMÞ and so the center is an interior point and the
axis is an exterior line, respectively. On the other hand, since both jO1j and jO2j are
odd, we have that h fixes at least one point in O1 and at least one point in O2; whence
precisely one point in O1 and precisely one point in O2: The axis of h is thus the
secant line joining these two points, a contradiction. &

Proposition 2 shows that we may assume the existence of an involutory homology
in G with center and axis on ABC; say hA with centerA and axis BC: Since G acts
transitively on fA;B;Cg; we see that G also contains the involutory homology hB

with center B and axis AC and the involutory homology hC with center C and axis
AB: Furthermore, the involutions hA; hB; hC are conjugate in G: Clearly the
subgroup K ¼ /hA; hB; hCS is normal in G and is elementary abelian of order 4 by
the quoted property [3, Proposition 2.1] that an involutory homology in our context
is uniquely determined by its center or by its axis respectively and by [7, 3.1.8(a)
p. 120]. The unique fixed points of K in the plane p are A; B and C; hence K

has no fixed points on O2 and so K is regular on O2; in particular jO2j ¼ 4: By
assumption (b) the group G acts faithfully and primitively on O2: The primitive
permutation groups on four objects are A4 and S4 and so these are the unique
possibilities for G:

Proposition 3. The group G is either isomorphic to A4 or to S4:

Proposition 4. If the sides of the triangle ABC (that is the axes of the involutory

homologies hA; hB hC) are secant lines, then p is either the desarguesian plane of order 9
or the Hughes plane of order 9. In either case O2 is an oval in a Baer subplane and both

possibilities GDA4 or GDS4 do occur.
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Proof. The points of intersection of each axis with O lie in the same K-orbit, for
instance, hA exchanges the points of intersection of AB with O: These six points are
pairwise distinct and they all lie in the same G-orbit as G is transitive on fA;B;Cg:
Since jO2j ¼ 4 we conclude that the G-orbit containing these six points is O1:

On the other hand K is normal in G and the K-orbits on O1 form blocks of
imprimitivity for G on O1: In particular these orbits must have the same length. The
six points mentioned above form three K-orbits on O1 of length two each: if there
were a further point in O1; its K-orbit should have length four, as such a point is not
fixed by any one of the involutory homologies in K: We conclude that O1 consists
precisely of these six points and so the plane p has order n ¼ 9:

By [16] there are only four isomorphism classes of planes of order 9: the
desarguesian plane, the Hall plane, its dual plane and the Hughes plane. The Hall
plane has a unique isomorphism class of ovals and so does its dual plane, see
[6, Sections 3 and 4]; in either case the automorphism group leaving an oval
invariant has order 32 and thus contains neither A4 nor S4:

Assume p is desarguesian. Then O is a conic. The stabilizer S of O in the full
collineation group of PGð2; 9Þ is isomorphic to PGLð2; 9Þ: A subgroup of PGLð2; 9Þ
isomorphic to A4 or S4 must normalize its unique Klein subgroup K : As we have
seen, this subgroup contains three involutory homologies with secant axes. That
means K is contained in the unique subgroup U of S which is isomorphic to
PSLð2; 9Þ and K is uniquely determined up to conjugation in S: The normalizer in S

of K has order 48 and contains a unique subgroup M isomorphic to S4; which
already lies in U : This subgroup M and its unique subgroup N isomorphic to A4

both fix a triangle off O setwise and yield two orbits on O; one of length six and one
of length four with 2-transitive action on the latter one. The fact that the orbit of
length four is a conic in a Baer subplane can be best seen by choosing the equation
for O to have coefficients in GFð3Þ:

The Hughes plane of order 9 has two isomorphism classes of ovals as described in
[8,17]. The ovals in one class are called central extension ovals in [6] because they can
be obtained by extending a conic of the Baer subplane which is fixed by the
automorphism group of the plane. They are also known as Room ovals [18]. If O is
one such oval, then its stabilizer S in the full collineation group of the plane has
order 48 and contains a subgroup M which is isomorphic to S4: Both M and its
subgroup N isomorphic to A4 yield two orbits on O of length six and four,
respectively; the latter one is obviously the oval O2 in the fixed Baer subplane, from
which the extension started: both M and N fix setwise the triangle formed by the
three points of the fixed Baer subplane which are interior with respect to O2: The
ovals of the other class are called new ovals in [6]; the stabilizer of each such oval
in the full collineation group of the plane has order 16 and thus contains neither A4

nor S4: &

Proposition 5. If the sides of the triangle ABC (that is the axes of the involutory

homologies hA; hB hC) are exterior lines, then p is either the plane of order 7, or one of

the planes of order 27.
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Proof. Since any one of the involutory homologies hA; hB; hC is the product of the
other two, we have that at least one such involutory homology induces a fixed-point-
free even permutation on O; whence ðn þ 1Þ=2 is even, which means n 
 3 mod 4:

The case jO1j ¼ 4 yields n ¼ 7; hence p is desarguesian and O is a conic. The
stabilizer S of O in the full collineation group of PGð2; 7Þ is isomorphic to PGLð2; 7Þ:
A subgroup of PGLð2; 7Þ isomorphic to S4 or A4 must normalize its unique Klein
subgroup K ; which already lies in the unique subgroup U of S which is isomorphic
to PSLð2; 7Þ: The normalizer N in U of the subgroup K has order 24 and it is
isomorphic to S4: The group N is transitive on O; but its unique subgroup M

isomorphic to A4 has two orbits on O of length four each and fixes a triangle off O
setwise.

Assume GDS4: Then since we are assuming jO1j43; the remaining possibilities
for O1 are 6, 8, 12 or 24.

The case jO1j ¼ 6 yields n ¼ 9 
 1 mod 4 which does not occur.
The case jO1j ¼ 8 yields n ¼ 11: Consider a collineation g of order 3 in G; we see

that g has at least two fixed points on O1 and at least one fixed point in O2: It follows
from Lemma 2 that p0 ¼ FixðgÞ is a proper subplane of odd order m in p; since
p0 cannot be a Baer subplane we necessarily have 11Xm2 þ mX32 þ 3 ¼ 12; a
contradiction.

The case jO1j ¼ 12 yields n ¼ 15: The stabilizer in G of each point in O1 has order
2; the involutions in K are fixed-point-free on O and so the unique involution j in
such a stabilizer lies in G\K ; furthermore, jO1j ¼ 12 shows that j fixes at least one
more point in O1: Since G acts on O2 as S4 in its natural action, we see that j fixes two
points in O2 and thus, altogether, at least four points in O: As no three of these
points are collinear, we conclude that j is a planar collineation, namely a Baer
involution, which is impossible as 15 is not a square.

The case jO1j ¼ 24 yields n ¼ 27: There are examples for the given situation both
in the desarguesian plane and in the Figueroa plane. In either case, consider the

irreducible conic O2 with equation X 2
0 ¼ X1X2 in the canonical subplane of order 3;

clearly O2 is a subset of the irreducible conic of PGð2; 27Þ with the same equation; it
has been shown in [5] that O2 can also be extended to an oval in the Figueroa plane
of order 27. In either case a copy of PGLð2; 3ÞDS4 fixing O2 in the subplane of order
3 can be extended to a collineation group G fixing the oval in the plane of order 27. It
is not hard to see that G satisfies the required properties; in particular the three
pairwise commuting involutions in the normal Klein subgroup K of G are involutory
homologies, hence K fixes the triangle formed by their centers pointwise, and this
triangle will be setwise fixed by G: Other planes of order 27 are known, but a full
classification is not yet available: we have not tried to see if the constraints imposed
by our situation possibly exclude further examples.

Assume GDA4: Then since we are assuming jO1j43; the remaining possibilities
for jO1j are 6 and 12.

Again, jO1j ¼ 6 yields n ¼ 9 
 1 mod 4 which does not occur.
The case jO1j ¼ 12 yields n ¼ 15: Differently from the situation described above in

which GDS4; we were not able to discard this possibility on the basis of purely
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theoretical considerations. A deeper combinatorial analysis was necessary along with
some computer calculations: the full treatment is given in [2]. &
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