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A B S T R A C T

The growing interest in low-frequency SAR for soil parameter retrieval has led to the development of new
active L-band satellites, that will provide novel surface soil moisture products and retrieval possibilities;
however, due to data unavailability so far, limited applications have investigated the use of change detection
models using L-band satellite SAR data. Since July 2020, high revisit time, high-resolution acquisitions by
the Satélite Argentino de Observación COn Microondas (SAOCOM) Argentinian-Italian constellation have
become accessible over Europe. Therefore, this research presents an investigation of the potential of multi-
temporal L-band SAOCOM-1 for monitoring soil moisture variations underneath low and sparse agricultural
vegetation. Moreover, it proposes a procedure for the mitigation of roughness contribution, by exploiting
the entropy parameter derived from the dual-polarimetric decomposition. L-band sensitivity to soil moisture
has been jointly evaluated in respect of Sentinel-1 C-band data by (1) comparing the temporal profiles of
the backscattering coefficient, 𝛾0, at VV and VH polarization, with the support of decomposition parameters
(entropy and �̄�), NDVI and precipitation data; (2) regression analysis with in situ soil moisture measurements,
obtained by the REMEDHUS network in the Douro River basin (Spain); 3) evaluating the soil moisture retrievals
obtained at C- and L- band using a change detection method. Finally, the effectiveness of the roughness
normalization procedure for SAOCOM data has been validated using in situ data. L-band co-polarized 𝛾0 has
proved to be the best configuration for soil moisture inversion, being relatively insensitive to vegetation,
as demonstrated by decomposition results and trend interpretation. Overall, regressions detected an R2 22%
higher at L-band than C-band, with values up to 0.74 for VV (�̄�2=0.32) and up to 0.47 for the VH band
(�̄�2=0.14). Co-polarized data obtained R2 on average 62.1% and 74.7% higher for SAOCOM and Sentinel-1.
The retrieval models show an ubRMSD of 7.1% for SAOCOM data and 8.3% for Sentinel-1. The application
of the proposed roughness normalization procedure to SAOCOM led to an ubRMSD of 6.7% improving the
retrieved soil moisture trend by 7.9%. This exploratory analysis demonstrated SAOCOM data potential for soil
moisture mapping and would serve as a foundation for more advanced retrieval procedures.
1. Introduction

Soil Moisture (SM) is a fundamental land-surface boundary condi-
tion, which plays a key role in numerous processes involved in the
climate system, in the water, energy, and carbon cycle. The concern
about SM decrease in southern Europe, and its associated environmen-
tal and socio-economic impacts, makes large temporal and spatial scale
monitoring of SM particularly relevant for an enlightened water and
soil resources management (Li et al., 2022).

In the past 50 years, microwave RS using Synthetic Aperture Radar
(SAR) instrumentation has proved to be an exceedingly powerful means

∗ Correspondence to: University of Modena and Reggio Emilia, Str. P. Vivarelli, 10, Modena, 41125, Italy.
E-mail address: benedetta.brunelli@unimore.it (B. Brunelli).

for measuring Superficial SM (SSM) dynamics over regional and global
scales. The exploitation of the microwave region allows for overcoming
some of the main limitations associated with optical/infrared bands,
such as reduced soil penetration, cloud cover disturbance, and natural
energy sources exigency, ensuring a usable acquisition in each overpass
and thus a high temporal frequency. In addition, SAR technology makes
it possible to obtain high geometric resolutions both in the azimuthal
and in the range direction. The models developed to address the
problem of soil moisture recovery from SAR data can be traced back to
two main approaches: (1) instantaneous algorithms, generally grouped
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into theoretical, empirical and semi-empirical (Hajnsek et al., 2003;
Fung et al., 1992; Oh et al., 1992); (2) and multi-temporal or change-
detection (CD) algorithms (Wagner et al., 1999b; Bauer-Marschallinger
et al., 2018). Each technique presents different challenges and limita-
tions related to the accuracy and resolution of the final product; the
exportability and general enforceability of the models; the calibration
and validation procedures. Calibration and validation-related issues
regard mainly the comparison between different spatial and temporal
resolutions datasets, in-situ data availability and reliability, and the
choice of the metric used to quantify the accuracy of the estimates -
the Quality Assurance Service for Satellite Soil Moisture Data (QA4SM)
is an example of a standardized validation procedure (Preimesberger
et al., 2022). On the other side, the accuracy and exportability of the
method depend greatly on how the impacts of surface geometry and
biophysical properties of the soil are taken into account. Nowadays,
SSM operative mapping is achieved using (1) C-band SAR images,
taking advantage of the continuous supply of Sentinel-1 and ASCAT
radiometer data (Hamze et al., 2021), and (2) L-band passive sensors,
such as AMSR-2, SMOS, and SMAP radiometers (Petropoulos et al.,
2015). L-band SAR was also proved to be highly sensitive to SSM,
using satellites (Gururaj et al., 2021), and mainly airborne and UAVSAR
datasets (Bhogapurapu et al., 2022), with which different frequencies
and multi-frequency approaches (Balenzano et al., 2010; Abdikan et al.,
2023) were tested. Indeed, longer wavelengths, due to their penetration
capabilities through the canopy, are more suitable for soil parameter
retrieval in vegetated areas, whereas C and higher frequencies wave-
lengths carry more information on vegetation dynamics. Magagi et al.
(2022) have found that differently polarized Normalized Radar Cross
Sections (NRCSs) at the L-band are significantly more correlated to SSM
over vegetated areas than at C-band. Other studies, such as El Hajj et al.
(2019), found that the L-band provides less accurate retrievals than
the C-band, due to the underestimation of SSM in the case of slightly
rough surfaces. The impact of roughness on the inversion models can be
mitigated using single or multi-frequency polarimetric approaches (Ha-
jnsek et al., 2003; Hamze et al., 2021). Whereas the use of polarimetric
parameters, such as entropy and �̄�, (Cloude and Pottier, 1996) to ‘‘di-
ectly’’ estimate soil moisture has led to inconclusive results (Baghdadi
t al., 2012), their potential to disentangle the scattering mechanisms
as been proved for quad-polarized data (Koch et al., 2012) and, taking
nto account for their smaller range of variability in case of lack of
o-polarization channels (Ji and Wu, 2015), also for dual-pol data (Har-
enmeister et al., 2021) (Section 2.2.1). The magnitude of roughness
nd vegetation contributions, as well as penetration depth through
he soil, are frequency-dependent; therefore, upcoming L-band SAR
issions, such as ALOS-4 (2023), NISAR (2024), Tandem-L (2024), and
ose-L (2028), will provide SSM retrievals carrying different pieces of

nformation with respect to the currently available products. However,
ue to the lack of feasible L-band data, limited applications, e.g. ESA
ampaigns such as the AgriSAR (2006), for which Balenzano et al.
2010) applied a short-term change detection approach to airborne L-
and data, have investigated CD models using L-band SAR data. In this
ontext, SAOCOM data, which have been available since July 2022
ith a temporal frequency of 8 days, constitute a great opportunity to
xplore different bands’ strengths and weaknesses for SSM retrievals,
s well as varied responses to soil and vegetation properties.

This work aims indeed to compare the potential of L-band SAOCOM
nd C-band Sentinel-1 data to track soil moisture variations underneath
parse crops using 𝛾0s, i.e. the backscattering coefficient normalized
y the cosine of the incidence angle, through trend analysis, regres-
ion techniques and a well-known CD model implemented over both
atasets. Moreover, it is proposed a novel procedure for the mitigation
f the roughness contribution at L-band, based on the dual-polarimetric
ecomposition entropy parameter. The methodologies were tested in a
entral semiarid sector of the Douro basin (Spain), where in-situ SSM
easurements provided by the Red de Estaciones de Medición de la
2

umedad del Suelo (REMHEDUS) network were used for calibration
and validation purposes. This exploratory analysis is the first example
of the application of a CD model with SAOCOM dataset, and therefore
it aims to serve as a foundation for its use in more comprehensive or
multi-frequency approaches.

2. Materials and methods

2.1. Materials

In this section, the agricultural study area in Spain is presented;
subsequently, in-situ and satellite data main characteristics and scope
are described.

2.1.1. Study area and in-situ data
The study area is an agricultural region of approximately 1300 km2

located in the central part of the river Douro basin (Spain) (Fig. 1a–b).
It is characterized by a semiarid Mediterranean climate, an elevation
between around 600 m and 900 m above sea level, and a mean slope
of 2% (Fig. 1c). Mainly calcisoil and fluviosoil are found in the area
(Fig. 1d). According to the 2018 Corine Land Cover (CLC) dataset,
agricultural areas, which cover 87% of the region, are mainly intended
for rainfed cereals, irrigated crops, and vineyards. Non-cultivated areas,
13% of the region, are covered by forests and shrubs (Fig. 1e). In
the area, sensors belonging to the REMEDHUS network have been
installed since 2005. It is constituted of 24 stations (18 currently active)
spread across the region and it monitors SSM and soil temperature.
SSM measurements are provided hourly by each station in the top
5 cm of the soil with Stevens Hydra Probes, which has an accuracy of
0.003 m3/m3 (Pablos et al., 2016). REMEDHUS data are nested in the
International Soil Moisture Network (ISMN) (Dorigo et al., 2021) which
standardizes the datasets in terms of unit (m3/m3) and sampling rates
(hourly), and applies a quality control through an automated flagging
methodology. In situ data for 4 stations showed a variability range of
SSM below 1% (ElCoto, ElTomillar) and 2% (LasBrozas and LasVicto-
rias), and very low maximum SSM content (ElCoto: 4%, ElTomillar:
6%, LasBrozas: 15%, LasVictorias: 16%), with values exceeding 10%
only a few days during the year. Usually, the studies carried out on the
L-band sensitivity focus on a condition of SSM greater than 10% (Kim
and Van Zyl, 2009). Liu et al. (2016), demonstrated that, at L-band,
volume effects take place when SSM < 7%, and that the sensitivity of
he backscattering coefficient to SSM at VV polarization is of 1 dB/1%.
ince we use a linear model to compare C- and L-band estimates, and
he description of volumetric scattering behavior is not addressed in the
resent work, the 4 stations mentioned above were discarded from the
nalysis (Fig. 1b.).

.1.2. Satellite data
In the current section, the satellite datasets, acquired in 2022 and

onsisting of 81 SAR images (21 SAOCOM and 60 Sentinel-1), and 60
entinel-2 images, are described (Fig. 2).

AOCOM Argentine-Italian SAOCOM-1 (Satélite Argentino de Obsere-
acion Con Microondas) Constellation is the polarimetric L-Band SAR
ission operated by the Comisión Nacional de Actividades Espaciales

CONAE) and composed of two twin spacecraft, SAOCOM-1 A, and
AOCOM-1B, launched respectively in October 2018 and August 2020
Recchia et al., 2022). The goal of the mission is to obtain high revisit
requency, radiometric and geometric accuracy SAR data to support
gricultural, hydrological, and interferometric applications. The full
onstellation has a revisit time of 8 days, thanks to the 180◦ nominal

separation between the two satellites, which follow sun-synchronous,
semi-polar orbits at a mean altitude of 620 km. These orbits are shared
with the X-band COnstellation of small Satellites for Mediterranean
basin Observation (COSMO) Skymed, forming the Italian-Argentinian
satellite system for Disaster Management and economic development

(SIASGE), the double-band joint mission between the Agenzia Spaziale
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Fig. 1. Study area and location of the REMEDHUS network stations. a. shows the Douro River basin and the framework. In b. REMEDHUS stations, distinguished by Land Use
Land Cover (LULC) derived from CLC map (2018) are located over the Esri World Imagery basemap (red circles indicate a station discarded from the SSM retrieval). In c. the
30 m Digital Elevation Model (DEM) and contour lines show the topography of the study area. In d. the FAO90 soil types from the European soil database are reported. e. shows
the main land use with ESA World Cover 2021. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Dates and orbit direction of satellite data acquisitions during 2022.
Italiana (ASI) and CONAE (Azcueta et al., 2021). SAOCOM SAR instru-
ments work at a frequency of 1275 MHz and a maximum bandwidth
of 50 MHz; the Noise Equivalent Sigma Zero (NESZ) is assessed at
−34 dB for full or quad polarimetric (QP) mode and −28 dB for
dual/single (DP/SP) polarization. SAOCOM was conceived as a multi-
modes and multi-swath mission, which is capable of focusing targets at
different terrain locations using ranges of incidence angles. This system
is also designed to maximize the coverage and allow compatibility
with the COSMO mission acquisitions. Combining the two polarization,
the three acquisition modes, and the beam positions along the range
direction, 25 acquisition modalities can be obtained. Stripmap (SP)
at dual-polarization is the default acquisition mode, with incidence
angles comprised between 21◦ and 50◦, a swath width of 30 km to
67 km, a resolution of 10 m × 5 m (range × azimuth) and 9 beams.
Overall, SAOCOM design allows for having an absolute radiometric
accuracy below the requirement of 1 dB for both Stripmap QP (0.1 dB)
and Stripmap SP/DP (0.3 dB), as shown by the Impulse Response
3

Function (IRF) validation (Recchia et al., 2022). Regarding geolocation,
CONAE provides two types of orbit ephemeris, by whose precision
the geolocation accuracy of the data depends. The faster ephemerids
are used in the absolute georeferencing process realized with onboard
GPS, the so-called On-Line Very Fast (OLVF) orbit determination, and
ensure a geolocation accuracy of better than 90 m on the ground;
whereas the precise ones, i.e. Off-Line Fast (OLF) orbit determination,
are used after two days and result in an accuracy of 55 m, below the
requirements of 70 m (Recchia et al., 2022). Accurate geocoding is
crucial since SAOCOM has an unstable orbital tube, which causes wide
variability of the perpendicular spatial baseline (Seppi et al., 2022)
and therefore may affect coherence and InSAR processing. SAOCOM
products acquired in the Zone of Exclusivity, i.e. the geographic zone
in which ASI has utilization rights, which correspond to the European
territory, are available since July 2022 through the ASI portal. For
the area regarded in this work, only Stripmap DP (VV/VH), with OLF
orbit determination, time series images were available for download.
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The preprocessing level is Single Look Complex (SLC), i.e. slant-range
images, not multi-looked or geometrically corrected and represented
by complex values. Unlike S1 SLC, these data are radiometrically
calibrated. In particular, 9 ascending orbit and 12 descending orbit
images acquired in 2022 are used (Fig. 2). The temporal baseline is
variable from 1 to 40 days, considering both orbits. These images were
acquired at the S4 beam position, therefore they have a minimum swath
width of 65.7 km and an incidence angle of 33.7◦ to 38.3◦ (Rosenqvist
et al., 2014).

The preprocessing applied for SAOCOM SLC using the Sentinel
Application Toolbox (SNAP) aimed to obtain 𝛾0𝑉 𝑉 and 𝛾0𝑉 𝐻 values at
the resolution of 10 m. The terrain flattening operator was applied to
mitigate the effect of the incidence angle and topography; this method,
proposed by Small (2011), enables the combined use of multi-track and
multi-sensor backscatter time series. Arias et al. (2022a) demonstrated
that it was able to remove the impact of incidence angle at VH and
reduce it significantly at VV, with backscattering values differences
amongst simultaneous different orbits acquisition below 0.8 dB. Tested
by Dostalova et al. (2022), it improved the classification’s accuracy
up to 20% in regions with strong topography. The Refined Lee filter
was used to attenuate the speckle; the Range-Doppler terrain cor-
rection geocoded the images using the Copernicus 30 m DEM and
WGS84 Reference System. Finally, linear to dB conversion was applied.
Polarimetric decomposition has been obtained by including in the pre-
vious pre-processing workflow the calculation of the dual-polarimetric
coherency matrix and the dual-polarimetric entropy-�̄� decomposition.

Sentinel-1 Sentinel-1 mission comprises a constellation of two polar-
orbiting satellites, both carrying a C-band SAR dual-polarized instru-
ment with a frequency of 5.405 GHz and a revisit period of 12 days.
For this study, S1 A and S1B data at interferometric wide swath (IW)
mode and Level-1 SLC of processing were used. IW acquires data
with a 250 km swath (almost 4 times larger than SAOCOM’s) at 5 m
by 20 m spatial resolution and an incidence angle 𝜃𝑖 which ranges
between 29◦ and 46◦. Ascending and descending images have relative
orbit numbers of, respectively, 62 and 29 (Fig. 2). The following pre-
processing was applied in SNAP at SLC images to obtain 𝛾0𝑉 𝑉 and
𝛾0𝑉 𝐻 at the resolution of 10 m: orbit file for precision geolocation,
S1-TOPS split, radiometric noise removal, radiometric calibration, S1-
TOPS deburst, S1-TOPS merge, terrain flattening, Refined Lee Filter,
and Range-Doppler terrain correction using the Copernicus 30 m DEM.
As for SAOCOM data, the polarimetric preprocessing implemented the
additional dual polarimetric matrices calculation and dual-polarimetric
entropy-�̄� decomposition.

Sentinel-2 Sentinel-2 is a multi-spectral imaging mission with two
polar-orbiting satellites carrying a Multispectral Instrument (MSI) that
acquires passively in 13 spectral bands. In this work, 140 Sentinel-2
Level 2 A Harmonized images, available in the Google Earth Engine
(GEE) cloud-computing platform, were used (Fig. 2). After applying
a cloud mask using the Sentinel-2 Quality Assessment (QA) band,
the NDVI index was calculated at each station and the results were
subsequently exported from GEE.

2.2. Methods

The dual polarimetric decomposition method, for the calculation
of entropy and �̄� parameters, and the soil moisture change detection
model are recalled in this section. Finally, it is proposed a novel pro-
cedure based on the entropy parameter for mitigating the contribution
of roughness changes on the backscatter.

2.2.1. Dual-polarimetric decomposition
The entropy-�̄� polarimetric decomposition, originally designed for

fully-polarimetric data, allows the differentiation of the scattering
mechanisms occurring within each resolution cell (Cloude and Pottier,
4

1996; Ji and Wu, 2015). The scattering matrix [𝑆], used to represent
the polarimetric information measured by the radar in deterministic
targets, can be vectorized into the 2-D (for dual-polarimetric data)
unitary Pauli vector ⃖⃗𝑘, as in Eqs. (1) and (2):

⃖⃗𝑘 = 1
√

2
[𝑆𝑉 𝑉 2𝑆𝑉 𝐻 ]𝑇 (1)

⃖⃗ can be described by 1 angle, 𝛼, and 2 phases, 𝛾 and 𝛿𝑖:

⃗ =
[

cos(𝛼𝑖)𝑒𝑥𝑝(𝑖𝛾𝑖)
sin(𝛼𝑖)𝑒𝑥𝑝(𝑖𝛿𝑖)

]

(2)

he dual-polarimetric coherency matrix ⟨𝐶⟩, in Eq. (3), used to describe
ncoherent scattering transformations, is calculated for both SAOCOM
nd Sentinel-1 images:

𝐶⟩ = ⟨𝑘 ⋅ 𝑘𝑇 ⟩𝑛 =
𝑛
∑

𝑖=1
𝑘𝑖 ⋅ 𝑘

𝑇
𝑖 (3)

here 𝑘𝑖 represents the scattering vector of the 𝑖th pixel, as defined
n Eq. (1), and 𝑛 represents the number (9 in this work) of pixels
veraged (Alonso-Gonzalez and Papathanassiou, 2022). Throughout the
igenvectors and eigenvalues decomposition two orthogonal scattering
atrices are obtained by Eq. (4):

𝐶⟩ = [𝑇1] + [𝑇2] = 𝜆1 ⋅ (𝑣1 ⋅ 𝑣1 ∗) + 𝜆2 ⋅ (𝑣2 ⋅ 𝑣2 ∗) (4)

here each eigenvector 𝑣𝑖 corresponds to a scattering mechanism,
hile the related eigenvalue 𝜆𝑖 expresses the importance of the corre-

ponding scattering mechanism with respect to the Total Power (𝑇𝑃 =
1 + 𝜆2). Entropy, 𝐻 , which expresses the degree of randomness of the
cattering mechanism, is retrieved from Eq. (5):

=
2
∑

𝑖=1
𝑝𝑖 ⋅ 𝑙𝑜𝑔2(𝑝𝑖)

𝑝𝑖 =
𝜆𝑖

∑2
𝑖=1 𝜆𝑖

(5)

where 𝑝𝑖 expresses the relative importance of the corresponding 𝜆𝑖
on the TP. The �̄� angle, in Eq. (6), describes the averaged scattering
mechanisms.

�̄� =
2
∑

𝑖=1
𝑝1 ⋅ 𝛼𝑖 (6)

In the case of dual-polarized data, �̄� is the mean between the 𝛼 derived
from the dominant ⃖⃗𝑣1 and the perpendicular non-dominant one. For
fully polarized data, �̄� → 0 is associated with surface scattering; �̄� → 45◦

ndicates dipole, and �̄� → 90◦ indicates dihedral scattering. Whereas,
or dual VV-VH polarized data, the lack of a co-polarized channel causes
he diffusion and overlap of the scattering mechanisms in the entropy-
�̄� plan plot, with �̄� values constrained below 45◦. The thresholds for
heir extraction depend on the polarimetric channels considered and
hould be empirically determined (Ji and Wu, 2015). However, relative
alue differences between land covers or frequencies can be used to
ighlight different scattering behaviors and classify the target (Banque
t al., 2015; Brunelli et al., 2023).

.2.2. Soil moisture change-detection model
The soil moisture change detection method, initially proposed by

agner et al. (1999a) for the ERS scatterometer, was adapted to
entinel-1 data (Bauer-Marschallinger et al., 2018), and it is currently
mplemented for the production of the SSM at 1 km resolution within
he Copernicus Global Land Service. It assumes time-invariant rough-
ess and vegetation conditions while neglecting multiple scattering
echanisms in crop canopies. It is summarized in Eqs. (7) and (8):

𝑆𝑀𝑟(𝑡) =
𝜎0𝑉 𝑉 − 𝜎0𝑉 𝑉 𝑚𝑖𝑛

𝜎0𝑉 𝑉 𝑚𝑎𝑥 − 𝜎0𝑉 𝑉 𝑚𝑖𝑛

[%] (7)

where 𝑆𝑆𝑀𝑟(𝑡) is the relative soil moisture content at time 𝑡, linearly
scaled between dry, 𝜎0 , and wet, 𝜎0 , reference values. These
𝑉 𝑉 𝑚𝑖𝑛 𝑉 𝑉 𝑚𝑎𝑥
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correspond respectively to the minimum and maximum values of the
backscattering coefficient through the time series for each sample.
𝜎0𝑉 𝑉 𝑚𝑖𝑛 is subtracted from the current radar image to implicitly account
for the terrain geometrical property. To mitigate the dependence of
the radar backscatter on the incidence angle, 𝜎0 is typically normal-
ized to a mean 𝜃𝑖 value using a slope approach (Widhalm et al.,
2018). The effectiveness of this method is related to the number of
scenes considered and the incidence angle range, which both differ
in SAOCOM and Sentinel-1 datasets. Therefore, in order to apply a
standardized procedure to both datasets in SNAP, the present work
relies instead on the use of the terrain flattened 𝛾0 coefficient, which
obtains comparable mitigation of the incidence angle effect, as well as a
topography correction (Section 2.1.2). 𝑆𝑆𝑀𝑟(𝑡), in Eq. (8), is converted
to volumetric soil moisture, 𝑆𝑆𝑀𝑣(𝑡), using the saturation, 𝑠𝑎𝑡, and
wilting point, 𝑤𝑖𝑙𝑡, values.

𝑆𝑆𝑀𝑣(𝑡) = 𝑆𝑆𝑀𝑟(𝑡) ⋅ (𝑠𝑎𝑡 −𝑤𝑖𝑙𝑡) + 𝑠𝑎𝑡 [m3∕m3] (8)

where 𝑠𝑎𝑡 and 𝑤𝑖𝑙𝑡 are volumetric soil moisture measurements empiri-
cally obtained from in-situ data. Finally, the performance metrics used
are reported in Eqs. (9)–(12).

𝑅𝑀𝑆𝐷 =

√

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
[m3∕m3] (9)

𝑏𝑖𝑎𝑠 =
𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| [m3∕m3] (10)

𝑢𝑏𝑅𝑀𝑆𝐷 = 𝑅𝑀𝑆𝐷 − 𝑏𝑖𝑎𝑠 [m3∕m3] (11)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(12)

where 𝑦(𝑖) is the estimated SSM value, and �̃�(𝑖) is the measured one. The
Root-mean-square deviation (𝑅𝑀𝑆𝐷) expresses the retrieval accuracy
with a quadratic penalty for outliers, and the 𝑢𝑏𝑅𝑀𝑆𝐷 excludes sta-
tionary biases. Indeed, SSM retrievals biased in the absolute magnitude
of soil moisture content are still useful if they reproduce the actual
trends measured in the ground. Whereas 𝑅𝑀𝑆𝐷 is expressed in m3∕m3,
𝑅2 is a dimensionless metric used to capture the time series correlation,
regardless of biases in mean and variance (Entekhabi et al., 2010).

2.2.3. Roughness normalization
At coarse resolution, the model’s premise of constant roughness

over time is supported by the assumption that roughness-driven signals
induced by individual features are minimized as they sum up incoher-
ently within each sample (Bauer-Marschallinger et al., 2018). When
considering the radar intensity at the field scale, roughness affects
the backscatter value by reflecting soil and vegetation geometrical
structure, which varies due to tillage practices, modification in crop
orientation, size, etc. Therefore, a procedure to stabilize the roughness-
induced variations is proposed. It relies on the entropy parameter
extracted through the dual-polarimetric decomposition (Section 2.2.1).
In ideally smooth surfaces, non-depolarizing surface scattering pro-
cesses would be characterized by zero entropy, meaning that the Total
Power is completely described by a single (surface) retrieval matrix
i.e. 𝜆1 = 1; 𝜆2 = 0. Natural rough surfaces depolarize the signal; as the
roughness increases, the contribution of the secondary perpendicular
scattering mechanism increases, as well as the entropy value. Therefore,
entropy is here used as a proxy for roughness changes; however,
because entropy is also sensitive to canopy structure, the application
of the proposed roughness normalization relies on two assumptions:

1. entropy is not affected by the dielectric constant, which is
demonstrated by Hajnsek et al. (2003), where the polarimetric
parameters are used to disentangle soil moisture and roughness
contribution;
5

2. surface scattering is dominant in the fields considered for the
retrieval, and thus it is described by the first eigenvector. This is
supported by the fact that NDVI values fall below 0.3; moreover,
the procedure is applied only to L-band SAOCOM data, which
can penetrate low-density vegetation, and are characterized by
mean �̄� < 15◦ and H < 0.4 which, according to Ji and Wu
(2015), correspond to Bragg surface in the VV/VH case. Studies
that decompose fully polarimetric L-band data show that surface
scattering dominated for alfalfa, winter wheat, and summer
crops over most of the year (Li et al., 2019).

As surface roughness increases both the backscattering and the
entropy value increases; this relationship is here simplified using a
linear model. Fig. 3 shows the scatterplot of entropy and 𝛾0𝑉 𝑉 on the
entire dataset, excluding forested and urban areas. The slope of the
linear regression line, 𝛽, is then used to normalize the images for
roughness, as in Eq. (13)):

𝛾0(0.3, 𝑡) = 𝛾0(𝐻, 𝑡) − 𝛽 ⋅ (𝐻 − 0.3) [dB] (13)

where 𝛾0(0.3, 𝑡) is the backscatter coefficient normalized for the entropy
value of 0.3, which is the average for each in-situ station (Section 3).

Fig. 3. Correlation between entropy and 𝛾0𝑉 𝑉 calculated from the entire SAOCOM
dataset over the area shown in Fig. 1b. Forested and urban areas are masked using
Corine LULC classes (2018).

3. Results

In this section, 𝛾0 temporal profiles and regression analysis are
shown. As the single-pixel amplitude values can oscillate due to the
affection of residual noise, this analysis refers to the mean 𝛾0 value
among a rhomboidal area of 9 samples (90 m2) centered in each
station’s pixel (Graldi and Vitti, 2022). The averaged parameters, at
each acquisition, are used for time series, correlation and prediction.
Finally, the application of the roughness normalization procedure and
the change detection models are described.

3.1. Temporal series of 𝛾0

Radar backscattering trends are representative of the bio-
geophysical and geometrical properties of the soils; in addition, the
superimposed effect of the vegetation layer causes seasonal variability
over agricultural areas. Below, the temporal series of 𝛾0𝑉 𝑉 and 𝛾0𝑉 𝐻
for SAOCOM and Sentinel-1 data are compared with the support of
precipitation data, linked to soil and vegetation content, and NDVI
variation, used as a proxy for vegetation greenness and density. In Fig. 4
these temporal series are reported for 14 stations of the network.
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Fig. 4. Backscatter variations during the year as a function of different polarization channels and frequencies. 𝛾0 [dB] is the mean value calculated over 9 samples centered around
each station. Continuous lines indicate SAOCOM data and dashed lines indicate Sentinel-1. Co-pol data are colored in orange and cross-pol in green. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Among all stations, L-band data values range between −31.1 dB
and −15.7 dB for cross-polarized signals and −20.7 dB to −8.6 dB for
the co-polarized ones; whereas C-band data range between −30.4 dB
and −14.2 dB for VH and between −20.2 dB and −0.1 dB for VV. The
difference between SAOCOM VV and VH is comprised between 5.0 dB
to 12.8 dB, and has a mean value of 9.2 dB; whereas the difference
between Sentinel-1 VV and VH goes from 5.7 dB to 9.1 dB, with a
mean value of 7.5 dB. The lower Relative Standard Deviation (RSD) is
6

detected for L-band and VH polarization (RSD = 9.3%), then for C-band
VH (RSD: 10.2%), C-band VV (RSD: 13.8%) and L-band VV (14.6%).
Generally, vegetation growth causes the backscattering coefficient to
increase: on average, an NDVI increase of 10% corresponds to a 𝛾0

increment of 0.4 dB for VV at the L-band and of 0.6 dB at the C-
band; in the VH channel it increases of 1.1 dB for the L-band and
of 1.3 dB at C-band. On the other side, precipitations show a more
moderate impact: after 56.5 mm of rain fell in the second half of
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𝛼

Fig. 5. On the left, entropy and �̄� temporal variations of SAOCOM and S1 images are presented for three ISMN stations. On the right, frequency histograms represent the variations
of these parameters in the fields around the stations for an L-band and a C-band images. Each station represents a different land cover class: rainfed (LaCruzDeElias), irrigated
(Guarrati) crops, and three or shrub cover (LasTresRayas).
October, 𝛾0 has increased (from 22nd October to 30th of October) by
2.8 dB for VV at the L-band and of 6.9 dB at the C-band; in the VH
channel, it increases of 2.8 dB for the L-band and remains stable at
C-band. A comparison of the backscattering mechanisms is carried out
by studying the polarimetric transformation through the entropy and
̄ parameters and as a function of different LULCs. Fig. 5 compares
the pixel frequency histograms calculated from the whole scene for
three major land cover classes derived from CLC 2018. In general, �̄�
angle values for crop fields are comprised between 9◦ and 22◦ for the
L-band (an exception is represented by LaCruzdeElias), and between
16◦ and 29◦ for the C-band. In tree-covered fields, they fall between
13◦ to 21◦ for L-band and 19◦ to 21◦ for C-band. For Sentinel-1 data
entropy values are between 0.6 and 0.7 for crop and 7.8 for tree-
covered stations. For SAOCOM these are respectively between 0.2 and
0.6 and between 0.4 and 0.6. Fig. 6 shows a visual comparison between
𝐻 and �̄� parameters calculated from L- and C-band.

3.2. Correlation of 𝛾0s with SSM

Over the 14 validation sites, a positive correlation is detected in 10
and 4 stations respectively for L- and C-band; regression values show
better performance for SAOCOM data (mean R2 VV: 0.302, max 0.745,
mean R2 VH: 0.130, max: 0.4754) with respect to Sentinel-1, which are
overall not correlated (max R2 VV: 0.249, max R2 VH: 0.102) (Fig. 7).
The VV band for both satellites performs better than VH, obtaining
R2 on average 62.1% and 74.7% higher for SAOCOM and Sentinel-
1. Mean 𝑅2 values for L-band at the VV polarization are similar for
irrigated crop (0.312) and rainfed crop (0.318); whereas is lower for
tree/shrub stations (0.185). At VH polarization irrigated crops show a
better correlation (0.185) than rainfed (0.185) and tree/shrub (0.045).
In general, for tree-covered fields 𝑅2 declines by 41% at VV and by 75%
at VH with respect to crop. At C-band, VH correlation values are below
0.11, while for VV polarization, the best result is obtained in rainfed
crops with a mean 𝑅2 0.145.
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3.3. Surface soil moisture retrieval

The long-term change detection model was applied to co-polarized
data at L- and C-band, which showed a correlation with soil moisture
measurements. The model was calibrated using empirical values (Sec-
tion 2.2.2); after flag application the mean saturation value is 0.031
m3/m3 and the wilting point value is 0.288 m3/m3. The normalization
procedure was applied to SAOCOM data before the application of the
CD model. Subsequently, model performances at C-band, L-band not-
normalized, 𝛾0(𝐻, 𝑡), and L-band normalized, 𝛾0(0.3, 𝑡), were evaluated.
The scatterplots between the measured and retrieved soil moisture
are shown in Fig. 8. 𝑅𝑀𝑆𝐷 and 𝑢𝑏𝑅𝑀𝑆𝐷 are respectively 0.084
m3∕m3 and 0.071 m3∕m3 for L-band 𝛾0(𝐻, 𝑡) data and 0.099 m3∕m3 and
0.083 m3∕m3 for C-band data. 𝛾0(0.3, 𝑡) obtain values of 0.088 m3∕m3

and 0.067 m3∕m3 and the higher 𝑅2, 0.562, compared to L-band not
normalized data (0.483), and C-band data (0.330). Fig. 9 compares SSM
retrievals obtained with different frequency datasets.

4. Discussion

Some observations arising from the results are discussed in the
current section.

4.1. Co- and cross-polarization comparison

Soil and vegetation properties affect amplitude magnitude over time
depending on the system’s polarizations. Overall co-polarized signals
are stronger than the cross-polarized ones, regardless of the frequency.
The RSD calculation (Section 3.1) has shown that at L-band VH po-
larization trends are overall stabler than VV, whereas at C-band VV is
more stable than VH. Indeed, for C-band, the signal’s depolarization is
significantly influenced by crop phenological phase (Balenzano et al.,
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Fig. 6. Visual comparison between (a) SAOCOM �̄� image; (b) SAOCOM entropy image; (c) Sentinel-1 �̄� image; (d) Sentinel-1 entropy image. SAOCOM has been acquired at
2022-05-23, and Sentinel-1 at 2022-05-19.
2010). At the L-band the difference between the two polarization chan-
nels is larger than at the C-band, which is explicable by the fact that the
VV backscattering contains more of the surface signal, whereas the VH
is representative of volume backscattering (Mengen et al., 2021). On
the other site, C-band, due to less penetration, contains signal contri-
bution mainly from the canopy in both polarizations (Fig. 4) (Moran
et al., 2011). Indeed, as NDVI increases, the difference between the
two bands decreases, e.g. in Canizal, in summer, when the mean
NDVI increases by 58%, the mean difference for VV and VH is about
2.1 dB lower for SAOCOM and 1.5 dB for Sentinel-1 in respect to the
other seasons (Fig. 4). Stations where VV and VH absolute values are
closer (e.g. LasTresRayas and Guarrati, with mean difference of 5.0 dB
and 7.9 dB respectively), are characterized by an important scattering
contribution from the canopy, contrary to stations where co- and cross-
responses are well separated (e.g. ConcejodelMonte). This is confirmed
by the expected sensitivity of the latter to soil moisture (𝑅2 of 0.61 for
VV L-band, and 0.44 for VV C-band) whereas Guarrati and LasTresRa-
yar show weak or no correlation (Fig. 7). LasTresRayar insensitivity
to SSM is explained by its location in a tree/shrub-covered field, in
which dihedral and volume components contribute significantly to the
total backscatter. Co-cross polarization at C-band decreases from May
to June for LasArenas, LasVacas, ConcejoddelMonte and CasaPeriles
(Fig. 4), due to both a decrease in VV polarization and an increase in
HV. This behavior is considered characteristic for wheat fields (Mattia
et al., 1997; Balenzano et al., 2010) and has been interpreted in terms
of backscatter attenuation during the elongation phase due to wheat
vertical structure (Arias et al., 2022b). On the other side, SAOCOM am-
plitudes in cross-polarization have values below −15.7 dB (Section 3.1)
as L-band signals interaction with small wheat dipole structures is lim-
ited. Indeed, in trees or shrub-cultivated fields, where larger structures
such as branches are present, mean L-band VH values are 16.9% higher
than the mean values registered in crop-cultivated fields. Some studies
found that, especially for crops characterized by a vertical structure,
the cross-polarizated channel at the C-band contains a significant soil
backscattering signal, also less sensitive to other soil parameters (Moran
et al., 2011; Balenzano et al., 2012). However, at the C-band, in any
validation site, VH is not correlated to SSM, whereas at the L-band
5 stations show a slight positive 𝑅2, comprised between 0.12 to 0.48
(Fig. 7), observed also by Anconitano et al. (2022). R2 is 14% higher
in copolarized data for Sentinel-1 and 17% for SAOCOM data, with
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values up to about 0.75. The increased sensitivity of the co-polarized
band with respect to the cross-pol, causes VV and VH regression lines
to diverge with increasing SSM values over some stations, especially in
SAOCOM acquisitions (Fig. 7). Correlation values decline (Section 3.2)
in tree/shrub fields is stronger at cross-polarization.

4.2. Scattering mechanisms interpretation

The temporal variability of C and L-band backscatter 𝛾0 is affected
by vegetation phenological stages, described as NDVI variations, and
precipitation events, linked to soil and vegetation water content. NDVI
is relatively low in each validation site: in winter higher values are
found in Guarrati (0.26), in spring Guarrati (0.35), in summer in Can-
izal (0.25), and in autumn in Guarrati (0.12) station (Fig. 4); both these
stations are located in irrigated fields. Regarding the precipitation, in
2022 the cumulative precipitation value is 367.1 mm, in line with the
average for the period 1991–2020 (Météo climat, 2023). In Canizal,
LasArenas, LasTresRayas, and Carretoro the amplitude values follow
the NDVI trend but, when the precipitation increase in autumn, 𝛾0

increases even if NDVI declines. On average, for the precipitation of
09–15 December (44.7 m), 𝛾0 of Sentinel-1 increases −5 dB for VH and
0.4 dB for VV. In ConcejoDelMonte, LasArenas, Guarrati, and Granja-g
stations 𝛾0 temporal profiles follow the increase in precipitation events
in autumn and winter. As shown in Fig. 6, polarimetric parameters
at L-band are more shaved and spatially stable, whereas at the C-
band vegetation variability is more visible. This observation is in line
with classification results obtained by Skriver (2011) and Ma et al.
(2021), reporting better performances for crop discrimination using
polarimetric parameters at C-band rather than at L-band. As shown
in Fig. 5, for trees/shrub cover, the difference between entropy and �̄�
values are less pronounced than in crop fields, where L-band is capable
of detecting soil properties.

4.3. C- and L-band sensitivity to soil moisture

Overall, C- and L-bands follow comparable trends, with mean differ-
ences comprised between 1.4 dB (LasBodegas) and 7.4 dB (LasEritas)
(Fig. 4). Sentinel-1 backscatter is stronger than SAOCOM, for a max-
imum difference of 18.1 dB. An exception is the LasTresRayas and
LasBodegas stations, where the L-band response gets stronger than the
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Fig. 7. Scatter plots of in-situ SSM and mean 𝛾0 values, over a viewing window of 9 samples, in each station considered. The coefficient of determination 𝑅2 is reported for each
band and polarization channel.
C-band from March to Jun. As CD estimates (Fig. 9) show a greater
bias for the L-band in the same period, this increase does not reflect
an increase in the dielectric constant but could be rather related to
geometrical effects linked to the canopy development, which cause
an increase in double-bounce effects (Li et al., 2019). Also, stations
such as Carretoro and LasArenas, show the opposite behavior, with the
VV backscattering at L-band decreasing from March to May by 23.0%
and 44.5%, while VV at the C-band remains stable and VH at both
9

frequencies increases (as well as NDVI), and showing more correlation
with SSM (Fig. 7). As expected, the scatterplots show a significantly
higher correlation between 𝛾0 and in-situ SSM for the L-band than for
the C-band (56% for the VV polarization), and in accordance to what
found by Anconitano et al. (2022), where the correlation of SAOCOM
and Sentinel-1 sigma-naught at VV polarization is respectively up to
0.51 and 0.25. Even if, in Fig. 7, 𝑅2 are lower than expected, especially
for C-band data, the change detection method retrievals reproduce
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Fig. 8. Scatterplots between in situ and retrieved SSM for (a) C-band, (b) L-band not normalized, and (c) L-band normalized data.
the in-situ soil moisture trends (Fig. 9). Nevertheless, an evident bias
characterizes the dry period estimates, from June to September, es-
pecially in Carretoro, LasVacas, Guarrati, and LasEritas: retrieved soil
moisture values are consistently higher than the in situ measurements.
This behavior has been observed for SMAP data and was attributed to
dry subsurface (Wagner et al., 2013) (Section 2.1.1). The L band shows
an improvement limited to LlandosdeLaBoveda and LaCruzdeElias, and
canopy interactions complicate the interpretation. The scatterplots be-
tween the measured and retrieved soil moisture revealed that L-band
data obtain retrieval accuracy expressed with RMSD, ubRMSD, and 𝑅2

of 14.4%, 14.9% and 31.6% higher than C-band data (Fig. 8). Fig. 9
shows that at both frequencies, the model is more accurate in autumn
and winter (17%) than in summer and spring when SSM is overesti-
mated. This behavior is more pronounced at the C-band (21%), and can
be justified by vegetation changes, harvesting, and plowing activities
𝛾0. The normalized procedure causes the bias to increase, indicating a
shift from the soil moisture retrieved and measured; nevertheless, the
relative trend, expressed by the 𝑅2 and the ubRMSE, improves. Better
performances for L-band data, despite the lesser temporal frequency
(Fig. 2), differ from other findings (Cui et al., 2022; El Hajj et al., 2019;
Sekertekin et al., 2020; Hosseini and McNairn, 2017) in which L-band
(ALOS-2) obtained higher RMSE in respect to Sentinel-1. However,
these comparisons are biased by either the use, for the L-band, of
HH channels, which enhances double bounce, or UAVSAR data with
differences in temporal coverage. Whereas, Balenzano et al. (2010), by
applying a CD model and HH channels obtained a better accuracy for L
band compared to C-band in every crop type. This also points out that
the potential improvement of longer wavelength depends, other than
on the land cover type (Zribi et al., 2019), by the model considered,
and it is maximized in CD approaches, which do not explicitly model
the vegetation’s contribution.

5. Conclusions

This work compared SAOCOM L-band and Sentinel-1 C-band data
for SSM retrieval underneath sparse and agricultural fields over a
semi-arid region in Spain. Moreover, a novel roughness normalization
procedure for SAOCOM data based on the entropy parameter was
proposed. The main results and implications are summarized below:

1. L-band 𝛾0𝑉 𝑉 is the best configuration for SSM retrieval, with
a positive correlation observed in 3/4 of the validation sites.
Temporal series of C-band 𝛾0 have shown response to NDVI
variation but low correlation with in-situ SSM.

2. Co- and cross-polarization difference analysis, as well as �̄� and
entropy, demonstrated to provide information on the type of
scattering mechanism at both frequencies, which help the inter-
pretation of different sensitivity to SSM.
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3. Change detection models obtained an ubRMSD of 0.071 m3∕m3

for L-band data and 0.083 m3∕m3 for C-band data, with a re-
trieval 14.3% more accurate for SAOCOM then for Sentinel-1
data. In the regressions, SAOCOM data obtained a 𝑅2 value
22.9% higher with respect to Sentinel-1, whereas in the model
SAOCOM outperformed by 14.9%.

4. The application of the proposed roughness normalization pro-
cedure led to an ubRMSD of 6.7% for SAOCOM, improving
the retrieved soil moisture trend of 7.9%. Nevertheless, the
increase in trend accuracy, indicated by an increase in 𝑅2 and
𝑢𝑏𝑅𝑀𝑆𝐷 values, corresponds to a decrease in absolute SSM
values accuracy, thus a larger bias.

The better performance of L-band data, despite lower temporal fre-
quency, is a promising result in the view of the forthcoming NISAR
and Rose-L SAR satellites. The CD algorithm, applied at different fre-
quencies with no changes, shows good versatility. The retrieval biases,
noticed from April to September for both the frequencies, points out the
need to consider vegetation and roughness effect, especially when data
are used at high resolutions. A roughness normalization procedure was
proposed; however, as entropy is also sensitive to the canopy structure,
the feasibility of this procedure depends on the presence of vegetation.
Therefore, reliable knowledge of crop phases, irrigation practices, and
agricultural work is crucial for assessing the sensitivity of C- and L-
band to soil moisture over various cultivation types, and constitutes a
limit for this analysis. In addition, this study relies on the use of terrain
flattened 𝛾0 to normalize the backscatter from the influence of the
acquisition’s geometry. However, orbit-dependent small-scale effects,
linked to the orientations of individual features in the fields, may bias
this comparison. Finally, the use of a longer and more detailed temporal
series, in terms of temporal frequency and variability in the ground
conditions, would have increased the generalizability of the results,
necessary to guide methodological strategy to the integration of mul-
tifrequency bands. Issues related to different acquisition geometries,
inhomogeneity of temporal coverage, and frequency-dependent non-
linear backscatter mechanisms require further study in order to achieve
the interoperability of C-band and L-band, and thus the expected im-
provements in terms of the possibility to operate over a wider range of
vegetation cover and temporal resolution.
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Fig. 9. Comparison of the retrievals obtained with C- and L-band (not normalized data). Triangles indicate SAOCOM acquisitions and points Sentinel-1.
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