
04/05/2024 19:37

Computer Emulation with Non-stationary Gaussian Processes / Montagna, Silvia; Tokdar, S. T.. - In:
SIAM/ASA JOURNAL ON UNCERTAINTY QUANTIFICATION. - ISSN 2166-2525. - 4:1(2016), pp. 26-47.
[10.1137/141001512]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is a pre print version of the following article:

ar
X

iv
:1

30
8.

47
56

v2
 [

st
at

.M
E

]
 2

9
Ja

n
20

15

COMPUTER EMULATION WITH NON-STATIONARY GAUSSIAN

PROCESSES

SILVIA MONTAGNA AND SURYA T. TOKDAR

Abstract. Gaussian process (GP) models are widely used to emulate propagation un-
certainty in computer experiments. GP emulation sits comfortably within an analytically
tractable Bayesian framework. Apart from propagating uncertainty of the input variables,
a GP emulator trained on finitely many runs of the experiment also offers error bars for
response surface estimates at unseen input values. This helps select future input values
where the experiment should be run to minimise the uncertainty in the response surface
estimation. However, traditional GP emulators use stationary covariance functions, which
perform poorly and lead to sub-optimal selection of future input points when the response
surface has sharp local features, such as a jump discontinuity or an isolated tall peak. We
propose an easily implemented non-stationary GP emulator, based on two stationary GPs,
one nested into the other, and demonstrate its superior ability in handling local features
and selecting future input points from the boundaries of such features.

1. Introduction

Large scale computer simulation is widely used in modern scientific research to investigate
physical phenomena that are too expensive or impossible to replicate directly [29, 9, 32].
Most simulators depend on a handful of tuning parameters and initial conditions, referred to
as the input arguments. Often interest focuses on quantifying how uncertainty in the input
arguments propagates through the simulator and produce a distribution function over one
or many outputs of interest. In this paper we consider only deterministic simulators which
when run on the same input twice will produce identical output values.

Quantifying uncertainty propagation will require several runs of a simulator at different
input points to learn the input-output map Y = f(x) accurately over the entire input space.
However, computer simulations are very time-consuming, thus running a simulator over a
dense grid of input points could be prohibitively expensive. On the other hand, running
a simulator over a sparse design chosen in advance may result in insufficient information
in vast parts of the input space. Consequently, there is considerable interest in estimating
a slow computer simulator with a fast statistical “emulator” [26, 15, 28]. The emulator is
fitted to input-output data {xt, f t}, where f t = {f(x1), . . . , f(xt)} is obtained from a few
preliminary runs of the simulator on design xt = {x1, . . . ,xt}, and the fitted model is then
used for prediction of f at input configurations not included in xt [26, 6].

For Bayesian emulation, a common practice is to assign f a Gaussian process prior
[26, 8, 30]. Gaussian process (GP) emulation is appealing due to its mathematical tractabil-
ity and ability to incorporate a wide range of smoothness assumptions. The conditional

Date: June 5, 2018.
Key words and phrases. Bayesian inference; Computer emulation; Non-stationary Gaussian process; Se-

quential design; Particle learning; Uncertainty quantification.
1

http://arxiv.org/abs/1308.4756v2

posterior distribution of f at future inputs, given data {xt, f t} and process hyperparam-
eters, remains a GP distribution. The posterior mean of f(x) gives a statistical estimate
or surrogate for the simulator output at a new input x, whereas the posterior variance at
f(x) quantifies how well the simulator has been learned at and around x. The latter is a
particularly attractive feature of GP emulation as it provides a model-based assessment of
the emulator’s accuracy and could be used to actively learn an optimal sequence of input
points on which the simulator needs to be run to minimise the uncertainty in posterior sur-
face estimation.

Research on computer emulation has largely focused on stationary GP models [26, 15].
Stationary GPs regard the similarity between f(x) and f(x + h) as a decaying function
in h only, known up to global smoothness and decay parameters. This is a strong prior
assumption that is not easily washed away by data and may lead to unrealistic emulation for
many physical phenomena. In practice, stationary GP emulators run into difficulties when
the shape of f has sharp localised features, e.g. abrupt discontinuities or tall peaks, and
lead to poor point predictions and selection of future inputs. A simple example is illustrated
in the left panel of Figure 1. Three aspects emerge: (i) the discovery of a tall peak in the
middle has a rippling effect and creates large oscillations of the predictive mean curve over
a large part of the input space, a phenomenon often called “spline tension” effect in the
predictor form; (ii) prediction seems overconfident around the peak, where the error bars
are too narrow to capture the high variability around x = 0; instead, (iii) prediction inter-
vals are quite large where abrupt changes in the function values are not observed, and f is
relatively more well-behaved. A sequential design strategy based on uncertainty quantified
by the prediction standard deviation would favour the selection of a new input from the
whole x domain, with the only exception of the tall peak (right panel in Figure 1). Thus,
stationary GPs favour the selection of new points in unexplored regions of the input space
(exploration), but tend to neglect regions that are deemed important based on the current
estimate of f (exploitation).

Extrinsic diagnostics is often used to assess the adequacy of a GP emulator as surrogate
for the simulator [4, 3]. For example, one can examine the leave-one-out cross validated
(CV) standardised residuals to quantify the emulator’s uncertainty. Either too large or very
small CV standardised residuals (as compared to a N(0, 1) or a tν) at some validating points
indicate that the emulator is poorly estimating the predictive uncertainty. Outliers of this
kind denote a local fitting problem, which could be improved upon by adding new points
in the vicinity. Thus, CV examines the local behaviour of f , and flags those sub-regions
where the simulator has more variations. Therefore, CV leans toward an exploitation-driven
sequential design. Although CV is often combined with a stationary GP to better address
sequential design, it is difficult to reconcile the exploration-driven predictive variance of a
stationary GP with the exploitation-driven flagging of CV, and any combination is ad-hoc.
Also, the model remains misspecified: a stationary model is used for a response which is
often intrinsically not so [6].

Several approaches proposing non-stationary GP models can be found in the literature.
In the context of computer emulation, [11] propose the Bayesian treed GP model (TGP),
which applies independent stationary GPs to subregions of the input space determined by

2

−2 −1 0 1 2

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

x

Y
st−GP: rmse = 0.11

−2 −1 0 1 2

−
0.

1
0.

1
0.

2
0.

3
0.

4
0.

5

x

Y

st−GP: pred sd (max = 0.13)

Figure 1. Plot of (true) function f(x) = sin(x) + 2 exp(−30x2), x ∈ [−2, 2]
(dashed line). The black dots represent observed data at 15 equally-spaced
values of x. Left panel: the solid line is the point predictor of f , or conditional
mean, obtained from a stationary GP emulator fitted to the data. Shaded
areas represent the error bars. Right panel: standard deviation evaluated at
200 predictive locations.

data-driven recursive partitioning parallel to the coordinate axes. Because of the parallel par-
titioning, TGP adapts well to surfaces having rectangular local features (“axes-aligned” non-
stationarity). However, it may run into difficulties when the nature of the non-stationarity
is more general. Also, TGP’s hard partitioning of the input space prevents borrowing of in-
formation across partitions and enforces discontinuity on the estimated response surface. [2]
decompose f into the sum of two stationary GPs, the first capturing the smooth global trend
and the second modelling local details. Other approaches in the context of GP regression
include [27, 30, 20]. This literature makes it clear that the main challenges in non-stationary
GP modelling are to keep the number of hyperparameters under control to facilitate efficient
learning from limited data while allowing for non-stationary features of various geometric
shapes and at the same time not to enforce non-stationarity when not needed.

This paper is designed to serve two purposes. First, to introduce a non-stationary GP
emulator which is adaptable to local features of many kinds of shape. Second, to use our
emulator for online learning of an optimal sequence of design points. Non-stationarity is
achieved by augmenting the input space with one extra latent input which we infer from the
data. The latent input can flag regions of the input space characterised by abrupt changes
of the function values and help correct for inadequacies in the fit. For sequential design, it
is absolutely crucial to have trustworthy judgement of uncertainty of the current estimate of
f to concentrate efforts only on where needed. Sections 5 and 6 show results from various
synthetic and real experiments where a sequential version of our emulator outperforms sim-
ilar sequential adaptations of existing GP emulators, when performance is measured by the

3

number of simulator runs needed to achieve a certain accuracy.
The proposed method is also attractive from an operational point of view. Both the la-

tent input dimension and the response function (of the original plus the latent inputs) are
individually modelled as stationary GPs controlled by a small number of hyperparameters
that can be efficiently learned with sequential Monte Carlo (MC) computing leveraging on
conjugacy properties of GP. Sequential MC computing seamlessly blends with active learn-
ing of the sequential design, as opposed to Markov chain sampling based non-stationary GP
emulators whose sequential adaptation requires re-running the whole Markov chain sampler
at every iteration.

The remainder of the paper is outlined as follows. Section 2 begins with an overview of
GP emulation and stationarity and then introduces our non-stationary GP emulator. Sec-
tion 3 presents a fast sequential design algorithm for GP emulation. Section 4 examines
the performance of different emulators in quantifying uncertainty through one-dimensional
numerical examples. In Section 5, we investigate sequential design via higher-dimensional
examples. Section 6 presents a real data application. Conclusions are reported in Section 7.

2. Gaussian process emulators

2.1. GP emulation and stationarity. The canonical emulator used for the design and
analysis of computer experiments is the GP. Specifically, for any finite collection of inputs
(x1, . . . ,xt)

⊤, the joint distribution of (f(x1), . . . , f(xt))
⊤ is multivariate Gaussian with

mean E[f(x)] = µ(x) and positive definite covariance matrixCov[f(x), f(x′)] = Cθ(x,x
′) =

σ2Kθ(x,x
′) parameterised by θ. Note that we can write the GP emulator as

(1) f(x) = µ(x) + ǫ(x; θ),

where ǫ(x; θ) is a zero-mean GP with covariance function Cθ(·, ·). To simplify the notations,
we shall drop the θ subscript to the covariance and correlation functions hereafter.

The representation of f as a Gaussian vector makes the computation conceptually straight-
forward. The conditional distribution of f at a new input x̃, given data {x, f(x)}1:t ≡
{X,F } and parameters θ, is also Gaussian with mean

f̂(x̃) = E[f(x̃)|{x, f(x)}1:t, θ] = µ(x̃) + k⊤(x̃)K−1(F − µ(X))

and variance

σ̂2(x̃) = V[f(x̃)|{x, f(x)}1:t, θ] = σ2{K(x̃, x̃)− k⊤(x̃)K−1k(x̃)}
where k⊤(x̃) is the t−vector whose i-th component is K(x̃,xi), i = 1, . . . , t, and K is the
t× t correlation matrix with i, j element K(xi,xj).

The mean field µ(x) in (1) is typically given the linear model structure µ(x) = h(x)⊤β,
where β is a vector of unknown parameters. Although h(·) may be any function on the input
space X , we adopt a linear mean in the inputs, h(x) = [1, x1, . . . , xp]

⊤. This seems to be a
natural choice with little prior information about the input-output relationship and helps to
control overfitting. The correlation function is crucial in GP modelling; it is throughK(x,x′)
that we express a belief about how similar f(x) and f(x′) should be if x and x′ were close in
X , thereby we express a belief about the smoothness of f . Although different formulations

4

are possible [25], in this work we focus on the power family and use the separable power
correlation function

(2) K(x,x′) = e−
∑p

l=1
φl(xl−x′

l
)p0 ,

which is a standard choice in modelling computer experiments [28]. We fix p0 = 2 (product-
Gaussian correlation) and infer the correlation range parameters {φl}pl=1 as part of our es-
timation procedure. Thus, the correlation is only function of x − x′ (stationarity) and a
set of roughness (unknown) parameters. [33] show that the squared-exponential kernel (2)
can optimally adapt to any smoothness level. [5] develop a class of priors for the correlation
range parameters which leads to minimax adaptive rates of posterior concentration.

We embed our approach in a Bayesian framework and proceed by specifying prior dis-
tributions for the model parameters. Hereafter, we use an improper uniform prior β ∝ 1
as conventional representation of weak prior information about β, an inverse-gamma (IG)
prior for the scale, σ2 ∼ IG(a/2, b/2), and a log-normal prior for the correlation parame-
ters, φl ∼ logN(µφ, νφ), but other formulations are possible [11]. The posterior predictive
distribution of f at a new input x̃, conditioned on K and data observed up to time t and
marginalised with respect to {β, σ2}, is a Student-t distribution with ν̂ = t− p− 1 degrees
of freedom, mean

(3) f̂(x̃|{x, f(x)}1:t,K) = h(x̃)⊤β̃ + k⊤(x̃)K−1(F −H tβ̃),

and variance

(4) σ̂2(x̃|{x, f(x)}1:t,K) =
(b+ Φ)[K(x̃, x̃)− k⊤(x̃)K−1k(x̃)]

a+ ν̂
,

where H t is the t× (p+ 1) matrix which contains h(xi)
⊤ in its rows and

Φ = F⊤K−1F − β̃
⊤

Ψ−1β̃

β̃ = Ψ(H tK−1F)

Ψ = (H tK−1H t)−1.

The availability in closed form of the marginalised predictive distribution is crucial for the
sequential design algorithm implementing our non-stationary GP emulator (§3).

2.2. Non-stationary GP through latent input augmentation. In computer emulation,
it is not uncommon to observe functions that vary more quickly in some parts of the input
space than in others [11]. In response to concerns about the adequacy of the stationary
assumption for GP emulators, we build on the concept of spatial deformation [27] and model
f(x) as

(5) f(x) = µ(x) + ǫ([x, Z]; θ),

where µ(x) = h(x)⊤β and ǫ([x, Z]; θ) is a zero-mean GP whose covariance function depends
smoothly on the p−dimensional (known) vector of inputs, x ∈ X = R

p, a latent (unknown)
input Z which we infer from the data, and a handful of model parameters θ. Specifically,
we adopt an “augmented” product-Gaussian correlation form for K = σ−2C:

(6) K(xi,xj) = exp

{

−
p

∑

l=1

φl(xil − xjl)
2 − φp+1(Zi − Zj)

2

}

.

5

Expression (6) corresponds to the standard (squared-exponential) correlation function of a
stationary GP (2) indexed by p+ 1 inputs.

Clearly, the problem of modelling a non-stationary simulator could be tackled differently.
For example, [25] propose gathering substantial information about the simulator from experts
and use it to include a large number of regressors in the prior mean field µ while retaining
a stationary residual process. However, choosing the best set of regressors is non-trivial and
there is no guarantee that the residual process is stationary. Also, the authors suggest using
rougher (but still stationary) correlation functions like the Matérn. While this could lead to
a better fit compared to smoother alternatives, it would require specifying an extra smooth-
ing parameter which is hard to infer statistically. Also, the stationary representation does
not address the issue that stationary GP processes focus more on exploration rather than
exploitation of the input space, thus still leading to a sub-optimal sequential design strategy
in presence of local features. [20] generalise Gibbs’ construction to obtain non-stationary
versions of arbitrary isotropic covariance functions. While their model provides a flexible
and general framework, it is computationally demanding and not feasible in high-dimensional
spaces. The latent extension of the input space guarantees positive definiteness of the co-
variance between observations in the original space and enhances an intuitive interpretation
of the problem. When thinking of emulation of computer models that are characterised by
sharp local features, the extra input could tear apart regions of the input space that are
separated by abrupt changes of the function values. The correlation between points at and
about a localised feature is weakened since the corresponding distance has been stretched
by the latent coordinate.

To this point we have not made any assumptions about the latent input Z. In the follow-
ing, we model Z as a continuous function of the inputs, Zi = g(xi) ∈ R, using a stationary
GP

g | θ ∼ GP(0, K̃), with(7)

K̃(xi,xj) = exp

{

−
p

∑

l=1

φ̃l(xil − xjl)
2

}

,(8)

where the scale parameter is fixed to 1.
To summarise, our formulation relies on two stationary GPs, one for the function of interest

and one for the latent input

(9) f |θ ∼ GP(µ, C), and g|θ ∼ GP(0, K̃),

where vector θ collects all the parameters of both the original and latent processes, θ =
[β, σ2, {φl}p+1

l=1 , {φ̃l}pl=1]. A stochastic process for f(x) is achieved by integrating out the
regression parameters β and Z, and is more adaptive than (1) to functions whose smoothness
varies with the inputs because it has the capacity to have several length scales.

As mentioned above, [27] first pioneered an approach to the problem of nonstationarity
and anisotropy in environmental datasets through a nonlinear transformation of the sampling
space into a latent space with stationary and isotropic spatial structure. The mapping was
done via multidimensional scaling. Further, the authors used thin-plate splines to estimate
realisations of f at predictive locations while keeping the estimates of the latent process
fixed and without taking into account any measure of uncertainty about the mapping [30].
The approach we propose in (9) is similar in flavour to the construction in [30], who build

6

on [27] and implement spatial deformation via a GP prior. However, our construction differs
from [30], where K is chosen to correspond to a mixture of Gaussian correlation functions,
each of which depends on the Euclidean distance between the latent inputs Z’s only. Also,
the authors infer their deformation from an observation of a sample covariance matrix. The
idea of achieving nonstationarity by latent input extension can also be found in [22], who
present two approaches for approximate Bayesian inference in GP regression models. The
first method relies on a discrete latent input and is implemented in an Markov Chain Monte
Carlo (MCMC) sampling scheme, whereas the second method estimates a continuous latent
mapping by evidence maximisation. We remark that [27, 30, 20, 22] are not attempting to
estimate a deterministic model or perform sequential design.

3. Implementation

We apply our adaptive non-stationary GP emulator to the sequential design of computer
experiments [28]: start with a parsimonious design; choose a new input x according to some
criterion derived from the emulator fit; update the emulator conditional on the new pair
{x, f(x)}; and repeat until some stopping criterion is met. Sequential design is crucial to
keep designs small and save on expensive runs of the simulator while guaranteeing adequate
learning of the input-output map. We adopt a sequential MC technique known as particle
learning (PL) to obtain a quick update of the emulator after each sequential design iteration
(§3.1) and discuss some sequential design criteria in §3.2. An introduction to PL is beyond
the scope of this paper. The unfamiliar reader can refer to [17] for an introduction and to
[13] for its application to the online updating of GP regression models.

3.1. PL for GP emulation. PL provides a simulation-based approach to sequential Bayesian
computation. Central to PL is the identification of essential state vectors or particles,

{S(i)
t }Ni=1, that are tracked sequentially, with N denoting the total number of particles.

These particles contain all the sufficient information about the uncertainties given the data

up to time t and are used to approximate the posterior distribution, {S(i)
t }Ni=1 ∼ π(St |

{x, f(x)}1:t). PL provides a method to update the particles from t to t+ 1.
We start by identifying the quantities particles include. The sufficient information neces-

sarily depends upon [(x1, f(x1)), . . . , (xt, f(xt))]
1, thus {S(i)

t }Ni=1 = {(Z1:t, Kt, K̃t)
(i)}, with

Z1:t ≡ (Z1, . . . , Zt)
T . The correlation functions have been indexed by t to stress their depen-

dence to data collected up to time t. Particles do not contain β nor σ2 as these parameters
can be marginalised out within our Bayesian construction [13].

Suppose we start with (f(x1), . . . , f(xt0))
⊤ obtained from t0 > p + 1 preliminary runs

of the simulator at design points (x1, . . . ,xt0)
⊤. The initial design can be chosen as, e.g.,

a Latin Hypercube Design (LHD). Particles are initialised at time t0 with a sample of the
unknown parameters from their prior distributions. In addition to the priors in §2.1, we also
sample {φ̃l}pl=1 from φ̃l ∼ log N(mφ̃, vφ̃). The core components of PL for updating particles

{S(i)
t }Ni=1 to {S(i)

t+1}Ni=1 are the following two steps:

1To stress the dependence of f to both known and latent inputs within our approach, we should write
f(x, Z). In the remainder, however, we will omit Z and write f(x1), . . . , f(xt) to simplify the notation.

7

• Resample Generate index ζ ∼ Multinomial(w,N), with

w(i) =
π(f(xt+1)|S(i)

t)
∑N

i=1 π(f(xt+1)|S(i)
t)

, i = 1, . . . , N,

where π(f(xt+1)|S(i)
t) = π(f(xt+1)|[x, f(x)]1:t, K(i)

t) denotes the probability of ob-
serving f(xt+1) under a Student-t distribution with ν̂ = t− p− 1 degrees of freedom
and mean and variance given by Equations (3)–(4), respectively.

• Propagate each resampled particle S
ζ(i)
t to S

(i)
t+1 to account for [xt+1, f(xt+1)]

– Construct the “propagated” correlation function of the latent GP, which will be
used to sample the latent coordinate at the new input xt+1. Thus, we build

K̃
(i)

t+1 from K̃
(i)

t and k̃
(i)
t (xt+1) = K̃(i)(xt+1,xj), with j = 1, . . . , t

K̃
(i)

t+1 =

[

K̃
(i)

t k̃
(i)
t (xt+1)

k̃
(i)⊤
t (xt+1) K̃(i)(xt+1,xt+1)

]

– Obtain g(i)(xt+1) from its predictive distribution g(i)(xt+1) | g(i)(x1:t), K̃
(i)

t+1 ∼
N(µ∗(i), K̃∗(i)), where mean and variance are obtained via standard kriging equa-
tions

– Construct the “propagated” correlation function of f . We build K
(i)
t+1 from K

(i)
t

and k
(i)
t (xt+1) = K(i)(xt+1,xj), j = 1, . . . , t, as

K
(i)
t+1 =

[

K
(i)
t k

(i)
t (xt+1)

k
(i)⊤
t (xt+1) K(i)(xt+1,xt+1)

]

The three sub-steps above can be performed in parallel across particles.

The correlation range parameters and the latent input could be deterministically propagated

by copying them from S
ζ(i)
t to S

(i)
t+1 since they do not change in t. Although this strategy

is fast, it could lead to particle depletion. To avoid degeneracy in the path space caused
by successive resampling steps, we include a “rejuvenate” step which applies MCMC moves
to the particles after the propagating step [10, 24]. The update is done via elliptical slice
sampling [19].

Each particle returns an estimate of predictive mean surface, f̂ (i), and predictive standard
deviation, σ̂(i). Likely, some of these particles will provide higher fidelity surfaces than others.
We take the average of the point-wise predictive distribution for each of the particles, the
posterior mean predictive curve, as our prediction of f at new inputs

f̂ = E(f |S(i)) =
1

N

N
∑

i=1

f̂ (i),(10)

whereas the estimate for the predictive standard deviation is obtained as

(11)
√
σ̂2 = E({σ̂(i)}Ni=1) + Var({f̂ (i)}Ni=1),

8

where expressions for f̂ (i) and σ̂2
(i)

are given by Equations (3)–(4), respectively.
Sequential MC computing seamlessly blends with active learning of the sequential design

(§3.2). In addition to PL, we also investigated a two-stage fast approximation of the proposed
emulator where the latent input GP is directly learned from data through nonparametric
regression and the estimated input surface is plugged in to learn f . Simulations suggest that
the two-stage approximation performs at least as well as the sequential MC “full Bayes”
counterpart in handling local features and selecting additional inputs from the boundaries
of such features. However, the sequential MC version of our emulator often achieves better
accuracy given the same number of input points in the design. A comparison between the
two implementations is deferred to Web Appendix D of the Supplementary Materials.

3.2. Adaptive sequential design. The adaptive and sequential selection of input points
to include in the design sits comfortably within our PL implementation. After particles have
been resampled, and before proceeding with the propagation step, the algorithm performs
prediction at a set of candidate input configurations based on the posterior predictive distri-
bution. For every candidate point, we derive f̂(x̃|{x, f(x)}1:t), which predicts f at x̃, and
σ̂2(x̃|{x, f(x)}1:t), which quantifies the uncertainty at x̃. Candidate points can be ordered
based on their predictive variance and the point with largest uncertainty in predicted output
is chosen as the next input xt+1. Consequently, particles are propagated with the new pair
[xt+1, f(xt+1)], and the sequence is iterated until some pre-specified stopping criterion is
met, e.g. the largest predictive variance falls below a certain threshold or a total number,
T , of points has been included in the design. In order for this procedure to produce an
optimal sequence of points, it is necessary to have a trustworthy judgement of uncertainty,
that is, we need to have faith in the model-based estimate of σ̂2(x̃|{x, f(x)}1:t), which can
not be either underestimated or overestimated. Simulation experiments (§4) show that σ̂2

can be poorly estimated by a stationary GP when f presents local features, thus requiring
extrinsic diagnostics (e.g., examination of standardised residuals) to help towards the selec-
tion of future inputs. To avoid any ad-hoc procedures, it is necessary to rely on an adaptive
emulator that can represent properly the simulator. In §4, we compare a stationary GP to
our adaptive emulator in assessing uncertainty in presence of local features.

Several authors have developed specific criteria for sequentially selecting new input points.
For instance, [14] proposed an expected improvement criterion to estimate the global mi-
nimum of a computer simulator via the maximum likelihood estimator for the emulator
parameters. Equivalently popular approaches are the so-called “active learning” criteria
such as ALM - active learning MacKay [18] and ALC - active learning Cohn [7]. The pro-
cedure we implement and described above corresponds to ALM. [31] compared ALM and
ALC and observed that ALC often performs better than ALM. For example, the ALM cri-
terion embedded into a stationary GP emulator favours the selection of new points along
the boundary of the input space in that the predictive variance is largest beyond the points
which are already in the design [18]. However, the ALC criterion is more intensive to imple-
ment, therefore ALM is often preferred in practice.

9

−2 −1 0 1 2

−
1.

0
0.

0
1.

0
2.

0

x

Y
st−GP: rmse = 0.11

−2 −1 0 1 2

−
1.

0
0.

0
1.

0
2.

0

x
Y

nst−GP: rmse = 0.03

−2 −1 0 1 2

−
1

0
1

2

x

Y

TGP: rmse = 0.04

−2 −1 0 1 2

−
1.

0
0.

0
1.

0
2.

0

x

Y

CGP: rmse = 0.05

Figure 2. Comparison between stationary GP (first panel), non-stationary
GP via latent input augmentation (second panel), TGP (third panel), and
CGP (fourth panel). The dashed line corresponds to the true function (12),
the solid black line is the posterior mean predictive curve, and grey areas
denote the error bars. Estimates (and RMSE) are obtained at 200 equally
spaced test points.

4. Case studies

4.1. Learning local features. We consider a spatially inhomogeneous smooth function:

(12) f(x) = sin(x) + 2 exp(−30x2),

which is evaluated at 15 equally spaced points in Ω = [−2, 2].
For PL, we use N = 1000 particles initialised at time t0 = 4 with a randomly selected

subset of size 4 of the original 15 points. Each particle contains an estimate of the model
parameters, which are initialised by sampling from their prior distributions. {φ1, φ2} and φ̃1

are assigned log-normal priors distributions, and 0.5 and 0.25 are chosen as the prior mean
and prior variance of the corresponding Normal distribution on {log φ1, logφ2, log φ̃1}. Also,
a rather uninformative inverse-gamma prior is chosen for σ2, σ2 ∼ IG(2, 1).

Figure 2 shows the posterior mean predictive curve together with error bars computed as
f̂ ±2

√
σ̂2. We also show results obtained with Bayesian TGP [11] and composite GP (CGP)

[2]. The limitations resulting from fitting a stationary GP to function (12) were outlined in
Section 1. In comparison, the three non-stationary emulators (panels 2-4 in Figure 2) give
significantly improved performance, i.e. the spline tension effect is eliminated, or strongly
attenuated. However, TGP’s most evident feature is the large uncertainty in the estimates
as quantified by very wide error bars, which could be taken as indicator of an inadequate
representation of the simulator. The error bars obtained with our non-stationary GP and
CGP are more consistent with the local variability of the underlying surface. In terms of
root mean squared error (RMSE), our emulator improves the accuracy of TGP and CPG by
25% and 40%, respectively.

4.2. Quantifying the emulator’s uncertainty. The simulator f is typically expected to
be within two or three standard deviations from the predictive mean f̂ [3]. While an isolated
outlier might be ignored, several large standardised residuals, e.g. more than 1% or 5% of
the total number of validating points, may denote a problem to be further investigated. For
example, large standardised residuals systematically observed at and around a particular

10

−2 −1 0 1 2

−
0.

1
0.

1
0.

3
0.

5

x

Y

st−GP: pred sd (max = 0.13)

−2 −1 0 1 2

−
0.

1
0.

1
0.

3
0.

5

x

Y

nst−GP: pred sd (max = 0.34)

−2 −1 0 1 2

−
0.

1
0.

1
0.

3
0.

5

x

Y

TGP: pred sd (max = 0.56)

−2 −1 0 1 2

−
0.

1
0.

1
0.

3
0.

5

x

Y

CGP: pred sd (max = 0.29)

−
4

−
2

0
2

4
6

8

x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

st−GP

−2 −1.14 0 0.86 1.71

−
2

−
1

0
1

2

x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

nst−GP

−2 −1.14 0 0.86 1.71

−
80

−
60

−
40

−
20

0

x
Le

av
e−

on
e−

ou
t C

V
 s

td
 r

es
id

ua
ls

TGP

−2 −1.14 0 0.86 1.71

−
2

−
1

0
1

2

x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

CGP

−2 −1.14 0 0.86 1.71

Figure 3. Estimated standard deviation at 200 predictive locations (top pan-
els) and leave-one-out CV standardised residuals (bottom panels) for the peak
function (12): comparison between stationary GP (st-GP), non-stationary GP
via latent input (nst-GP), TGP, and CGP. Top panels also report the maxi-
mum estimate of predictive standard deviation.

input value suggest that the emulator is not learning the local behaviour of the process
[6]. Further, they indicate that the emulator is under-estimating the predictive uncertainty.
Ultimately, one wants to acquire an accurate knowledge of f with as least simulator’s runs
as possible. The emulator can be used to quickly identify those regions of the input space
where the simulator exhibits more variations, thus help determine where further runs of the
simulator should concentrate. However, this goal can be achieved only if the emulator’s
estimate of uncertainty is trustworthy. A sequential design strategy based on an unreliable
estimate of uncertainty will otherwise lead to a sub-optimal selection of input points.

Here we examine how model-based evaluations (Figure 2 and first row in Figure 3)
combine with extrinsic diagnostics (second row in Figure 3). For extrinsic diagnostics, we
examine the leave-one-out cross validated standardised residuals. According to the explo-

ration-driven predictive standard deviation of a stationary GP, one is essentially equally
likely to locate the new point anywhere in [−2, 2] (top left panel in Figure 3). Instead,
CV strongly favours the selection of a new input around x = 0 (exploitation-driven CV)
to learn the local behaviour of f . Thus, model-based evaluations and extrinsic diagnostics
are inconsistent, and the latter shows that uncertainty is being under-estimated around the
peak. It is not immediately clear how to combine inconsistent evaluations when there is no
knowledge of the true f , as for real data applications. Incongruent conclusions with CGP:
if one trusts the model-based estimate of uncertainty, then the next input will be chosen
around the peak; if one relies on CV, the next input will be chosen at the boundaries of the

11

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

x

Y
st−GP: rmse = 0.11

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

x
Y

nst−GP: rmse = 0.09

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

x

Y

TGP: rmse = 0.09

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

x

Y

CGP: rmse = 0.09

Figure 4. Comparison between stationary GP (st-GP), non-stationary GP
via latent input augmentation (nst-GP), TGP, and CGP on the 1D discon-
tinuous function. The dashed line corresponds to the true function (13), the
solid black line is the posterior mean predictive curve, and grey areas denote
the error bars. Estimates (and RMSE) are obtained at 200 equally spaced test
points.

input space. For these two emulators, the problem of how to combine different diagnostic
results emerges clearly. Instead, both model-based evaluations and CV for our emulator
(nst-GP) and TGP identify that the next point is needed around x = 0. As opposed to
our emulator, the conclusion is however made much more evident by extrinsic diagnostics (a
strikingly large CV standardised residual at x = 0) rather than by the predictive standard
deviation with TGP.

4.3. 1D discontinuous function. We now consider a simple discontinuous function:

(13) f(x) =

{

0, x ≤ 0
1, x > 0

We evaluate (13) at 10 equally spaced points in Ω = [−1, 1]. For PL, we use N = 1000
particles initialised at time t0 = 4 with a randomly selected subset of size 4 of the original
10 points. This function is particularly suited to TGP because of the vertical, axis-aligned
nature of localised feature.

Figure 4 shows that the point predictions obtained with the non-stationary emulators
are not (or less) distorted by the spline tension effect as opposed to the fit obtained with
a stationary GP. Further, the intervals seem more consistent with what might be guessed
about the function from observing the data points. Again, TGP identifies large uncertainty
everywhere in Ω.

Model-base evaluations for our non-stationary GP and CGP suggest to pick new points at
(and around) x = 0 to exploit the local feature (top row in Figure 5). Also, CV shows that
the predictive uncertainty is not underestimated. Extrinsic and model-based evaluations
are still inconsistent for the stationary GP, whereas extrinsic diagnostics show that TGP
is likely to be under-estimating the uncertainty at the jump. Although this would lead
to a sequential design strategy consistent with the one suggested by TGP’s model-based
evaluation, it is preferable to observe the more apparent pattern in our emulators’s predictive
standard deviation, which drops quickly when departing from x = 0.

In general, it is not clear how to reconcile model-based and extrinsic diagnostics whenever
12

−1.0 −0.5 0.0 0.5 1.0

−
0.

05
0.

05
0.

15
0.

25

x

Y

st−GP: pred sd (max = 0.07)

−2 −1 0 1 2

−
0.

05
0.

05
0.

15
0.

25

x

Y

nst−GP: pred sd (max = 0.17)

−1.0 −0.5 0.0 0.5 1.0

−
0.

05
0.

05
0.

15
0.

25

x

Y

TGP: pred sd (max = 0.19)

−1.0 −0.5 0.0 0.5 1.0

−
0.

05
0.

05
0.

15
0.

25

x

Y

CGP: pred sd (max = 0.11)

−
4

−
2

0
2

4

x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

st−GP

−1 −0.56 0.11 0.56 1

−
4

−
2

0
2

4

x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

nst−GP

−1 −0.56 0.11 0.56 1

−
4

−
2

0
2

4
x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

TGP

−1 −0.56 0.11 0.56 1

−
2

−
1

0
1

2

x

Le
av

e−
on

e−
ou

t C
V

 s
td

 r
es

id
ua

ls

CGP

−1 −0.56 0.11 0.56 1

Figure 5. Estimated standard deviation at 200 predictive locations (top pan-
els) and leave-one-out CV standardised residuals (bottom panels) for the jump
function (13): comparison between stationary GP (st-GP), non-stationary GP
via latent input (nst-GP), TGP, and CGP. Top panels also report the maxi-
mum estimate of predictive standard deviation.

these lead to different evaluations. In particular, it is not obvious in what measure to favor
the exploration-driven predictive standard deviation over the exploitation-driven CV. An
emulator whose model-based evaluations reconcile with extrinsic diagnostics is preferred in
that it automatically learns to create a good balance between exploration and exploitation,
and one does not have to resort to ad-hoc combinations. Our emulator seems to accomplish
this balance adequately.

5. High-dimensional examples and sequential design

5.1. Two-dimensional functions with local features. In this Section, we examine three
test functions possessing non-stationary features. The true surfaces are shown in Figure 6:
the second function (“building”) is naturally suited to TGP because of the axis-aligned non-
stationarity.

We first compare the performance of the emulators when trained on a common and fixed
set of input points (no sequential design). For this purpose, we use a 40 LHD (blue points in
Figure 6), which allows the emulators to gather knowledge on the overall shape of f because
of its “space-filling” nature. Figure 13 in Appendix A and Figures 7-8 show the posterior
predictive mean surface, f̂ , and the predictive standard deviation, σ̂, for the menhir, building,
and well functions, respectively. The initial LHD does not include points at or nearby the
peak of the menhir function (Figure 13), and this affects the estimates of the four emulators,
which can not recover the central spike. Note, however, how both our emulator and CGP

13

x1

x2

Y

Menhir (n = 40)

x1

x2

Y

Building (n = 40)

x1
x2

Y

Well (n = 40)

Figure 6. True functions for the 2-dimensional numerical examples and ini-
tial 40 LHD (blue points) used to train the emulators.

identify higher uncertainty in the central part of the input space. In particular, the pattern
in predictive standard deviation seems to indicate that our emulator is learning the circular
geometry of the menhir. TGP also identifies higher central uncertainty, but the reason is
likely to be related to the partitioning scheme rather than to learning the geometry of the
feature. The most distinctive feature that emerges from both Figure 7 and Figure 8 is that
our emulator is learning the geometry of the local features as shown by the evident patterns
in predictive standard deviation, which is higher at the edges of the building (Figure 7) and
has a distinctive circular pattern for the well function (8). This does not appear to be the
case for the other emulators.

Next, we address the issue of sequential design and assess whether the emulators can
correct for inadequacies in the fit. In other terms, we want to examine whether the emulators
can learn about, and thus concentrate exploration in, the most interesting or complicated
regions of the input space. Therefore, we let the emulators select 20 additional points (60 for
well) sequentially based on their model-based estimate of uncertainty (ALM). The resulting
final designs will, therefore, be different across emulators.

Figures S1 and S2 in Web Appendix A of the Supplementary Materials show f̂ and σ̂ for
the menhir and well functions at T = 60 and T = 100, respectively, and Figure 9 refers to
the building function at T = 60. Regardless of the function being examined, our emulator
favours the sampling of new points from the boundaries of the features. Therefore, it strikes
a good balance between exploration (initial LHD) and exploitation (newly selected points).
This is not necessarily true for the other emulators across different functions, i.e. CGP tends
to select new points at the center of the input space for the menhir function, but no pattern
is observed for building and well functions. After ALM, TGP seems to have preferred the
selection of new points at the edges of the building (Figure 9), but this behaviour is much
less evident on the other functions with circular geometry. TGP’s selection is driven by the
partitioning scheme in that the predictive standard deviation is generally higher at the edges
between consecutive partitions. Thus, TGP seems to concentrate in learning the partition
rather than the local feature.

For a more quantitative numerical comparison among emulators, Figure 10 shows the
progression of the RMSE as additional inputs are being selected. Our emulator performs

14

x1

x2

Y

st−GP: rmse = 0.374

x1

x2

Y

nst−GP: rmse = 0.314

x1

x2

Y

TGP: rmse = 0.323

x1

x2

Y

CGP: rmse = 0.369

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

st−GP: max psd = 1.02

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

nst−GP: max psd = 0.87

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

TGP: max psd = 1.22

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

CGP: max psd = 0.88

Figure 7. Comparison between stationary GP (st-GP), non-stationary GP
via latent input augmentation (nst-GP), TGP, and CGP on the 2D building
function. The emulators are fit to a common design corresponding to a 40
LHD (black points). Top row: posterior mean predictive surface, f̂ , and root
mean squared error (rmse); bottom row: predictive standard deviation, σ̂,
and maximum predictive standard deviation (max psd). The quality of the
prediction is assessed at a collection of 900 points in Ω = [0, 1]2, i.e. an
expanded grid of 30 equally spaced points along each coordinate axes.

at least as well as CGP on the menhir function, and outperforms the other emulators on
building and, in particular, well functions.

To conclude, our emulator tends to concentrate the selection of new points in interesting
areas of the input space. Furthermore, it compares favourably both in cases of axis-aligned
non-stationarity (building) and in situations where the type of non-stationarity is more
general (well).

5.2. Six-dimensional examples. We consider two 6D examples, which are an extension
of the 2D building and well functions. The 6D building has true function:

(14) f(x1, x2, x3, x4, x5, x6) =

{

e
∑

6

i=1(1

i)
2

xi, if x1, x2, x3, x4, x5, x6 > 0.25
0, otherwise

on the hypercube X = [0, 1]6. The 6D well has true function:

(15) f(x1, . . . , x6) =

{

1, if
∑4

i=1(xi − 0.5)2 > 0.025 and
∑4

i=1(xi − 0.5)2 < 0.25
0, otherwise

on the hypercube X = [0, 1]6. Therefore, f in (15) is constant in x5 and x6.
All emulators are trained on an identical 120 LHD. Emulators then select 80 additional

points from a 1000 candidate LHD according to ALM. Similar to the 2D examples, our
emulator outperforms the others in terms of reduction of RMSE (left and central panels in

15

x1

x2

Y

st−GP: rmse = 0.36

x1

x2

Y

nst−GP: rmse = 0.191

x1

x2

Y

TGP: rmse = 0.294

x1

x2

Y

CGP: rmse = 0.287

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

st−GP: max psd = 0.91

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

nst−GP: max psd = 0.49

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

TGP: max psd = 0.53

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

CGP: max psd = 0.48

Figure 8. Comparison between stationary GP (st-GP), non-stationary GP
via latent input augmentation (nst-GP), TGP, and CGP on the 2D well func-
tion. The emulators are fit to a common design corresponding to a 40 LHD
(black points). Top row: posterior mean predictive surface, f̂ , and root mean
squared error (rmse); bottom row: predictive standard deviation, σ̂, and max-
imum predictive standard deviation (max psd). The quality of the prediction
is assessed at a collection of 900 points in Ω = [0, 1]2, i.e. an expanded grid of
30 equally spaced points along each coordinate axes.

Figure 11). Therefore, inactive covariates adding noise to the process, such as x5 and x6

for function (15), do not affect the performance of our emulator. Additional summaries are
reported in Web Appendix B of the Supplementary Materials.

6. LGBB CFD experiment

This Section presents an application to a computational fluid dynamics (CFD) simula-
tor of a proposed reusable NASA rocket booster vehicle, the Langley Glide-Back Booster
(LGBB). The interest is in learning about the response in several flight characteristics of the
LGBB as a function of three inputs (speed in Mach number, angle of attack, and slide-slip
angle) when the vehicle reenters the atmosphere. See [12] for more details on the study.

The CFD simulation involves the iterative integration of systems of inviscid Euler equa-
tions and each run of the solver for a given set of parameters takes on the order of 5–20 hours
on a high-end workstation [12]. Therefore, the interest in adaptively design the experiment
to concentrate sampling in those regions where the response is more interesting (e.g., higher
uncertainty or richest structure) emerges clearly. As [12] show, the most interesting region
occurs near Mach 1 and for large angle of attack (refer to Figure S5 in Web Appendix C
of the Supplementary Materials for a plot of the “lift” response as function of Mach and
Alpha). The ridge in response at Mach equal to 1 separates subsonic flows and supersonic

16

x1

x2

Y

st−GP: rmse = 0.323

x1

x2

Y

nst−GP: rmse = 0.173

x1

x2

Y

TGP: rmse = 0.191

x1

x2

Y

CGP: rmse = 0.285

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

st−GP: max psd = 0.91

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

nst−GP: max psd = 0.79

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

TGP: max psd = 0.43

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

CGP: max psd = 0.49

Figure 9. Comparison between stationary GP (st-GP), non-stationary GP
via latent input augmentation (nst-GP), TGP, and CGP on the 2D building
function at T = 60. Black points: initial 40 LHD (common to all emulators);
blue points: 20 additional points selected via ALM. Top row: posterior mean
predictive surface, f̂ , and root mean squared error (rmse); bottom row: predic-
tive standard deviation, σ̂, and maximum predictive standard deviation (max
psd). The quality of the prediction is assessed at a collection of 900 points
in Ω = [0, 1]2, i.e. an expanded grid of 30 equally spaced points along each
coordinate axes.

40 45 50 55 60

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Menhir: rmse

of input points

R
M

S
E

stGP
nstGP
TGP
CGP

40 45 50 55 60

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Building: rmse

of input points

R
M

S
E

stGP
nstGP
TGP
CGP

40 50 60 70 80 90 100

0.
2

0.
3

0.
4

0.
5

0.
6

Well: rmse

of input points

R
M

S
E

stGP
nstGP
TGP
CGP

Figure 10. Progression of the RMSE as additional input points are being
selected for the 2D functions.

flows. The behaviour of the response is quite different in the two regions, with lift appearing
mostly homogeneous in the supersonic region.

Following [12], we examine the lift response as a function of speed (Mach) and angle of
attach (Alpha) with the side-slip angle (Beta) fixed at zero. We obtain a linear interpolation
onto a 30 × 30 grid over Mach and Alpha, and use the interpolated lift as our truth. All

17

120 140 160 180 200

0.
6

0.
8

1.
0

1.
2

6D Building: rmse

of input points

R
M

S
E

stGP
nstGP
TGP
CGP

120 140 160 180 200

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

6D Noisy well: rmse

of input points

R
M

S
E

stGP
nstGP
TGP
CGP

20 40 60 80 100

0.
02

0.
04

0.
06

0.
08

NASA: rmse

of input points

R
M

S
E

stGP
nstGP
TGP
CGP

Figure 11. Comparison among stationary GP (stGP), non-stationary GP via
latent input augmentation (nstGP), TGP, and CGP in terms of progression
of the RMSE as additional input points are being selected. Left panel: 6D
building function (14). Central panel: 6D well (15); Right panel: LGBB CFD
experiment (Section 6).

emulators are trained on a fixed and common initial design given by 20 randomly selected
points from a 30× 30 grid (Mach ∈ [0, 6], Alpha ∈ [−5, 30]), then select 80 additional points
via ALM. Figure 12 shows a slice of the posterior mean predictive surface as a function of
Mach and Alpha. The distinction between subsonic and supersonic flows is well captured
by all non-stationary emulators, which tend to select new points at small Mach, and our
emulator and CGP do so particularly for large Alpha. A stationary GP focuses mostly on a
uniform exploration of the space and will require ad-hoc extrinsic diagnostics to focus around
the ridge.

The third panel in Figure 11 shows the progression of RMSE to the interpolated truth.
Our emulator performs as well as TGP on a surface that favours the latter because of the
axis-aligned local feature, and improves the accuracy over stationary GP and CGP by 35%
and 48%, respectively, at T = 100.

7. Discussion

In this work we describe a non-stationary GP model that can be used as an emulator in the
sequential design of computer experiments. To induce non-stationarity, we consider a map-
ping to a latent space where stationarity holds, and augment the input space by the latent
input. The numerical examples show that the extra flexibility introduced by the latent input
greatly improves predictions over a stationary GP fit. In particular, the proposed methodol-
ogy provides more reliable, model-based evaluations as opposed to extraneous explorations
done with stationary GPs, and adapts to both cases of axis-aligned non-stationarity and
in situations where the non-stationarity is more general. The approach also retains an easy
interpretability while building upon a simple but elegant construction. Here we discuss some
details in regard to our implementation and computer emulation in general.

The nugget. A “nugget” is a small, positive quantity α often added to the diagonal of
the correlation function for f [1]. The resulting covariance function corresponds to the case
where f is observed with additive Gaussian noise with zero mean and variance α. Many

18

Mach
 (s

peed)

Alpha (angle of attach)

Lift

st−GP: rmse = 0.02

Mach
 (s

peed)

Alpha (angle of attach)

Lift

nst−GP: rmse = 0.013

Mach
 (s

peed)

Alpha (angle of attach)

Lift

TGP: rmse = 0.013

Mach
 (s

peed)

Alpha (angle of attach)

Lift

CGP: rmse = 0.025

1 2 3 4 5 6

−
5

0
5

10
15

20
25

30

Mach (speed)

A
lp

ha
 (

an
gl

e
of

 a
tta

ck
)

st−GP: max psd = 0.03

1 2 3 4 5 6

−
5

0
5

10
15

20
25

30

Mach (speed)

A
lp

ha
 (

an
gl

e
of

 a
tta

ck
)

nst−GP: max psd = 0.02

1 2 3 4 5 6

−
5

0
5

10
15

20
25

30

Mach (speed)

A
lp

ha
 (

an
gl

e
of

 a
tta

ck
)

TGP: max psd = 0.01

1 2 3 4 5 6

−
5

0
5

10
15

20
25

30

Mach (speed)

A
lp

ha
 (

an
gl

e
of

 a
tta

ck
)

CGP: max psd = 0.05

Figure 12. Comparison between stationary GP (st-GP), non-stationary GP
via latent input augmentation (nst-GP), TGP, and CGP on the LGBB ex-
periment with lift response as a function of Mach (speed) and Alpha (angle
of attack) and Beta (side-slip angle) fixed at 0. Black points: 20 points used
as initial design (common to all emulators); blue points: 80 additional points

selected via ALM. Top row: posterior mean predictive surface, f̂ , and root
mean squared error (rmse); bottom row: predictive standard deviation, σ̂,
and maximum predictive standard deviation (max psd). The quality of the
prediction is assessed at a collection of 900 points, i.e. an expanded grid of 30
equally spaced points along each coordinate axes.

authors do not include a nugget term on the grounds that computer codes are determinis-
tic. In fact, the nugget introduces a measurement error in the stochastic process. A GP
that includes a nugget does not interpolate and assigns non-zero uncertainty to the design
data. However, it is not uncommon practice to include a nugget to enhance the numerical
stability in factorising covariance matrices [11, 1]. A typical value of the nugget used in our
numerical examples is α = 10−7, the effect of this being the addition of α in the predictive
variance of the responses. Although very small, α can have a non-negligible impact on the
estimates. For example, it compromises interpolation of the stationary GP on the menhir
function (Figure S1 in Web Appendix A). However, the nugget did not seem to significantly
affect the estimates of our non-stationary emulator. For more details on the inclusion of a
nugget in computer emulation, refer to [1, 2].

Parallelisation. An appealing characteristic of PL is its heavy parallelisable nature: many
of the typical calculations on the particles can proceed independently of one another. In
particular, the evaluation of the posterior predictive distribution and the propagate step can
be performed in parallel for each particle. Resampling requires the particles being synchro-
nised, but this step is fast once the particle predictive densities have been evaluated. Our

19

code makes extensive use of R’s function lapply to automatically loop over the particles to
evaluate the predictive distribution and propagate the particles. More advanced alternatives
such as snowfall and sfCluster for parallel programming using clusters could lead to com-
putational improvements.

High-dimensional problems. The application of the proposed methodology to high-dimensional
input spaces can be challenging due to the intrinsic difficulty faced in high-dimensional set-
tings by GP models, which try to recover up to the p-th level of interaction. We expect that
more structure (i.e., additivity, sparse factorisation) is needed to handle high-dimensional
problems. Independently developed research in the context on non-parametric regression
suggests that additive GP models could be a promising way to move forward, and they will
be investigated in future research.

Applications. Although the model was developed for the analysis of computer experiments,
it also has a wide range of uses as a simple and efficient method for non-stationary mod-
elling in the analysis of social, biological, and ecological data collected over spatial domains.
The extension to non-parametric regression is straightforward with the inclusion of a nugget
[30, 23, 16, 21].

Appendix A. Menhir function estimates at T = 40 (LHD)

x1

x2

Y

st−GP: rmse = 0.06

x1

x2

Y

nst−GP: rmse = 0.114

x1

x2

Y

TGP: rmse = 0.083

x1

x2

Y

CGP: rmse = 0.091

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

st−GP: max psd = 0.13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

nst−GP: max psd = 0.11

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

TGP: max psd = 0.16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

CGP: max psd = 0.06

Figure 13. Comparison between stationary GP (st-GP), non-stationary GP
via latent input augmentation (nst-GP), TGP, and CGP on the 2D menhir
function. The emulators are fit to a common design corresponding to a 40
LHD (black points). Top row: posterior mean predictive surface, f̂ , and root
mean squared error (rmse); bottom row: predictive standard deviation, σ̂,
and maximum predictive standard deviation (max psd). The quality of the
prediction is assessed at a collection of 900 points in Ω = [0, 1]2, i.e. an
expanded grid of 30 equally spaced points along each coordinate axes.

20

R
lapply
snowfall
sfCluster

References

[1] I. Andrianakis and P. G. Challenor, The effect of the nugget on Gaussian process emulators of
computer models, Comput. Stat. Data Anal., 56 (2012), pp. 4215–4228.

[2] S. Ba and R. Joseph, Composite Gaussian process models for emulating expensive functions, Annals
of Applied Statistics, 6 (2012), pp. 1838–1860.

[3] L. S. Bastos and A. O’Hagan, Diagnostics for Gaussian process emulators, Technometrics,, 51
(2009), pp. 425–438.

[4] M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and
J. Tu, A framework for validation of computer models, Technometrics, 49 (2007), pp. 138–154.

[5] A. Bhattacharya, D. Pati, and D. B. Dunson, Adaptive dimension reduction with a Gaussian
process prior, arXiv: 1111.1044, (2011).

[6] D. Busby, Hierarchical adaptive experimental design for Gaussian process emulators, Reliability Engi-
neering & System Safety, 94 (2009), pp. 1183–1193.

[7] D. A. Cohn, Neural network exploration using optimal experiment design, Neural Netw.,, 9 (1996),
pp. 1071–1083.

[8] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, Bayesian prediction of deterministic
functions, with applications to the design and analysis of computer experiments, J. Am. Statist. Assoc.,
86 (1991), pp. 953–963.

[9] Y. Fan, I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, Numerical simulations and ob-
servations of surface wave fields under an extreme tropical cyclone, J. Phys. Oceanogr., 39 (2009),
pp. 2097–2116.

[10] W. R. Gilks and C. Berzuini, Following a moving target: Monte Carlo inference for dynamic
Bayesian models, J. R. Statist. Soc. B, 63 (2001), pp. 127–146.

[11] R. B. Gramacy and H. K. H. Lee, Bayesian treed Gaussian process models with an application to
computer modeling, J. Am. Statist. Assoc., 103 (2008), pp. 1119–1130.

[12] R. B. Gramacy and H. K. H. Lee, Adaptive design and analysis of supercomputer experiments,
Technometrics, 51 (2009), pp. 130–145.

[13] R. B. Gramacy and N. G. Polson, Particle learning of Gaussian process models for sequential
design and optimization, J. Comput. and Graph. Statist., 20 (2011), pp. 102–118.

[14] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box
functions, J. of Global Optimization, 13 (1998), pp. 455–492.

[15] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. B, 63
(2001), pp. 425–464.

[16] H.-M. Kim, B. K. Mallick, and C. Holmes, Analyzing nonstationary spatial data using piecewise
Gaussian processes, J. A. Stat. Assoc., 100 (2005), pp. 653–668.

[17] H. F. Lopes, C. M. Carvalho, M. S. Johannes, and N. G. Polson, Particle learning for sequential
Bayesian computation, Oxford University Press, 2011.

[18] D. J. MacKay, Information-based objective functions for active data selection, Neural Computation,
4 (1992), pp. 590–604.

[19] I. Murray, R. P. Adams, and D. J. C. MacKay, Elliptical slice sampling, J. Mach. Learn. Res., 9
(2010), pp. 541–548.

[20] C. J. Paciorek and M. J. Schervish, Nonstationary covariance functions for gaussian process re-
gression, in Proc. of the Conf. on Neural Information Processing Systems (NIPS), vol. 16, MIT Press,
2004, pp. 273–280.

[21] , Spatial modelling using a new class of nonstationary covariance functions, Environmetrics, 17
(2006), pp. 483–506.

[22] T. Pfingsten, M. Kuss, and C. E. Rasmussen, Nonstationary Gaussian process regression using a
latent extension of the input space, in manuscript, 2006.

[23] C. E. Rasmussen and Z. Ghahramani, Infinite mixtures of Gaussian process experts, in Advances
in Neural Information Processing Systems, vol. 14, MIT Press, 2001, pp. 881–888.

[24] G. Ridgeway and D. Madigan, A sequential Monte Carlo method for Bayesian analysis of massive
datasets, J. Knowl. Disco. and Data Min., 7 (2003), pp. 301–319.

21

[25] J. Rougier, S. Guillas, A. Maute, and A. D. Richmond, Expert knowledge and multivariate
emulation: the thermosphere-ionosphere electrodynamics general circulation model (tie-gcm), Techno-
metrics, 51 (2009), pp. 414–424.

[26] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer
experiments, Statist. Sci., 4 (1989), pp. 409–423.

[27] P. D. Sampson and P. Guttorp, Nonparametric estimation of nonstationary spatial covariance
structure, J. A. Stat. Assoc., 87 (1992), pp. 108–119.

[28] T. Santner, B. Williams, and W. Notz, The Design and Analysis of Computer Experiments,
Springer Series in Statistics, Springer, 2003.

[29] L. Schade and K. Emanuel, The ocean’s effect on the intensity of tropical cyclones: results from a
simple coupled atmosphere-ocean model, J. Atmos. Sci., 56 (1999), pp. 642–651.

[30] A. M. Schmidt and A. O’Hagan, Bayesian inference for nonstationary spatial covariance structure
via spatial deformations, J. R. Stat. Soc., B, 65 (2000), pp. 745–758.

[31] S. Seo, M. Wallat, T. Graepel, and K. Obermayer, Gaussian process regression: active data se-
lection and test point rejection, in Proceedings of the International Joint Conference on Neural Networks
(IJCNN), vol. 3, IEEE, 2000, pp. 241–246.

[32] C. Textor, H. Graf, A. Longo, A. Neri, T. E. Ongaro, P. Papale, C. Timmreck, and
G. G. J. Ernst, Numerical simulation of explosive volcanic eruptions from the conduit flow to global
atmospheric scales, Ann. of Geophys., 48 (2009), pp. 817–842.

[33] A. W. van der Vaart and H. J. van Zanten, Adaptive Bayesian estimation using a Gaussian
random field with inverse gamma bandwidth, The Ann. of Statist., 37 (2009), pp. 2655–2675.

Dept. of Statistics, University of Warwick, Coventry CV4 7AL, UK
E-mail address : S.Montagna@warwick.ac.uk

Dept. of Statistical Science, Duke University, Box 90251, Durham, NC, USA
E-mail address : st118@stat.duke.edu

22

ar
X

iv
:1

30
8.

47
56

v2
 [

st
at

.M
E

]
 2

9
Ja

n
20

15

Supplementary Materials for “Computer emulation with

non-stationary Gaussian processes” by Silvia Montagna and

Surya T. Tokdar

SILVIA MONTAGNA

Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK

SURYA T. TOKDAR

Department of Statistical Science, Duke University, Durham, NC 27708, USA

Web Appendix A

Two-dimensional numerical examples

x1

x2

Y

st−GP: rmse = 0.075

x1

x2

Y

nst−GP: rmse = 0.008

x1

x2

Y

TGP: rmse = 0.024

x1

x2

Y

CGP: rmse = 0.009

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

st−GP: max psd = 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

nst−GP: max psd = 0.05

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

TGP: max psd = 0.21

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

CGP: max psd = 0.08

Figure S1. Comparison between stationary GP (st-GP), non-stationary GP via latent input augmen-
tation (nst-GP), TGP, and CGP on the 2D menhir function at T = 60. Black points: initial 40 LHD
(common to all emulators); blue points: 20 additional points selected via ALM. Top row: posterior mean

predictive surface, f̂ , and root mean squared error (rmse); bottom row: predictive standard deviation,
σ̂, and maximum predictive standard deviation (max psd). The quality of the prediction is assessed at
a collection of 900 points in Ω = [0, 1]2, i.e. an expanded grid of 30 equally spaced points along each
coordinate axes. Note that the stationary GP does not interpolate at the peak. We defer a discussion
on this phenomenon to Section 7 of the paper.

1

http://arxiv.org/abs/1308.4756v2

x1

x2

Y

st−GP: rmse = 0.243

x1

x2

Y

nst−GP: rmse = 0.14

x1

x2

Y

TGP: rmse = 0.276

x1

x2

Y

CGP: rmse = 0.264

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

st−GP: max psd = 0.42

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

nst−GP: max psd = 0.26

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

TGP: max psd = 0.55

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

CGP: max psd = 0.22

Figure S2. Comparison between stationary GP (st-GP), non-stationary GP via latent input augmen-
tation (nst-GP), TGP, and CGP on the 2D well function at T = 100. Black points: initial 40 LHD
(common to all emulators); blue points: 60 additional points selected via ALM. Top row: posterior mean

predictive surface, f̂ , and root mean squared error (rmse); bottom row: predictive standard deviation,
σ̂, and maximum predictive standard deviation (max psd). The quality of the prediction is assessed at
a collection of 900 points in Ω = [0, 1]2, i.e. an expanded grid of 30 equally spaced points along each
coordinate axes.

Web Appendix B

Six-dimensional numerical examples

Our methodology relies on two stationary GPs, one for the function of interest and one for the
latent input:

f |θ ∼ GP(µθ, Cθ), and g|θ ∼ GP(0, K̃θ), (1)

where θ is a vector of model parameters. To simplify the notations, we shall drop the θ subscript
to the mean, covariance, and correlation functions hereafter. For our formulation, we choose

µ(x) = h(x)⊤β, with h(x) = [1,x]⊤ (2)

C(xi,xj) = σ2K(xi,xj) (3)

K(xi,xj) = exp

{

−

p
∑

l=1

φl(xil − xjl)
2 − φp+1(Zi − Zj)

2

}

(4)

Zi = g(xi) (5)

K̃(xi,xj) = exp

{

−

p
∑

l=1

φ̃l(xil − xjl)
2

}

. (6)

Parameter φl ≥ 0 (or φ̃l ≥ 0 for the latent correlation function K̃) controls the sensitivity of
f (g) to xl. For example, φl = 0 (φ̃l = 0) removes xl (dimension reduction), whereas larger φl

(φ̃l) denotes smaller correlation, i.e. f(x) and f(x′) (g(x) and g(x′)) are less related in the xl

2

direction and the function is more complex.
We implement our emulator via particle learning (PL - [2]) as described in Section 3 of the

paper. We train our emulator on a 120 LHD and then let it select 80 additional points via
ALM, for a total of 200 points in the final design. Each particle contains an estimate of model
parameters in (1)-(6). Figure S3 shows the distribution across particles of the estimated {φ̃i}

6
i=1

for the 6D well example. We recall that true surface is

f(x1, . . . , x6) =

{

1, if
∑

4

i=1
(xi − 0.5)2 > 0.025 and

∑

4

i=1
(xi − 0.5)2 < 0.25

0, otherwise
(7)

on the hypercube X = [0, 1]6. Therefore, f in (7) is constant in x5 and x6. Note that φ̃5 are
φ̃6 are estimated to be smaller than {φ̃i}

4
i=1, thus showing that our emulator is learning that f

is less sensitive to these input dimensions. Besides a few large isolated outliers, the correlation
length parameters of K are estimated to be small except for φ7, which is associated to the latent
input Z (Figure S4). This indicates that the latent input is needed to learn the surface well. At
every input configuration x corresponds an estimate of the latent input Z = g(x). The last two
panels show the estimated latent input at each design point, g(x1), . . . , g(x200), plotted versus
the first and fourth dimension of the corresponding input configuration. Specifically, we plot
g(x1) (with x1 = (x1,1, . . . , x1,6)) at x1,1 (or x1,4 in the last panel), g(x2) at x2,1 (or x2,4), and
so forth. Despite being slightly elongated, the circular pattern of the well function emerges in
the estimated latent input.

3

φ~1

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

φ~2

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

φ~3

D
en

si
ty

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

φ~4

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

φ~5

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

φ~6

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

Figure S3. Distribution across particles of the correlation length parameters of K̃, {φ̃i}
6

i=1
, at T = 200

(120 fixed LHD + 80 additional points selected via ALM) in the 6-dimensional well example (7). The
red curve denotes the prior distribution on the latent correlation parameters. Specifically, log φ̃i ∼
N(0.5, 0.25), i = 1, . . . , 6.

4

φ1

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

φ2

D
en

si
ty

0 1 2 3 4 5

0.
0

1.
0

2.
0

3.
0

φ3

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

φ4

D
en

si
ty

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

φ5

D
en

si
ty

0 1 2 3 4 5 6 7

0.
0

1.
0

2.
0

3.
0

φ6

D
en

si
ty

0 1 2 3 4

0.
0

1.
0

2.
0

3.
0

φ7

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

x1

Z

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

x4

Z

Figure S4. Panels {φi}
7

i=1
: distribution across particles of the correlation length parameters of K,

{φi}
7

i=1
, at T = 200 (120 fixed LHD + 80 additional points selected via ALM) in the 6-dimensional well

example (7). The red curve denotes the prior distribution on the correlation parameters. Specifically,
logφi ∼ N(1, 0.25), i = 1, . . . , 7. The last two panels show the latent input estimated at each design point,
g(x1), . . . , g(x200), plotted versus the first and fourth dimension of the corresponding input configuration.
Specifically, plots show g(x1) at x1,1 (or x1,4 in the last panel), g(x2) at x2,1 (or x2,4), and so forth.

5

Web Appendix C

LGBB CFD experiment

Mach
 (s

peed)

Alpha (angle of attach)

Lift

1 2 3 4 5 6
−

5
0

5
10

15
20

25
30

CFD LGBB data, Beta = 0

Mach (speed)

A
lp

ha
 (

an
gl

e
of

 a
tta

ch
)

 −0.2

 0 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1
.2

 1
.4

Figure S5. Interpolated lift surface plotted as a function of Mach (speed) and Alpha (angle of attack)
with Beta (side-slip angle) fixed to zero. The ridge at Mach 1 denotes a distinction between subsonic
flows and supersonic flows. The upper-left corner of the plot (high angle of attack, low speed) shows a
spike which is a result of false convergence of the simulator [1].

6

Web Appendix D

Two-stage empirical Bayes approximation of non-stationary GP emulator

The particle learning (PL) implementation of our emulator is formulated around an effort at
joint modelling of both f and Z (Section 3). The latent input Z = g(x) essentially becomes
a vector of model parameters that can not be marginalised out within our construction, thus
needs to be learnt. The learning of the latent input vector, which is of sequentially increasing
dimension within our PL construction, can face challenges and a large amount of data may
be needed to learn it well. In alternative to the PL “full Bayes” approach, we elect here a
cruder but much simpler strategy to approximate our non-stationary emulator. Specifically, we
can rely on a two-stage approach where the first stage focuses on the estimation of the latent
predictor, and the second stage focuses on learning f assuming that the latent predictor is
known and fixed at the level estimated in the first stage. Although several methods exist to
obtain an estimate of the latent input GP at first stage, we investigate here an MCMC-based
nonparametric regression approach.

Suppose we are given an initial design {xi, f(xi)}
t
i=1. We consider Z = g(x) and model g

by a stationary GP indexed by the p-dimensional vector of known inputs, x, and a vector of
model parameters, θ:

g|θ ∼ GP(µ̃θ, K̃θ). (8)

Several choices are available for the GP mean µ̃θ including the constant-zero mean. The
correlation function K̃θ corresponds to Equation (2.8) in Section 2.2. If we consider a unit scale
and fix µ̃θ ≡ 0, (8) reduces to the GP prior on g as of Expression (2.7) in Section 2.2. One can
estimate g from a smooth GP (noisy) regression:

f(xi) = g(xi) + ǫi, with ǫi ∼ N(0, τ2), and i = 1, . . . , t. (9)

Overall, the model in (8)-(9) is equivalent to assuming a GP prior on f :

f |θ, τ2 ∼ GP(µ̃θ, K̃θ + τ2δi,j), (10)

where δ·,· is the Kronecker delta function. Bayesian inference of (10) proceeds via MCMC by
drawing realisations from the joint posterior distribution of the model parameters. For all x of
interest and using the parameter values drawn from the joint posterior at iteration k, we can
estimate Z at x as ĝk(x) = E[f(x)|x, {θ, τ2}k], the point predictor of f at x at iteration k. Steps
are repeated a large number of times, and the average of the point predictors is used as estimate
of g. At the second stage, we consider f |ĝ,θ ∼ GP(µθ,Kθ), where f is now a stationary GP
indexed by a p+ 1−dimensional vector of inputs {x, ĝ(x)} as in (2.5)-(2.6) (Section 2.2) under
the fiction that the latent input is known. Inference for θ proceeds via MCMC and sequential
design is embedded to guide the selection of new inputs.

The two-stage, MCMC-based inference is perfectly coherent and comes closest to a full
Bayesian treatment of the problem in that it takes into account uncertainty in estimating the
hyperparameters and the latent input GP at first stage. However, MCMC-based inference is
ill-suited to sequential design, as the chain must be restarted and iterated until convergence
when the design is augmented with a new pair [xt+1, f(xt+1)]. Fits from previous iterations
can only guide the initialization of the new Markov Chain.

Simulation studies

We evaluate the performance of the two-stage approximation on the sequential experiments
presented in Section 5.

7

Figure S6 shows the performance of the two-stage approximation on the 2D examples of Sec-
tion 5.1 given the initial 40 LHD (black points). Figure S7 reports the predictive surface and
standard deviation after 20 additional inputs (blue points) are selected based on uncertainty.
The patterns observed in the predictive standard deviation (panels in the second row of Figure
S6 and S7) show that the emulator is learning the geometry of the local features. The emulator
creates a balance between an exploration of the input space via the LHD (given design) and the
(exploitation) of the local features as shown by the higher concentration of new inputs at the
edges of the features.

Figure S8 shows a comparison between two-stage approximation and PL “full Bayes” in
terms of progression of the root mean square error (RMSE). Top panels refer to the 2D ex-
amples outlined in Section 5.1: no implementation is preferred in terms of predictive accuracy
across functions or number of input points. The “full Bayes” approach is preferred on the well
function (top right), whereas two-stage is preferred on the Menhir function for small designs
(top left). This is probably due to the ability of the two-stage approximation in learning better
the latent input GP through the first noisy regression, which results into quicker learning of
f . However, the predictive accuracy of the “full Bayes” approximation of our emulator consid-
erably improves when one point is selected at the center of the input space (this happens at
t = 48), and eventually reconciles with two-stage approximation. Bottom panels in Figure S8
show that the full version of our emulator outperforms the two-stage approximation on the 6D
and NASA experiments.

To conclude, the two-stage approximation of our emulator preserves some good features
of the “full Bayes” version, namely learning the geometry of different types of shape and in-
creasing the sampling frequency of new inputs along important input dimensions. Therefore, it
constitutes a valid alternative to the full Bayesian implementation for adaptive design selection
and function approximation. However, the “full Bayes” version often achieves lower RMSE, in
particular for larger designs or in higher dimensions.

References

[1] Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process models with
an application to computer modeling. J. Am. Statist. Assoc., 103:1119–1130, 2008.

[2] H. F. Lopes, C. M. Carvalho, M. S. Johannes, and N. G. Polson. Particle learning for

sequential Bayesian computation. Oxford University Press, 2011.

8

x1

x2

Y

Two−stage nst−GP: rmse = 0.034

x1

x2

Y

Two−stage nst−GP: rmse = 0.264

x1
x2

Y

Two−stage nst−GP: rmse = 0.305

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Max psd = 0.51

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Max psd = 0.58

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Max psd = 1

Figure S6. Predictive surface and standard deviation at a set of 900 predictive points [0, 1]2 obtained
with the two-stage MCMC-based implementation of the non-stationary GP emulator on the 2D Menhir,
building, and well examples numerical examples. Quantitative summaries report the root mean squared
error (RMSE) and the maximum predictive standard deviation (pred sd) computed based on the test
points. The fit is based on the same 40 LHD (black points) that was used in our 2D numerical examples
in Section 5.1.

x1

x2

Y

Two−stage nst−GP: rmse = 0.009

x1

x2

Y

Two−stage nst−GP: rmse = 0.195

x1

x2

Y

Two−stage nst−GP: rmse = 0.251

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Max psd = 0.26

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Max psd = 0.47

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Max psd = 0.53

Figure S7. Predictive surface and standard deviation at a set of 900 predictive points [0, 1]2 obtained
with the two-stage MCMC-based implementation of the non-stationary GP emulator on the 2D Menhir,
building, and well examples numerical examples. Quantitative summaries report the root mean squared
error (RMSE) and the maximum predictive standard deviation (pred sd) computed based on the test
points. Black points: initial 40 LHD (given). Blue points: additional points selected via ALM criterion.

9

40 45 50 55 60

0.
00

0.
05

0.
10

0.
15

Menhir: rmse

of input points

R
M

S
E

TS nstGP
Full nstGP

40 45 50 55 60

0.
15

0.
20

0.
25

0.
30

Building: rmse

of input points

R
M

S
E

TS nstGP
Full nstGP

40 50 60 70 80 90 100

0.
15

0.
20

0.
25

0.
30

0.
35

Well: rmse

of input points

R
M

S
E

TS nstGP
Full nstGP

120 140 160 180 200

0.
5

0.
6

0.
7

0.
8

6D Building: rmse

of input points

R
M

S
E

TS nstGP
Full nstGP

120 140 160 180 200

0.
30

0.
35

0.
40

0.
45

6D Noisy well: rmse

of input points

R
M

S
E

TS nstGP
Full nstGP

20 40 60 80 100

0.
02

0.
04

0.
06

0.
08

0.
10

NASA: rmse

of input points

R
M

S
E

TS nstGP
Full nstGP

Figure S8. Comparison between two-stage approximation (TS nstGP) and “full Bayes” (Full nstGP)
in terms of RMSE progression as additional input points are being selected. Top panels: 2D Menhir,
building and well functions. Bottom panels: 6D building and well examples and NASA rocket booster
experiment.

10

	1. Introduction
	2. Gaussian process emulators
	2.1. GP emulation and stationarity
	2.2. Non-stationary GP through latent input augmentation

	3. Implementation
	3.1. PL for GP emulation
	3.2. Adaptive sequential design

	4. Case studies
	4.1. Learning local features
	4.2. Quantifying the emulator's uncertainty
	4.3. 1D discontinuous function

	5. High-dimensional examples and sequential design
	5.1. Two-dimensional functions with local features
	5.2. Six-dimensional examples

	6. LGBB CFD experiment
	7. Discussion
	Appendix A. Menhir function estimates at T = 40 (LHD)
	References

