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Abstract: Fretting fatigue is a well-known and dangerous damage mode that occurs on the mating
surfaces of mechanical components, mainly promoted by a combination of stress distribution, contact
pressure distribution, and relative sliding (micro)motion between the surfaces. However, predicting
this mechanism is challenging, necessitating specific studies for each assembly due to variable
influences. This article presents a methodology for evaluating fretting fatigue damage at the contact
between a titanium connecting rod big end and the bearing, adopting the Ruiz parameter as a
quantifying damage index. For this purpose, a thermal-structural finite element model is prepared.
In particular, the machining and assembly of the split conrod big end are simulated, considering
thermal effects. A full engine cycle is first simulated, and results are used for identifying critical
instants to be considered for accurate yet computationally efficient calculations. The dependence
of fretting fatigue on three factors is studied: bearing crush, bolts tightening torque, and friction
coefficient between the big end and the bearing. In summary, the damage increases with a higher
crush and friction, while tightening torque has marginal effects. Following a 20% increase in crush
height, a corresponding 10% rise in the Ruiz parameter is observed. Conversely, reducing the crush
height by 20% leads to an approximately 8% decrease in the Ruiz parameter. When the influence of
the bolt preload is taken into account, only a marginal 1% increase of the Ruiz parameter is recorded
despite a 30% rise in preload. Evaluating the impact of the friction coefficient on the Ruiz parameter
reveals an almost linear relationship. These findings suggest that adjusting the screw preload can
enhance the hydrodynamic behavior of the bearing without exacerbating fretting. Furthermore,
exploiting the linear correlation between Ruiz and the friction coefficient allows for the generalization
of results obtained with specific coefficient values. This methodology can, therefore, serve as a
valuable reference for adjusting different variables during the initial design phases of a four-stroke
internal combustion engine’s dismountable connecting rod.

Keywords: fretting fatigue; connecting rod; internal combustion engine; Ruiz parameter; finite element

1. Introduction

Different fractures found in the big ends of dismountable connecting rods for four-
stroke internal combustion engines cannot be justified solely by the stresses registered in
the areas where the failure occurred [1]. Many of these fractures can indeed be justified by
considering the contribution given by fretting fatigue [2–4].

Fretting fatigue is a damage mechanism caused by the combined effects of two distinct
factors, i.e., mechanical fatigue and fretting, which can promote and accelerate the failure of
the component [5–8]. On the one hand, mechanical fatigue has been extensively studied in
the literature, particularly concerning metallic materials [9,10]. On the other hand, fretting
refers to surface damage resulting from friction between two mechanical components.
This surface damage promotes the initiation of nucleation points, possibly accelerating the
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mechanical fatigue failure [11,12]. In the context described, this specific form of fatigue is
referred to as fretting fatigue. Predicting these fractures is as important as it is complex.
It is necessary to combine surface damage with the stress state of the component under
examination. The finite element method (FEM) becomes a valuable tool for forecasting
this type of failure [13–16]. Among the various quantitative indexes for identifying fretting
fatigue, the Ruiz parameter (Equation (1)) has been chosen as the selected approach because
it can provide valuable insights into the tribological behavior of the components [17]:

Ruiz parameter = (σmax − σmin)·Ww. (1)

Ruiz understood that the failure of components subject to fretting depends on two
main aspects: the stress state of the component under examination, particularly the ampli-
tude of the stress parallel to the mating surfaces (σmax − σmin), and the specific wear work
generated at the interface (WW).

While the stress state can be easily determined through the use of FEM, defining the
specific wear work requires further investigation. The specific wear work can be defined as
the friction coefficient (µ) multiplied by the contact pressure (p) multiplied by the relative
displacement (δ) between the two contacting surfaces:

Ww = µ·p·δ (2)

Once again, FEM proves to be an effective ally in calculating the contact pressure and
relative displacement between the various components under examination [18,19]. From
these formulas, it can be stated that it is difficult to give a general significance to numerical
studies on fretting fatigue. In fact, each case must be evaluated in a detailed manner. For
instance, Le Falher et al. [20] studied the effect of fretting fatigue on shrink-fit lug-bush
assemblies. While the component involved resembled the geometry of a connecting rod,
the differences in geometric details, materials, and loading conditions made the analyses
conducted by Le Fahler et al. not directly applicable to other cases of interest. Some
researchers, like Chao [21] and Pujatti et al. [22], analyzed failures caused by fretting
fatigue but did not attempt to formulate a numerical methodology capable of predicting
them. Others, such as Son et al. [23] and Badding et al. [24], focused on different regions
of the connecting rods, leading to non-generalizable conclusions. Others, still, such as
Merritt et al. [25], studied connecting rod big ends and adopted a simplified approach
limited by computational resources available at the time, resulting in outcomes that could
be further enhanced.

In the present contribution, a numerical methodology is explained for calculating the
Ruiz parameter on the contact surface between the connecting rod big end and the bearing
for a high-performance internal combustion engine.

The paper is organized as follows. Firstly, a brief description of the components
considered in the FEM analysis is provided. Subsequently, the assembly procedure and its
numerical simulation are described. The FEM calculation setup is then explained, focusing
on evaluating the specific wear work between the connecting rod big end and the bearing
and, consequently, the Ruiz parameter. Initially, a thorough simulation of the entire engine
cycle is performed. However, it is found that it is possible to choose and simulate only
selected significative instants (ten in this case) without sacrificing result accuracy while
significantly reducing computation time and file size. Once a simplified procedure for
evaluating the Ruiz parameter is obtained, the influence of several parameters on the
fretting fatigue damage of the connecting rod bearing is studied. Specifically, three different
values of the circumferential crush of the bearing, two different tightening torques of the
bolts, and four different coefficients of friction are investigated. Finally, some conclusions
end the paper.
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2. Materials and Methods
2.1. The Assembly Considered in the Analysis

Figure 1a depicts the model of the assembly considered in the analysis, and Figure 1b
details the reference system adopted for all the analyses performed using the shell angle θ
and the angular speed ω. The dismountable connecting rod, the two tightening bolts, and
the big end bearing can be seen. In particular, the connecting rod is made of titanium, the
bolts are made of steel, and the bearing is made of steel with a thin coating on the inner
surface (see Table 1 for the main mechanical and physical properties of the materials) [26].
Figure 2 shows and defines the bearing crush, i.e., the circumferential (small) over-extent of
each half-bearing, which represents an important geometric characteristic of the bearing.
When the connecting rod is tightened, the crush is inevitably recovered, and the bearing is
compressed and press-fitted into the big end of the connecting rod. Crush values affect the
fretting fatigue behavior of the big end. In fact, it directly influences the contact pressure
at the interface and, consequently, the possibility of sliding and the relative displacement
between the surfaces, which are the main parameters for the determination of the wear
work generated at the interface.
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Table 1. Mechanical and physical properties of the materials involved in the analysis.

Component/Material Mechanical/Physical Property Value

Connecting rod/titanium

Density 4.51 g/cm3

Young’s modulus 110 GPa
Poisson’s ratio 0.3

Thermal expansion 9·10−6

Bolts/steel

Density 7.8 g/cm3

Young’s modulus 207 GPa
Poisson’s ratio 0.3

Thermal expansion 1.1·10−5

Bearing/steel

Density 7.8 g/cm3

Young’s modulus 210 GPa
Poisson’s ratio 0.3

Thermal expansion 1.1·10−5
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2.2. The Assembly Procedure

The assembly procedure of a dismountable connecting rod for a four-stroke internal
combustion engine follows several well-defined steps. It is vital to replicate this procedure
in the FEM analyses to obtain reliable results.

At the beginning of the procedure, the rod shank and cap are connected by tightening
the two bolts. This initial step deforms the big end, causing it to lose its perfectly cylindrical
shape. However, the bearing should be mounted on a perfectly cylindrical surface to
function optimally. For this reason, the inner surface of the tightened connecting rod is
machined to restore the perfect cylindrical shape of the big end. Finally, when it is mounted
on the crank pin of the crankshaft, the conrod is disassembled, the bearing is inserted, and
it is usually re-tightened with the same preload as before.

Upon reexamining this standard procedure, two noticeable aspects can be discussed.
Firstly, the tightening force applied to the bolts deforms the rod differently depending on
whether the bearing is installed or not. To achieve the perfect cylindrical shape of the big
end even after the bearing is inserted, the preload of the bolts should be appropriately
increased. Secondly, when different materials are used for the manufacturing of the conrod
and bolts, i.e., titanium for the conrod and steel for the bolts, such as in this case, considering
the two different thermal expansion coefficients of the two materials and the operating
temperature of the big end typically around 120 ◦C, the bolt preload should be modified
with respect to the assembly stage.

These aspects are analyzed in the following to evaluate the possible variation of the
Ruiz parameter. Specifically, the effect of two bolt preloads is studied when the bearing
is inserted: the standard value and an increased value estimated to compensate for the
thermal effects.
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2.3. The Finite Element Model

The FEM model consisted of about 1,807,000 elements. The commercial software Altair
Hypermesh 2022.2 was used for the discretization process, while the commercial software
MSC Marc/Mentat 2023.1 was adopted for the nonlinear implicit finite element simulations
presented in this dissertation [27]. Different approaches were employed for component
discretization. In particular, for the bearing, bolts, and pins, a regular hexahedral mesh
(eight nodes, isoparametric, eight integration points) was easily generated for revolution or
extrusion. Concerning the connecting rod, a specific discretization technique was employed
that consisted of generating a regular boundary layer on the external surfaces of the
component using pentahedrons (six nodes, isoparametric, six integration points), while the
interior of the body was discretized employing tetrahedrons (four nodes, isoparametric, one
integration point) (see Figure 3) [28]. This strategy enabled the model to better grasp stresses
and displacements along the contact regions, thanks to the high number of integration
points these elements offer compared to standard tetrahedrons and the regular thickness of
the boundary layer [29,30]. The average element size was 0.75 mm, and it was homogeneous
along the surface of the domain, while a coarsening factor was used for the discretization
of the inner volume of the conrod.
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Table 2 provides an explanation of the contact interactions considered for each of the
contact bodies depicted in Figure 3. Particularly, an initial friction coefficient of 0.1 was
adopted at the interface between conrod and bearing, based on relevant literature [1], and
a sensitivity analysis of the results was then conducted by varying this parameter.

The assembly procedure described in Section 2.2 was faithfully replicated, and then
thermal and mechanical loads were superposed. The main steps of the analysis are listed
in the following:

1. The connecting rod shank and cap are tightened with the assembly preload;
2. With the preload still active, the nodes of the big end are projected onto a perfectly

cylindrical surface with a specific stress-free procedure;
3. The big end bearing is inserted into the big end, and the bolt preload is eventually

adjusted to a different value with respect to the assembly phase;
4. A homogeneous and constant thermal field of 120 ◦C is applied to all nodes of the do-

main, which promotes a different thermal expansion of the components manufactured
with different materials and consequently modifies the stress state;

5. The elasto-hydrodynamic pressure distribution, calculated in advance and whose
profile varies as a function of the crank angle (CA; see Figure 4), is applied to the
inner surfaces of the bearing through a three-dimensional mapping tool. In par-
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ticular, the whole engine cycle is first simulated considering 144 sampling instants
(one every 5◦ CA), and simplified analyses are subsequently performed once the most
representative instants are identified.

Table 2. Parameters employed for the contact modeling.

Contact Bodies Contact Interaction Friction Coefficient

Conrod shank–conrod cap Nonlinear unilateral contact 0.3

Conrod shank–dowel pin Glued contact 0.3

Conrod shank–bearing Nonlinear unilateral contact 0.1–0.6

Conrod shank–bolts (thread) Nonlinear unilateral contact 0.3

Conrod cap–bolts (head) Nonlinear unilateral contact 0.3

Conrod cap–bearing Nonlinear unilateral contact 0.1–0.6

Conrod cap–dowel pin Nonlinear unilateral contact 0.3

Shank half-bearing–cap
half-bearing Nonlinear unilateral contact 0.3
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As an alternative to using the elasto-hydrodynamic pressure distribution derived
from a multibody analysis of the crank mechanism, the crankpin could be included in the
simulation, thus managing the direct contact between the pin and the bearing in the FEM
model and consequently neglecting the hydrodynamic aspects [31]. However, since, in
this case, it was essential to accurately grasp the pressure distribution between the bearing
and the big end, which strongly depends on the interaction between the bearing and the
crank pin, it was decided to use the result of the elasto-hydrodynamic model as input. To
understand the effects of this choice, consider the results of Figure 5. In particular, Figure 5a
shows the distribution of the contact pressure between the crank pin and the bearing when
the crank mechanism is close to top dead center during combustion (4◦ CA) as calculated
directly from a FEM model, which manages the direct interaction between the bearing
and the pin; on the other hand, Figure 5b shows, for the same instant, the total pressure at
the bearing–pin interface when the elasto-hydrodynamic effects are considered. It can be
observed that, in this second case, not only is the pressure distribution different because
of the influence of hydrodynamic phenomena, but moreover, two diametrically opposed
pressure peaks are evident, favored by the lemon-shaped profile of the inner surface of the
bearing [32–34]; the second peak is absent in Figure 5a where the hydrodynamic effects
are neglected.
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In addition to the hydrodynamic pressure on the inner surface of the bearing, other
boundary conditions were also considered. The schematics of Figure 6a,b are used for
reference. A force along the cylinder axis was applied to the connecting rod small end to
account for the effect of gases and unmodeled alternating masses (see Figure 7); the same
node was also constrained to move only along the cylinder axis to mimic the piston–liner
interaction. A distributed acceleration was then applied to all the elements of the model,
which varied linearly along the conrod from the small end to the big end. Two components
were considered, one along the conrod axis, as shown in Figure 8a, and one orthogonal to
the conrod axis, as shown in Figure 8b.
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A ground-to-spring support was finally employed to counteract small and negligible
unbalances inherent in the FEM model. All simulations were performed considering the
maximum revving speed of the engine equal to 12,500 rpm.

The Results of the Finite Element Analysis of the Whole Engine Cycle

First, a simulation of the whole engine cycle was performed considering the specific
parameters of Table 3.

Table 3. Parameters employed for the simulation of the whole engine cycle.

Parameter Value

Revving speed 12,500 rpm

Friction coefficient 0.1

Bearing crush 0.1 mm

Tightening preload 40,000 N

Since the analysis of the whole engine cycle was computationally expensive, an effort
was made to derive a criterion to limit the number of instants to simulate based on the
results obtained. Specifically, referring to the Ruiz parameter, the focus was on the correct
wear work estimation. In fact, the stress state varies from instant to instant, but it is
marginally influenced by the conditions we have at the previous and subsequent steps,
and it takes really little effort to identify the instants corresponding to the maximum stress
amplitude [1]; therefore, it did not seem to be a determining factor that could help identify
the most significant instants from a fretting-damage point of view. On the other hand,
wear work is a quantity that increases over time, and focusing on the instants with higher
wear-work-increasing gradients could guide the selection of the most important instants
to simulate.

Figure 9 shows the cumulative specific wear work on the internal surface of the big
end evaluated by simulating the whole engine cycle. Please refer to Figure 1b for the
reference system adopted. The maximum values are localized in the area where the shank
joins the big end; see points A and B in Figure 9. Please note that local high values of
the wear work registered at the contact between the big end and the cap (see point C of
Figure 9) were fictitiously promoted by the contact pressure generated at those nodes by
the bolt tightening, and they have to be neglected while considering fretting phenomena at
the bearing–big end interface.
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Figure 9. Cumulative specific wear work on the inner surface of the big end for the simulated whole
engine cycle.

Figure 10 illustrates the cumulative wear work as a function of crank angle for the
two selected points A and B. Regions with high gradients of cumulative wear work can be
noticed close to 360◦ CA and 720◦ CA. In order to identify the reasons driving these local
sudden increases in wear work, it is necessary to analyze the profile as a function of the
crank angle of the main parameters involved, i.e., the cumulative displacement and the
contact pressure at the interface (see Figure 11). Strong parallelism can be seen between
the wear work profile of Figure 10 and the cumulative relative displacement profiles of
Figure 11a, thus suggesting that relative displacement is the guiding parameter.

Lubricants 2023, 11, x FOR PEER REVIEW 9 of 21 
 

 

the most significant instants from a fretting-damage point of view. On the other hand, 
wear work is a quantity that increases over time, and focusing on the instants with higher 
wear-work-increasing gradients could guide the selection of the most important instants 
to simulate. 

Figure 9 shows the cumulative specific wear work on the internal surface of the big 
end evaluated by simulating the whole engine cycle. Please refer to Figure 1b for the 
reference system adopted. The maximum values are localized in the area where the shank 
joins the big end; see points A and B in Figure 9. Please note that local high values of the 
wear work registered at the contact between the big end and the cap (see point C of Figure 
9) were fictitiously promoted by the contact pressure generated at those nodes by the bolt 
tightening, and they have to be neglected while considering fretting phenomena at the 
bearing–big end interface. 

 
Figure 9. Cumulative specific wear work on the inner surface of the big end for the simulated whole 
engine cycle. 

Figure 10 illustrates the cumulative wear work as a function of crank angle for the 
two selected points A and B. Regions with high gradients of cumulative wear work can be 
noticed close to 360° CA and 720° CA. In order to identify the reasons driving these local 
sudden increases in wear work, it is necessary to analyze the profile as a function of the 
crank angle of the main parameters involved, i.e., the cumulative displacement and the 
contact pressure at the interface (see Figure 11). Strong parallelism can be seen between 
the wear work profile of Figure 10 and the cumulative relative displacement profiles of 
Figure 11a, thus suggesting that relative displacement is the guiding parameter. 

 
Figure 10. Cumulative wear work as a function of crank angle for the two selected points A and B 
on the inner surface of the big end for the simulated whole engine cycle. 
Figure 10. Cumulative wear work as a function of crank angle for the two selected points A and B on
the inner surface of the big end for the simulated whole engine cycle.

Lubricants 2023, 11, x FOR PEER REVIEW 10 of 21 
 

 

  
(a) (b) 

Figure 11. Main parameters for wear work evaluation as a function of crank angle for the two 
selected points A and B for the simulated whole engine cycle: (a) cumulative relative displacement; 
(b) contact pressure. 

To understand the origin of the high relative displacements concentrated in the 
vicinity of 360° CA and 720° CA, reference can be made to the profile of the axial force 
acting on the conrod big end; see Figure 12. At top dead center during overlapping (360° 
CA), the connecting rod is being pulled by the tensile inertial loads, and the connecting 
rod cap wraps the crank pin [19]. The load path passes from the shank to the big end, 
where it goes into the bolts and then down to the cap, finally entering the crank pin via 
the lower half-bearing. At the same time, the upper half-bearing is substantially unaffected 
by the load path. This particular behavior makes the connecting rod big end upper sides 
elongate, not the upper half-bearing, resulting in high relative displacements in this 
region. Close to top dead center during combustion (0° CA), this phenomenon still 
appears albeit limited; in fact, when combustion occurs, combustion loads win tensile 
inertial loads. When looking at bottom dead center (180° CA, 540° CA), the relative sliding 
between the bearing and the big end is considerably reduced compared to the previous 
scenario. In fact, both the connecting rod big end and the upper half-bearing are tightly 
pressed against the crankpin, while the connecting rod cap is nearly completely unloaded, 
together with the lower half-bearing. 

 
Figure 12. Axial force acting on the connecting rod big end. 

  

Figure 11. Main parameters for wear work evaluation as a function of crank angle for the
two selected points A and B for the simulated whole engine cycle: (a) cumulative relative dis-
placement; (b) contact pressure.



Lubricants 2023, 11, 375 10 of 20

To understand the origin of the high relative displacements concentrated in the vicinity
of 360◦ CA and 720◦ CA, reference can be made to the profile of the axial force acting on
the conrod big end; see Figure 12. At top dead center during overlapping (360◦ CA), the
connecting rod is being pulled by the tensile inertial loads, and the connecting rod cap
wraps the crank pin [19]. The load path passes from the shank to the big end, where it
goes into the bolts and then down to the cap, finally entering the crank pin via the lower
half-bearing. At the same time, the upper half-bearing is substantially unaffected by the
load path. This particular behavior makes the connecting rod big end upper sides elongate,
not the upper half-bearing, resulting in high relative displacements in this region. Close to
top dead center during combustion (0◦ CA), this phenomenon still appears albeit limited; in
fact, when combustion occurs, combustion loads win tensile inertial loads. When looking at
bottom dead center (180◦ CA, 540◦ CA), the relative sliding between the bearing and the big
end is considerably reduced compared to the previous scenario. In fact, both the connecting
rod big end and the upper half-bearing are tightly pressed against the crankpin, while the
connecting rod cap is nearly completely unloaded, together with the lower half-bearing.
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2.4. The Simplified Finite Element Model

Figure 11a shows ten instants that were deemed particularly significant in describing
the entire engine cycle. The selection was guided by the need to consider the initial
condition (point 1) and the regions with steep “S-shaped” gradients of the cumulated wear
work (points 2, 3, 4, 5, 6, 7, 8, 9, and 10). Points 5 and 9 are also crucial since they correspond
to instants at which maximum circumferential stresses are registered along the conrod big
end inner border.

Only engineering experience could guide the authors in selecting these points. There-
fore, to have proof of the effectiveness of this selection, the same analysis performed before
had to be conducted considering only these ten increments, and then results could be
compared with the one previously discussed.

The Results of the Simplified Finite Element Model

Figure 13a,b compare the incremental displacement recorded at points A and B in
the simplified case (solid line) and the complete case (dashed line). A good agreement
between the graphs can be observed. In addition, the same trend is obtained for the
incremental wear work, as shown in Figure 14a,b. Figure 15 displays the cumulated
wear work at the end of the engine cycle, and it looks very similar to the one in Figure 9.
Therefore, the results demonstrate the possibility of simulating only ten appropriately
selected increments to achieve accurate calculations while reducing computational effort.
The subsequent discussion and sensitive analysis of the main parameters governing the
problem exclusively employs this simplified approach.
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3. Results and Discussion

The computationally simplified methodology presented in the previous section is
employed to investigate the impact of various assembly parameters on fretting fatigue
damage, as quantified by the Ruiz parameter.

3.1. The Influence of the Bearing Crush Value on the Fretting Behavior

The bearing crush is the first assembly parameter to be evaluated. Three crush values
are compared: the baseline case, a 20% reduced crush, and a 20% increased crush. Figure 16b
illustrates the variation of the Ruiz parameter on the surface of the connecting rod big end
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in the baseline case, while Figure 16a,c display the Ruiz parameter values for the reduced
crush and increased crush cases, respectively. It is evident that increasing the crush led to a
higher intensity of fretting fatigue. Specifically, following a 20% increase in crush height, a
corresponding 10% rise in the Ruiz parameter is observed. Conversely, reducing the crush
height by 20% led to an approximately 8% decrease in the Ruiz parameter. However, it is
useful to discuss the contributions associated with circumferential alternating stress and
wear work individually.
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Figure 17a–c depict the stress values for the reduced crush, baseline, and increased 
crush configurations, respectively. Stresses are marginally affected by the specific crush 
value adopted, at least in the range under investigation. 
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Figure 16. Ruiz parameter: (a) 20% reduced crush; (b) baseline crush; (c) 20% increased crush.

Figure 17a–c depict the stress values for the reduced crush, baseline, and increased
crush configurations, respectively. Stresses are marginally affected by the specific crush
value adopted, at least in the range under investigation.

Figure 18a–c present the cumulative specific wear work values for the reduced crush,
baseline, and increased crush configurations, respectively. It can be noted that wear work
increases with an increase in crush. This result can easily be justified if one considers that
as the bearing crush increases, the press-fitting pressure at the bearing–big end interface
also increases. At the same time, higher press-fitting pressures can lead to lower relative
displacements, possibly compensating for the effect of the pressure increase in the wear
work evaluation; see Equation (2). In this case, however, a marginal influence of the bearing
crush on the cumulative relative displacement is observed (see Figure 19), and the effect of
increasing press-fitting pressure wins out in driving the increase in cumulative wear work
(see Figure 20).
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3.2. The Influence of the Bolt Tightening on the Fretting Behavior

Bolt tightening is the second parameter to be investigated. The baseline case is
compared with a case in which bolt tightening is increased in such a way that in operating,
considering the different thermal expansions of the titanium conrod and of the steel bolts,
the bolt tightening corresponds to the nominal one used during the machining phase. The
use of this particular procedure ensures that the lemon shape profile of the bearing in hot
operating conditions is as close as possible to the nominal one without being affected by a



Lubricants 2023, 11, 375 15 of 20

relaxation promoted by the different expansions of the connecting rod and bolts. However,
it should be emphasized that, at least for the operating condition, a desired profile of
the bearing can always be obtained by suitably defining its cold profile and the adopted
bolt tightening. Therefore, in this case, the hydrodynamic pressure obtained by the same
elasto-hydrodynamic analysis performed with the bearing profile extracted, considering
the nominal bolt tightening (see Figure 4), is used to load the two models.

Figure 21a,b show the value of the Ruiz parameter in these two configurations. It
can be seen that barring small differences, the increase in bolt tightening does not cause
significant variations in the Ruiz parameter, and only a 1% increase is registered.
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This point opens up a possible future discussion on the influence of the bolt tightening
and of the specific bearing lemon shape on the hydrodynamic behavior of the bearing
rather than on the fretting behavior of the conrod. In fact, having a marginal influence
on the fretting parameters, the bolt tightening can be used as a tuning parameter of the
assembly procedure of the conrod in order to identify the best combination between bearing
cold profile, bolt tightening during machining, and bolt tightening during assembly, which
guarantees the best hydrodynamic behavior of the bearing–pin coupling in both cold and
hot operating conditions.

3.3. The Influence of the Friction Coefficient on the Fretting Behavior

The friction coefficient between the connecting rod big end and the bearing is the final
parameter to be investigated. For the baseline case, a coefficient of 0.1 is initially set, and
then values of 0.2, 0.3, 0.4, and 0.6 are tested. Figure 22 clearly demonstrates that as the
friction coefficient increases, the Ruiz parameter also increases, indicating a potentially
higher level of fretting fatigue.

Examining Figures 23 and 24, it is evident that the effect of friction directly impacts
the wear work, while there are no significant variations in the stress distribution.
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Figure 24. Circumferential stress amplitude: (a) 0.1 friction coefficient; (b) 0.4 friction coefficient;
(c) 0.6 friction coefficient.

The monotonous increase in wear work with increasing friction coefficient is not
a foregone conclusion in contact problems. In fact, on the one hand, the increase in
friction linearly enters the formula for the definition of wear work (see Equation (2)),
but on the other hand, higher friction can lead to lower relative displacements, thus
partially compensating the effect of increased friction. In fact, if two opposite asymptotic
configurations are examined, the following considerations can be derived: (a) when the
friction coefficient is zero, the wear work is obviously zero; (b) when the friction coefficient
is high enough to prevent any relative sliding of the elements in contact, the wear work is
again zero. For intermediate values of the friction coefficient, the wear work has a value
other than zero. It is plausible to hypothesize, therefore, that the wear work follows an
increasing and then decreasing trend as a function of the friction coefficient. From this last
conclusion, it can be stated that the dependence of the wear work on the friction coefficient
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is substantially unknown, and it is not possible to establish a universally valid relationship,
but it depends on the range of considered friction coefficients, the operating conditions, the
materials, and the deformability of the specific analyzed system configuration.

For the specific application addressed in this paper, looking at the trends of the
cumulative wear work at points A and B as a function of the friction coefficient in Figure 25,
a practically linear relationship can be observed. From an operational point of view, this
represents a very useful result since it allows us to perform the calculations for only one
value of the friction coefficient, say µ = 0.3, and then scale them according to the desired
friction value, at least in the range of investigation, µ = 0.1–0.6.
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Furthermore, on the basis of this result, a further improvement in the reliability of
the numerical predictions can be included in the procedure described in this work. In
fact, a calculation can be initially performed considering a standard uniform initial value
of the friction coefficient at the bearing–connecting rod interface, and then results can be
processed by locally updating cycle by cycle the value of the friction coefficient as a function
of the local value of the accumulated wear work, considering that the specific wear work
distribution actually alters the surface finishing of the parts in contact in an uneven way.
In this way, the Ruitz parameter can incorporate this non-linearity fueled by a possible
dependence between the local wear work and the local friction coefficient. However, in
order to define this relationship, it is necessary to carry out a dedicated experimental
campaign, which can represent a further future development of this work.

4. Conclusions

This study was aimed at investigating the impact of assembly parameters on fretting
fatigue in the contact between the big end and the bearing of a dismountable connecting
rod in an internal combustion engine. In particular, some conclusions can be summarized
as follows:

• The primary physical variables involved in the fretting fatigue phenomenon were
examined, and the minimum number of time points to simulate were selected, en-
suring that the result accuracy was maintained while avoiding excessively lengthy
simulations. This allowed the proposed procedure to be used as a guideline to identify
limited and selected instants important for the analysis of fretting phenomena in
generic complex assemblies subjected to generic complex periodic loads.

• Once the validity of the simplified approach was established, comparisons were made
by varying the bearing crush, bolt tightening, and friction coefficient between the big
end and the bearing.
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• It was observed that an increased bearing crush leads to an increase in the fretting
damage, mainly promoted by the increased press-fitting contact pressure.

• Adjusting the tightening torque, with the aim of possibly restoring a more cylindrical
surface of the conrod big end in operating condition, was found to marginally affect
the fretting parameters, thus opening future discussions on the effect of bolt tightening
on the elasto-hydrodynamic phenomena.

• As for the friction coefficient, it was evident that as the friction coefficient increases,
fretting damage parameters increase. Interestingly, a linear relationship was observed
between cumulative specific wear work and friction coefficient. Based on these find-
ings, a potential avenue for future development emerges. In particular, the calculation
methodology presented can be enhanced by incorporating a variable friction coeffi-
cient that increases with the number of engine cycles, considering that as the wear
process progresses, the contact surfaces become progressively rougher, resulting in
a higher local coefficient of friction and in an intensified wear mechanism over time.
This addition will further improve the accuracy of the results from a quantitative
perspective, although establishing a direct correlation between the friction coefficient,
wear work, and the number of engine cycles remains challenging, and dedicated
experimental campaigns are necessary.
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