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Optimization of dynamic transportation systems

by Francesco GALLESI

This doctoral thesis explores optimization problems in the context of transportation
and mobility systems. The study focuses on two specific topics: recent advances
on pickup and delivery problems in Automated Guided Vehicles (AGVs) systems,
and route planning for a fleet of vehicles in urgent delivery systems. Regarding the
first topic, the research involves a detailed review of the surveys in the literature
on scheduling AGVs, a mathematical model to formalize the problem and a collec-
tion of the challenges and opportunities in the context of scheduling AGVs and its
variants. Then, the first work is expanded with a collection of the recent advances
related to AGVs systems in general, including mathematical models for pickup and
delivery problem with battery management and multi-load variants, and promis-
ing future directions in this topic. The work on the second topic proposes a novel
branch-and-regret algorithm to solve the problem of urgent deliveries, known in the
literature as Same-Day Delivery Problem. The aim is to maximize the served requests
thanks to an algorithm able to incorporate sampled scenarios to anticipate future
events and make informed routing decisions. The computational results show the
performance of the algorithm, evidencing the superiority of the proposed branch-
and-regret compared with state-of-the-art algorithms from the literature. In con-
clusion, this doctorate thesis makes significant contributions to the advancement of
operations research in the field of transportation, providing new prospects and in-
novative solutions.
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Chapter 1

Introduction

In the current economic and technological context, efficient transportation manage-
ment plays a fundamental role for companies operating in sectors such as logistics,
intralogistics, and e-commerce. Operations research, as a scientific discipline ded-
icated to modeling, analyzing, and solving complex problems, provides tools and
methodologies to address the challenges associated with transportation.

This doctoral thesis focuses on the application of operations research to dynamic
transportation problems, with a specific emphasis on two topics. The first topic con-
cerns the transportation of goods utilizing Automated Guided Vehicles (AGVs) in
the field of intralogistics (an example of AGVs is provided in Figure 1.1). The in-
creasing automation of facilities and the need for greater efficiency in the movement
of goods have made AGVs a promising avenue for optimizing internal operations
within companies (see, e.g., Fazlollahtabar and Saidi-Mehrabad [33], De Ryck, Ver-
steyhe, and Debrouwere [29], Rashidi, Matinfar, and Parand [77]). The present study
is motivated by the considerable interest within the scientific community regarding
the coordination of a fleet of AGVs, as evidenced by the rapid growth in the num-
ber of publications dedicated to this area in recent years. Another driving factor
behind this research stems from the interest cultivated throughout my industrial
doctorate at E80 Group [32], a leading company in the AGV market, which provides
an industrial perspective on the problem at hand. E80 Group is an Italian-based
organization situated in Viano, Italy, specialized in the development of automated
and integrated intralogistics solutions for consumer goods manufacturers in sectors
such as beverages, food, and tissue. Within E80 Group, my role as a Research and
Development (R&D) engineer entails overseeing traffic management and optimiza-
tion in AGV systems. Specifically, during the course of my doctoral studies, my
focus has been on addressing the order scheduling problem for AGVs in highly dy-
namic environments characterized by rapidly changing information, necessitating
the recomputation of solutions every few seconds. The collaborative efforts pursued
during my industrial doctorate at E80 Group have provided a unique opportunity
to extensively explore this subject matter through comprehensive literature research,
which is presented in Chapters 2 and 3 of this thesis.

The second topic addressed in this thesis concerns the urgent delivery of prod-
ucts with requests in the same day. This regards real world application as such
the e-commerce. In an increasingly widespread and competitive online purchasing
context, the speed and efficiency of product delivery have become key factors in
ensuring customer satisfaction and loyalty to a particular online store. Consumers
expect to receive their purchases in the shortest possible time, often within the same
day the order was placed. This type of service offers numerous advantages for both
consumers and businesses. For customers, same-day delivery allows them to imme-
diately receive what they need, avoiding prolonged waits and enhancing the overall
purchasing experience. Moreover, it is particularly beneficial for urgent purchases or
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Figure 1.1: Example of Automated Guided Vehicles

situations where customers require rapid product delivery. From a business perspec-
tive, same-day delivery systems represent a distinguishing element that can confer
a competitive advantage. Providing a fast and reliable delivery service helps attract
and retain loyal customers, increasing the likelihood of repeat business. Addition-
ally, timely delivery can contribute to reducing costs associated with potential re-
turns or customer complaints. To enable same-day delivery, innovative strategies
and solutions in the fields of logistics and optimization are necessary. Sophisticated
order management, routing, and shipment tracking systems become essential for en-
suring efficient planning and swift delivery. The utilization of advanced algorithms,
as in the case of the same-day delivery problem (see Voccia, Campbell, and Thomas
[94]), allows for resource allocation optimization, optimal route planning, and effec-
tive management of unforeseen events that may occur along the way. In conclusion,
same-day delivery systems play an increasingly significant role in the e-commerce
sector, meeting customer expectations and contributing to business competitiveness.
Continuous research and development in the field of operations and optimization of
delivery systems are essential for improving efficiency, reliability, and timeliness of
shipments, thereby offering an increasingly satisfactory and high-quality purchas-
ing experience. Chapter 4 presents the research conducted to devise an innovative
algorithm for managing same-day deliveries.

In addition to the works reported in Chapters 2, 3 and 4, another significant
project was undertaken during this industrial doctorate in collaboration with E80
Group. Following the literature review presented in Chapter 2, its extensions in
Chapter 3 and the theoretical work on the same-day delivery problem discussed in
Chapter 4, this thesis extends its focus to a real-world application within the con-
text of E80 Group. The project centers around the development of an optimiza-
tion algorithm applied to traffic management in an AGV system. Specifically, my
research revolves around the scheduling of orders with the objective of maximiz-
ing system throughput while minimizing delays. The algorithm needs to work for
large-dimensional AGV system (up to 200 AGVs in a single plant) in highly dy-
namic environments, where information changes quickly and the solution needs to
be recomputed every few seconds. In addition, it is essential for the product to be
versatile and not customized, capable of operating on diverse systems, and adapt-
able to varying customer demands. The project encompasses a comprehensive study
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of the problem, and the development of an algorithm aimed at enhancing the exist-
ing system employed by E80 Group. It is worth noting that the algorithm has been
successfully implemented and is currently operational in four customer plants of
E80 Group. This work cannot be published because of the non-disclosure policy of
the company, and, for this reason, I do not report other details regarding this major
undertaking of my doctoral research. Nonetheless, it serves as a testament to the
practical applicability and impact of the research conducted during the industrial
doctorate program. The successful implementation of the developed algorithm in
real-world settings demonstrates the relevance and effectiveness of operations re-
search and optimization techniques in addressing complex transportation problems
within industry contexts.

By undertaking the analysis and resolution of the specific problems reported,
this thesis aims to contribute to the advancement of knowledge in the field of op-
erations research applied to transportation. The outcomes obtained will offer fresh
perspectives and practical solutions for companies operating within the logistics sec-
tor, thereby facilitating the optimization of their operations and overall efficiency.

More in detail, the thesis is organized as follows. Chapter 2 presents a com-
prehensive survey on the scheduling problem in AGV systems. The chapter begins
with a detailed review of existing surveys available in the literature, summarizing
the key findings and methodologies employed in previous research. This initial part
serves as a foundation for understanding the current state of knowledge and iden-
tifying gaps that need to be addressed. Following the survey, the chapter proceeds
to propose a mathematical model for formally defining the scheduling problem in
AGV systems. While the model itself may not be innovative or groundbreaking, its
purpose is to establish a clear and concise representation of the problem, providing
a basis for further analysis and development. In addition to the model, the chap-
ter explores open challenges and future directions highlighted in various articles
related to scheduling and its variations within AGV systems. This includes address-
ing issues such as battery management, multi-load considerations, and integration
with other related systems. By examining these challenges, the chapter aims to iden-
tify opportunities for further research and potential areas of improvement in AGV
scheduling.

An extension of the survey conducted in Chapter 2 is presented in Chapter 3,
wherein additional aspects of coordinating a fleet of AGVs within an intralogistics
system are explored. The chapter presents recent developments related to AGV sys-
tems, with a specific focus on the scheduling problem. The chapter begins with a
collection of books and surveys available in the literature, forming a crucial state-of-
the-art overview of the topic. It then introduces a mathematical model that extends
the general model proposed in Chapter 2. This extended model takes into consider-
ation variations in the Pickup and Delivery Problem (PDP), specifically addressing
battery management and multi-load scenarios. The battery management aspect ac-
counts for the time required to charge or replace AGV batteries, while the multi-load
variant involves the loading of multiple items before executing a drop operation.
Subsequently, the chapter examines challenges and opportunities outlined in var-
ious articles discussing recent advancements across different aspects of the topic,
including scheduling, path planning, conflict avoidance, and integrated production
with AGVs.

Chapter 4 of the thesis presents an innovative algorithm based on the branch-
and-regret approach (see Hvattum, Løkketangen, and Laporte [47]) to address the
same-day delivery problem. The chapter begins by introducing the problem and
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highlighting its significance in the context of time-constrained deliveries, particu-
larly in the e-commerce industry. The proposed algorithm is designed to optimize
routing plans and maximize the number of served requests while minimizing the
traveled distance. It utilizes a branch-and-regret framework, which incorporates
sampled scenarios to anticipate future events and make informed routing decisions.
The algorithm also employs an adaptive large neighborhood search (see Ropke and
Pisinger [79]) to iteratively improve the routing plans. To evaluate the performance
of the proposed algorithm, extensive computational experiments are conducted on a
wide range of instances. The chapter includes a detailed comparison with the most
influential works in the literature (Voccia, Campbell, and Thomas [94], Tirado et al.
[87], Ulmer, Thomas, and Mattfeld [92]) on the same-day delivery problem. This
comparison examines various performance metrics such as the number of served re-
quests, traveled distance, and computational effort, demonstrating the effectiveness
and superiority of the proposed branch-and-regret algorithm.

Finally, concluding remarks are reported in Chapter 5.
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Chapter 2

Scheduling Automated Guided
Vehicles: challenges and
opportunities *

Automated Guided Vehicles (AGVs) play a fundamental role in different logistic
systems, being widely used for the automatic handling of materials, goods, and
containers. The management of AGVs requires the solution of several optimization
problems, such as task allocation/scheduling, routing, and path planning, which are
often enriched by additional attributes, such as multi-load, battery constraints, and
conflict avoidance. Many of these problems are faced in the real-world context of
the Italian company E80 Group, one of the world leaders in the production of AGV
systems. The literature is huge for all the aforementioned problems, and hence we
focus only on the problem of scheduling AGVs, modeled as a Pickup and Delivery
Problem (PDP). In particular, we propose a PDP formulation, discuss real-world and
literature scheduling applications, and indicate challenges and research opportuni-
ties providing a guide for future researches.

2.1 Introduction

In the last decades, AGVs have become a common equipment to transport mate-
rials, goods and containers in logistic systems, changing the work habits of many
companies. The AGVs provide efficient and flexible solutions for transportation and
manufacturing systems, and their management has consequently become a crucial
logistic activity. The interest towards AGVs and the optimization problems arising
from their use is testified by the rapid increase in the number of works devoted to
these topics (see Figure 2.1).

In particular, as defined by De Ryck, Versteyhe, and Debrouwere [29], there are
five main problems related to AGVs: task allocation/scheduling, localization, path
planning, motion planning, and vehicle management for AGV coordination. More
precisely, task allocation/scheduling considers assigning a set of tasks to the AGVs;
localization refers to the position of each AGV in the environment; path planning
defines the shortest path to the destination; motion planning avoids collisions with
other AGVs and static objects; and vehicle management considers the status of the
AGVs, focusing on the errors and the maintenance. Some variants of these problems

*The results of this chapter were accepted as: Gallesi, F., Praxedes, R., Iori, M., Locatelli, M., and
Subramanian, A. "Scheduling automated guided vehicles: challenges and opportunities". In Proceeding
of the International Conference on Optimization and Decision Science 2023, AIRO Springer Series (2023, forth-
coming).
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Figure 2.1: Number of publications per year that include the keywords
”AGVs”, ”AGV”, ”Automated Guided Vehicles”, ”AGV systems” or ”AGVs

systems” in their titles.

consider additional attributes and environmental aspects, such as multi-load, bat-
tery constraints, and conflict-free routing, just to mention a few. Multi-load schedul-
ing includes the possibility of loading multiple items before performing a drop; bat-
tery constraints take into account the time necessary to charge or change the battery
of the AGVs; and conflict-free routing tries to avoid conflicts and deadlocks in a
multi-AGV system.

All these problems are not purely academic ones. One of the authors (F. Gallesi)
has a direct and daily experience of all such problems as a R&D Engineer of the
E80 Group, a company located in Italy that is one of the world-leading companies
in the AGVs market. The company deals with large-dimensional AGV systems (up
to 200 AGVs in a single plant) in highly dynamic environments, where information
changes quickly and, therefore, solutions need to be recomputed every few seconds.

Our contribution is structured as follows. In Section 2.2, we review existing sur-
veys about different approaches for scheduling AGVs. In Section 2.3, we provide
a problem definition and a possible formulation of the problem as a PDP. This for-
mulation is the one employed by the E80 Group. Finally, in Section 2.4, we discuss
different open problems and research opportunities related to the considered opti-
mization problem.

2.2 Books and surveys on scheduling AGVs

Many surveys addressed the problem of scheduling AGVs in the last twenty years.
Lee, Lei, and Pinedo [57], for instance, reviewed scheduling with a 1-job-on-r-machine
pattern, which means that one job can be processed simultaneously by r machines;
machine scheduling with availability constraints; developments in local search tech-
niques; and practical applications of the scheduling problem. Among these practical
applications, they covered AGV scheduling.

Bordelon Hoff and Sarker [14] studied AGV guide paths, including dispatching
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rules and related issues such as idle vehicle location and location of pickup and de-
livery stations. In the same year, Ganesharajah, Hall, and Sriskandarajah [37] sum-
marized some exact and heuristic procedures for flow path design and operational
issues, including job scheduling, AGV dispatching, and conflict-free routing. A few
years later, Qiu et al. [75] considered scheduling and routing problems with AGVs,
providing a review of the main works on the two inter-related problems.

In 2006, Vis [93] proposed a literature review on design and control of AGVs
in manufacturing, distribution, transshipment, and transportation systems. Tradi-
tional tactical and operational issues were studied in this review, namely flow-path
layout, number and location of pickup and delivery points, vehicle requirements,
dispatching, routing, and scheduling of vehicles. Furthermore, they also considered
vehicle control, conflict avoidance, positioning of idle vehicles, battery and failure
management. The design and control of AGVs have been also studied by Le-Anh
and De Koster [56], who reviewed and classified key decision models. Some covered
topics are guide-path design, scheduling, battery management, and routing.

Some years later, Godinho Filho, Barco, and Tavares Neto [40] reviewed genetic
algorithms applied to solve scheduling problems in flexible manufacturing systems
(FMS), including scheduling and routing of AGVs. In addition, Fazlollahtabar and
Saidi-Mehrabad [33] discussed different methodologies to optimize the scheduling
and routing of AGVs, classifying them into exact, heuristic, and metaheuristic ap-
proaches. Furthermore, they suggested dedicating more attention to the simulta-
neous scheduling of different types of material handling equipment in large AGV
systems. Kaoud, El-Sharief, and El-Sebaie [51] proposed a review of the studies re-
garding the scheduling of AGVs in job shop, flow shop, and container terminals
applications. After surveying the main works in these three areas, they presented
some solutions and directions for future research considering scheduling problems.
Similarly, Xie and Allen [95] studied scheduling problems with AGVs in industrial
and manufacturing applications, but they focused on the job shop with material
handling problems.

In 2020, Schmidt et al. [80] covered the decentralized control strategies for task
allocation, empty vehicle balancing, and routing of AGVs. In particular, they fo-
cused on vehicle-based in-house transport systems, like AGVs and overhead hoist
transport. In the same year, De Ryck, Versteyhe, and Debrouwere [29] elaborated a
complete review of the state-of-art regarding all AGV-related control methods, with
special attention to decentralized control strategies. They proposed a decomposi-
tion for the AGV control into five core tasks, namely task allocation, localization,
path planning, motion planning, and vehicle management. For each core task, they
provided an extensive review of algorithms and techniques used in the literature.

Very recently, Sun et al. [85] provided definitions of the main research topics
in vehicle transportation of the AGV-based automated container terminal (ACT),
including equipment scheduling, path planning, exception handling, and vehicle
management. A literature review was presented for each topic, and some directions
for future research were proposed.

As we can note, scheduling AGVs is a widely studied problem in the literature.
Hence, we propose a collection of the more recent and interesting challenges and
opportunities on this problem in Section 2.4, providing a guide for future research.



8 Chapter 2. Scheduling automated guided vehicles: challenges and opportunities

2.3 A mathematical model for AGV scheduling problem

In this section, we focus on the AGV scheduling problem, proposing a possible
mathematical model. Although there might be alternative formulations (see, e.g.,
Bunte and Kliewer [16]), here we model the scheduling problem as a PDP as done
by the E80 Group for their real cases.

The PDP considers a directed graph G = (V, A), where V = F ∪ L ∪ N with:
F a set of starting nodes; L a set of possible end nodes, strategic positions to avoid
conflicts; N a set of request nodes. Set N is further partitioned into a set P of pickup
nodes and a set D of delivery nodes. Let K be the set of requests. With each request
k ∈ K we associate a pickup node pk ∈ P and a delivery node dk ∈ D. We assume
that pk ̸= ph, dk ̸= dh for each h, k ∈ K, h ̸= k. Moreover, for each i ∈ N, we denote
by k(i) the index of the request k ∈ K associated with node i. A fleet of identical
vehicles, represented by set M, is managed to serve the requests, and each vehicle
m ∈ M starts from a specific position fm ∈ F (being |M| = |F|), serves a number of
requests (possibly zero), and ends the route at some j ∈ L, with |L| ≥ |F|. Hence,
we can define the set of arcs as A = {(i, j) : i ∈ F, j ∈ P} ∪ {(i, j) : i = pk, j =
dk} ∪ {(i, j) : i ∈ D, j ∈ P, k(i) ̸= k(j)} ∪ {(i, j) : i ∈ D, j ∈ L} ∪ {(i, j) : i ∈ F, j ∈ L}.
Note that a vehicle traveling from a node in F to a node in L is a vehicle which does
not serve any request. We denote by qi the service time at node i ∈ V. In addition,
a deterministic travel time tij and a traveling distance cij are associated with each
(i, j) ∈ A. Let [ak, bk] be the time window for the request k ∈ K, which translates
into [apk , bpk ] = [0, bk − tpk ,dk − qdk ] for pk and [adk , bdk ] = [ak, bk] for dk. The pickup
can be arranged at any time. However, please note that if the completion time taken
exceeds bk − tpk ,dk − qdk , there may be a delay. In case a vehicle arrives at node i ∈ N
before the start time ai, it waits until ai to start the service. Otherwise, if a vehicle
finishes the service at node i ∈ N after bi, we consider the delay Ri as the difference
between the completion time and bi. In this problem, all requests must be served,
and the objective function minimizes a suitable trade-off between the total delay and
the total distance traveled by the vehicles.

We introduce the following decision variables:

• xm
ij , equal to 1 if arc (i, j) is traversed by vehicle m, 0 otherwise;

• Si, indicating the starting time of service at node i ∈ V.

• Ri, indicating the delay at node i ∈ V.
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The model can be formulated as follows:

min α
(

∑
i∈N

Ri

)
+ β

(
∑

m∈M
∑

(i,j)∈A
cijxm

ij

)
(2.1)

s.t. ∑
j∈V:

( fm ,j)∈A

xm
fm ,j = 1 ∀m ∈ M (2.2)

∑
m∈M

∑
i∈V:(i,j)∈A

xm
ij = 1 ∀j ∈ P (2.3)

∑
i∈V:

(i,pk)∈A

xm
i,pk

= xm
pk ,dk

= ∑
j∈V:

(dk ,j)∈A

xm
dk ,j ∀k ∈ K, m ∈ M (2.4)

∑
m∈M

∑
i∈V:

(i,j)∈A

xm
ij ≤ 1 ∀j ∈ L (2.5)

Sj ≥ Si +
(

qi + tij + H
)

∑
m∈M

xm
ij − H ∀(i, j) ∈ A (2.6)

ai ≤ Si ∀i ∈ N (2.7)

Ri ≥ Si + qi − bi ∀i ∈ N (2.8)

xm
ij ∈ {0, 1} ∀(i, j) ∈ A, m ∈ M (2.9)

Si, Ri ≥ 0 ∀i ∈ V (2.10)

The objective function (2.1) minimizes the weighted sum of the total delay and
of the distance traveled by the vehicles. The values α, β are such that α, β ∈ [0, 1] and
α + β = 1. They assign a weight to each one of the two components of the objective
function. For instance, since the E80 Group prefers to reduce the total delay as much
as possible and gives less importance to the distance traveled, a value α close to 1
is employed. Constraints (2.2)–(2.5) define the flow. The route for every vehicle m
starts from a fixed node fm ∈ F, visits a number of requests (the number can also
be zero if the vehicle travels along an arc joining a node in F with a node in L),
and ends at some node j ∈ L. Constraints (2.2) ensure that each vehicle moves to
a pickup node or to an end node. Constraints (2.3) guarantee that a pickup node
is served by a single vehicle. Constraints (2.4) enforce that the same vehicle visits
the pickup and the delivery node associated with a given request. Constraints (2.5)
state that every vehicle ends the route in a different position j ∈ L. The schedule
feasibility is guaranteed by constraints (2.6), (2.7) and (2.8). Note that constraints
(2.6) also eliminate sub-tours (here H is a big enough constant). Constraints (2.9) and
(2.10) define the domain of the variables. As a final remark, we note that we have
presented a general PDP formulation with AGVs, but the model, with the addition of
a few variables and constraints, can be extended to take into account other attributes,
such as multi-load vehicles or battery management.

2.4 Challenges and opportunities in scheduling AGVs

The problem of scheduling AGVs has been extensively studied in the recent liter-
ature, as indicated in Section 2.2. Nevertheless, there are research gaps and sug-
gestions for future work. In this section, we provide some open challenges and
opportunities for future research on this topic.
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2.4.1 Plain scheduling

Scheduling is one of the most fundamental problems related to the management of
AGVs. According to the definition introduced by Qiu et al. [75], the problem aims at
dispatching a set of AGVs to perform a batch of tasks under some constraints, such
as deadlines, priorities, and others. In particular, our focus in this section is on the
version of the problem that includes only the main restrictions and does not consider
additional attributes (as, e.g., battery management).

He, Aggarwal, and Nof [42] develop a Differentiated Probabilistic Queuing algo-
rithm for assigning orders to AGVs in sequence. Each order has an AGV assignment
probability, and a priority. The algorithm has been computationally tested and ob-
tained favorable results. The authors suggest, as future work, relaxing some of the
assumptions made for the problem, such as the comparisons between physical and
digital storage services cases, and the different combinations of product and service
level pricing.

Rahman and Nielsen [76] propose a methodology for scheduling automated trans-
port vehicles based on a mixed integer programming model and a genetic algorithm.
They encourage future researchers to consider realistic aspects, namely sequence-
dependent setups, buffer size constraints, process interruptions, and shortages in
material supplies.

Djenadi and Mendil [31] develop a strategy for task allocation to AGVs based
on an Iterated Local Search metaheuristic, considering distributed energy manage-
ment. The results show that the proposed approach effectively balances productivity
maximization and energy consumption minimization. Nervetheless, more complex
problems, considering aspects like batteries with non-linear behavior, different ve-
hicle types, and mechanisms of collaborative robotics, are indicated as interesting
topics for future research.

2.4.2 Scheduling with battery management

An aspect that is not considered in some works is battery management. The time
necessary to charge or to change the battery of the AGVs, as well as the determina-
tion of the best locations for the recharging stops, can affect other problems related
to the control of AGVs. Therefore, there are several challenges and open questions
for future work on this topic.

Boccia et al. [13] study a particular AGV scheduling problem whose objective is
to minimize the makespan, satisfying battery constraints. They devise a mathemat-
ical model and a matheuristic. As possible extensions, they suggest the inclusion of
partial charging operations and the residual energy in the computation of the speed
of the AGVs. In addition, they also suggest considering different objective functions
besides the makespan minimization.

Singh et al. [81] study a more complex AGV scheduling problem, considering
transport requests with soft due dates, different penalty charges, a heterogeneous
fleet of AGVs, and partial charging of AGVs with a critical battery threshold. They
propose a mathematical model and a matheuristic based on the adaptive large neigh-
borhood search (ALNS). As possible future works, they suggest extending their ap-
proach to consider multi-load AGVs and path planning during the scheduling pro-
cess.

De Ryck et al. [28] present a decentralized task allocation architecture for a fleet
of AGVs, based on a sequential single-item auction principle and resource (battery)
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management. More specifically, they extend their previous work De Ryck, Ver-
steyhe, and Shariatmadar [30], including a possible extra cost of charging in the
bidding mechanism. As a possible topic for future research, they suggest consider-
ing routing information and uncertainty in the bidding process.

2.4.3 Scheduling multi-load vehicles

An AGV system may include different kinds of vehicles. In particular, the multi-load
vehicles can pick up multiple items before performing a drop. This characteristic
increases the complexity of the management of AGVs. Hence, several challenges are
still open.

Chawla et al. [20] study the problem of dispatching and scheduling multi-load
AGVs in FMS. They put forward a simulation experiment to evaluate the perfor-
mance of five types of job selection dispatching rules, considering different-sized
FMS layouts. In future works, they propose to extend their analysis, including other
control aspects, such as the number of loading/unloading points and types of FMS
layouts.

Dang et al. [24] devise a hybrid ALNS algorithm to solve a scheduling multi-load
AGVs. They consider a heterogeneous fleet and battery constraints as additional
attributes, besides the availability of vehicles able to transport multiple loads. For
future studies, they suggest to investigate multi-objective criteria and collision-free
trajectories.

In the same year, Zou, Pan, and Tasgetiren [99] tackle an AGV scheduling prob-
lem considering vehicles with multiple compartments. This problem aims at mini-
mizing the total cost, including travel, service and vehicle costs. To solve the prob-
lem, they put forward an iterated greedy algorithm. For future work, they suggest
to consider additional attributes for the problem, such as release time, pickup and
delivery, and multi-objective, as well as enhancing the proposed algorithm.

Lin et al. [60] develop a task scheduling optimization method for multi-load
AGVs systems that aims to minimize the number of AGVs used, travel time, and
occurrences of conflicts among the vehicles. The future challenges they propose con-
cern the dynamic rescheduling of the tasks to handle unexpected faults and taking
into account dynamic scheduling requirements such as changing throughput and
delivery time, in addition to temporary dynamic tasks.

2.4.4 Integrated scheduling and production with AGVs

For most systems, a plain AGV scheduling is not enough to attain efficiency. Indeed,
many systems include other automated machines that need to be integrated with the
AGVs. This leads to several research questions, as indicated in what follows.

Heger and Voß [44] address the scheduling and dispatching problem with dy-
namic priority for a flexible job shop scenario, including multi-purpose machines
and AGVs. The idea is to use more than one machine to produce the same prod-
uct and to use the AGVs to transport it. They intend to study dynamic aspects like
product mix changes in future works.

In the same year, Lyu et al. [64] focus on scheduling AGVs and machines con-
sidering, simultaneously, optimal number of AGVs, shortest transportation time,
path planning, and conflict-free routing. They implement a combined approach that
includes a genetic algorithm and the Dijkstra algorithm with time windows, and
whose goal is finding a balance between the minimal makespan and the number of
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AGVs. Furthermore, they intend to consider job sequence and dynamic scheduling
problems in future research.

Zhong et al. [98] tackle the scheduling of AGVs considering their impact on ACT,
including quay and yard cranes. With the aim of preventing conflicts and deadlocks
in the system, they consider an integrated AGV scheduling and path planning prob-
lem, which they model as a mixed integer program and then solve by means of a
Hybrid Genetic-Particle Swarm Optimization Algorithm. As future research contri-
butions, they suggest finding heuristic algorithms fast enough for solving dynamic
real-time scheduling, in some cases supported by artificial intelligence or machine
learning.

Finally, Chen et al. [22] focus on the crane and the AGV coordination and schedul-
ing problem in a container terminal and adopt a market-driven Alternating Direc-
tion Method of Multipliers approach to solve it. As future research directions, they
suggest including other agents in the schedule planning (such as cargo trains, ves-
sels, and forklifts) and use different layouts, time windows, and container stacking
sequence constraints.

2.5 Conclusions

In this work, we consider AGV systems and focus on the scheduling problem mod-
eled as a pickup and delivery problem with AGVs. After a study of the literature
regarding this topic, we present the mathematical formulation of the problem used
in the applications of the E80 Group, which aims to minimize the delay concerning
the time windows and the traveled distance of the fleet of vehicles. Finally, we high-
light the challenges and opportunities described by the more recent works on the
more interesting variants of the AGV scheduling problem. As future research di-
rections, we intend to extend our analysis to include other variants of the problems
together with the related literature.
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Chapter 3

Recent advances on Pickup and
Delivery Problems with AGVs*

In this chapter, we extend the Chapter 2 considering the coordination of a fleet of
AGVs in general. After a review of books and surveys that constitute the current
state of the art in AGV systems, we propose two variants of the model proposed
in the previous chapter: PDP with battery managemnt and PDP with multi-load
vehicles. Finally, we present a list of papers that highlight current challenges and
indicate future research directions found in the literature.

3.1 Introduction

In the last decades, AGVs have become a common equipment to transport mate-
rials, goods and containers in logistic systems, changing the work habits of many
companies. The AGVs provide efficient and flexible solutions for transportation and
manufacturing systems, and their management has consequently become a crucial
logistic activity. These robots navigate through dynamic environments with a pre-
cision and adaptability that outperforms traditional manual methods. The usage of
AGVs brings many benefits for companies, considering the increase in productivity
and cost-effectiveness to a reduction in errors and delays. Their versatility allows
them to integrate into diverse industrial settings, adapting to varying demands and
operational requirements. This adaptability is particularly crucial in the contem-
porary context, where technologies change fast and the need for agile logistics has
become a defining characteristic of competitive enterprises. The interest towards
AGVs and the optimization problems arising from their use is testified by the rapid
increase in the number of works devoted to these topics. The rapid proliferation of
publications focused on AGVs underscores a collective recognition within the aca-
demic and industrial communities of the impact these autonomous vehicles have on
logistics and manufacturing systems.

In particular, as defined by De Ryck, Versteyhe, and Debrouwere [29], there are
five main problems related to AGVs: task allocation/scheduling, localization, path
planning, motion planning, and vehicle management for AGV coordination. More
precisely, task allocation/scheduling considers assigning a set of tasks to the AGVs;
localization refers to the position of each AGV in the environment; path planning
defines the shortest path to the destination; motion planning avoids collisions with
other AGVs and static objects; and vehicle management considers the status of the
AGVs, focusing on the errors and the maintenance. Some variants of these problems

*The results of this chapter appears in the technical report: Gallesi, F., Praxedes, R., Iori, M., Lo-
catelli, M., and Subramanian, A. "Recent advances on Pickup and Delivery Problems with AGVs".
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consider additional attributes and environmental aspects, such as multi-load, bat-
tery constraints, and conflict-free routing, just to mention a few. Multi-load schedul-
ing includes the possibility of loading multiple items before performing a drop; bat-
tery constraints take into account the time necessary to charge or change the battery
of the AGVs; and conflict-free routing tries to avoid conflicts and deadlocks in a
multi-AGV system.

All these problems are not purely academic ones. One of the authors (F. Gallesi)
has a direct and daily experience of all such problems as a R&D Engineer of the
E80 Group, a company located in Italy that is one of the world-leading companies
in the AGVs market. The E80 Group specializes in the development of automated
and integrated intralogistics solutions for manufacturers of consumer goods, with a
particular interest in the coordination of AGVs in automated plants. The company
deals with large-dimensional AGV systems (up to 200 AGVs in a single plant) in
highly dynamic environments, where information changes quickly and, therefore,
solutions need to be recomputed every few seconds. The fleet of AGVs serves the
transport from the raw material and the processing area to the packaging robots,
and moves the finished product to the stocking and the shipping area. The com-
pany wants to be close to worldwide customers and for this reason, it has opened 14
branches and subsidiaries in the world.

Our contribution is structured as follows. In Section 3.2, we review existing sur-
veys about different approaches for design and control of AGVs. In Section 3.3, we
provide a problem definition and a possible formulation of scheduling AGVs as a
PDP. This formulation is the one employed by the E80 Group. Finally, in Section
3.4, we discuss different open problems and research opportunities related to this
challenging research field.

3.2 Books and surveys on design and control of AGVs

Many surveys addressed the optimization problems related to the design and con-
trol of AGVs in the last twenty years. Co and Tanchoco [23], for instance, started fo-
cusing on the AGVs vehicle management problem. Moreover, King and Wilson [52]
divided the literature regarding AGVs into three categories: system design, routing
and scheduling, and justification and implementation. The first corresponds to the
papers that examine layout and fleet issues, the second covers the methods for rout-
ing and scheduling, and the third discusses some issues related to the reasons for us-
ing AGVs and how to implement them. A few years later, Lee, Lei, and Pinedo [57]
reviewed scheduling with a 1-job-on-r-machine pattern, which means that one job
can be processed simultaneously by r machines; machine scheduling with availabil-
ity constraints; developments in local search techniques; and practical applications
of the scheduling problem. Among these practical applications, they covered AGV
scheduling.

Bordelon Hoff and Sarker [14] studied AGV guide paths, including dispatching
rules and related issues such as idle vehicle location and location of pickup and de-
livery stations. In the same year, Ganesharajah, Hall, and Sriskandarajah [37] sum-
marized some exact and heuristic procedures for flow path design and operational
issues, including job scheduling, AGV dispatching, and conflict-free routing. A few
years later, Qiu et al. [75] considered scheduling and routing problems with AGVs,
providing a review of the main works on the two inter-related problems. On the
other hand, papers regarding facility planning and material handling decisions in
the context of loop-based material flow systems were reviewed by Asef-Vaziri and
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Laporte [5]. Among these decisions, issues related to fleet sizing and operating of
AGVs, namely the home location of idle vehicles, blocking and collision avoidance,
multi-load, and others, were also covered.

In 2006, Vis [93] proposed a literature review on design and control of AGVs
in manufacturing, distribution, transshipment, and transportation systems. Tradi-
tional tactical and operational issues were studied in this review, namely flow-path
layout, number and location of pickup and delivery points, vehicle requirements,
dispatching, routing, and scheduling of vehicles. Furthermore, they also considered
vehicle control, conflict avoidance, positioning of idle vehicles, battery and failure
management. The design and control of AGVs have also been studied by Le-Anh
and De Koster [56], who reviewed and classified key decision models. Some covered
topics are guide-path design, scheduling, battery management, and routing. Simi-
larly, Ali and Khan [1] presented implementation issues (number of vehicles and
the location of pickup and drop-off points, types of AGVs, path generation, collision
and deadlock avoidance) related to AGVs in Flexible Manufacturing Systems (FMS).
Moreover, they also tackled the integration between AGVs and FMS. On the other
hand, Stahlbock and Voß [83] provided a comprehensive survey on routing prob-
lems in the Container Terminalss (CTs) context, in which AGVs have a fundamental
role. The authors explained some general concerns about Vehicle Routing Problems
(VRP) and the structures of CTs. They further described various VRPs related to CT
operations, dedicating one section only for horizontal transport with AGVs.

Some years later, Godinho Filho, Barco, and Tavares Neto [40] reviewed genetic
algorithms applied to solve scheduling problems in FMS, including scheduling and
routing of AGVs. In addition, Fazlollahtabar and Saidi-Mehrabad [33] discussed dif-
ferent methodologies to optimize the scheduling and routing of AGVs, classifying
them into exact, heuristic, and metaheuristic approaches. Furthermore, they sug-
gested dedicating more attention to the simultaneous scheduling of different types
of material handling equipment in large AGV systems. In the same year, Xie and
Allen [95] studied scheduling problems with AGVs in industrial and manufacturing
applications, focusing on the job shop with material handling problems.

In 2020, Schmidt et al. [80] covered the decentralized control strategies for task
allocation, empty vehicle balancing, and routing of AGVs. In particular, they fo-
cused on vehicle-based in-house transport systems, like AGVs and overhead hoist
transport. In the same year, De Ryck, Versteyhe, and Debrouwere [29] elaborated a
complete review of the state-of-art regarding all AGV-related control methods, with
special attention to decentralized control strategies. They proposed a decomposi-
tion for the AGV control into five core tasks, namely task allocation, localization,
path planning, motion planning, and vehicle management. For each core task, they
provided an extensive review of algorithms and techniques used in the literature.

One year after, Rashidi, Matinfar, and Parand [77] proposed a review of appli-
cations, problem modeling and solutions considering AGVs in container handling
and FMS. Moreover, Ivanov et al. [48] performed a multidisciplinary analysis asso-
ciating Industry 4.0 with the management of AGVs. Fragapane et al. [35] covered
the decentralized decision-making process for planning and control of Autonomous
Mobile Robots (AMRs). In addition to the previous works, Lu et al. [63] provided a
literature review regarding multi-AGVs systems management. They divided those
systems into three problems: scheduling, dispatching, and routing. For each of
them, they highlighted several works according to the resource-oriented, problem-
oriented, and goal-oriented issues that appear in multi-AGV systems.

Very recently, three new surveys appeared in the literature. Naeem, Gheith, and
Eltawil [71] covered the integrated scheduling of different kinds of equipment in
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Automated Container Terminals (ACT), which is divided into three main problems:
integrated scheduling of quay cranes and AGVs, yard cranes and AGVs, and all of
them together. For all of these problems, a comprehensive literature review is pro-
vided. In addition, research gaps and future research directions are pointed out.
Sun et al. [85] provided definitions of the most important research topics in vehicle
transportation of the AGV-based automated container terminal, including equip-
ment scheduling, path planning, exception handling, and vehicle management. A
literature review was presented for each topic, and some directions for future re-
search were proposed. Zhang, Chen, and Guo [97] reviewed the application of AGVs
in warehouse systems. Among the covered topics, there is a comparison between
centralized and decentralized control strategies, warehouse layouts, scheduling and
routing AGVs problems, and artificial intelligence applications in this kind of sys-
tem. Besides, a method combining reinforcement learning and Dijkstra’s algorithm
was proposed. Table 3.1 summarizes all the books and surveys covered in this sec-
tion, emphasizing their main covered topics and applications areas on the second
and third columns, respectively. It is important to mention that the symbol "——"
is used when the problem on the corresponding reference is considered in general
way, without specific applications.

3.3 A mathematical model for AGV scheduling problem

In this section, we focus on the AGV scheduling problem, proposing a possible
mathematical model. Although there might be alternative formulations (see, e.g.,
Bunte and Kliewer [16]), here we model the scheduling problem as a PDP as done
by the E80 Group for their real cases.

The PDP considers a directed graph G = (V, A), where V = Vf ∪ Vl ∪ Vn with:
Vf a set of starting nodes; Vl a set of possible end nodes, strategic positions to avoid
conflicts; Vn a set of request nodes. Set Vn is further partitioned into a set P of pickup
nodes and a set D of delivery nodes. Let K be the set of requests. With each request
k ∈ K we associate a pickup node pk ∈ P and a delivery node dk ∈ D. We assume
that pk ̸= ph, dk ̸= dh for each h, k ∈ K, h ̸= k. Moreover, for each i ∈ Vn, we denote
by k(i) the index of the request k ∈ K associated with node i. A fleet of identical
vehicles, represented by set M, is managed to serve the requests, and each vehicle
m ∈ M starts from a specific position fm ∈ Vf (being |M| = |Vf |), serves a number of
requests (possibly zero), and ends the route at some j ∈ Vl , with |Vl | ≥ |Vf |. Hence,
we can define the set of arcs as A = {(i, j) : i ∈ Vf , j ∈ P} ∪ {(i, j) : i = pk, j = dk} ∪
{(i, j) : i ∈ D, j ∈ P, k(i) ̸= k(j)} ∪ {(i, j) : i ∈ D, j ∈ L} ∪ {(i, j) : i ∈ Vf , j ∈ Vl}.
Note that a vehicle traveling from a node in Vf to a node in Vl is a vehicle which does
not serve any request. We denote by qi the service time at node i ∈ V. In addition,
a deterministic travel time tij and a traveling distance cij are associated with each
(i, j) ∈ A. Let [ak, bk] be the time window for the request k ∈ K, which translates into
[apk , bpk ] = [0, bk − tpk ,dk − qdk ] for pk and [adk , bdk ] = [ak, bk] for dk. The pickup can
be arranged at any time. However, note that if the completion time taken exceeds
bk − tpk ,dk − qdk , there might be a delay. In case a vehicle arrives at node i ∈ N before
the start time ai, it waits until ai to start the service. Otherwise, if a vehicle finishes
the service at node i ∈ Vn after bi, we consider the delay Ri as the difference between
the completion time and bi. In this problem, all requests must be served, and the
objective function minimizes a suitable trade-off between the total delay and the
total distance traveled by the vehicles.

We introduce the following decision variables:
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Table 3.1: Books and surveys on pickup and delivery problems with AGVs

Survey/book Covered topics Applications
Co and Tanchoco [23]

Vehicle management problem ——
Engineering Costs and Production Economics

King and Wilson [52] System design, routing and scheduling,
——

Production Planning & Control and justification and implementation

Lee, Lei, and Pinedo [57] Scheduling of machines, Material handling
Annals of Operations Research including AGVs transporters

Bordelon Hoff and Sarker [14] Guide paths, dispatching rules, idle
——

Integrated Manufacturing Systems vehicle location and stations location

Ganesharajah, Hall, and Sriskandarajah [37] Flow path design and operational
Manufacturing systems

Annals of Operations Research issues, including AGV dispatching

Qiu et al. [75] Scheduling and routing
——

International Journal of Production Research problems with AGVs

Asef-Vaziri and Laporte [5] Facility planning and Loop-based material
European Journal of Operational Research material handling decisions flow systems

Vis [93] Issues related to the design Manufacturing, transshipment
European Journal of Operational Research and control of AGVs distribution, and transportation

Le-Anh and De Koster [56] Issues related to the design
——

European Journal of Operational Research and control of AGVs

Stahlbock and Voß [83] Routing problems
Container terminals

Springer US book (Horizontal transport with AGVs)

Ali and Khan [1] Issues related to the Flexible manufacturing
Global Journal of Flexible Systems Management implementation of AGVs systems

Godinho Filho, Barco, and Tavares Neto [40] Genetic algorithms to solve Flexible manufacturing
Flexible Services and Manufacturing Journal scheduling problems systems

Fazlollahtabar and Saidi-Mehrabad [33] Scheduling and routing Manufacturing, transshipment
Journal of Intelligent & Robotic Systems problems with AGVs distribution, and transportation

Xie and Allen [95]
Scheduling problem with AGVs

Job shop with
The International Journal of Advanced Manufacturing Technology material handling

Schmidt et al. [80]
Decentralized control strategies

Automated in-house logistics
Logistics Research vehicle systems

De Ryck, Versteyhe, and Debrouwere [29]
Decentralized control strategies ——

Journal of Manufacturing Systems

Rashidi, Matinfar, and Parand [77] Problem modeling, solution and Containers and flexible
International Journal of Transportation Engineering applications with AGVs manufacturing systems

Ivanov et al. [48]
Industry 4.0, including AGVs ——

International Journal of Production Research

Fragapane et al. [35] Decentralized planning
——

European Journal of Operational Research and control of AMRs

Lu et al. [63] Scheduling, dispatching,
——

Computer Modeling in Engineering & Sciences and routing problem with AGVs

Naeem, Gheith, and Eltawil [71] Integrated scheduling of Automated container
Computers & Industrial Engineering AGVs, quay cranes, and yard cranes terminals

Sun et al. [85] Scheduling, path planning, exception Automated container
IEEE Transactions on Intelligent Transportation Systems handling, and vehicle management terminals

Zhang, Chen, and Guo [97]
Issues on AGV applications Warehouse systems

Computer Modeling in Engineering & Sciences
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• xm
ij , equal to 1 if arc (i, j) is traversed by vehicle m, 0 otherwise;

• Si, indicating the starting time of service at node i ∈ V.

• Ri, indicating the delay at node i ∈ V.

The model can be formulated as follows:

min α
(

∑
i∈Vn

Ri

)
+ β

(
∑

m∈M
∑

(i,j)∈A
cijxm

ij

)
(3.1)

s.t. ∑
j∈V:

( fm,j)∈A

xm
fm,j = 1 m ∈ M (3.2)

∑
m∈M

∑
i∈V:(i,j)∈A

xm
ij = 1 j ∈ P (3.3)

∑
i∈V:

(i,pk)∈A

xm
i,pk

= xm
pk ,dk

= ∑
j∈V:

(dk ,j)∈A

xm
dk ,j k ∈ K, m ∈ M (3.4)

∑
m∈M

∑
i∈V:

(i,j)∈A

xm
ij ≤ 1 j ∈ Vl (3.5)

Sj ≥ Si +
(
qi + tij + H

)
∑

m∈M
xm

ij − H (i, j) ∈ A (3.6)

ai ≤ Si i ∈ Vn (3.7)
Ri ≥ Si + qi − bi i ∈ Vn (3.8)
xm

ij ∈ {0, 1} (i, j) ∈ A, m ∈ M (3.9)

Si, Ri ≥ 0 i ∈ V (3.10)

Objective function (3.1) minimizes the weighted sum of the total delay and of
the distance traveled by the vehicles. The values α, β are such that α, β ∈ [0, 1] and
α + β = 1. They assign a weight to each one of the two components of the objective
function. For instance, since the E80 Group prefers to reduce the total delay as much
as possible and gives less importance to the distance traveled, a value α close to 1
is employed. Constraints (3.2)–(3.5) define the flow. The route for every vehicle m
starts from a fixed node fm ∈ Vf , visits a number of requests (the number can also
be zero if the vehicle travels along an arc joining a node in Vf with a node in Vl),
and ends at some node j ∈ Vl . Constraints (3.2) ensure that each vehicle moves to
a pickup node or to an end node. Constraints (3.3) guarantee that a pickup node
is served by a single vehicle. Constraints (3.4) enforce that the same vehicle visits
the pickup and the delivery node associated with a given request. Constraints (3.5)
state that every vehicle ends the route in a different position j ∈ Vl . The schedule
feasibility is guaranteed by constraints (3.6), (3.7) and (3.8). Note that constraints
(3.6) also eliminate sub-tours (here H is a big enough constant). Constraints (3.9)
and (3.10) define the domain of the variables. Figure 3.1 shows an example of a
solution for the PDP as described above. Two AGVs are in a warehouse and four
transport requests are available. The solution proposes a route for the vehicles. The
depicted routes in the figure consist of a sequence of requests, each encompassing
a pickup and a corresponding delivery point, and then concluding with a home
position L. The AGV1 visits P1, D1, P2, D2, L. The AGV2 visits P3, D3, P4, D4,
L. As a final remark, we note that we have presented a general PDP formulation
with AGVs, but the model, with the addition of a few variables and constraints, can
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be extended to take into account other attributes, such as battery management or
multi-load vehicles.

Figure 3.1: Example of pickup and delivery solution.

3.3.1 Model extension

The extension of the model for battery management requires the incorporation of a
new set of nodes, denoted as Vb, which represent the facilities housing the battery
chargers, and of an additional set of arcs A′ = {(i, j) : i ∈ Vf ∪ D, j ∈ Vb} ∪ {(i, j) :
i ∈ Vb, j ∈ P ∪ Vl}. Consequently, the augmented set of available arcs becomes
A ∪ A′. We then set the maximum charging level B of a battery, and the variable
bm

ij defining the residual battery level of vehicle m ∈ M after traversing the arc
(i, j) ∈ A ∪ A′. Upon entering node i ∈ Vb, a vehicle recharges its battery level
to the maximum, B. It is assumed that each vehicle m ∈ M begins its journey from
fm with a battery level sufficient to reach at least one battery charger. Furthermore,
we consider the consumption of the battery as linear function of the travel time tij
on the arc (i, j). The additional constraints necessary to extend the model for battery
management are as follows:

∑
i∈V : (i,j)∈A′

xm
ij = ∑

h∈V : (j,h)∈A′
xm

jh j ∈ Vb, m ∈ M (3.11)

bm
ij + xm

ij tij ≤ ∑
h∈V : (h,i)∈A∪A′

bm
hi (i, j) ∈ A ∪ A′, m ∈ M (3.12)

bm
ij = (B − tij)xm

ij i ∈ Vb, (i, j) ∈ A′, m ∈ M (3.13)

0 ≤ bm
ij ≤ Bxm

ij (i, j) ∈ A ∪ A′, m ∈ M. (3.14)

Constraints (3.11) express the inflow and outflow of vehicles at the battery charger
facility, emphasizing that there is no limitation on the number of times a vehicle can
utilize a battery charger. Constraints (3.12) and (3.13) ensure the feasibility of the
schedule. Constraints (3.14) define the domain of the variables.

In the multi-load version, where a vehicle has the capability to pickup more than
one task simultaneously, one has to adapt constraints (3.4) to allow visits to other
nodes between the pickup and delivery of a request. First, we need to update the
set of arcs in the model by considering A′′ = {(i, j) : i ∈ Vn, j ∈ Vn, i ̸= j}, with the
resulting set of arcs denoted as A ∪ A′′. Constraints (3.4) can then be modified as
follows:

∑
i∈V:

(i,pk)∈A∪A′′

xm
i,pk

= ∑
j∈V:

(dk ,j)∈A∪A′′

xm
dk ,j k ∈ K, m ∈ M. (3.15)
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In view of this, we can introduce the maximum capacity of a vehicle, denoted as
L, and the variable lm

i defining the residual capacity of vehicle m ∈ M at node i ∈ V.
Additionally, we can define ui as the capacity required by node i ∈ V. The capacity
is assumed to be negative for pickup nodes, positive for delivery nodes, and null for
the remaining ones. The following constraints are necessary to extend the model to
accommodate multi-load vehicles:

∑
i∈V:(i,j)∈A∪A′′

xm
ij = ∑

h∈V:(j,h)∈A∪A′′
xm

jh j ∈ Vn, m ∈ M (3.16)

Spk ≤ Sdk k ∈ K (3.17)
lm
j ≤ lm

i + uixm
ij (i, j) ∈ A ∪ A′′, m ∈ M (3.18)

0 ≤ lm
i ≤ L ∑

j∈V:(j,i)∈A∪A′′
xm

ji i ∈ V, m ∈ M. (3.19)

Constraints (3.16) and (3.17) are used to delineate the flow and guarantee that
each delivery node is not visited before the corresponding pickup node, respectively.
Constraints (3.18) articulate the residual capacity at each node, while constraints
(3.19) establish the domain for the associated variable. Of course, the two variants
of the basic PDP model detailed in this section are not the only the possible ones.
Further variants could be considered, like, e.g., those taking into account possible
conflicts between AGVs at nodes and arcs of the graph.

3.4 Challenges and opportunities in design and control of
AGVs

The design and control of AGVs have been extensively studied in the recent liter-
ature, as discussed in Section 3.2. Nevertheless, there are research gaps and sug-
gestions for future work. In this section, we provide some open challenges and
opportunities for future research based on the most recent references regarding this
topic.

3.4.1 Scheduling

Scheduling is one of the most fundamental problems related to the management of
AGVs. According to the definition introduced by Qiu et al. [75], the problem aims at
dispatching a set of AGVs to perform a batch of tasks under some constraints, such
as deadlines, priorities, and others. In this section, we split the problem into plain
scheduling, scheduling with battery constraints, and scheduling multi-load vehicles,
highlighting the most recent research gaps indicated in the literature. For readers
interested in more details about the scheduling of AGVs, we suggest referring to the
surveys of Fazlollahtabar and Saidi-Mehrabad [33], Lu et al. [63], Qiu et al. [75], Sun
et al. [85], and Xie and Allen [95].

Plain scheduling

He, Aggarwal, and Nof [42] developed a Differentiated Probabilistic Queuing algo-
rithm for assigning orders to AGVs in sequence. Each order has an AGV assignment
probability, and a priority. The algorithm has been computationally tested and ob-
tained favorable results. The authors suggest, as future work, relaxing some of the
assumptions made for the problem, such as the comparisons between physical and
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digital storage services cases, and the different combinations of product and service
level pricing.

A methodology for scheduling automated transport vehicles based on a mixed
integer programming model and a genetic algorithm was proposed by Rahman
and Nielsen [76]. They encourage future researchers to consider realistic aspects,
namely sequence-dependent setups, buffer size constraints, process interruptions,
and shortages in material supplies.

Recently, Djenadi and Mendil [31] developed a strategy for task allocation to
AGVs based on an Iterated Local Search metaheuristic, considering distributed en-
ergy management. The results show that the proposed approach effectively balances
productivity maximization and energy consumption minimization. Nevertheless,
more complex problems, considering aspects like batteries with non-linear behav-
ior, different vehicle types, and mechanisms of collaborative robotics, are indicated
as interesting topics for future research.

Scheduling with battery constraints

De Ryck et al. [28] presented a decentralized task allocation architecture for a fleet
of AGVs, based on a sequential single-item auction principle and resource (battery)
management. More specifically, they extended their previous work De Ryck, Ver-
steyhe, and Shariatmadar [30], including a possible extra cost of charging in the bid-
ding mechanism. As a possible topic for future research, they suggest considering
routing information and uncertainty in the bidding process.

Moreover, Boccia et al. [13] studied a particular AGV scheduling problem whose
objective is to minimize the makespan, satisfying battery constraints. They devised a
mathematical model and a matheuristic. As possible extensions, they suggest the in-
clusion of partial charging operations and the residual energy in the computation of
the speed of the AGVs. In addition, they also suggest considering different objective
functions besides the makespan minimization.

A more complex AGV scheduling problem was studied by Singh et al. [81], con-
sidering transport requests with soft due dates, different penalty charges, a hetero-
geneous fleet of AGVs, and partial charging of AGVs with a critical battery thresh-
old. They proposed a mathematical model and a matheuristic based on the Adap-
tive Large Neighborhood Search (ALNS). As possible future works, they suggest
extending their approach to consider multi-load AGVs and path planning during
the scheduling process.

Chen, Chen, and Teng [21] proposed a two-stage simulation-optimization ap-
proach for AGV systems with charging mechanisms. In the first stage, they aim to
determine the number of required AGVs, considering fixed guided-path constraints.
The second stage optimizes some operational issues, such as the charging system,
dispatching, positioning, and routing rules. As future research direction, one pos-
sibility can be disregarding some assumptions in the simulation model, such as the
characteristics of the products, the capacity and setup times of the machines, and the
fixed guided-path constraints.

Scheduling multi-load vehicles

Chawla et al. [20] studied the problem of dispatching and scheduling multi-load
AGVs in FMS. They put forward a simulation experiment to evaluate the perfor-
mance of five types of job selection dispatching rules, considering different-sized
FMS layouts. In future works, they propose to extend their analysis, including other
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control aspects, such as the number of loading/unloading points and types of FMS
layouts.

Furthermore, Dang et al. [25] devised a hybrid ALNS algorithm to solve a schedul-
ing multi-load AGVs. They consider a heterogeneous fleet and battery constraints
as additional attributes, besides the availability of vehicles able to transport multi-
ple loads. For future studies, they suggest to investigate multi-objective criteria and
collision-free trajectories.

Zou, Pan, and Tasgetiren [99] tackled an AGV scheduling problem considering
vehicles with multiple compartments. This problem aims at minimizing the total
cost, including travel, service and vehicle costs. To solve the problem, they put for-
ward an iterated greedy algorithm. For future work, they suggest to consider ad-
ditional attributes for the problem, such as release time, pickup and delivery, and
multi-objective, as well as enhancing the proposed algorithm.

Recently, Lin et al. [60] developed a task scheduling optimization method for
multi-load AGVs systems that aims to minimize the number of AGVs used, travel
time, and occurrences of conflicts among the vehicles. The future challenges they
propose concern the dynamic rescheduling of the tasks to handle unexpected faults
and taking into account dynamic scheduling requirements such as changing through-
put and delivery time, in addition to temporary dynamic tasks.

3.4.2 Path planning and conflict avoidance

Once the scheduling decisions are defined, the second step on the AGVs manage-
ment is determining the path to be traveled by them. Moreover, path planning
methods should consider the possibility of conflicts and deadlocks when multiple
vehicles are in the system, as suggested by De Ryck, Versteyhe, and Debrouwere
[29] and Schmidt et al. [80]. In what follows, we provide several promising avenues
of research concerning path planning and conflict avoidance in the context of AGVs.

Kabir and Suzuki [50] presented a comparative study evaluating four heuris-
tics designed for routing AGVs to battery stations, as an extension of their previous
work Kabir and Suzuki [49]. The objective of this study is to demonstrate methods
for enhancing productivity by minimizing both travel distances and waiting times
at battery stations. The authors have considered different heuristic criteria by select-
ing the: (i) nearest battery station; (ii) minimum delay battery station; (iii) nearest
battery station from the initial point; and (iv) nearest battery station to the delivery
point. This comparative analysis offers insights into the efficiency of each heuristic
in managing AGV battery operations. As a next step, the authors recommend inte-
grating the concept of opportunity swapping and explore the application of different
types of facilities, such as warehouses and container terminals.

A dynamic path planning approach to grid-based systems that aims to find the
shortest-time paths for AGVs is proposed by Fransen et al. [36]. They suggest to
apply the proposed method to grid-based system layouts with bidirectional path
segments and non-grid-based systems, as well as an extension of this approach to
multi-load AGV systems for sequenced or unsequenced planning as possible future
research topics. Another possible topic is related to the vertex weights updating
process using future information, instead of only those from the past.

Furthermore, Tang et al. [86] proposed a path planning method for AGVs based
on the geometric A-Star algorithm in a port environment, aiming to find the mini-
mum cost collision-free and smooth path. As extensions for this research, they sug-
gest taking into account the size of the AGV; dynamic scenes; the realistic motion
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of the AGVs, not only in a main straight line; and implementations of the proposed
method in a real-world port environment.

Lastly, a conflict-free multi-load AGVs scheduling problem was studied by Hu,
Yang, and Huang [45], who proposed a method based on adjacency combination
and the timetables of reservations for solving it. For future works, they suggest stud-
ies regarding the influence of the material characteristics on the proposed method,
scheduling of heterogeneous multi-load AGVs based on unknown tasks system, and
different network topologies of the material transportation systems.

3.4.3 Integrated production with AGVs

For most systems, a plain AGV scheduling is not enough to attain efficiency. Indeed,
many systems include other automated machines that need to be integrated with the
AGVs. One example of this integration can be found on the work by Naeem, Gheith,
and Eltawil [71], where they highlight the current literature about the integration
of AGVs with quay and yard cranes. However, various integration scenarios exist
beyond this one, leading to several research questions, as discussed in the following.

Heger and Voß [44] addressed the scheduling and dispatching problem with dy-
namic priority for a flexible job shop scenario, including multi-purpose machines
and AGVs. The idea is to use more than one machine to produce the same prod-
uct and to use the AGVs to transport it. They intend to study dynamic aspects
like product mix changes in future works. Similarly, Lyu et al. [64] focused on
scheduling AGVs and machines considering, simultaneously, optimal number of
AGVs, shortest transportation time, path planning, and conflict-free routing. They
implemented a combined approach that includes a genetic algorithm and the Dijk-
stra algorithm with time windows, and whose goal is finding a balance between the
minimal makespan and the number of AGVs. Furthermore, they intend to consider
job sequence and dynamic scheduling problems in future research.

The scheduling AGVs with quay and yard cranes on ACT systems was studied
by Zhong et al. [98]. With the aim of preventing conflicts and deadlocks in the sys-
tem, they considered an integrated AGV scheduling and path planning problem,
which they model as a mixed integer program and then solve by means of a Hybrid
Genetic-Particle Swarm Optimization Algorithm. As future research contributions,
they suggest finding heuristic algorithms fast enough for solving dynamic real-time
scheduling, in some cases supported by artificial intelligence or machine learning.

Additionally, Chen et al. [22] focused on the crane and the AGV coordination and
scheduling problem in a container terminal and adopt a market-driven Alternating
Direction Method of Multipliers approach to solve it. As future research directions,
they suggest including other agents in the schedule planning (such as cargo trains,
vessels, and forklifts) and use different layouts, time windows, and container stack-
ing sequence constraints.

Lastly, Manafi, Tavakkoli-Moghaddam, and Mahmoodjanloo [66] addressed the
job-shop scheduling and AGV conflict-free routing problem. They proposed a Cen-
troid Opposition-based Coral Reefs Optimization (COCRO) algorithm to solve the
scheduling and routing problems simultaneously. The aim of this integrated prob-
lem is to minimize the makespan of all products. Future research might consider
different types of AGVs, or a dynamic system able to respond to events not pre-
dictable, such as cancellations of tasks or breakdowns.
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3.4.4 Miscellaneous

This section is dedicated to the papers that cover other important topics related to
the AGV management. We can start highlighting the simulation study conducted
by Kabir and Suzuki [49], in which they explore the impact of varying the duration
of battery charging for AGVs in order to enhance the flexibility of a manufactur-
ing system. The primary objective is to demonstrate that short-term increases in the
production output of a manufacturing system can be achieved by selectively reduc-
ing the targeted state of charge for AGV batteries, without the need to augment the
overall number of AGVs within the system. Despite the promising nature of their
proposed strategy, the authors recognize five limitations in their study, which are in-
teresting topics for future research. These include the omission of AGV breakdown
effects, the potential for refining the dispatching policy, the unidirectional assump-
tion in guide-paths, the scope for exploring different battery types (e.g., lithium-ion
and nickel-cadmium), and the possibility of employing alternative simulation strate-
gies.

In the scope of muti-load AGV systems, Yan, Jackson, and Dunnett [96] studied
the advantages of using this kind of AGV. They developed an advanced form to sim-
ulate the operation of the AGV system in various scenarios. The results of this paper
suggest future studies on how to increase the capacity of the multi-load vehicles
without decreases the performance. For the authors, the multi-load AGV increases
the performance of the system when there are flexible loading and unloading points.

Lastly, Ma, Zhou, and Stephen [65] proposed a simulation approach for the con-
figuration of charging stations and battery-powered AGVs. More precisely, they
presented two types of layout designs and two types of recharging policies in a port
system environment, which is simulated as a discrete event simulation model. More-
over, several computational experiments were conducted to find which strategy (lay-
out and police) is the best. The authors highlighted that this work contributes to the
academic and industrial communities, as both strategies can be easily implemented.
In future work, they suggest considering AGV scheduling algorithms in their simu-
lation approach.

3.5 Conclusions

In conclusion, the integration of AGVs has revolutionized logistics and manufac-
turing systems, remodeling the operational context of companies worldwide. The
precision and adaptability demonstrated by them in navigating dynamic environ-
ments overcome traditional manual methods, providing more efficiency and flex-
ibility. The benefits of AGV deployment, including heightened productivity, cost-
effectiveness, and a reduction in errors and delays are fundamental in modern in-
dustrial settings. Motivated by the growing number of publications in the scientific
world and from an industrial point of view reported by one of the authors, this work
highlights the recent advances on design and control of AGVs. After a study of the
literature regarding this topic, we present the mathematical formulation of one of
the main problems in this field: scheduling AGVs. The model we present is based
on PDP formulations, justified by the methodology adopted by the E80 Group in
their practical applications. The model is also extended presenting variants for bat-
tery management and multi-load vehicles. In these applications, the company aims
to minimize the delay concerning the time windows and the traveled distance of the
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fleet of vehicles. Besides the proposed model, we highlight the challenges and op-
portunities described by the more recent works on the more interesting optimization
problems in AGV systems.
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Chapter 4

A Branch-and-Regret Algorithm for
the Same-Day Delivery Problem*

In this chapter, we study a dynamic vehicle routing problem where stochastic cus-
tomers request urgent deliveries characterized by restricted time windows. The aim
is to use a fleet of vehicles to maximize the number of served requests and minimize
the traveled distance. The problem is known in the literature as the same-day deliv-
ery problem, and it is of high importance because it models a number of real-world
applications, including the delivery of online purchases. We solve the same-day de-
livery problem by proposing a novel branch-and-regret algorithm in which sampled
scenarios are used to anticipate future events and an adaptive large neighborhood
search is iteratively invoked to optimize routing plans. The branch-and-regret is
equipped with four innovation elements: a new way to model the subproblem, a
new policy to generate scenarios, new consensus functions, and a new branching
scheme. Extensive computational experiments on a large variety of instances prove
the outstanding performance of the branch-and-regret, also in comparison with re-
cent literature, in terms of served requests, traveled distance, and computational
effort.

4.1 Introduction

In recent years, online purchases have become more and more a common practice
to request services or goods at home, changing the habit in which many traditional
markets operate. A huge number of e-commerce sellers appeared on the web, and
many companies changed their focus to direct-to-consumer deliveries to expand
their business. Dayarian, Savelsbergh, and Clarke [27] mentioned that online shop-
ping followed by home delivery has annually increased by around 8.5% in mature
markets (e.g., the United States) and close to 300% in developing markets (e.g., In-
dia). This trend has been increased by the Covid-19 pandemic, which made people
reluctant to leave their homes.

As a consequence, the delivery of online purchases has become a crucial logistic
activity. From an Operations Research perspective, managing efficiently and effec-
tively this activity is not an easy task. Requests arrive dynamically during the day
and must be served within predetermined time windows. Although previous infor-
mation could be collected, it might be hard to respond timely to peaks of requests
at certain hours of the day. Optimization plays thus an important role in achieving
affordable logistic costs.

*The results of this chapter appears in: Côté, J. F., de Queiroz, T. A., Gallesi, F., & Iori, M. (2023).
"A branch-and-regret algorithm for the same-day delivery problem". Transportation Research Part E:
Logistics and Transportation Review, 177, 103226.
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Historically, this type of problem has been addressed in the field of stochastic
dynamic vehicle routing problems (SDVRPs), for which a broad and wide literature is
known (e.g., Pillac et al. [73] and Ritzinger, Puchinger, and Hartl [78]). In recent
years, the interest in such problems has risen even more, and a particular effort has
been put on applications where requests have very strict time windows, of typically
one hour or less. Such applications appear in dedicated online services for purchase
and delivery of parcels (e.g., Amazon Prime Now) or meals (e.g., Uber Eats). In-
novative optimization techniques have been consequently developed to tackle these
challenging problems (e.g., Ulmer [88]).

In this context, Voccia, Campbell, and Thomas [94] introduced the same-day de-
livery problem (SDDP), a SDVRP in which requests from a limited geographical area
arrive dynamically during the day and each must be served within a strict time win-
dow. All goods are based at a central depot where a fleet of identical vehicles is
available to perform the deliveries. Requests that cannot be handled by the fleet
are passed to a third-party logistic operator (3PL). The aim is to minimize the number
of unserved requests, supposing that previous stochastic information on the arrival
process is available and can be used to help decisions when a request is issued. For-
mally speaking, the SDDP corresponds to a dynamic vehicle routing problem with
stochastic customers and multiple delivery routes per vehicle. Clearly, the problem
models a variety of applications, including the distribution of online purchases.

The SDDP shares with other SDVRPs a number of difficult questions that a de-
cision maker should consider when planning the distribution service, for instance:
How many vehicles do we need to perform the requests efficiently? How can we
efficiently route the vehicles? Should we wait for new requests, or should we start
delivering as soon as possible? Can we make use of information from the past to
devise better routing plans? Should we dynamically reroute the vehicles when new
requests arrive? How can we effectively estimate the cost of a routing plan, given
the limited information we have?

In this paper, we propose a solution approach that can help a decision-maker to
obtain proper answers to the above questions in the context of the SDDP. We investi-
gate the problem of minimizing the number of rejected requests and, as a secondary
objective, the total routing cost. We do not allow transshipments among vehicles, but
allow vehicles to wait at the depot to anticipate future requests. Consistently with
Voccia, Campbell, and Thomas [94], we consider hard time window constraints and
assume that requests impossible to deliver on time are assigned to a 3PL. The use
of a 3PL is largely adopted in the related literature and is consistent with real-world
applications (see, e.g., Amazon Flex, https://flex.amazon.com/).

More in detail, our contributions consist of:

1. An innovative branch-and-regret (B&R) heuristic. The B&R is equipped with
four main innovation elements, namely:

(i) New subproblem modeling. We present a new way to model the SDDP
as a pickup-and-delivery problem with time windows and release dates,
which brings advantages when considering preemptive vehicle returns to
the depot and when planning efficient routes containing real and fictive
requests from sampled scenarios;

(ii) New scenario generation policy. We propose a new policy to generate sce-
narios, called Correlated-data Sampling (CDS), where we incorporate only
fictive requests having a release time lower than the farthest end time
window of any known request plus a constant value. This policy allows

https://flex.amazon.com/
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the B&R to obtain improved computational results with respect to the
standard policy used in the literature;

(iii) New consensus functions. We develop two new consensus functions, As-
signment Similarity (AS) and Edit Distance (ED), the first of which produces
better results than the consensus function Route Similarity (RS) used by
Voccia, Campbell, and Thomas [94] and commonly adopted in the litera-
ture;

(iv) New branching scheme. We present a new branching scheme, called Go-
Now-Wait, where we consider as branching alternatives a vehicle depart-
ing now, a vehicle departing in the future, and the assignment of a request
to the 3PL. This scheme produces better results in our experiments than
an adaptation to the SDDP of the branching scheme by Tirado et al. [87];

2. Extensive computational tests on benchmark instances. We conduct a compre-
hensive and extensive set of computational experiments that prove the out-
standing performance of the B&R on benchmark SDDP instances over other
classical algorithms from the literature such as the reoptimization heuristic and
the scenario-based planning approach (SBPA). Indeed, the best algorithm by Voc-
cia, Campbell, and Thomas [94] requires on average 96 seconds of execution
time per event, while the B&R requires on average just 1 second on a similar
computer, and at the same time improves by almost 20% the number of served
requests;

3. Study of the preemptive depot return policy. We computationally evaluate
the important problem variant in which the preemptive depot return (PDR) of
the vehicles to the depot is allowed. In the PDR variant, vehicles are allowed
to return to the depot after serving a request even if they still have items on
board. This possibly allows collecting new requests and optimize the route
the vehicle will perform after departing again from the depot. We show that
this policy has strong managerial implications because it can lead to important
cost savings, but only in the presence of particular problem conditions, such
as randomly dispersed time window start times and limited fleet size.

The remainder of the paper is organized as follows. In Section 4.2, we discuss
the literature on the SDDP and related problems, pointing out the main previous
contributions and the similarities/differences from our work. Section 4.3 contains a
formal description of the SDDP and the formal modeling of the SDDP as a dynamic
pickup and delivery problem. Section 4.4 contains the details of our B&R algorithm.
Section 4.5 is devoted to the computational study, with detailed results for diverse
sets of parameter configurations and problem instances. In Section 4.6, we give some
concluding remarks and point toward future, promising research directions.

4.2 Literature Review

This section presents a literature review focused on SDDPs arising in the context of
e-commerce. For a more exhaustive review on SDVRPs, we refer to Pillac et al. [73]
for a general overview, to Ritzinger, Puchinger, and Hartl [78] for a survey and a
comparison of a broad range of methods from the literature, and to Ulmer et al. [89]
for a study on the different techniques used to solve SDVRPs.

The SDDP shares characteristics with several well-known problems in the litera-
ture. Typically, vehicles perform several short trips from the depot to the customers
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when capacity or time is limited. This feature appears in the multi-trip vehicle routing
problem (MTVRP) and was introduced by Fleischmann [34], who proposes a savings
algorithm to build routes and a bin packing heuristic to combine the built routes
into work shifts. Several other works, including Battarra, Monaci, and Vigo [10],
Azi, Gendreau, and Potvin [8] and Cattaruzza et al. [19], propose more complex
heuristics. Exact algorithms based on column generation are proposed by Azi, Gen-
dreau, and Potvin [6], Mingozzi, Roberti, and Toth [67] and Paradiso et al. [72]. A
survey on MTVRPs can be found in Cattaruzza, Absi, and Feillet [18].

Another relevant SDDP characteristic is related to the release date of the requests.
This represents the moment in which the requested merchandise becomes available
for delivery. This implies that a request can only be part of a route that departs later
than the request release date. Vehicles can then perform new routes by returning
to the depot when new requests become available. This is particularly relevant in
problems where requests are not all known at the beginning of the time horizon.
This characteristic is studied by Arda et al. [3] in a production and transportation
problem. In their study, stochastic information on release dates is used within sev-
eral heuristics to solve a stochastic optimization model over a rolling horizon. Cat-
taruzza, Absi, and Feillet [17] consider the case where a warehouse is receiving loads
of merchandise by trucks all day long. Once a load has been prepared for shipping,
a route can be planned to perform the deliveries. The authors propose a genetic
algorithm and solve instances with up to 100 customers.

The earliest studied applications of SDDPs can be found in the domain of e-
groceries. Lin and Mahmassani [59] provide answers to several matters that are still
studied today: the impact of different time window sizes, the effect of city configu-
ration, and the delivery from either a centralized warehouse or from several grocery
stores. They find out that narrow time windows are economically viable when the
demand is high as this minimizes the idle time of the vehicles, whereas a low de-
mand should be coupled with larger time windows. Their study diverges from our
application as customers must order before a cut-off time. Once the cut-off time has
passed, vehicles leave the depot to perform their routes, one per vehicle. Liu et al.
[61] study again the SDDP for grocery delivery in the context of driverless delivery
robots. They present a hybrid artificial immune algorithm and test it on different
data sets, including a real one, obtaining computational good results.

For the delivery of short life span products, Azi, Gendreau, and Potvin [7] con-
sider the case where customers are not known at the beginning of the day but are
gradually revealed as time goes on. These products cannot stay on board the ve-
hicles for longer than a specific time. This imposes the vehicles to perform several
short routes, instead of a single long one. When a new event is triggered, the cur-
rent known information is used to plan new routes that serve the highest revenue
requests.

Voccia, Campbell, and Thomas [94] study the SDDP in the context of online pur-
chases where all requests arrive dynamically over the course of the day. A vehicle
fleet is available to pick up the goods from the depot and deliver them to the cus-
tomers. Requests are typically associated with short time windows, and the objective
is to maximize the number of served requests regardless of the distance traveled by
the fleet. They model the problem as a Markov decision process and propose an
SBPA to obtain a route plan at each decision epoch. The approach uses sampled sce-
narios of future requests to build a set of route plans. A consensus function is used
to select the route plan that shares the most characteristics with the others. Such an
approach was originally proposed by Bent and Van Hentenryck [11] for the dynamic
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vehicle routing problem with time windows. Results indicate that more customer re-
quests can be delivered using sampled scenarios than using a simple reoptimization
heuristic.

The dynamic dispatch waves problem by Klapp, Erera, and Toriello [53] shares sev-
eral characteristics with the SDDP. In this problem, requests do not have time win-
dows, and a single vehicle is available to perform the deliveries. The vehicle can
depart from the depot only at specific times, called waves, and must be back at the
depot before a specific deadline. A first variant of the problem was analyzed in
Klapp, Erera, and Toriello [54], who limited their study to the case in which the cus-
tomers are located on a line and the vehicle operating times and costs depend only
on the distance between points. Then, Klapp, Erera, and Toriello [53] addressed
the problem on general network topologies, by proposing two different approaches
to obtain a priori solutions. In an a priori solution, routes are built in a first stage
without knowing all the information. Then, in a second stage, they are updated
whenever new information is revealed by means of a recourse policy.

The delivery dispatch problem is closely related to the dynamic dispatch waves
problem and to the SDDP. It was proposed by Minkoff [68] in the context of replen-
ishing the inventory of a set of customers with stochastic demands. The inventory
level is revealed once a vehicle becomes available to be dispatched. Routes are then
planned to replenish the inventories in such a way that transportation, inventory,
and out-of-stock costs are minimized. Several simplifications are made in order to
model the problem as an Markov Decision Process (MDP), and a heuristic is then
developed to solve it. Heeswijk, Mes, and Schutten [43] considers a similar problem
faced by an urban consolidation center that dynamically receives orders from a set
of customers. This work goes many steps further from Minkoff [68], by considering
time window constraints and removing many simplifications. An approximate dy-
namic programming (ADP) algorithm is proposed and used to solve instances with
up to 25 customers and a time horizon of 10 periods.

Archetti et al. [2] study the dynamic traveling salesman problem with stochas-
tic release dates, which is similar to the dispatch wave problem. It differs from it
because the time horizon is not bounded and the objective is to minimize the total
travel time plus the waiting time at the depot. As noted by the authors, this type of
problem might be encountered in situations where goods need to be shipped to the
depot and the transportation time might be affected by traffic or other unforeseen
events. The results they obtained indicate that reoptimizing at short intervals while
the vehicle is waiting is beneficial for reducing the objective function.

An important issue in the SDDP is to decide whether a vehicle should be wait-
ing at the depot for new incoming requests or should depart as soon as possible to
perform deliveries and return to the depot at an earlier time to accommodate more
requests later on. Waiting strategies play a crucial role in SDVRPs as they can help
serve more customers and reduce the traveled distances. Some strategies only use
the information known at the time the decision is taken, whereas others use stochas-
tic information to try to predict new incoming requests. Mitrović-Minić and Laporte
[69] provide four waiting strategies that do not use any knowledge about future
events. The first two are opposite strategies: the Drive-First is a no-wait strategy
where the vehicle departs as soon as possible, whereas the Wait-First imposes to wait
whenever possible. Routes obtained from a deterministic approach that does not
make use of a waiting strategy are typically those obtained by applying the Drive-
First strategy, like those in Azi, Gendreau, and Potvin [7]. The other two strategies
from Mitrović-Minić and Laporte [69] are in-between the previous two, and attempt
to assign an amount of waiting time to some key moments of the routes. Results
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indicate that waiting typically produces shorter routes but increases the number of
used vehicles, whereas the no-wait strategy results in the use of fewer vehicles but at
an increase in traveled distances. A different waiting strategy is proposed by Ghiani
et al. [39]. Given a route, they attempt to improve it by inserting different waiting
times at the nodes, but just focusing on times that are multiple of a given quantity
(e.g., 5 or 10 min).

Waiting strategies are also found in Voccia, Campbell, and Thomas [94]. In their
Wait-First strategy, the amount of waiting time is calculated as the maximum delay
that can be added to the routes that are about to start while respecting the time
window constraints. A second strategy is somehow hidden in the details of the
SBPA. Indeed, as noted by Bent and Van Hentenryck [12], the SBPA has an implicit
waiting strategy when real requests are assigned to a route that also contains fictive
requests. In the context of the SDDP, the fictive requests indicate that new requests
might arrive in the near future and the vehicle should be waiting for some time
before delivering the real ones. This means that some vehicles might be waiting
at the depot for new requests, while others apply a Drive-First strategy and depart
as soon as possible. Results in Voccia, Campbell, and Thomas [94] indicate that the
SBPA with the Wait-First strategy requires 2.8 times more computation time than the
SBPA without it and cannot serve more requests.

In Bent and Van Hentenryck [12], an SBPA is used to analyze the solutions of
the sampled scenarios and decide whether or not a vehicle should wait at its cur-
rent location for possible new requests. This is achieved by counting the number of
times a vehicle has as next visit either a real or a fictive request in the solutions of the
sampled scenarios. The vehicle waits if the resulting number is higher for the fictive
requests. Results show that such a strategy was helpful at maximizing the number
of served customers. In our approach, at a certain epoch, we firstly optimize sce-
narios using a heuristic, and secondly optimize again with the same heuristic but
forcing a waiting time for all the vehicles that are at the depot. If the cost of the
second attempted option is smaller or equivalent to that of the first option, then we
simply wait for the next event. This has the advantage of producing a much quicker
computation. Otherwise, we proceed in a B&R fashion: we consider each request
in the pool, evaluate if it has to be served now, served later, or rejected. For each
alternative, the evaluation is obtained by building a solution with a heuristic. This is
performed for all scenarios and all alternatives, and then the alternative giving the
lowest average cost is chosen and implemented. This scheme has the advantage of
being adaptable to different problems.

Another feature of SDDPs concerns allowing or not vehicles to perform PDRs.
A PDR implies that a vehicle interrupts its current route and returns to the depot to
pick up new requests. This might allow serving more requests and reducing traveled
distances. The PDRs are not allowed in Azi, Gendreau, and Potvin [7], nor in Voc-
cia, Campbell, and Thomas [94]. The idea was introduced by Ulmer, Thomas, and
Mattfeld [92], who exploit it inside an algorithm based on approximate dynamic
programming for the solution of single-vehicle instances. Their results show that
PDRs can effectively allow more requests to be served.

In some applications, it might be required to decide immediately if a new re-
quest is accepted and delivered or if it is rejected. This requirement can be useful
when some work has to be performed to make the request ready for shipment, and
hence rejecting it at a later stage might cause unnecessary costs. This is defined re-
quest acceptance policy in Klapp, Erera, and Toriello [55] or customer acceptance problem
in Ulmer and Thomas [90]. To our knowledge, this policy was first considered in
Azi, Gendreau, and Potvin [7]. In this work, when facing a new request, the authors
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first check if the request can be feasibly inserted in the current routes. If no feasible
insertion position is found, then the request is rejected, otherwise, a lookahead algo-
rithm, similar to an SBPA, is executed. This request acceptance policy is also studied
in detail in Klapp, Erera, and Toriello [55] for the dispatch wave problem. They use
approaches similar to those of Klapp, Erera, and Toriello [53] and calculate that an
immediate request acceptance policy increases costs by an average of 4.5%.

Our approaches for solving the SDDP rely on sampling scenarios that incorpo-
rate stochastic knowledge of future events. Sampled scenarios are generated each
time a new event occurs and an optimization phase is executed next to obtain a
routing plan. This consists of finding a plan that can be implemented in all scenarios,
leading to low-cost solutions. Typically, each scenario is solved separately to allevi-
ate the computational complexity. Unfortunately, each routing plan is specifically
tailored for its scenario and implementing one of them does not ensure achieving a
low-cost solution in the other scenarios. The literature has come up with different
approaches for addressing this problem, which can be seen as partial explorations of
a branch-and-bound tree for a stochastic integer program (see Haneveld and Vlerk
[41]). Scenarios are solved at each node of the tree to fix some first-stage decisions.
For example, the SBPA proposed by Bent and Van Hentenryck [11] solves each sce-
nario and selects the plan having the most parts in common with other plans by
using a consensus function. This can be interpreted as solving only the root node of
the tree.

Another strategy brought up by Løkketangen and Woodruff [62], called progres-
sive hedging heuristic (PHH), and later used by Hvattum, Løkketangen, and Laporte
[46] among others, is to solve all scenarios and then find the alternative a that is the
most common alternative among the alternatives that are not performed in all the
resulting solutions. This alternative is then fixed and plans, not having it, are opti-
mized. The process iterates until all plans implement the same set of alternatives.
Again, this can be seen as solving a node in a branch-and-bound tree, selecting a
variable, and creating a single child node.

Hvattum, Løkketangen, and Laporte [47] propose the B&R heuristic as an im-
provement of the PHH that consists of evaluating the cost of performing or not an
alternative a. The least-cost alternative, a or not a, is then fixed, and the algorithm it-
erates until all plans implement the same alternatives. Their results indicate that the
B&R heuristic is superior in terms of solution quality to the PHH. The branch-and-
bound tree, in this case, is partially explored: a node is solved, a variable is chosen
for branching, and child nodes are generated and solved. The exploration continues
by adopting the least-cost child node until a solution is reached. In Section 4.4 below,
we detail several innovative contributions to the B&R literature.

Table 4.1 gives a brief summary aimed at contrasting our work with the main
ones in the SDDP literature, both in terms of solution method adopted and character-
istics of the problem solved. The most interesting contrast is with the work of Voccia,
Campbell, and Thomas [94]. Both our work and theirs use stochastic information to
solve the SDDP with multiple vehicles and 3PL, and, in addition, perform tests on
the same instances. However, while Voccia, Campbell, and Thomas [94] model the
subproblem as a multi-trip team orienteering problem with time windows (MTTOPTW),
we model it as a pickup and delivery problem with time windows and release dates (DPDP).
Furthermore, we accept PDRs, thus searching in a larger solution space. In addition,
they use only a consensus function and a way to generate scenarios taken from the
literature (described below in Section 4.3), whereas we use a new scenario genera-
tion policy and a new consensus functions. The most notable difference is that they
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Table 4.1: Comparison with SDDP literature
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Archetti et al. [2] Reoptimization ✓ 50
Azi, Gendreau, and Potvin [7] ✓ Reoptimization, PHH ✓ ✓ 72-144

Dayarian, Savelsbergh, and Clarke [27] Reoptimization ✓ up to 425
Dayarian and Savelsbergh [26] ✓ Reoptimization, PHH ✓ N/A
Klapp, Erera, and Toriello [53] A priori policy ✓ ✓ 50
Klapp, Erera, and Toriello [54] A priori policy ✓ ✓ 5-100
Klapp, Erera, and Toriello [55] A priori policy ✓ ✓ 50

Minkoff [68] ✓ ADP ✓ 10
Ulmer [88] ✓ ADP ✓ ✓ 60-180

Ulmer, Thomas, and Mattfeld [92] ✓ ADP ✓ ✓ 30-100
Heeswijk, Mes, and Schutten [43] ✓ ADP ✓ 3-50

Voccia, Campbell, and Thomas [94] ✓ SBPA RS ✓ ✓ 48-192

This work ✓ ✓ B&R AS ✓ ✓ ✓ 96-192

use an SBPA, so they do not perform any branching scheme, which is, instead, the
key ingredient of our B&R algorithm.

4.3 Problem Definition and Modeling

The SDDP considers a complete directed graph G = (L0, A), where L0 comprises
a depot, vertex 0, and a set L of customer locations distributed over a geographical
area. The depot is equipped with a fleet of M identical vehicles and is associated
with start (t = 0) and end (t = T) times between which vehicles can depart and
arrive. The time interval [0, T] corresponds to the working hours of the depot. With
each arc (i, j) ∈ A are associated a deterministic travel time tij and a traveling dis-
tance cij, which are known in advance. During the time horizon, requests arrive at a
rate λi ≥ 0 from each location i ∈ L.

Let R be the set of requests that occur during the daily time horizon. Set R is
composed of requests that are known in advance (from before the starting time of
the operations) and others that will be revealed as time unfolds. Each request k ∈ R
is revealed at a release time rk and a delivery time window [ek, lk]. Each request
should be picked at the central depot and delivered by a vehicle. In case a vehicle
arrives at a customer location for delivering request k before the start time ek, it
waits until ek to start the service. The service must begin before lk, so we consider
hard time window constraints. In addition, we consider the service time to be always
equal to zero. Requests found impossible to deliver on time are assigned to a 3PL
paying an additional cost. We assume that the delivery costs incurred by the fleet
for performing a request are always lower than the cost of the 3PL operator.

Each vehicle may perform multiple routes during the time horizon, starting at
any time t ≥ 0 and finishing at any time t ≤ T. The routes performed by the vehicle
may involve the following actions:

(i) wait at the depot for new requests;

(ii) pick up at the depot one or more requests; and
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(iii) deliver one or more requests to customers.

Once a vehicle departs from a location, it cannot divert its path until it has
reached its next location. After a delivery, a vehicle can continue its route as planned
or interrupt the route and return to the depot. This means the vehicle is not required
to finish serving all its onboard requests before returning to the depot. In other
words, we allow preemptive returns to the depot. Once a vehicle has picked up a re-
quest, it must serve it, so it cannot unload any request at the depot. In other words,
we forbid transshipments among vehicles. When using the 3PL for delivering a re-
quest, we simply assume we pay a high cost and we do not explicitly model the 3PL
routes. The decision of assigning a request to the 3PL is postponed until we detect
that the fleet will not be able to deliver such a request.

The objective of the SDDP is to determine the routes performed by the vehicles
during the time horizon, aiming first at maximizing the number of served requests
and secondly at minimizing the total traveled distance.

We model the SDDP as a dynamic pickup and delivery problem with time windows
and release dates (DPDP). Under this representation, each request k ∈ R corresponds
to a pair of nodes (pk, dk), where pk is the pickup node and dk the delivery node. In
our case, pk is always coincident with the depot 0, whereas dk is associated with a
customer location in L. Let N be the set of all the pickup and the delivery nodes, and
V = {0} ∪ N. Let k(i) be the request associated with node i ∈ N. The time window
[ep, lp] of the pickup node pk is set to [rk, lk − t0k], whereas that of the delivery node
dk is set to [ed, ld] = [ek, lk], for each k ∈ R. In addition, let A+(i) and A−(i) be the
sets of incoming and outgoing arcs from node i ∈ V.

The use of a DPDP representation of the problem gives some advantages. First,
it is easy to model a preemptive return to the depot, as one simply needs to insert
a pickup in the middle of two deliveries. Second, the constraint forbidding the un-
loading of already picked up requests at the depot is naturally taken into account by
the classical DPDP constraint that imposes a delivery node to be visited by the same
vehicle that visited the corresponding pickup node. Other papers have made simi-
lar modeling approaches for on-demand same-day delivery and dial-a-ride settings,
see, e.g., Arslan et al. [4] and Ulmer et al. [89]. Other authors, as Voccia, Campbell,
and Thomas [94] and Archetti et al. [2], modeled each request of the SDDP as a sin-
gle delivery node located at a customer location. This has the advantage of being
faster to optimize, but it is less flexible and might remove some sequencing pos-
sibilities. For example, in Voccia, Campbell, and Thomas [94] if a fictive delivery
(originated when modeling the stochastic component of the problem) is visited by
a vehicle right after a real delivery, then the vehicle is sent back to the depot. This
makes routes containing real and fictive customers difficult to plan efficiently.

We tackle the dynamic aspect of the SDDP in the classical SDVRP approach (see,
e.g., Gendreau et al. [38]): each time a new event occurs, all the known information is
gathered together, and an optimization step is executed. This step requires making
several decisions (e.g., if a vehicle departs from the depot or another performs a
preemptive return). This classical approach may change consistently according to
the way events and optimization are taken into account. During the working period,
an event occurs each time new information becomes known, or new decision has to
be taken. In our work, we consider three types of events:

• arrival of a new request when there is at least one vehicle available at the depot;

• arrival of a vehicle at the depot or completion of the waiting period of a vehicle
(still at the depot);
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• completion of a delivery by a vehicle that should then visit another customer
(and not return directly to the depot).

The first two types of events are the only ones considered in Voccia, Campbell, and
Thomas [94]. The third type is used only when allowing preemptive returns to the
depot.

When an event occurs, all known information is collected (known requests, the
position of the vehicles, goods that are on board the vehicles, etc.), and an optimiza-
tion algorithm is invoked to take the next routing decisions. The optimization algo-
rithm returns a routing plan each time it is invoked. A routing plan, or just plan for
short in the following, is a partial solution to the dynamic problem, which might be
later modified/integrated according to new information revealed. Note that some
papers do not use the term solution when referring to a routing plan, but policy, so
as to give more emphasis to the dynamic aspect of the problem. In this paper, we
adopt the term solution.

Being dynamic problems, SDDPs are mathematically modeled as Markov Deci-
sion Problems (MDP). A formal MDP has been presented by Voccia, Campbell, and
Thomas [94]. In the following, we present, instead, a mathematical model of the
static deterministic case, when everything is precisely known in advance, based on
integer linear programming. The decision variables are the following ones:

• xm
ij is equal to 1 if arc (i, j) is traversed by vehicle m, 0 otherwise;

• ykm is equal to 1 if request k is served by vehicle m, 0 otherwise;

• Si indicates the starting time of service at node i ∈ V.

The model can then be formulated as follows:

min (|R| − ∑
m∈M

∑
k∈R

ykm)U + ∑
m∈M

∑
(i,j)∈A

cijxm
ij (4.1)

s.t. ∑
j∈A+(i)

xm
ij = yk(i)m m ∈ M, i ∈ N (4.2)

∑
j∈A−(i)

xm
ji = yk(i)m m ∈ M, i ∈ N (4.3)

∑
j∈A+(0)

xm
0j ≤ 1 m ∈ M (4.4)

∑
m∈M

ykm ≤ 1 k ∈ R (4.5)

Sj ≥ Si +
(
tij + U

)
∑

m∈M
xm

ij − U (i, j) ∈ A (4.6)

ei ≤ Si ≤ li i ∈ V (4.7)
Sdk ≥ Spk + tpkdk k ∈ R (4.8)

xm
ij ∈ {0, 1} (i, j) ∈ A, m ∈ M (4.9)

ykm ∈ {0, 1} k ∈ R, m ∈ M (4.10)
Si ≥ 0 i ∈ V. (4.11)

The objective function (4.1) minimizes the unserved requests and the overall trans-
portation cost, with U being a large number. Constraints (4.2) and (4.3) ensure the
two nodes of the request are visited by the same vehicle and also impose degree con-
straints on these nodes. Constraints (4.4) ensure that at most M vehicles are used.
Constraints (4.5) force a request to be served by at most one vehicle. Constraints
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(4.6) and (4.7) guarantee feasibility with respect to time windows. In addition, con-
straints (4.6) also eliminate subtours. The precedence order is preserved by means
of constraints (4.8). Constraints (4.9), (4.10) and (4.11) impose the domain of the
variables.

4.4 Branch-and-regret Algorithm

In this section, we present the detail of the B&R heuristic that we implemented for
the SDDP. The B&R builds upon the classical reoptimization heuristic and SBPA,
which we briefly revise here.

The reoptimization heuristic is a dynamic algorithm that ignores the stochastic as-
pects of the problem and works as follows: first, an empty routing plan s is created
and all known requests at the beginning of the time horizon are added to s; second,
s is optimized by a heuristic; then, each time there is a new event, all actions that
were performed prior to the current time and all those being currently performed
are locked in plan s, while the possible newly revealed requests are added to s and
another call to the optimization algorithm is performed to adjust s. Once all events
have been considered, the algorithm terminates with a final plan containing all rout-
ing actions.

The SBPA (Bent and Van Hentenryck [11]) operates as the reoptimization heuris-
tic, but at each event, instead of directly computing a routing plan s with the known
requests, creates a set of scenarios Ω containing fictive requests. Formally, a scenario
is a set of customer requests including both known requests, which have been al-
ready issued by the customers, and future requests (also called fictive requests), which
might appear later on and are generated by sampling the probability distribution of
their appearance. In detail, at each event the SBPA creates a plan sω for each sce-
nario ω ∈ Ω, including all known requests and locked components of s, plus the set
of fictive requests from ω. Each plan sω is optimized by invoking a heuristic, and the
routes having at least one fictive request are removed. This removal can be seen as a
way to delay the departure of the corresponding vehicles to possibly accommodate
new requests that might arrive in the near future. At last, all plans are evaluated
by means of a consensus functions (see Section 4.4.2 below) and the plan with the
highest consensus function score is selected.

4.4.1 Branch-and-Regret Heuristic

The B&R heuristic was proposed by Hvattum, Løkketangen, and Laporte [47] for
solving SDVRPs. Its main components are similar to those adopted in the SBPA, but
the method goes a step forward to find solutions that should be better on average.
In the B&R, at each new event, scenarios are generated and plans are obtained by
optimizing the scenarios. Next, the costs of implementing different alternatives are
evaluated with the aim of finding a plan that can be implemented in all scenarios. In
Hvattum, Løkketangen, and Laporte [47], this is achieved in two steps: first, assign
a narrower time window to each known request, and second, select which requests
are served next by the available vehicles. The average cost of a narrower time win-
dow for a specific request is obtained by fixing the time window to be in the next
time interval in each scenario. The average cost of regretting this alternative is also
calculated by changing the time window to a farther time in the future. The branch-
ing consists in imposing the time window leading to the least average cost. The
second step, aimed at selecting which requests are served next, is performed once
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the time windows of all known requests have been fixed. Once this two-step deci-
sion phase is concluded, the actions to be performed immediately are implemented,
whereas the other actions, like the time window changes, are canceled (as they can
be reevaluated at the next event).

This branching scheme is better suited for problems involving only pickup op-
erations. The routes in these problems are not decided in advance, they are built
gradually as customer requests arrive throughout the day. For the SDDP, all cus-
tomers of a route have to be figured out before the vehicle can depart. We thus differ
from Hvattum, Løkketangen, and Laporte [47] by evaluating different alternatives
that are valuable in the context of the SDDP. This is done in three steps:

1. evaluating if the vehicles at the depot should wait;

2. ensuring that the same alternative is implemented in each scenario for each
known request;

3. selecting a plan with a consensus function.

In the first step, we evaluate two alternatives for the whole fleet: (a) vehicles at
the depot perform their routes as planned, and (b) vehicles at the depot wait for one
unit of time. In practice, we first optimize all scenarios without explicitly allowing
vehicles at the depot to wait, and we compute the average cost. This gives the cost
of alternative (a). For alternative (b), we try to postpone for one unit of time ev-
ery route that is about to leave in the solution of each scenario. If this is feasible,
we compute the cost of this scenario. Otherwise, we reoptimize the solution of the
scenario to force all vehicles at the depot to wait for one unit of time. The average
cost is computed to get the cost of alternative (b). If the second alternative is not
more expensive than the first one, then we opt to wait. To this aim, we create a new
event whose delay is set to the maximum delay that can be added to the routes of
the scenarios so that they remain feasible. If, instead, the second alternative is more
expensive than the first one, then we proceed to the second step.

In the second step, we make sure that for all known requests, exactly one among
the three following alternatives is selected in all scenarios:

• a vehicle departs now from the depot to deliver the request (go now);

• a vehicle departs from the depot at a future time to deliver the request (wait);

• the request is not delivered at all (reject).

If at least one request does not implement the same alternative in all scenarios,
we iterate through these unfixed requests to ensure that all plans implement the same
alternative for each request. At each iteration, we select the unfixed request having
the highest count of the go now alternative. Next, we evaluate the average cost of
performing each of the previous three alternatives. This is done by calculating the
routing cost of imposing each alternative in each scenario. The alternative having
the lowest average cost is chosen and implemented. This evaluation process is per-
formed until each known request implements the same alternative in all scenarios.

Finally, the third step is to choose a plan using a consensus functions (to be de-
fined in Section 4.4.2).

A pseudo-code of our B&R heuristic is presented in Algorithm 1. At each event,
the routing plan s is locked, the new requests are added to s, and a set of scenarios is
generated. Each scenario ω is optimized to obtain a plan sω. We evaluate the alter-
native of having the vehicles waiting at the depot. If this is not more expensive than



4.4. Branch-and-regret Algorithm 39

having the vehicles performing their routes as planned, we wait for the next event.
Next, we calculate from the plans sω the set L of requests that do not implement the
same alternative in all scenarios. Next, we perform the following steps until L is
empty. First, for each request r ∈ L, we calculate gonow[r] as the number of times
r is in a route that departs now in the plans sω. We select the request r having the
highest gonow[r] value. We define Φr as the set of alternatives for request r and for
each alternative ϕ ∈ Φr we impose ϕ in each scenario ω to obtain the plan sϕ

ω. We
calculate the average cost of each alternative, and the alternative ϕ with the lowest
cost is chosen and implemented (sω = sϕ

ω). Set L is then updated using the plans
sω, and the process is iterated for the next request. Once L is empty, we implement
the plan sω with the highest score, that is, we remove the future requests from sω to
obtain s.

Algorithm 1 Branch-and-Regret heuristic for the SDDP
Input: Consensus function f

1: Create a plan s that contains the requests known at time 0
2: while there is an event or time = 0 do
3: Lock all performed actions in plan s
4: Add the new requests to s
5: Generate scenario set Ω of fictive requests
6: for scenario ω in Ω do
7: Set sω = s ∪ ω and optimize plan sω with ALNS
8: end for
9: Evaluate if the vehicles at the depot should wait, if so, wait for the next event

10: L: the requests that do not implement the same alternative in all scenarios
11: while L is not empty do
12: Calculate gonow[r] from plans sω for each r ∈ L
13: Select the request r = arg maxr∈R′{gonow[r]}
14: for each alternative ϕ in Φr and scenario ω in Ω do
15: Set sϕ

ω = sω and optimize sϕ
ω with ALNS imposing ϕ on r

16: end for
17: Implement the least-cost alternative ϕ on r
18: sω = sϕ

ω

19: Update L from the plans sω

20: end while
21: Select the plan sω having the highest score on consensus function f
22: s = sω \ {ω}
23: end while

4.4.2 Consensus functions

The B&R, as well as the simpler SBPA, selects the routing plan to be adopted by us-
ing a consensus function. A consensus function is a function that receives in input the
set of routing plans generated for all scenarios and then returns a score for each of
them. The plan with the highest score is the one adopted for implementation. Voc-
cia, Campbell, and Thomas [94] use a function, which we name Route Similarity (RS),
that consists of counting the number of times the routes of a plan appear in other
plans. To better describe RS, and other new consensus functions that we propose
here, we make use of the following example.
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Example 1. We are given three routing plans (i.e., solutions), each having three
routes that can possibly depart immediately. By defining a plan in square brackets,
and a route in round brackets, the example is: [(1-3-5-7), (4), (6-2)], [(1-3), (4-7), (6)]
and [(wait), (4), (6)].

In Example 1, the routes of plans #1 and #2 appear just once, whereas those of
plan #3 appear twice each, and hence plan #3 would be the one chosen and imple-
mented by the RS function. The drawback of a plan built with this strategy is that it
might require a larger number of routes, thus increasing the distance, without per-
forming the most common actions found among scenarios. For Example 1, in 2 out
of 3 plans, the most common actions are to depart now and deliver requests 1, 3, 4,
6, and 7.

In the following, we propose two new consensus functions that look at different
actions in the plans. The first, called Assignment Similarity (AS), counts the number
of times the pairs (request, route number) of a plan appear in other plans. Ties are
broken by plan number. In Example 1, plan #1 has an AS score of 6, plan #2 of 6, and
plan #3 of 4. The first plan would thus be the one selected by function AS.

The second function, called Edit Distance (ED), sums the number of changes re-
quired in a plan to obtain each of the other plans. The plan having the smallest
number of required changes is selected. Function ED builds upon the Levenshtein
distance (Levenshtein [58]), which is used to count the minimum number of changes
required to change one word into another word. For Example 1, to obtain plan #2
from plan #1, we would need to remove requests 5 and 7 from route 1, add request
7 to route 2, and remove request 2 (resulting in 4 changes). To obtain plan #3 from
plan #1, we would need instead to remove requests, 1, 2, 3, 5, and 7 (for a total of 5
changes). The ED score of plan #1 is thus 9. Similarly, the ED score of plan #2 is 7,
and that of plan #3 is 8. The second plan would thus be selected by function ED.

As the vehicle fleet is homogeneous, an additional step is added in ED to avoid
counting the number of changes between two solutions having the same routes but
performed by different vehicles. For instance, let us add to Example 1 a fourth plan
that is simply obtained by a rearrangement of the routes of the first plan, namely [(6-
2), (1-3-5-7), (4)], then the number of changes according to the ED function would be
high between plans 1 and 4 (i.e., 14 changes would be needed). To avoid this inac-
curate evaluation, when comparing two plans, we create an instance of the classical
Assignment Problem (AP), where the nodes on the left side of the bipartite graph are
the M routes of the first plan, and the nodes on the right side are the M routes of
the second plan. The cost of each arc is set to the number of changes required to
transform a route into the other. An AP is solved for each pair of plans, through the
Hungarian algorithm, to obtain the minimal number of changes regardless of the
route assignments.

A function that is similar to ED was proposed by Song et al. [82] for a multi-
period team-orienteering problem. They compute the similarity between two plans
by using a Hamming Distance. Then, they attempt reducing symmetries by solving
the AP above, but just in a heuristic way. A detailed computational assessment of
the RS, AS, and ED consensus functions is provided below in Section 4.5.

4.4.3 Scenario Generation

The B&R use sampled scenarios to guide the decision process. The number of sce-
narios has a major impact on solution quality and computation time. Typically, com-
putation time increases linearly in the number of scenarios. Different conclusions are
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taken in the literature on the number of scenarios that produce the best trade-off be-
tween solution quality and computing effort. Hvattum, Løkketangen, and Laporte
[46] tested several sizes ranging from 30 to 600 scenarios and concluded that the
best option is to have as many scenarios as possible. In a different setting, Hvattum,
Løkketangen, and Laporte [47] obtained a different conclusion as, after testing sizes
from 1 to 60 scenarios, they obtained their best solutions with 30 scenarios. In Voccia,
Campbell, and Thomas [94], the authors made tests using 10, 25, and 50 scenarios,
and noted that the best performance was obtained using 10 scenarios. Clearly, all
these conclusions are problem-dependent and based on the particular instances ad-
dressed in those papers. In Section 4.5.1 below, we obtain some more insights on this
aspect by means of extensive tests performed by varying the number of scenarios.

The size of the sampling horizon is also a relevant aspect to solve the SDDP. Voc-
cia, Campbell, and Thomas [94] opted to maintain in the scenarios all fictive requests
that appear in the successive ρ instants of time. This reduces the subproblem size,
lowers computation times, and emphasizes the decisions that have to be taken in
the immediate future. The rationale is that fictive requests in a faraway future might
simply act as noise in the decision-making process. This strategy is also tested in
Section 4.5.1. In addition, we propose a new alternative method. As it can be noted,
using a fixed sampling horizon can perform well when the length of the horizon is
correlated with the data of the instance. However, lower quality results might be ex-
pected when ρ is too small and the time windows are large, as this might lead to too
early departures. The alternative method that we developed, called correlated-data
sampling (CDS), incorporates only the fictive requests having a release time lower
than the farthest end time window of any known request plus a constant value ρ̄.
The idea, computationally tested below, is to consider only fictive requests that can
impact the decision process.

4.4.4 Optimizing Subproblems

The B&R is based on the iterated solution of DPDP subproblems that appear during
the search. This is made by an optimize function, invoked at steps 7 and 15 of Algo-
rithm 1. The function receives as input a plan that might contain empty routes and
not-yet assigned requests, routes with completed requests, or routes with a mix of
completed and non completed requests. Its aim is to obtain a plan that satisfies all
constraints of the DPDP indicated in Section 4.3 and has the minimum total cost. In
addition, the function returns a high cost for any plan not respecting the decisions
taken at the previous branches. The function that we implemented is based on the
execution of four steps.

First, the unassigned requests are sequentially inserted inside the plan using the
Regret-k heuristic of Potvin and Rousseau [74]. The algorithm works as follows: for
each request, it calculates the minimal insertion cost of the request inside each route.
Then, at each iteration, it selects the request having the largest sum of differences
between the lowest insertion cost and the insertion cost into the other k best routes,
in absolute value. The selected request is inserted in the route with the lowest in-
sertion cost. The minimal insertion cost of the remaining requests inside this route
is updated. If we cannot feasibly insert a request, then this request is inserted into a
bank and resumed later in the local search phase.

Second, the local search operators Relocate and Exchange are executed. The two
algorithms operate similarly: Relocate removes a request from its current position
in a route or from the request bank, and attempts to reinsert it in another position in
the same route or another one, whereas Exchange takes two requests from different
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routes and tries to insert them in each other route. Both methods look for insertion
positions that minimize the cost of the resulting plan. If improving positions are
found, they are implemented; otherwise, the requests are reinserted in their origi-
nal positions. The two operators are executed, one after the other, until no further
improvement can be found.

Third, the classical ALNS of Ropke and Pisinger [79] is called. We adopt an ALNS
approach because of the good results it achieved on a number of related applications
(see, e.g., Sun et al. [84]). At each iteration, a removal and an insertion heuristic are
selected from a pool of heuristics. A random number of requests are then removed
from the plan and inserted in the request bank using the removal heuristics. Then,
the insertion heuristic tries to insert them back in the plan with the hope of finding
an improved solution. In addition, the removal and insertion heuristics make sure
that completed or fixed requests remain in their position. Our implementation is the
same as the one described in Ropke and Pisinger [79], with the following exceptions:
1) we only use the Random and Shaw removal heuristics; 2) the cooling rate is set to
0.8; and 3) the number of iterations is decided according to the tests of Section 4.5.

Fourth, the two local searches invoked at step two are invoked once more in a
last attempt to improve the plan.

4.4.5 Dealing with Preemptive Depot Returns

The option of allowing or not PDRs was formally proposed by Ulmer, Thomas, and
Mattfeld [92]. For many works in the literature (namely, Azi, Gendreau, and Potvin
[7], Voccia, Campbell, and Thomas [94], Klapp, Erera, and Toriello [53] and Archetti
et al. [2]), once a vehicle departs to perform deliveries, it has to complete its entire
route before returning to the depot. PDRs allow vehicles to return to the depot be-
fore the routes are completed. Enabling this might help at reducing distances or at
delivering more requests. The conclusion on whether this policy is advantageous or
not are mixed. Klapp, Erera, and Toriello [53] claim that the benefits are marginal.
On the other hand, Ulmer, Thomas, and Mattfeld [92] state that the policy leads to
relevant savings.

Our framework can easily deal with the PDR variant because of the way the
SDDP is modeled. As mentioned, we represent the SDDP as a DPDP, and having
pickup and delivery nodes enable subproblems to decide easily if a pickup is to be
inserted between two deliveries belonging to a newly departed route. The pickup
would represent a return to the depot. Each vehicle maintains a current node that
represents the first node after which a request can be inserted. Route modifications
can only occur after that node. Note that if we want to forbid PDRs, then we simply
set the current node to the last delivery node of the route.

4.5 Experimental Results

In this section, we present the results of extensive computational tests performed to
evaluate the B&R. Each instance was solved 10 times, each time with a different seed.
In detail, we determine the best B&R configuration (Section 4.5.1), we evaluate the
impact of PDRs (Section 4.5.2), we compare our B&R against the literature (Section
4.5.3), we test it on large-size instances (Section 4.5.4), and finally study in detail the
solution structures (Section 4.5.5). Our algorithm has been coded in C++ and our
tests have been executed by using a single core of an Intel 2.667 GHz Westmer EP
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X5650 processor. For comparison purposes, we have made the instances that we
used publicly available at https://sites.google.com/view/jfcote/.

4.5.1 Parameter Setting and Sensitivity Analysis

This section analyzes the results obtained by the B&R algorithm under different pa-
rameter configurations on a set that contains 125 instances selected from the bench-
mark set by Voccia, Campbell, and Thomas [94] plus 25 additional instances that we
created. The instances are divided into three types according to the way customer
locations have been generated: clustered; randomly dispersed; and both randomly
dispersed and clustered. In addition, the instances are characterized by five types
of time windows. The first four types, namely TW.d1, TW.f, TW.h, and TW.r, have
all a one-hour deadline but differ on the start time of the time windows, which is
equal to the release date for TW.d1, a fixed time in the future for TW.f, the remaining
hours of the day for TW.h, and randomly dispersed times for TW.r. The fifth type,
called TW.d2, is equivalent to TW.d1 but has a two-hour deadline. An additional set
of 25 instances were also created from the 25 TW.d1 instances by simply removing
the time windows. These 25 instances are called No TW in the following. The total
number of instances is thus 150. The instances are grouped according to 15 different
location distributions. The arrival rate is equal to 0.002 per minute for each customer
location, and there are 100 customer locations. Requests arrive during a time horizon
of 480 minutes, thus producing an average of 96 requests (in our subset, the number
of requests varies indeed from 71 to 110). All vehicles should be back to the depot
before minute 540.

In all the tests of this section, we considered a fleet of 10 vehicles, 60 minutes of
time horizon, and 30 scenarios. Moreover, waiting at the depot is allowed, but PDRs
are not. In the tables below, we evaluate each algorithm in terms of:

• %filled = percentage of requests served;

• dist. = total distance traveled by the vehicles;

• time = computing time in seconds.

In Table 4.2, we evaluate the B&R by attempting different numbers of ALNS
iterations (namely, 50, 100, 250, 500, and 1000) and the three consensus functions
(namely, RS, AS and ED). The values shown in the table are the average of the val-
ues obtained on the 150 instances. A final line showing average values for the entire
column is also reported to gain some insight into the impact of the attempted param-
eter on the algorithm. The rightmost column presents, instead, the average results
over all tests performed with the given algorithm. The results of Table 4.2 show
that with a small number of ALNS iterations the AS consensus function obtains the
best %filled. When the number of iterations increases the RS obtains slightly better
results. In general, RS and AS perform well, while ED has a slightly weaker perfor-
mance. The use of 1000 ALNS iterations allows almost all functions to produce their
best results, but this is obtained at the expense of high computing times. We note
that a good trade-off between quality and time is obtained by using 250 ALNS iter-
ations, and we kept this value in all the successive tests. We also note that at a first
glance the differences between the percentage of requests served may appear to be
small, but they are very relevant from a managerial point of view, as they can bring
a positive advantage over competitors and eventually lead to a profitable business
even when unitary margins are not high.

https://sites.google.com/view/jfcote/
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Table 4.2: Attempting different ALNS iterations

ALNS It.=50 ALNS It.=100 ALNS It.=250 ALNS It.=500 ALNS It.=1000 average

algorithm %filled dist. time %filled dist. time %filled dist. time %filled dist. time %filled dist. time %filled

B&R-RS 93.41 2140.3 98.9 93.48 2132.9 136.5 93.64 2128.3 251.2 93.75 2124.3 448.6 93.78 2119.9 841.6 93.61
B&R-AS 93.46 2142.1 99.7 93.57 2134.1 137.5 93.66 2124.2 251.4 93.65 2125.4 450.8 93.78 2120.4 844.0 93.62
B&R-ED 93.37 2142.6 98.8 93.41 2137.0 135.6 93.62 2125.3 248.8 93.70 2122.0 443.5 93.75 2117.1 831.2 93.57

average 93.41 2141.6 99.1 93.49 2134.6 136.5 93.64 2125.9 250.5 93.70 2123.9 447.6 93.77 2119.1 839.0 93.60

Next, we evaluated our algorithm by attempting different time horizon strate-
gies. The first one, proposed by Voccia, Campbell, and Thomas [94] and discussed in
Section 4.4.3, works on the size of the sampling horizon by maintaining the requests
that appear in the next ρ instants of time. The newly-introduced CDS strategy main-
tains in the scenarios only the fictive requests that have a release time lower than the
farthest end time window of any known request plus a constant time ρ̄. For Voccia,
Campbell, and Thomas [94] we attempted ρ=60, 120, and +∞, while for CDS we
attempted ρ̄=0 and 15. The results that we obtained are shown in Table 4.3. The
columns have the same meanings as those of Table 4.2. The results show that the
CDS strategy slightly improves the Voccia, Campbell, and Thomas [94] strategy, us-
ing less computing time to obtain solutions with better %filled values. However,
the CDS strategy with ρ̄ = 0 reduces distances by 1.5% and time by 22.8% compare
with the other strategy with ρ = +∞. The best average %filled value of 95.49% is
achieved for the CDS strategy and both values of ρ̄. We thus selected ρ̄ = 0 for all
the next tests. From a managerial point of view, this implies that with CDS one can
obtain the best performance by considering only fictive requests whose release time
is within the known request’s time windows.

Table 4.3: Attempting different time horizons

Voccia, Campbell, and Thomas [94] strategy correlated-data strategy

ρ=60 ρ=120 ρ=+∞ ρ̄ = 0 ρ̄ = 15

algorithm %filled dist. time %filled dist. time %filled dist. time %filled dist. time %filled dist. time

B&R-RS 93.64 2128.3 246.1 94.75 2194.3 338.3 95.46 2299.1 533.7 95.48 2263.3 411.5 95.49 2268.1 420.5
B&R-AS 93.66 2124.3 246.3 94.78 2190.8 339.7 95.48 2300.7 536.0 95.51 2265.5 413.4 95.50 2266.2 422.4
B&R-ED 93.62 2125.3 243.8 94.79 2188.6 334.1 95.45 2297.3 529.1 95.46 2263.7 408.1 95.47 2268.5 417.3

average 93.64 2126.0 245.4 94.77 2191.2 337.3 95.46 2299.0 532.9 95.49 2264.2 411.0 95.49 2267.6 420.1

The next parameter that we evaluate is the number of sample scenarios. In Table
4.4, we consider the same approaches used in the previous tables, and test each of
them with a number of sample scenarios that varies from 5 to 30. We can notice that
the number of scenarios positively affects the %filled values, which increase slightly
but constantly. Also, the distances increase slightly, but this is due to the higher
number of requests delivered. As expected, the number of scenarios has a relevant
impact on the computing times. Based on the results, we opted to use 30 scenarios
and the AS consensus function in all next experiments as this is the configuration
that leads to the highest average %filled value.

In Table 4.5, we compare our branching scheme, called Go-Now-Wait, with an
implementation of the branching scheme by Tirado et al. [87]. This scheme is the
best suited scheme from the literature for the SDDP. It looks at all pairs request-
vehicle, and the pair of highest frequency is chosen for branching. Two branches
are then created: in the first one the request is assigned to the vehicle, whereas in
the second one it is forbbiden to be assigned to the vehicle. The best results are
obtained by Go-Now-Wait, which produces limited but consistent improvements
on both %filled and traveled distance. Notably, the new scheme also reduces the
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Table 4.4: Attempting different numbers of sampled scenarios

Scenarios=5 Scenarios=10 Scenarios=20 Scenarios=30

algorithm %filled dist. time %filled dist. time %filled dist. time %filled dist. time

B&R-RS 94.99 2242.4 48.2 95.18 2237.1 111.4 95.39 2257.3 256.3 95.48 2263.3 414.1
B&R-AS 94.99 2241.0 48.2 95.26 2239.5 111.5 95.45 2258.9 256.3 95.51 2265.5 416.1
B&R-ED 95.01 2240.2 48.1 95.19 2236.7 111.1 95.41 2255.2 254.8 95.46 2263.7 410.5

average 95.00 2241.2 48.2 95.21 2237.8 111.3 95.41 2257.1 255.8 95.49 2264.2 413.6

Table 4.5: Attempting different branching schemes in B&R-AS

algorithm scheme %filled dist. time routes events time/event nodes

B&R-AS Go-Now-Wait 95.51 2265.5 409.5 25.6 221.9 2.1 494.6
B&R-AS Tirado et al. [87] 94.99 2389.4 809.9 27.4 198.1 4.4 1502.0

total computing time, by practically halving it. This can be imputed to the fact that
the nodes produced by Go-Now-Wait are about one-fourth of those produced by the
other scheme.

4.5.2 Evaluations of Preemptive Depot Returns

This section evaluates the gains that can be obtained by allowing or not PDR. The
same 150 instances from the previous section and only the B&R-AS are used in the
following experiments. The algorithm was tested by varying the number of avail-
able vehicles, attempting 2, 4, 6, 8, 10, and 12 vehicles. Figure 4.1 depicts the results
when PDRs are either allowed or not. The increase obtained in %filled by allow-
ing PDR is evident when the number of vehicles is very small. Instead, when the
number of vehicles increases the PDRs have a negligible or even negative impact. In
terms of traveled distance, the PDRs decrease the number of requests delivered and
this automatically leads to smaller traveled distances. In terms of computing times,
PDRs require a larger computing effort with respect to the case with no PDRs, but
this difference decreases when the number of vehicles increases. At a first glance, it
thus appears that the use of PDRs does not lead to relevant benefits. However, by
deepening the analysis and differentiating it by time window types and fleet sizes,
we found out that there are cases in which PDRs do help in producing improve-
ments.

Figure 4.1: Average %filled, distance, and computing time with and without
PDR
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In Table 4.6, we try to obtain further insight by disaggregating the results by time
window type. The table details the average %filled values obtained by B&R-AS with



46 Chapter 4. A Branch-and-Regret Algorithm for the Same-Day Delivery Problem

and without PDRs and with different vehicle numbers. Each value gives an average
over 25 instances, with the exception of the bottom line and rightmost columns that
give overall average values. Best values are highlighted in bold to ease comparison.
We can notice a different impact of PDRs on the time window types. For the No TW
case the impact of PDRs is negative, as their use reduces the %filled values. This is
due to the fact that, as there is no time constraint to satisfy, it does not pay in practice
to interrupt a route and go back to the depot to collect newly released requests,
but it is better to conclude the route. However, for all the other time windows the
PDR is useful with a small number of vehicles. This is due to the larger need for
optimization when the problem is more constrained and the vehicles are a scarce
resource. When the number of vehicles increases, the PDR is no more useful. On
average, for TW.d1, TW.d2, TW.f, which are all characterized by a strict time window
and a somehow regular time window start time, the impact is negligible, and in a
few cases, even negative. For TW.h and TW.r, which are characterized by randomly
dispersed time window start times, the impact is, instead, very relevant.

Table 4.6: Impact of preemptive depot returns on %filled per time window
type (2, 4, 6, 8, 10, and 12 vehicles)

B&R-AS

2 4 6 8 10 12 average

TW type no PDR PDR no PDR PDR no PDR PDR no PDR PDR no PDR PDR no PDR PDR no PDR PDR

No TW 67.37 65.30 85.33 82.18 91.61 88.91 94.10 92.72 95.58 95.18 96.39 96.39 88.40 86.78
TW.d1 37.14 37.12 59.65 59.55 75.42 75.43 85.96 86.18 92.68 92.56 95.68 95.68 74.42 74.42
TW.d2 53.78 54.20 82.42 82.48 93.88 93.71 96.14 96.15 96.72 96.70 96.92 96.92 86.64 86.69
TW.f 52.24 52.17 81.33 81.39 93.35 93.41 95.97 95.85 96.69 96.68 96.90 96.87 86.08 86.06
TW.h 38.80 41.43 66.72 68.70 84.47 84.65 92.53 92.50 95.58 95.66 96.51 96.54 79.10 79.91
TW.r 38.84 41.01 68.86 69.79 86.71 86.73 93.68 93.43 95.84 95.76 96.59 96.57 80.09 80.55

average 48.03 48.54 74.05 74.01 87.57 87.14 93.06 92.80 95.51 95.42 96.50 96.50 82.45 82.40

The findings that we highlighted for 2, 4, 6, 8, 10 and 12 vehicles are confirmed
also for other fleet sizes in Figure 4.2, where we report the outcome of more extensive
results. Each point in the figure is obtained by solving 25 instances with a given
number of vehicles (x-axis) and a given time window (subfigure), with and without
PDRs. The y-axis reports the average %filled values. We attempt all numbers of
vehicles from 1 to 12, so the figure summarizes the outcome of 36000 tests. We can
notice that the two lines (PDR and No PDR) are almost coincident for the TW.d1,
TW.d2, and TW.f cases. This confirms the fact that the impact of PDRs is negligible
for instances having narrow time windows that are close to their release time. For
TW.h and TW.r the use of PDRs allows B&R-AS to achieve good improvements. For
the No TW case, PDR decreases the percentage of served requests, especially in the
range from 2 to 9 vehicles.

A number of interesting managerial implications may be devised from the out-
come of these tests. First, it is imperative for a company to push their customers in
accepting wide time windows for the deliveries. Indeed, when passing from TW.d1
(one-hour time window) to TW.d2 (two-hour) we can notice a remarkable increase
of about 12% in the percentage of served requests. Second, an initial effort must be
spent in finding the good fleet size, as a low number (i.e., 2, 4, or 6 in our tests) may
lead to many unserved requests, whereas a large number (i.e., 10 or 12 in our tests)
can lead to a very limited increase in the %filled but at the expenses of a large in-
crease in costs. Lastly, it is important to consider the structure of the time windows
to decide whether PDRs are allowed or not. Indeed, in the presence of randomly
dispersed time window start times and limited fleet size, it may be convenient for a
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company to equip the drivers with fast communication systems so as to be able to
reroute them back to the depot when needed.

Figure 4.2: %filled for the six types of time windows for the B&R-AS algo-
rithm
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4.5.3 Comparison with Voccia, Campbell, and Thomas [94]

In Table 4.7, we compare our algorithms with those of Voccia, Campbell, and Thomas
[94] on their entire Hom2 set, which contains 4050 instances each having an expected
number of requests equal to 96 and just three vehicles. Algorithms are sorted by
increasing %filled value. We compare the results obtained by Voccia, Campbell,
and Thomas [94] with their Reoptimization and SBPA-RS algorithms, with those
obtained by our implementations of Reoptimization, SBPA-RS, SBPA-AS, and B&R-
AS with and without PDRs. Our implementations of Reoptimization and SBPA rely
on the routing optimize function of Section 4.4.4 to solve the subproblems. We also
show, in “Offline”, the results obtained on the static variant of the problem in which
all information is assumed to be known in advance. This variant is solved with a
unique call to the routing optimize function. For each algorithm, we present the val-
ues already discussed in the previous tests, in addition to the number of events (i.e.,
the number of times the algorithm is invoked) and the time per event (computed as
time/events). For Voccia, Campbell, and Thomas [94], we only know the average
%filled and time per event values, which have been taken from their paper. Their al-
gorithms were implemented in Python and tested on a computing cluster equipped
with a combination of 2.6 GHz and 2.9 GHz processors running CentOS 6.3. It is
not possible to evaluate the real speed of the computers used in their experiments,
because there is no detail on the brand and type of processors used and because of
the combination of processors running at two different speeds. We notice that their
configuration appears to similar to the computer we adopted for our tests, at least
in terms of computing frequency (we recall that our computer runs at 2.667 GHz),
but their code is probably slower than ours because they use Python whereas we use
C++.

The Offline algorithm shows that the best possible %filled value achievable (with
our routing optimize function) is 86.26%. Among the Reoptimization methods with
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no PDR, our algorithm is faster than the one by Voccia, Campbell, and Thomas [94]
and can serve many more requests (54.79% vs. 36.81%). This can be imputed to
the efficiency of our routing optimize function. For what concerns SBPA-RS, our
implementation is more effective than the one by Voccia, Campbell, and Thomas
[94], as it can serve 58.79% of the requests whereas they can serve only 41.99% of
the requests. We can also conclude that it is faster, as it takes 0.5 vs. 95.2 seconds of
computing time per event, although, as previously discussed, a precise evaluation
of the difference in the computer speeds is impossible. A slight reduction in %filled
is obtained by the SBPA with the new AS consensus function. However, a decrease
in traveled distance and number of routes is also observed. The best results are
obtained by B&R-AS. When PDRs are not allowed, B&R-AS can serve 60.46% of
the requests, which is about 1.7 percentage points better than our SBPA-RS and 5.7
percentage points better than Reoptimization. When PDRs are allowed, the %filled
increases to 61.4%, which is an improvement of 0.9 percentage points. This is due
to the larger need for optimization when the problem is more constrained and the
vehicles are a scarce resource. The number of events faced by the B&R method with
no PDR is about a half of those faced by the SBPA ones. However, their times are
larger (about 1.2 seconds per event vs. 0.5) because of the increased complexity
of the procedures. Nevertheless, the computing times per event remain very low
and this is very important from a managerial point of view, because, no matter the
choice adopted for the PDRs, the B&R-AS can be easily used in practice, requiring
the decision maker to wait for about one second, which is a negligible time. We can
thus conclude that B&R-AS is a viable and effective method for the SDDP.

Table 4.7: Comparison with Voccia, Campbell, and Thomas [94] (three vehi-
cles)

algorithm %filled dist. time routes events time/events

Reoptimization (Voccia et al. 2019) no PDR 36.81 - - - - 3.3
SBPA-RS (Voccia et al. 2019) no PDR 41.99 - - - - 95.2

Reoptimization no PDR 54.79 1218.5 0.2 12.4 87.0 0.0
SBPA-AS no PDR 58.57 1312.2 106.7 14.1 188.8 0.5
SBPA-RS no PDR 58.79 1365.2 98.1 15.4 177.0 0.5
B&R-AS no PDR 60.46 1283.1 97.6 12.4 83.9 1.2
B&R-AS PDR 61.40 1291.2 126.1 12.9 146.8 0.9
Offline - 86.26 1284.3 0.4 15.1 1.0 0.4

The positive results that we obtained for the case with three vehicles can also be
confirmed for other fleet sizes, as graphically depicted in Figure 4.3. To replicate the
same test performed by Voccia, Campbell, and Thomas [94], we executed all algo-
rithms given in the legend of the figure on the same subset of 450 Hom2 instances
selected by them, by varying the number of vehicles as shown on the x-axis. Each
point in the figure thus corresponds to an average over 450 tests. In the left graph
in the figure, the y-axis shows the average %filled value achieved on the different
runs. Apart from the Offline algorithm, the best performance is achieved once more
by B&R-AS with PDR. Below this method, we can find, in order, B&R-AS with no
PDR, Reoptimization and then the algorithms by Voccia, Campbell, and Thomas
[94]. Considering the B&R algorithms, the time per event is always larger for B&R-
AS with PDR, which confirms the finding in Section 4.5.2 that PDRs slightly increase
the computational effort. Both algorithms operate in a range between 1 and 9 sec-
onds per event and scale very well when the number of vehicles increases. In any
case, the B&R-AS remains fully compatible with a real use in practice.
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Figure 4.3: Percentage of requests filled for Hom2 instances (96 expected re-
quests)
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4.5.4 Computational results on large-scale instances

In Figure 4.4, we present the computational evaluation performed to analyze how
the B&R behaves on large size instances. We focus on two further sets proposed
by Voccia, Campbell, and Thomas [94]: 135 instances Hom3 (on the left part of the
figure), where the expected number of requests is equal to 144 (arrival rate equal
to 0.003 per minute for 100 customer locations, and a time horizon of 480 minutes);
and 135 instances Hom4 (on the right) having an expected number of requests equal
to 192 (arrival rate increased to 0.004). Voccia, Campbell, and Thomas [94] solved
instances with up to 13 vehicles, whereas we rise this value to 18 vehicles for Hom3
and 26 for Hom4. We tested B&R-AS with and without PDR, and compared them
against Offline. In the Hom3 graph, apart from Offline, the best %filled values are
obtained by B&R-AS. Considering the seconds per event, the B&R scales well when
the number of vehicles increases. The required effort is always in the range between
4 and 12 seconds per event. Both algorithms reach the maximum value with 9 vehi-
cles, respectively 12 seconds per event with PDR and 10 seconds per event with no
PDR. In the Hom4 graph, once again B&R-AS with PDR achieves the best results.
The computational effort scales well despite the larger number of requests and ve-
hicles, and no algorithm exceeds 27 seconds per event with any vehicle tested. We
can conclude that even on these larger instances the B&R algorithm is suitable for a
pratical use.

4.5.5 Solution structure analysis

We conclude our computational study by analyzing how the solution structure is
affected by the time window type and by the choice of the algorithm. We selected a
generic Hom2 instance and solved it with Offline, Reoptimization, and B&R-AS no
PDR. We considered a fleet of 10 vehicles, and evaluated how many of these vehicles
remained waiting at the depot, at each moment of the time period. The outcome of
this study is reported in Figure 4.5.
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Figure 4.4: Percentage of requests filled for Hom3 instances (144 expected
requests) and Hom4 instances (192 expected requests)
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Figure 4.5: Number of vehicles waiting at the depot for a typical instance
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For no TW, Offline keeps waiting at the depot all the 10 vehicles as long as pos-
sible, and then, around minute 420, starts the routes. This is comprehensible, due to
the unrealistic knowledge that this algorithm has of the future. On the contrary, Re-
optimization starts the routes very soon, and it never happens throughout the entire
time horizon, apart from the beginning and the end, that all 10 vehicles wait at the
depot. The behavior of B&R-AS is much more similar to the one of Offline. Indeed,
it keeps all the 10 vehicles waiting at the depot until approximately minute 330, af-
ter which it starts the routes. Notably, despite the routes started later, the vehicles
return earlier at the depot with respect to Reoptimization, and this can be noticed
by the fact that there are more vehicles waiting for B&R-AS after minute 450. For
TW.d1, TW.d2, and TW.f, all algorithms start the vehicle routes quite early, to be able
to satisfy the strict time-window constraints. In this case too, however, we can notice
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that Offline tends to keep more vehicles waiting at the depot than B&R-AS, and that
B&R-AS, in turn, keeps more vehicles waiting than Reoptimization. This behavior
can be noticed all throughout the time horizon, with just some rare exceptions. For
TW.r and TW.h, all algorithms keep a high number of vehicles at the depot at the
beginning, reducing it quickly after 120 minutes, and then using the vehicles until
almost the end of the time horizon.

We performed the same analysis also for B&R-AS PDR, but we obtained similar
results. Thus, we opted to not include the results in the figure, because the graphs
would be difficult to visualize. In a few words, the results that we obtained indicate
that the number of vehicles waiting at the depot for B&R-AS with or without PDR is
similar when 10 vehicles are available. When fewer vehicles are available, we could
notice that sometimes B&R-AS PDR produced slightly more vehicles waiting at the
depot, and sometimes slightly less.

4.6 Conclusions and Future Research

In this paper, we studied dynamic vehicle routing problems where stochastic cus-
tomers request deliveries with strict and close time windows, and the aim is to
maximize served requests and minimize traveled distances. This type of problem is
known in the literature as the same-day delivery problem and is of great relevance
because it models a number of real-world applications, including the delivery of
online purchases. To solve the problem we developed a tailored branch-and-regret
algorithm in which sampled scenarios are used to anticipate decisions. We tested the
algorithm on a large set of benchmark instances from the literature, obtaining very
favorable comparisons. Notably, on a large benchmark set of 4050 instances from
Voccia, Campbell, and Thomas [94], the branch-and-regret raises the rate of served
requests from about 42% to more than 61% and, at the same time, requires a much
shorter computing effort, decreasing the computing time per event from about 95
seconds to just 0.9. The algorithm also scales very well when considering instances
with a larger number of vehicles, where it still requires a limited computational ef-
fort to produce high-quality solutions.

These good results have been obtained by employing algorithmic features from
the literature as well as new techniques, and by performing a careful calibration
of the parameter settings. Overall, we found out that it is still important to de-
vote a good effort to optimize the vehicle routes, for which we found convenient to
adopt an algorithm based on the adaptive large neighborhood search by Ropke and
Pisinger [79]. In addition, it is important to make use of stochastic information. To
this aim, as suggested by Bent and Van Hentenryck [11], we made use of consen-
sus functions to select the best set of routes when both real and sample requests are
taken into account. We found out that there is still relevant research to be done in
the field of consensus functions, but a new function that we introduced proved to
lead to better results than the one usually adopted in the literature.

Naive implementations of branch-and-regret algorithms may be very time con-
suming, as a large number of alternatives must be taken into considerations and
optimized. We found out that a good management of the events might consistently
decrease the computing time and, at the same time, still allow to get very high rates
of served requests. We obtain this positive effect by developing a new way to gener-
ate scenarios (correlated-data sampling) and a new branching scheme.

A number of interesting managerial insights may be devised from our study.
A company should first steer customers towards wide delivery time windows and
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find the appropriate vehicle size according to the expected number of requests. Once
this is done, the use of an optimization algorithm such as B&R-AS is highly recom-
mended, as this can lead to an important increase in the service rate at the expense
of a negligible waiting time (about one second) for the decision maker. In addition,
under certain circumstances such as dispersed time window start times and limited
fleet size, a company should opt to equip the drivers with fast communication sys-
tems so as to preemptively reroute them back to the depot when needed.

The relationship between preemptive depot returns, waiting strategies, and fleet
occupancy is indeed very interesting. When waiting is not imposed, as in the plain
reoptimization algorithms, then PDR brings important savings. If, instead, waiting
is allowed, as in SBPA and B&R algorithms, then PDR is still important but with
less advantages. This can be motivated by the fact that, after waiting, the vehicles
depart with a satisfactory number of requests and that these requests are closer to
their deadlines, so there is less room for further optimization. This is also impacted
by fleet occupancy. If the fleet is composed by a small number of vehicles compared
to the number of requests, then waiting becomes unnecessary (as the best strategy is
to leave as soon as possible), but PDR is relevant (0.9% more requests filled by B&R-
AS). When, instead, the fleet is large, it makes sense to wait at the depot to look for
optimized routes. Studying the relationship between waiting strategies, preemptive
depot returns, and fleet occupancy appears to be an interesting research direction,
even in other related dynamic vehicle routing problems.

There are several interesting future research directions to follow. In terms of
methodology, we believe that there is still room for improvements in branch-and-
regret algorithms by developing alternative consensus functions, and new mecha-
nisms that make better use of the information from the scenarios. In addition, we
believe good results could be obtained by a deep study of immediate request accep-
tance policies, as in Klapp, Erera, and Toriello [55] and Ulmer and Thomas [90], so as
to assign as soon as possible a request to a third-party logistic operator. This could
decrease waiting times for the customers, but at the possible expense of an increase
in the overall delivery costs.

In terms of optimization problems, as our algorithms are already equipped to
solve dynamic pickup and delivery problems, it would be interesting to study their
performance on different emerging problem variants. Among these, we would like
to cite one-to-many-to-one problems, as in Bruck and Iori [15], where, in addition
to the delivery of merchandise, one has to collect further merchandise to be brought
back to the depot. This case could involve stochastic customers, stochastic demands
and capacitated vehicles. Multi-pickup and delivery problems with time windows
(see, e.g., Naccache, Côté, and Coelho [70] and Aziez, Côté, and Coelho [9]) too rep-
resent an emerging variant with relevant applications. In these problems, a request
is composed of several pickups of different items, followed by a single delivery at
the customer location. Stochastic aspects might hence concern both customer and
pickup locations. Finally, we mention the class of meal delivery problems (see, e.g.,
Ulmer et al. [91]), where the customers require food from restaurants and the aim is
to deliver it promptly by considering the time in which it will be ready.
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Chapter 5

Conclusions

In this thesis, we focus on problems related to dynamic transportation systems. First,
we propose a survey on scheduling Automated Guided Vehicles (AGVs) and show
the challenges and future directions in this field. Second, we extend the survey con-
sidering different aspects of the coordination of AGVs, also in this case discussing
promising future research directions. Third, we present an innovative branch-and-
regret algorithm to handle a fleet of vehicles to serve urgent customer requests.

In Chapter 2 of the thesis, we addressed the planning problem of AGVs in com-
plex logistic systems. Our focus was specifically on the scheduling problem of
AGVs, which can be modeled as a Pickup and Delivery Problem (PDP), and holds
significant importance for E80 Group and numerous real-world contexts. Through
the formulation of the PDP and an analysis of real-world applications and existing
literature, we successfully identified research challenges and opportunities for fu-
ture investigations. Our findings provide a valuable guide for researchers involved
in AGV system optimization, with the potential to significantly enhance the effi-
ciency of logistic operations. The chapter begins with a literature review on the sur-
veys related to scheduling AGVs, then propose a model for a formal formulation of
the problem, and finally lists the future research directions present in the literature.

In Chapter 3, we extend Chapter 2 considering the coordination of a fleet of
AGVs within an intralogistic system in general. The aspects addressed include the
scheduling of AGVs, battery management, multi-load scenarios, path planning, con-
flict avoidance, and the integration of scheduling AGVs with other systems. Follow-
ing a comprehensive review of books and surveys that constitute the current state
of the art in AGV systems, we turn our attention to the scheduling problem. We in-
troduce a mathematical model for the PDP incorporating battery management con-
siderations and a variant accommodating multi-load vehicles. Finally, we present a
detailed list of papers that highlight current challenges and indicate future research
directions found in the literature.

In Chapter 4, we concentrated on the issue of urgent deliveries, known in the
literature as the Same-Day Delivery Problem, which has gained increasing impor-
tance in the realm of e-commerce services. To tackle this problem, we proposed
an innovative branch-and-regret algorithm that utilizes sampled scenarios to antici-
pate future events, while employing an iterative adaptive large neighborhood search
to optimize routing plans. The branch-and-regret algorithm distinguishes itself by
effectively handling stochastic requests and achieving outstanding performance in
terms of served requests, traveled distance, and computational effort, surpassing re-
cent literature results. Our contributions in modeling the subproblem, generating
scenarios, managing consensus functions, and implementing the branching scheme
improve the solution to the same-day delivery problem.

From an industrial perspective, the papers collected in the literature review con-
ducted in Chapters 2 and 3 adopt a theoretical and analytical approach, albeit with
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limited consideration for real-world applications. Specifically, many articles study
specific problems by addressing only a subset of the constraints encountered in in-
dustrial scenarios. Consequently, their utility for real-world applications is some-
what constrained. I find it relevant to encounter discussions on dynamic manage-
ment and unexpected fault requirements as future research directions within the
collected papers, as these are crucial aspects for addressing industrial applications
effectively.

Chapter 4 introduces a B&R algorithm tailored for real-world applicability. The
algorithm demonstrates proficiency in handling up to 192 requests per day and a
fleet size of up to 13 vehicles, achieving execution times of approximately 1 second in
the tests presented. This exemplifies a scenario typical of small or medium-sized e-
commerce enterprises. Future research directions could explore the performance of
the algorithm with larger instances and assess the limit within which the algorithm
can quickly produce a satisfactory solution, useful for industrial applications.

The application of operations research algorithms to real-world cases holds pri-
mary importance for me, as evidenced by my decision to pursue an industrial doc-
torate. My main research was dedicated to a project within E80 Group, focusing
on order scheduling within an AGV system. The objective is to optimize system
throughput while minimizing order delays. The algorithm necessitates frequent re-
computation, addressing a fleet involving up to 200 AGVs. Operating within a dy-
namic environment where information changes quickly, the algorithm must manage
unexpected system faults. Furthermore, the product aspires to be useful to numer-
ous customer plants, necessitating adaptability to accommodate highly customized
layouts. Presently, the algorithm is operational in four real-world plants, with one
boasting an AGV fleet exceeding 80 units. However, the non-disclosure policy of the
company E80 Group prohibits the publication of detailed information regarding this
significant work of my research. Therefore, I refrain from providing further insights
into this project.

In conclusion, this doctoral thesis has made significant contributions to the ad-
vancement of operations research and optimization in the field of AGV transporta-
tion systems and same-day deliveries. Through the survey on AGV scheduling, the
survey on the coordination of a fleet of AGVs, and the development of the branch-
and-regret algorithm for urgent deliveries, we have provided new perspectives and
innovative solutions. The results obtained offer advantages for both companies op-
erating in the logistics sector and consumers benefiting from e-commerce services.

As future research, I plan to develop new innovative optimization algorithms for
the scheduling of AGVs in the context of real-world industrial systems, continuing
my research and innovation activity at E80 Group.
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Appendix A

List of Acronyms

A.1 Acronyms, definitions

3PL Third-Party Logistic Operator.

ACT Automated Container Terminals.

ADP Approximate Dynamic Programming.

AGV Automated Guided Vehicle.

ALNS Adaptive Large Neighborhood Search.

AMR Autonomous Mobile Robot.

AP Assignment Problem.

AS Assignment Similarity.

B&R Branch-and-Regret.

CDS Correlated-Data Sampling.

COCRO Centroid Opposition-based Coral Reefs Optimization.

CT Container Terminals.

DPDP Pickup and Delivery Problem with Time Windows and Release Dates.

ED Edit Distance.

FMS Flexible Manufacturing Systems.

MDP Markov Decision Process.

MTTOPTW Multi-Trip Team Orienteering Problem with Time Windows.

MTVRP Multi-Trip Vehicle Routing Problem.

NRRP National Recovery and Resilience Plan.

PDP Pickup and Delivery Problem.

PDR Preemptive Depot Return.
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PHH Progressive Hedging Heuristic.

R&D Research and Development.

RS Route Similarity.

SBPA Scenario-based Planning Approach.

SDDP Same-Day Delivery Problem.

SDVRP Stochastic Dynamic Vehicle Routing Problem.

VRP Vehicle Routing Problem.
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