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Research paper NLM-D-24-00069

A weakly nonlinear Love hypothesis for longitudinal waves in elastic rods

Reply to Reviewer #1

The author is grateful to the reviewer for his/her scrutiny of the manuscript and for his/her support.

Following upon the Reviewer's suggestion, in the Conclusion section the opportunity to extend the 
present analysis to rods that are reinforced with fibres, possibly made of soft material. For the 
Reviewer’s convenience, corrections in the manuscript are marked in red.

Reply to Reviewer #2

The author is much appreciative for the honest assessment of the paper and for the many 
suggestions that are proposed by the Reviewer, especially in terms of literature review. In fact, it 
clearly appears that the Reviewer competence adds significant value to this work and I tried to make
the most out of it. The author has put his best effort in addressing the Reviewer’s objections with a 
fair and honest mindset, while collecting as much literature background as he could manage. The 
manuscript has been modified according to the Reviewer’s suggestion as hereinafter detailed:

1. Overall, the approach is similar to that in

L. Ostrovsky, A. Sutin, 1977. Nonlinear elastic waves in rods. J. Appl. Math. Mech. (PMM) 
41, 543-549.

In the 1977 paper the full Lagrangian of the problem was simplified using the Love 
hypothesis, and the reduced Lagrangian was used to derive a two-directional Boussinesq 
equation, and then the KdV approximation for uni-directional waves..

Answer.

Indeed, in this paper the Lagrangian approach is undertaken, much like in Ostrovsky, A. 
Sutin (1977) or Samsonov (2001) or Porubov (2003) or Dai and Fan (2004) or many more,  
but other than this the similarity is not great. In fact, it was precisely the point of this paper 
NOT to adopt the Love hypothesis firsthand but, rather, to (possibly) motivate it, specifically
by a slow time perturbation. Indeed, the Love hypothesis is derived from the two-modal 
kinematics and in this sense it is no longer a hypothesis. Of course, in a weakly nonlinear 
setting the leading order solution is the linear Love hypothesis and therefore a  two-
directional Boussinesq equation is arrived at similarly to Ostrovsky, A. Sutin’s. Yet, 
coefficients in the dispersive term (and also in the nonlinear term but this may be a typo in 
Ostrovsky, A. Sutin’s paper) are different.

2. This was then followed by research in A. Samsonov's group, most notably Porubov and 
Samsonov, see

A. M. Samsonov, Strain Solitons in Solids and How to Construct Them (Monogr. Surv. Pure 
Appl. Math., Vol. 117), Chapman and Hall CRC, Boca Raton, Fla. (2001).

A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids (Ser. Stab. Vibr. Control 
of Systems Ser. A, Vol. 9), World Scientific, Singapore (2003).

Porubov and Samsonov have refined the Love hypothesis, using the weakly-nonlinear 

Response to Reviewers



boundary conditions of the problem formulation, and used this weakly-nonlinear Love 
hypothesis in order to derive a refined model. 

Answer

As pointed out by the Reviewer, the motivation behind this paper parallels that put forward 
in Samsonov (2001), Sec.2.3.2, where the need for a refined Love assumption is expressed. 
However, as confirmed by the Reviewer, in Samsonov’s work this need is satisfied by 
matching the free boundary conditions, that is an altogether different approach than it is 
considered here. Indeed, this paper makes use of slow time perturbation of the motion 
equations and utterly disregars the free boundary conditions. In fact, it provides an 
alternative and different expression for the refinement of the Love hypothesis. This is now 
stressed in the manuscript to avoid confusion and a comparison is drawn. It should be also 
stressed that the fact that the free boundary conditions are disregarded is not a problem by 
itself, because, following Samsonov (2001),  “generally speaking the identity is not required 
because an asymptotic solution is to be found”. It is therefore important to emphasize that 
indeed a refined Love assumption is derived in Samsonov (2001) and yet this refinement is 
very different from the one that is proposed here, which purposefully makes no use of the 
boundary conditions for it aims to remain within a fully asymptotic solution.

3. Moreover, Garbuzov et al. (2019), mentioned in the paper, have derived Boussinesq-type 
equations using the multiple-scale analysis of the full problem formulation for a Murnaghan 
material, having again derived a weakly-nonlinear generalisation of the Love hypothesis.

Answer

Garbuzov et al. (2019) proceed in a similar way as Dai and Fan (2004) (and to an extent as 
Samsonov (2001) and Prubov (2003)) by introducing a multi-modal representation in the 
radius, then enforcing the motion equation in an asymptotic sense (i.e. term-wise) and 
finally accounting for force-type boundary conditions, either asymptotically or to linear 
terms. A second derivation is also presented which solves a set of nonlinear ODEs obtained 
by asymptotic solution of the boundary conditions.

Either way, this approach differs under many respects from that considered in this paper (for
example and above all the fact that no mention is here made of the boundary conditions) 
and, indeed, it provides a model equation (in fact two of them) different than Ostrovsky, A. 
Sutin’s in the dispersive term. Still, two interesting observations emerge from comparing  
Garbuzov et al. (2019)’s work with this paper. First, as observed by the Reviewer, despite its
simplicity, this paper presents results that are qualitatively similar to those of other, much 
more involved works. Second, it appears that, to within this level of approximation, no need 
is felt to introduce the fulfillment of the boundary conditions.

4. The difference with the aforementioned studies is that in the present manuscript 
approximations have been built as a two-step process. First, a two-modal approximation (1) 
was assumed, hugely simplifying the problem at hand, and then the subsequent analysis has 
followed that in Dai and Fan (2004) and Garbuzov et al. (2019). It will be fair to comment 
that the derivation of the KdV equation in this hugely simplified setting could be performed 
by a student. 

Answer

As stressed in the manuscript, “Spotlight is set on elucidating the procedure as well as on 
assessing the quality of the approximation in the simplest setting, leaving more sophisticated
mechanical models for future developments.” Indeed, the simplest possible setting is 
adopted, with the aim of communicating the method deprived of unnecessary details. For the
same reason, the introduction of the boundary conditions is excluded, because, as well-



known and also pointed out by Samsonov (2001), they are not required in an asymptotic 
solution. Clearly, this by no means precludes that more involved situations may be 
addressed by this approach, also accounting for the boundary conditions. It is nonetheless 
emphasized that none of the literature contributions, to the best of my knowledge, rely on 
slow-time perturbation to reduce one of the motion equations to a Love-like assumption. 
Instead, the general approach is to either introduce some form of Love hypothesis, somehow
guessed, or to adopt the reductive perturbation method to the full system, like, for example, 
in Dai and Fan (2004).

5. Finally, numerical comparisons were made between solutions of the two-modal 
approximation and the reduced model based on the Love hypothesis, showing good 
agreement in the range of validity of the model.

This last part should be put in the context of the study in

F.E. Garbuzov, Y.M. Beltukov, K.R. Khusnutdinova, Longitudinal bulk strain solitons in a 
hyperelastic rod with quadratic and cubic nonlinearities, Theor. Math. Phys. 202 (2020) 319-
333,

where numerics was performed within the scope of the full nonlinear problem formulation 
for a Murnaghan material, and results of the weakly-nonlinear modelling with the KdV and 
extended KdV (i.e. higher-order model) were compared to that solution, showing excellent 
agreement for weakly-nonlinear waves, with the extended KdV equation extending the 
range of validity to the waves of moderate amplitude. 

Answer

I thank the Reviewer for this reference. The procedure followed in  Garbuzov et al (2020) 
exactly parallels that in Garbuzov et al. (2019) and therefore, on the basis of the previous 
comments, it is significantly different than that used in this paper. In terms of numerics, the 
soliton solution is investigated that is not the focus of interest of this paper, which instead 
compares the longitudinal motion against the wave equation and the nonlinear Mindlin-
Herrmann system and the transversal motion against the linear Love hypothesis (which is 
the focus of this paper). None of the above is related in Garbuzov et al (2020). Still, this 
paper is now referred to in the manuscript.

6. Minor points: Boussinesq equation can not be integrated exactly, this wording is incorrect. 
We can construct certain classes of exact solutions, e.g. travelling waves.

Answer

This is indeed correct. The incorrect wording is taken verbatim from Soerensen (1984) “The
BE contains Uxxxx and U^2xx and is exactly integrable”. This is now better specified in the
paper.  

7. The other minor points raised by the Reviewer have been dealt with.

Finally, some rearrangements, rewriting and error corrections have been introduced in the 
manuscript.

For the Reviewer’s convenience, corrections in the manuscript are marked in red color.
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Highlights of the paper 
A weakly nonlinear Love hypothesis for longitudinal waves in elastic rods

• A weakly nonlinear Love hypothesis is derived from a two-modal kinematics by the method 
of multiple scales;

• The corresponding model equation is the Boussinesq equation;
• Comparison with numerical integration reveals that the quality of the approximation is 

excellent;
• The same unimodal Lagrangian is derived irrespective of the correction to the linear Love 

hypothesis.
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A weakly nonlinear Love hypothesis for longitudinal1

waves in elastic rods2

Andrea Nobili13

aDepartment of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, via4

Vivarelli 10, 41125 Modena, Italy5

Abstract6

When investigating nonlinear wave propagation in slender hyperelastic rods, the

usual stance is to construct a reduced kinematics and then derive a system of

coupled nonlinear PDEs for the unknown functions. To make further analytical

progress, the linear Love hypothesis, that connects longitudinal and transversal

strain, is often reverted to. The viability of this assumption, that was originally

proposed within the framework of linear elasticity, remains uncertain. In this

paper, a refined Love hypothesis is derived in the weakly nonlinear regime by

slow-time perturbation of the motion equations. For the sake of illustration,

the simplest two-modal setting is adopted. This refined Love assumption is not

equivalent, not even in principle, to that derived by Porubov and Samsonov

(1993) by accommodating for the free boundary conditions at the rod mantle.

Besides, the perturbation process lends a uni-dimensional model equation which

parallels that obtained by Ostrovskii and Sutin (1977) with the help of the

linear Love hypothesis, with yet different coefficients in the dispersive term. The

corresponding longitudinal motion is compared numerically against the solution

of the bimodal nonlinear system and the transversal motion is contrasted with

the linear Love hypothesis. For both motions, excellent agreement is found and

the quality of the approximation extends to a wide range of values for the small

parameter. Finally, within this setting, the corresponding unimodal Lagrangian

is also derived, and it remains accurate regardless of the first correction terms

to the linear Love hypothesis.
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longitudinal waves in rods8

1. Introduction9

When developing models to describe wave propagation in elastic rods, the10

starting point is usually represented by a restricted kinematics in which some11

unknown functions are introduced expressing the longitudinal and the radial12

strain in the body, see Shatalov et al. (2011) and references therein. Besides13

the classical wave equation, the simplest case in point is the so-called bimodal14

representation, where this restricted kinematics takes the form of the Navier–15

Bernoulli (NB) assumption of plane cross-sections, in which only two functions16

are used, respectively W for longitudinal and RU for transversal displacement,17

R being the rod radial position. In the special case U = 0, this procedure18

produces the classical non-dispersive wave equation. Moving from some original19

intuitions of Rayleigh (1894), this approach was later refined by Love (1927)20

to encompass for transversal inertia through the well-know Love hypothesis,21

U = −ν0W,Z , that relates longitudinal and transversal strain via the Possion’s22

ratio ν0. In Love’s original formulation (Love, 1927, Sec.278), this connection23

is purposefully assumed for inertia terms only, in the so-called Rayleigh-Love24

theory (on this point see also Hutchinson and Percival (1968)). This ad-hoc25

procedure, which proves very effective, was later relaxed by Bishop (1952) to26

include shear deformations, thus leading to the Bishop-Love theory. It may be27

worth noting that the opposite pathway was taken by Sørensen et al. (1984) to28

derive the improved Boussinesq equation in a simplified weakly nonlinear setting29

where transversal inertia is neglected in favor of shear deformation. Mindlin30

(1951) presents, for the first time, a full bimodal plane section approach and the31

resulting pair of coupled PDEs is in fact named the Mindlin-Herrmann system32

(Graff, 2012, Sec.8.3.3). In general, the bimodal approach is especially attractive33

for its simplicity, although it remains limited in that it cannot accommodate34

for all three boundary conditions on the mantle. Later, McNiven and Perry35

(1962) remediated this shortcoming at the expense of introducing extra degrees36
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of freedom, by extending the transversal kinematics through successive odd37

powers of the radius R multiplied by extra unknown functions.38

In the linear framework, the quality of these approximations is usually as-39

sessed by comparison with the well-known Pochhammer (1876) solution of the40

3D elasticity problem for a rod with circular cross-section. Indeed, as already41

observed by Graff (2012), the Love hypothesis is the leading order approxima-42

tion of the Pochhammer-Chree solution in the long-wave low-frequency (LWLF)43

approximation. This specific feature, that is further detailed in Nobili and Sac-44

comandi (2024), cannot be pursued in the nonlinear framework because of the45

insurmountable difficulties attached to developing any analytical solution within46

the full 3D theory. In fact, avoiding such difficulties is precisely the main reason47

why reduced-dimensional models are introduced in the first place. Still, while48

facing the formidable task of solving complicated systems of coupled nonlinear49

PDEs, many contributions appear in the literature that appeal to the original50

linear Love hypothesis outside the linear framework where it properly belongs.51

Sørensen et al. (1984) numerically study soliton interaction in nonlinear elas-52

tic rods under many approximations that include the original Love hypothesis.53

His interest lies in developing soliton solutions of nearly integrable systems.54

Wright (1985) develops a purely axiomatic (in his words “intrinsic”) 1D theory55

of straight elastic incompressible rods and is able to connect longitudinal and56

transversal deformation through the incompressibility constraint. As pointed57

out in Amendola and Saccomandi (2021), the incompressibility constraint is58

compatible with the Love’s hypothesis only to leading order, while the analysis59

in Wright (1985) is extended to the first correction term in the small deforma-60

tion, i.e. it is weakly nonlinear. It is noted that a similar “intrinsic” 1D theory61

was used very recently by Li et al. (2023) to derive nonlinear dispersion curves.62

Much research on the topic of nonlinear waves in rods is contributed by63

Samsonov and his collaborators. Samsonov (1994) assumes the linear Love64

hypothesis to be valid in a fully nonlinear framework and derives the improved65

Boussinesq equation. Porubov and Samsonov (1993) propose a multi-modal66

solution that satisfies the motion equation in the asymptotic sense, as well as67
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the free boundary conditions in the Piola stress. In this process, a refined68

Love assumption is introduced. According to Samsonov (2001), this analysis is69

motivated by the desire to “confirm the Love hypothesis formally”, whose limit70

“is that the boundary conditions on a free lateral surface were not properly71

taken into account”, although “generally speaking, the identity is not required72

because an asymptotic solution is to be found”. Precisely in this sense, and as73

an alternative to Porubov and Samsonov’s approach, this paper adopts a slow74

time perturbation of the motion equations to derive an asymptotically refined75

Love hypothesis that is valid regardless of the boundary conditions.76

Also Dai and collaborators have much contributed to this topic. Dai and77

Huo (2000) study propagation of small-but-finite-amplitude (i.e. weakly nonlin-78

ear) longitudinal waves in compressible rods by employing an asymptotic form79

of the Love hypothesis, that is suggested by comparison with the incompress-80

ible case. The reductive perturbation method of Jeffrey and Kawahara (1982)81

is then adopted to derive the model equation valid in the far-field. This pro-82

cedure is in essence a multiscale analysis similar to that used in this paper. In83

Dai and Huo (2002), the reductive perturbation method is used in the incom-84

pressible context to support the validity of the Navier-Bernoulli approximation85

through comparing the resulting model equations. Dai and Fan (2004) intro-86

duce four different 1D models to study longitudinal waves in a weakly nonlinear87

Murnaghan material with an enriched kinematics that, departing from the NB88

assumption, accommodates all free boundary condition on the mantle. How-89

ever, when developing the far-field model, the linear Love’s assumption is again90

reverted to. Dai and Fan (2004) are especially critical of Porubov and Samsonov91

(1993)’s refined model because “still boundary conditions cannot be completely92

satisfied even for linear terms”. Besides, while discussing Samsonov et al. (1998)93

and Porubov et al. (1998), they observe “some serious algebraic errors in their94

derivations [that] led the model equations to be unacceptable”.95

More recently, Garbuzov et al. (2019) extend Samsonov (2001)’s approach96

to the case of general force conditions at the rod mantle and longitudinal pre-97

stretch. A family of Boussinesq-type model equations is obtained. The same98
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approach is adopted in Garbuzov et al. (2020) where a stable propagating table-99

top soliton is observed numerically.100

From the above literature review, it appears that several approaches to the101

problem are possible which lead to widely different model equations. As pointed102

out by Amendola and Saccomandi (2021), the adoption of the Love hypothesis103

outside the realm of linear elasticity is questionable and calls for further investi-104

gation. In particular, Nobili and Saccomandi (2024) make some progress in this105

direction by showing that the original Love hypothesis may be equally obtained106

from slow-time perturbation of the Mindlin-Herrmann model. The advantage107

of this observation lies in that it provides a pathway to developing the equiva-108

lent of the Love hypothesis outside the linear regime and within the asymptotic109

approach, i.e. without recourse to the boundary conditions. This is precisely110

the aim of this paper, which sets the spotlight on elucidating the procedure as111

well as on assessing the quality of the approximation in the simplest possible112

setting, namely the NB assumption and a bimodal representation (Sec.2). The113

multiscale analysis is carried out in Sec.3 and the quality of the approxima-114

tion is numerically investigated in Sec.4. A unimodal asymptotic Lagrangian is115

illustrated in 5 and conclusions are finally drawn in Sec.6.116

2. Mathematical background117

Let us consider a rod that, in a reference configuration, is a circular cylinder118

of radius A and let us introduce cylindrical coordinates in the current configu-119

ration x = rer + θeθ + zez and, equally, cylindrical coordinates in the reference120

configuration X = RER + ΘEΘ + ZEZ , with 0 ≤ R ≤ A. Within this frame-121

work and in the absence of torsion, the NB hypothesis consists of assuming the122

following axisymmetric time dependent two-modal deformation (Wright, 1981,123

Eq.(12))124

r = R+RU(Z, T ), θ = Θ, z = Z +W (Z, T ). (1)125
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Letting the displacement vector u = x−X with components in our cylindrical126

reference system127

ur(R,Z, t) = RU(Z, T ), uθ = 0, uz(Z, T ) = W (Z, T ), (2)128

the Lagrangian strain tensor immediately follows E = 1
2 (C − I), namely129

E =


1
2U(U + 2) 0 1

2R(U + 1)U,Z

0 1
2U(U + 2) 0

1
2R(U + 1)U,Z 0 1

2

(
R2U2

,Z + (W,Z + 1) 2 − 1
)
 , (3)130

the linearized version of which is the infinitesimal strain tensor given, among131

many, in Nobili and Saccomandi (2024)132

ϵ =


U 0 1

2RUZ

0 U 0

1
2RUZ 0 WZ

 . (4)133

Here, the identity (rank 2) tensor I has been introduced as the invariant element134

in tensor composition, and it is understood that a comma subscript implies135

differentiation with respect to the following coordinate, i.e. U,Z = ∂U/∂Z. We136

let the quadratic (in the deformation components) invariants137

I11 = tr(E), I21 = tr(E2), (5)138

alongside the cubic deformation invariants139

I31 = I21I11, I32 = I311, I34 = tr(E3). (6)140

Here, trE = 1
2

(
R2U2

,Z + (W,Z + 1)
2 − 1

)
+ U(U + 2) denotes the usual trace141

operator. In the nonlinear framework, we take the isotropic Murnaghan strain-142

energy density per unit volume, see (Dai and Fan, 2004, Eq.(21))143

W = µI21 + 1
2λI

2
11 + µ

(
κ1I31 + 1

3κ2I32 + 1
3κ4I34

)
, (7)144

where µ and λ are the usual Lamé parameters and µκi, i ∈ {1, 2, 4} are Mur-145

naghan material constants (the reason why it is three of them, instead of four,146
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is discussed in Ciarlet (2021)). The form (7) corresponds to the isotropic third-147

order Landau-Lifshitz constitutive relation.148

Hamilton’s principle is employed to determine the functions U(Z, T ) and149

W (Z, T ) through the Euler-Lagrange equations associated with the Lagrangian150

density L = T −V. The kinetic energy density per unit length remain the same151

as that given by (Graff, 2012, Eq.(2.5.49)) or (Dai and Fan, 2004, Eq.(24))152

T =

∫ A

0

∫ 2π

0

ρ

2

(
W 2

T +R2U2
T

)
R dΘ dR =

πA2ρ

4

(
2W 2

T +A2U2
T

)
, (8)153

where ρ is the mass density in the reference configuration. In light of the as-154

sumed deformation (4), the strain-energy density (7) is given by Eq.(A.1) in the155

Appendix. The weakly nonlinear assumption affords great simplification of this156

otherwise cumbersome energy density. Within such framework, the displace-157

ment is small, i.e. U ∼ W,Z ∼ O(ε), with ε ≪ 1, and only quadratic and cubic158

terms in ε are retained in the Lagrangian. We introduce the shorthands159

k1 = 2(2κ1 +
4

3
κ2 +

1

3
κ4 + κ2 − 1), k2 = κ2 − 1 + κ1 +

κ4
4
, (9)160

k3 = κ2 − 2 + 2(κ1 + 2κ2), k4 = 1
2κ

2 + 1
2κ1 +

κ4
4
, (10)161

k5 = κ2 − 2 + 2(κ1 + κ2), k6 = 1
2κ

2 + κ1 +
κ2 + κ4

3
, (11)162

where κ = cL/cS is the ratio of cL =
√

(λ+ 2µ)/ρ over cS =
√
µ/ρ, that are,163

respectively, the longitudinal and the transversal (shear) wave speed of linear164

elasticity. It is emphasized that the following constraints hold165

k1−k5−2k6 = 0, −3k1+8k2+2k3 = 2(1+2λ/µ), −3k1+8k4+4k5 = 2(1+λ/µ).

(12)166

Thus, the elastic energy density reads (Dai and Fan, 2004, Eq.(22))167

W = µ

(
1

2
R2U2

,Z + 2U2 +W 2
,Z

)
+

1

2
λ (2U +W,Z)

2
168

+ µ
[
k1U

3 + k2R
2UU2

,Z + k3W,ZU
2 + k4R

2W,ZU
2
,Z + k5UW

2
,Z + k6W

3
,Z

]
,

(13)

169

which differs from the form adopted by Dai and Huo (2000) in Eq.(2.9). Inte-170
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grating over the cross section171

V =

∫ A

0

∫ 2π

0

WRdΘdR, (14)172

we obtain the potential energy per unit length (Dai and Fan, 2004, Eq.(23))173

V = πA2

{
2(µ+ λ)U2 + 2λUW,Z +

(
µ+ 1

2λ
)
W 2

,Z +
µA2

4
U2
,Z174

+µ
[
1
2A

2U2
,Z (k2U + k4W,Z) + k3U

2W,Z + k5UW
2
,Z + k1U

3 + k6W
3
,Z

]}
. (15)175

We then form the Lagrangian176

L = T − V, (16)177

and the corresponding Euler-Lagrange equations form a pair of nonlinear PDEs178

179

A2k4U,ZU,ZZ + 2U,Z

(
k3U + k5W,Z + κ2 − 2

)
+W,ZZ

(
2k5U + 6k6W,Z + κ2

)
180

= c−2
S W,TT (17a)181

−3k1U
2 − 2U

(
k3W,Z + 2κ2 − 2

)
−W,Z

(
k5W,Z + 2κ2 − 4

)
182

+ 1
2A

2
[
k2U

2
,Z + 2k4U,ZW,ZZ + U,ZZ (2k2U + 2k4W,Z + 1)

]
= 1

2c
−2
S A2U,TT ,

(17b)

183

which provide a nonlinear generalization of the well-known Mindlin-Herrmann184

system, where the Murnaghan strain energy density is used and small terms185

in the deformation are retained up to O(ε2). These equations seem to differ186

somehow from the corresponding equations (27) given by Dai and Fan (2004)187

and specifically Eq.(27a) misses the term multiplying k4 in (17a), while (27b)188

misses several terms, such as those multiplying k2 and k4. Clearly, the original189

Mindlin-Herrmann system (Mindlin, 1951)190

(λ+ 2µ)W,ZZ + 2λUZ = ρW,TT ,

µA2U,ZZ − 8(λ+ µ)U − 4λW,Z = ρA2U,TT ,
(18)191

is immediately retrieved when retaining only linear terms in (17). This reveals192

that the system is a perturbation of a pair of coupled wave equations. This193
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coupled system provides the time evolution of U and W once suitable initial194

and boundary conditions are given. Since only second order time derivatives195

appear (linearly), initial conditions take the form196

U(Z, 0) = U0(Z),W (Z, 0) = W0(Z) (19a)197

U,T (Z, 0) = U̇0(Z),W,T (Z, 0) = Ẇ0(Z). (19b)198

Also, in light of the fact that the highest space derivative is two, a pair of199

boundary conditions is equally required. In general, solving Eqs.(17) calls for200

numerical methods, as it occurs in Sec.4. A way around the solution of the full201

system is to impose the Love (L-) hypothesis, that assumes a linear relationship202

between the radial displacement and the longitudinal strain i.e203

U = −ν0W,Z , (20)204

where205

ν0 =
λ

2(λ+ µ)
= 1

2

κ2 − 2

κ2 − 1
,206

is the Poisson’s ratio. A nice derivation of the Love model in the context of in-207

variant manifolds from nonlinear dynamical systems theory is given by Roberts208

(1993). As it was originally proposed by Porubov and Samsonov (1993), Sam-209

sonov (2001) and later argued by Amendola and Saccomandi (2021), Love’s210

hypothesis belongs to the linear framework and should be suitably generalized211

to the nonlinear setting. This is precisely the aim of the next Section.212

3. Love hypothesis for weakly nonlinear elasticity213

Let’s begin by assuming that the deformation is small and yet not so small214

that third order terms in the Lagrangian may be neglected. Next, let’s introduce215

the dimensionless coordinates216

ζ = Z/l, t = T/T,217

where l is a typical wavelength and T = l/cS is a reference time. Hence, the218

dimensionless small parameter δ = A2/l2 naturally emerges, cf. Garbuzov et al.219

9



(2019). Next, we need to introduce the weakly nonlinear hypothesis, and specif-220

ically its connection to the idea that the solid is slender, namely that δ ≪ 1.221

For this we introduce a second small parameter, ε, which is a measure of the222

magnitude of the deformation, i.e. U ∼W,Z = O(ε). As customary, we also as-223

sume that differentiation does not affect the asymptotic order of the unknowns.224

In this form, the problem is multi-parametric and to make further progress we225

need to assume the reciprocal relation between the small parameters δ and ε. In226

this paper, we assume ε = δ, meaning that the deformation gets smaller as the227

rod becomes slender in linear fashion. This distinct limit amounts to assuming228

that nonlinearity and dispersion are in balance and small enough (Samsonov,229

2001). Indeed, according to Ablowitz (2011), this is the “maximum balance230

model” wherein nonlinear and dispersive effects are equally important. Other231

choices are of course possible but we don’t pursue them in here. Thus, we let232

U = δu(ζ, τ) and W = δlw(ζ, τ). (21)233

The E-L equations may be given to first order in δ234

−4
(
κ2 − 1

)
u−2

(
κ2 − 2

)
w,ζ+ 1

2δ
[
u,ζζ − 6k1u

2 − 4k3uw,ζ − 2k5w
2
,ζ

]
+O

(
δ2
)

= 1
2δu,tt,

(22a)235236

2
(
κ2 − 2

)
u,ζ+κ2w,ζζ+δ [2u,ζ (k3u+ k5w,ζ) + (2k5u+ 6k6w,ζ)w,ζζ ]+O

(
δ2
)

= w,tt.

(22b)237

Following Nobili (2021), the motion equations are perturbed in the slow time238

τ = tδ, having let the moving axial coordinate ξ = ζ − ct. Consequently, a239

straightforward expansion in δ is introduced240

u = ϕ0(ξ, τ) + δϕ1(ξ, τ) + . . . , w = ψ0(ξ, τ) + δψ1(ξ, τ) + . . . .241

To leading order, the system already obtained in Nobili and Saccomandi (2024)242

is obtained,243

(
4 − 2κ2

)
ψ0,ξ − 4

(
κ2 − 1

)
ϕ0 = 0, (23)244 (

κ2 − c2
)
ψ0,ξξ + 2

(
κ2 − 2

)
ϕ0,ξ = 0. (24)245
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This system lends the trivial solution unless246

c = ±ĉB , with ĉB =

√
3κ2 − 4

κ2 − 1
,247

that, multiplied by cS , gives the dimensional longitudinal wave speed in rods248

cB =
√
E/ρ, where E = µ 3λ+2µ

λ+µ > 0 is Young’s modulus. Then, the leading249

order eigenform is obtained250

ϕ0 = −ν0ψ0,ξ, (25)251

that is precisely the Love assumption, which remains valid at leading order,252

with the understanding that a moving coordinate frame is considered.253

Moving to the next order, we find254

ϕ1 +
k5 − 2ν0k3 + 3ν20k1

4(κ2 − 1)
ψ0

2
,ξ − ν0

ĉ2B − 1

8(κ2 − 1)
ψ0,ξξξ + ν0ψ1,ξ = 0,

(26a)

255

(
κ2 − 2

)
ϕ1,ξ + ĉBψ0,ξτ +

(
3k6 − 2ν0k5 + ν20k3

)
ψ0,ξψ0,ξξ + ν0

(
κ2 − 2

)
ψ1,ξξ = 0.

(26b)

256

Remarkably, this system shows no dependence on k2 and k4 which only come at257

higher order and are therefore disregarded. Clearly, Eq.(26a) immediately lends258

the first correction to Love hypothesis259

ϕ1 = −ν0ψ1,ξ + ν0
ĉ2B − 1

8 (κ2 − 1)
ψ0,ξξξ −

k5 − 2ν0k3 + 3ν20k1
4 (κ2 − 1)

ψ0
2
,ξ, (27)260

which consists of the linear terms, already appreciated in Nobili and Saccomandi261

(2024), together with a nonlinear contribution which depends on Murnaghan’s262

moduli. Together, Eq.(25) and (27) give the refined Love hypothesis in the263

weakly nonlinear setting264

ϕ = −ν0ψ,ξ + δν0
ĉ2B − 1

8 (κ2 − 1)
ψ,ξξξ − δ

k5 − 2ν0k3 + 3ν20k1
4 (κ2 − 1)

ψ,ξ
2 +O(δ2), (28)265

and, in particular, we see that the linear Love hypothesis, in its simplicity, only266

conveys the first of such terms, and certainly misses the nonlinear correction.267

Plugging Eq.(27) into Eq.(26b), yields the governing equation for the perturba-268

tion to leading order,269

1
4ν

2
0

(
ĉ2B − 1

)
Ψ,ξξξ + ĉBΨ,τ + 3β1ΨΨ,ξ = 0, β1 = −ν30k1 + ν20k3 − ν0k5 + k6,

(29)270
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that is the well-known Korteweg-de Vries (KdV) equation for the longitudinal271

strain Ψ = ψ0,ξ. This equation corresponds to the far-field model (4.18) of Dai272

and Huo (2002) that is valid for an incompressible elastic rod, whence coefficients273

are different. Space differentiation of the KdV and exploiting the connection274

∂2

∂ξ∂τ
= 1

2δ
−1ĉB

(
∂2

∂ζ∂ζ
− ĉ−2

B

∂2

∂t∂t

)
+O(δ),275

lends the Boussinesq equation (BE)276

Ψ,ζζ − ĉ−2
B Ψ,tt +

δ

ĉ2B

[
1
2ν

2
0

(
ĉ2B − 1

)
Ψ,ζζ + 3β1Ψ2

]
,ζζ

= 0, (30)277

that admits soliton-like travelling solutions, see Bullough and Caudrey (1980).278

The BE features poor existence and uniqueness properties and, in particular,279

no local well-posedness result is available. To the same order of approximation,280

the asymptotically equivalent form may be obtained (this process, sometimes,281

is called ”regularization”)282

Ψ,ζζ − ĉ−2
B Ψ,tt +

δ

ĉ2B

[
1
2ν

2
0

(
1 − ĉ−2

B

)
Ψ,tt + 3β1Ψ2

]
,ζζ

= 0, (31)283

that goes under the name of improved Boussinesq equation (IBE). The IBE is284

far superior to the BE in that it is well-posed.285

Eq.(29) may be put to advantage in order to eliminate the third derivative in286

(28). Indeed, differentiating (28) with respect to ξ and using (29), one finds an287

asymptotically equivalent form of the refined weakly-nonlinear Love hypothesis288

ϕ,ξ = −ν0ψ,ξξ − δ
ĉB

κ2 − 2
ψ,ξτ − δ

ν0 (k3ν0 − 2k5) + 3k6
κ2 − 2

ψ,ξψ,ξξ +O(δ2). (32)289

Going back to the original variables, the KdV equation (29) becomes290

w,ζζ − ĉ−2
B w,tt + δĉ−2

B

[
1
2ν

2
0

(
ĉ2B − 1

)
w,ζζζζ + 6β1w,ζw,ζζ

]
= O(δ2), (33)291

that, to first correction terms, gives292

W,ZZ − c−2
B W,TT + ν20K

2
(
1 − ĉ−2

B

)
W,ZZZZ + 3ĉ−2

B β1(W,Z)2,Z = 0, (34)293

where K = A/
√

2 is the polar radius of gyration of the cross-section. Further-294

more, Eq.(33) may be rewritten, within the same order of accuracy, as295

w,ζζ − ĉ−2
B w,tt + δĉ−2

B

[
1
2ν

2
0 ĉ

−2
B

(
ĉ2B − 1

)
w,ζζtt + 6β1w,ζw,ζζ

]
= O(δ2), (35)296
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which has the undoubted advantage of being of order 2 in space as well as in297

time and therefore it requires only one pair of spatial boundary condition and298

one pair of initial conditions. In the original variables and to first correction, it299

becomes300

W,ZZ − c−2
B W,TT + ν20K

2c−2
B

(
1 − ĉ−2

B

)
W,ZZTT + 3ĉ−2

B β1(W,Z)2,Z = 0. (36)301

Recalling that302

β1 = E/ρ+ κ1(1 − 2ν0)(1 + 2ν20) + 1
3κ2(1 − 2ν0)3 + 1

3κ4(1 − 2ν30), (37)303

Eq.(36) corresponds to Eq.(1.4) of Ostrovskii and Sutin (1977), provided the304

coefficient 1− ĉ−2
B in the dispersion term is suppressed and the factor 1/2 added305

in the nonlinear term (the latter appears in Garbuzov et al. (2019)’s writing306

of Ostrovskii and Sutin’s result). This partial correspondence may not be too307

surprising, given that Ostrovskii and Sutin obtain their equation via the linear308

Love hypothesis and therefore miss the correction terms. Conversely, the model309

equation (34) in Dai and Fan (2004), that is obtained using the linear Love hy-310

pothesis, also appears in Porubov and Samsonov (1993) and it is a Boussinesq-311

type combination of the BE and of the IBE, that is named by Garbuzov et al.312

(2019) the “doubly dispersive equation” (DDE). In fact, Eq.(45) in Garbuzov313

et al. (2019) provides yet another model equation. As pointed out by Garbuzov314

et al. (2019), “the models [by Porubov and Samsonov (1993) and by Ostrovskii315

and Sutin (1977) (adding the missing 1/2 coefficient)] have different dispersive316

properties”, although, after ”regularization”, they are all asymptotically equiv-317

alent. Furthermore, “it would be interesting to compare the performance of318

these four nonlinear models with the exact (numerical) solution of the nonlinear319

problem”, that is indeed what is carried out in Sec.4 for the present model. Be-320

sides being equivalent, it is also clear that these models are also asymptotically321

consistent up to O(δ) terms. In contrast, however, they are not the same to322

those in Dai and Huo (2000) and Dai and Fan (2004) (where, presumably in323

Eq.(33) and (34) W should be written in the place of U).324
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Similarly, the refined Love assumption (32) becomes325

u,ζ = −ν0w,ζζ−
1

2(κ2 − 2)

(
ĉ2Bw,ζζ − w,tt

)
−δ ν0 (k3ν0 − 2k5) + 3k6

κ2 − 2
w,ζw,ζζ+O(δ2),

(38)326

that, to first correction terms, gives327

U,Z = −ν0W,ZZ−
ĉ2B

2(κ2 − 2)

(
W,ZZ − c−2

B W,TT

)
−ν0 (k3ν0 − 2k5) + 3k6

κ2 − 2
W,ZW,ZZ .

(39)328

The refined Love hypothesis (28), in the original variables, reads329

U = −ν0W,Z +K2ν0
ĉ2B − 1

4 (κ2 − 1)
W,ZZZ − k5 − 2ν0k3 + 3ν20k1

4 (κ2 − 1)
W 2

,Z , (40)330

and it may be compared with Eq.(2.52) in Samsonov (2001), which, however,331

emerges from a completely different setting, by enforcing the free boundary332

conditions. The two equations reveal a similar structure, although coefficients333

are very different for each correction term (dispersive and nonlinear). In fact,334

according to Samsonov, the linear correction term sign is opposite and exhibits335

a quadratic dependence on the radius R (whence it disappears on the rod axis).336

Nonetheless, this structural correspondence is somewhat remarkable, consider-337

ing that equations emerge from very different assumptions.338

4. Numerical results339

We now show how the model equation (33) compares to the nonlinear cou-340

pled system (17) and to the solution of the wave equation. Specifically, we are341

interested in the accuracy of the transversal motion, with special regard to the342

nonlinear contribution. It is pointed out that this is not the same comparison343

that is presented in Garbuzov et al. (2020), which instead focuses on propa-344

gating solitons. We consider the dimensionless variables δu(ζ, t) and δw(ζ, t),345

where δ is introduced to properly scale quantities as in (21). We choose the346

parameter set347

κ = 3, k1 = 1.1, k2 = 1, k3 = 5, k4 = 2, k5 = 0.5, k6 = 0.3,348

with the aim to produce a significant nonlinear contribution. A few numerical349

experiments show that this particular choice of parameters is of little importance350
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for the overall picture. In contrast, it is crucial to take for δ a small value:351

hereinafter we begin with δ = 0.1, which warrants equally small initial conditions352

to remain within the weakly nonlinear hypothesis. In the following, we assume353

a periodic system, because our approximation relies on the far-field concept354

which is at odd with a finite domain. Therefore, we chose a periodic boundary355

conditions, namely356

w(−π, t) = w(π, t), u(−π, t) = u(π, t). (41)357

in the period range ζ ∈ [−π, π]. For the initial condition on w, we assume358

w(ζ, 0) = sin(ζ), (42)359

and, for the sake of definiteness, we assume zero initial velocity, i.e.360

w,t(ζ, 0) = u,t(ζ, 0) ≡ 0. (43)361

For u(ζ, 0), we adopt the linear Love assumption, whereby362

u(ζ, 0) = −ν0w,ζ(ζ, 0) = −ν0 cos ζ, (44)363

with the understanding that this choice works in favor of the accuracy of Love’s364

linear hypothesis (25).365

To determine the approximating solution, we integrate the Boussinesq-type366

Eq.(33) by standard methods. Here, it is important to point out that a fourth367

space derivative appears, which calls for two sets of boundary conditions, pre-368

cisely as in (41). To bring about periodicity on u, we call upon (28) and thereby369

impose370

− ν0u,ζ(−π, t) + δν0
ĉ2B − 1

8 (κ2 − 1)
u,ζζζ(−π, t) − k5 − 2ν0k3 + 3ν20k1

4 (κ2 − 1)
u2,ζ(−π, t)371

= −ν0u,ζ(π, t) + δν0
ĉ2B − 1

8 (κ2 − 1)
u,ζζζ(π, t) − k5 − 2ν0k3 + 3ν20k1

4 (κ2 − 1)
u2,ζ(π, t).372

Finally, for the wave equation, we have the analytic solution373

w(ζ, t) = 1
2 (sin(ζ + cBt) − sin(ζ − cBt)) , (45)374
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Figure 1: δw(ζ, t) for δ = 0.1 as a function of t for ζ = π/3 (left) and ζ = π/2 (right) as
obtained from the nonlinear Mindlin-Herrmann system (black, solid), the KdV equation (blue,
solid) and the solution of the wave equation (red, dashed). The solid curves are indistinguish-
able.
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Figure 2: δw,ζ(ζ, t) for δ = 0.1 as a function of t for ζ = π/3 (left) and ζ = π/2 (right)
as obtained from the nonlinear Mindlin-Herrmann system (black, solid), the KdV equation
(blue, solid) and the solution of the wave equation (red, dashed). The solid curves are indis-
tinguishable.
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Figure 3: δw,t(ζ, t) for δ = 0.1 as a function of t for ζ = π/3 (left) and ζ = π/2 (right)
as obtained from the nonlinear Mindlin-Herrmann system (black, solid), the KdV equation
(blue, solid) and the solution of the wave equation (red, dashed). The solid curves are indis-
tinguishable.
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Figure 4: δu(ζ, t) for δ = 0.1 as a function of t for ζ = π/3 (left) and ζ = π/2 (right) as
obtained from the nonlinear Mindlin-Herrmann system (black, solid), the refined nonlinear
Love hypothesis (blue, solid) and the linear Love hypothesis applied to the solution of the
wave equation (red, dashed). The solid curves are indistinguishable.

which disposes of the initial velocity, according to the first of Eqs.(43).375

Figure 1 plots δw(ζ, t) as it emerges from the numerical solution of the non-376

linear Mindlin-Herrmann system (17), from the numerical solution of the KdV377

(33) and finally from solving the wave equation. Clearly, all three solutions ap-378

pear very close, at least initially, the deviation from the wave equations building379

up slowly in time. Yet, it is interesting to look at corresponding plots for the380

space derivative of w, that are shown in Fig.2 where it clearly appears that381

the wave equation is unable to reproduce the features of the solution. This is382

especially true for the position ζ = π/2 because there the wave equation solu-383

tion vanishes, thus leaving only the nonlinear term as the leading source for the384

solution. In contrast, the numerical solution of the KdV offers an outstanding385

approximation, which can be hardly resolved from the Mindlin-Herrmann sys-386

tem. The same comparison is given in Fig.3 with respect to the time derivative387

of w and similar conclusions may be drawn.388

We now compare the numerical solution for δu obtained from solving the389

nonlinear Mindlin-Herrmann system (17) with the refined Love hypothesis (28)390

and with the linear Love hypothesis (25) applied to the solution of the wave391

equation (namely a O(1) solution). Fig.4 presents this comparison for ζ =392

π/3 and for ζ = π/2 and confirms the excellent approximation offered by the393

refined Love hypothesis, that is indeed capable of reproducing the nonlinear394

contributions over time. Once again, the location ζ = π/2 is expedient to rule395
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Figure 5: δw(π/2, t) (left) and δwζ(π/2, t) (right) as a function of t for δ = 0.2 as obtained
from the nonlinear Mindlin-Herrmann system (black, solid), the KdV (blue, solid) and the
solution of the wave equation (red, dashed). The solid curves begin to resolve for t > 10 in
the derivative only.
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Figure 6: δu(π/2, t) as a function of t for δ = 0.2 as obtained from the nonlinear Mindlin-
Herrmann system (black, solid), the refined nonlinear Love hypothesis (blue, solid) and the
linear Love hypothesis applied to the solution of the wave equation (red, dashed). The latter
is zero throughout. The solid curves exhibit some small differences at large times.

out any contribution from the linearized solution and single out the outcomes396

of the nonlinear terms. It should be emphasized that obtaining the numerical397

solution of the Mindlin-Herrmann system is rather delicate and time consuming,398

especially for long time frames.399

We now investigate the robustness of the approximation in dependence of400

the parameter δ. Fig.5 shows the displacement δw and its space derivative δw,ζ401

at ζ = π/2, having let δ = 0.2. Some little deviations of the KdV approxima-402

tion may be appreciated for long times in the space derivative only. A similar403

comparison, this time for u and the refined Love hypothesis, is plotted in Fig.6404

where again little deviations begin to appear at large times. This trend becomes405

more evident for δ = 0.25 and Fig.7 reveals that the nonlinear approximation406

deteriorates substantially over time, although it still fares a lot better than the407
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Figure 7: δw(π/3, t) (left) and δw(π/2, t) (right) as a function of t for δ = 0.25 as obtained
from the nonlinear Mindlin-Herrmann system (black, solid), the KdV (blue, solid) and the
solution of the wave equation (red, dashed). The solid curves begin to resolve for t > 10 in
both locations.

wave equation.408

5. Unimodal Lagrangian409

Plugging the refined Love hypothesis (40) into the Lagrangian (16) lends a410

unimodal system whose only variable is W . As already observed in Nobili and411

Saccomandi (2024), the corresponding Euler-Lagrange equation corresponds to412

the Love equation (Love, 1927, §278)413

W,ZZ +
ν20K

2

c2B
W,ZZTT =

W,TT

c2B
,414

only to leading order, while different coefficients are obtained in the first cor-415

rection. This outcome, that is a result of the fact that the Love Lagrangian416

accommodates for transversal motion only in the inertia term and not in the417

elastic potential, occurs regardless of the correction terms to the linear Love418

hypothesis (20). Accordingly, the first correction plays no role in affecting the419

E-L equation of the unimodal Lagrangian up to first order. Besides, comparing420

the model equation against the Pochhammer-Chree solution of linear elasticity421

as in Dai and Fan (2004) to assess its validity brings little value, because we422

already know that the bimodal kinematics is doomed to fail (and equally so423

in the case of richer models, provided that they are power series corrections of424

the bimodal system). Yet, it is even more remarkable that the E-L equation425

of the unimodal cubic Lagrangian corresponds to the BE (34) regardless of the426
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correction terms. In other words, plugging the linear Love hypothesis (20) into427

the Murnaghan Lagrangian (16) yields the correct model equation, be it (34)428

or (36). This time, this outcome is a consequence of the first constraint in the429

Murnaghan material parameters (12). It is concluded that, as it was the case430

in linear elasticity, plugging a family of Love assumptions, which all differ from431

the linear Love hypothesis (20) by first correction terms into the nonlinear La-432

grangian (16) (and regularizing) always lends the model equations (34) or (36).433

Indeed, the unimodal Lagrangian corresponding to (34) is given by434

L1 = − 1
2W

2
,Z + 1

2c
−2
B W 2

,T + 1
2ν

2
0K

2
(
1 − ĉ−2

B

)
W 2

,ZZ − ĉ−2
B β1W

3
,Z . (46)435

Similarly, letting the Love Lagrangian Graff (2012)436

L∗ = − 1
2W

2
,Z + 1

2c
−2
B W 2

,T + 1
2ν

2
0K

2c−2
B W 2

,ZT , (47)437

we see that the corrected Lagrangian438

L2 = L∗ − 1
2ν

2
0K

2c−2
B ĉ−2

B W 2
,ZT − ĉ−2

B β1W
3
,Z , (48)439

yields the E-L equation (36).440

6. Conclusions441

In this paper, slow time perturbation of the motion equations is proposed to442

systematically derive the (weakly) nonlinear counterpart of the Love hypothe-443

sis of linear elasticity. For the sake of illustration, the method is shown in the444

simplest possible setting. Indeed, a bimodal kinematics is assumed to study445

longitudinal waves propagating in Murnaghan hyperelastic straight rods and,446

as a result, a complicated pair of coupled nonlinear PDEs arises, which is the447

nonlinear generalization of the Mindlin-Herrmann system of linear elasticity.448

This nonlinear system is difficult to analyze and calls for numerical investiga-449

tion. Alternatively, a refined weakly nonlinear Love hypothesis is derived by450

perturbation of the motion equation in slow time. This relation may be seen as451

a generalization of the linear hypothesis originally proposed by Love (1927) in452

the context of linear elasticity. In the process, a unidimensional model equation453
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is obtained for longitudinal strain, that, in the moving frame, is the celebrated454

KdV. In the stationary frame, the KdV turns into the Boussinesq and into the455

improved Boussinesq equations, which are asymptotically equivalent. In fact, as456

noted by Garbuzov et al. (2019), the asymptotic approach justifies the presence457

of many different model equations in the literature. In terms of longitudinal458

displacement, the Boussinesq-type model of Ostrovskii and Sutin (1977) is re-459

trieved, which was obtained by the linear Love hypothesis, although coefficients460

in the dispersive term are different (the nonlinear term is also different by a 1/2461

factor which, however, may be a typo).462

The solution of either Boussinesq equation is compared against the numerical463

solution of the nonlinear Mindlin-Herrmann system and remarkable accuracy is464

found, both in terms of longitudinal as well as transversal displacement (and465

their derivatives alike). In fact, assessment of the accuracy of the transversal466

displacement, as provided by the refined nonlinear Love equation, is especially467

interesting and seems not yet explored in the literature. Besides, the accuracy468

of the approximation seems unexpectedly robust for not-so-small values of the469

small parameter δ. This procedure may be easily generalized to more involved470

scenarios, such as the presence of reinforcing fibres or exotic constitutive models,471

see Amendola et al. (2024). Finally, a unimodal Lagrangian is derived which472

proves capable of producing (either of) the Boussinesq equations regardless of473

the first correction terms. This surprising outcome emerges in light of the474

restriction that exists on the Murnaghan material parameters and, possibly,475

it may be a by-product of the bimodal kinematics.476
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Appendix A. Murnaghan strain energy density493

The Murnaghan strain energy density, within the restricted kinematics (1),494

reads495

W = µ
(
2U2 +W 2

,Z + 1
2R

2U2
,Z

)
+ 1

2λ

[
1

2

(
R2U2

,Z + (W,Z + 1) 2 − 1
)

+ U(U + 2)

]2
+

1

24
µ
{
κ2

(
R2U2

,Z + 2U2 + 4U +W,Z (W,Z + 2)
)
3

+3κ1
(
2U2

(
R2U2

,Z + 4
)

+ 2R2U2
,Z (W,Z + 1) 2 + 4R2UU2

,Z +R4U4
,Z + 2U4 + 8U3 +W 2

,Z (W,Z + 2) 2
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×
(
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+κ4
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(A.1)
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