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Abstract

We propose a new gradient projection algorithm that compares favorably with
the fastest algorithms available to date for ℓ1-constrained sparse recovery from noisy
data, both in the compressed sensing and inverse problem frameworks. The method
exploits a line-search along the feasible direction and an adaptive steplength selection
based on recent strategies for the alternation of the well-known Barzilai-Borwein rules.
The convergence of the proposed approach is discussed and a computational study
on both well-conditioned and ill-conditioned problems is carried out for performance
evaluations in comparison with five other algorithms proposed in the literature.

1 Introduction

There has been a vast amount of recent literature dedicated to algorithms for sparse
recovery, both in the context of inverse imaging problems and of compressed sensing. As
an alternative to the usual quadratic penalties used in regularization theory for ill-posed or
ill-conditioned inverse problems, the use of ℓ1-type penalties has been advocated in order
to recover regularized solutions having sparse expansions on a given basis or frame, such
as e.g. a wavelet system [14]. Denoting by x ∈ R

p the vector of coefficients describing the
unknown object, by y ∈ R

n the vector of (noisy) data and by K the linear operator (n×p
matrix) modelling the link between the two, the inverse problem amounts to finding a
regularized solution of the equation Kx = y. When it is known a priori that x is a sparse
vector, one can resort to the following penalized least-squares strategy [9], also referred to
as the lasso after Tibshirani [29]:

x̄(λ) = argmin
x

‖Kx− y‖2 + 2λ‖x‖1 (1)

where λ is a positive regularization parameter regulating the balance between the penalty
and the data misfit terms. The norm ‖ · ‖ denotes the usual ℓ2 norm whereas ‖x‖1 =
∑p

i=1 |xi| is the ℓ1 norm of the vector x.
In compressed sensing (also called compressive sampling), the aim is to reconstruct

a sparse signal or object from a small number of linear measurements [6, 7, 16]. The
recovery of such an object can then be achieved by searching for the sparsest solution
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to the linear system Kx = y representing the measurement process, or equivalently by
looking for a solution with minimum “ℓ0-norm”. To avoid the combinatorial complexity
of the latter problem, one can use as a proxy a convex ℓ1-norm minimization strategy.
When the data y are affected by measurement errors, the problem is reformulated as a
penalized least-squares optimization analogous to (1).

Let us observe that problem (1) is equivalent to the constrained minimization problem:

x̃(ρ) = arg min
‖x‖1≤ρ

‖Kx− y‖2 (2)

for a certain ρ. One can show that x̄(λ) and x̃(ρ) are piecewise linear functions of λ and ρ.
One always has that x̄(λ) = 0 for λ ≥ λmax ≡ maxi |(KTy))i|. The relationship between
λ and ρ is given by λ = maxi |(KT (y −Kx̃(ρ)))i| and ρ = ‖x̄(λ)‖1 [15].

2 Iterative minimization algorithms

Several iterative methods for solving the minimization problems (1) or (2) have been
proposed in the literature. For the purpose of comparison with our new acceleration
scheme, we will focus on the following algorithms:

1. The Iterative Soft-Thresholding Algorithm (“ISTA”) proposed in [14, 19, 8]) goes as
follows: x(k+1) = Sλ[x

(k)+r(k)] where r(k) = KT (y−Kx(k)) is the residual in step
k and the (nonlinear) soft-thresholding operator acts componentwise as (Sλ[x])i =
xi−λ sgn(xi) if |xi| > λ and zero otherwise. For any initial vector x(0) and under the
condition ‖K‖ < 1, this scheme has been shown to converge to the minimizer x̄(λ)
defined by (1) [14]. When reinterpreted as a forward-backward proximal scheme,
convergence can be seen to hold also for ‖K‖ <

√
2 [10].

2. The Fast Iterative Soft-Thresholding Algorithm (“FISTA”), proposed in [2], is a
variation of ISTA. Defining the operator T by T (x) = Sλ[x + KT (y − Kx)], the
FISTA algorithm is:

x(k+1) = T

(

x(k) +
t(k) − 1

t(k+1)

(

x(k) − x(k−1)
)

)

, (3)

where x(0) = 0, t(k+1) =
1+
√

1+4(t(k))2

2 and t(0) = 1. It has virtually the same
complexity as the ISTA algorithm, but can be shown to have better convergence
properties.

3. The GPSR algorithm proposed in [20].

4. The SPARSA algorithm proposed in [30].

5. The Projected Steepest Descent (“PSD”) method proposed in [15]: x(k+1) = PΩ[x
(k)+

β(k)r(k)], with β(k) = ‖r(k)‖2/‖Kr(k)‖2. PΩ denotes the projection onto the ℓ1-ball
Ω of radius ρ.

The Figures in Section 4 provide a visual way to compute the performance of these algo-
rithms in two problem examples. Note that these are the same as in [25], where the reader
can find comparisons to yet other methods, including e.g. the ℓ1-ls method, an interior
point algorithm proposed in [24].
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3 Gradient Projection with Adaptive Steplength Selection

In this section we describe the acceleration scheme we propose for solving the optimization
problem (2). This problem is a particular case of the general problem of minimizing a
convex and continuously differentiable function f(x) over a closed convex set Ω ⊂ R

p.
Here Ω = {x ∈ R

p, ‖x‖1 ≤ ρ}. A gradient projection method for solving this problem
can be stated as in Algorithm GP.

Some comments about the main steps of Algorithm GP are in order.
First of all, it is worth to stress that any choice of the steplength αk in a closed interval is
permitted. This is very important from a practical point of view since it allows to make
the updating rule of αk problem-related and oriented at optimizing the performance.
If the projection performed in step 2 returns a vector h(k) equal to x(k), then x(k) is a
stationary point and the algorithm stops. When h(k) 6= x(k), it is possible to prove that
d(k) is a descent direction for f in x(k) and the backtracking loop in step 5 terminates
with a finite number of runs; thus the algorithm is well defined [3, 4, 5].
The nonmonotone line-search strategy implemented in step 5 ensures that f(x(k+1)) is
lower than the maximum of the objective function in the last M iterations [23]; of course,
if M = 1 then the strategy reduces to the standard monotone Armijo rule [3].

Concerning the convergence properties of the algorithm, the following result can be
derived from the analysis carried out in [4, 5] for more general gradient projection schemes:
if the level set Ω0 = {x ∈ Ω : f(x) ≤ f(x(0))} is bounded, then every accumulation point
of the sequence {x(k)} generated by the Algorithm GP is a stationary point of f(x) in Ω.
We observe that the assumption is trivially satisfied for problem (2) since in this case the
feasible region Ω is bounded.

Now, we may discuss the choice of the steplengths αk ∈ [αmin, αmax]. Steplength
selection rules in gradient methods have received an increasing interest in the last years
from both the theoretical and the practical point of view. On one hand, following the
original ideas of Barzilai and Borwein (BB) [1], several steplength updating strategies
have been devised to accelerate the slow convergence exhibited in most cases by standard
gradient methods, and a lot of effort has been put into explaining the effects of these
strategies [11, 12, 13, 18, 21, 22, 32]. On the other hand, numerical experiments on
randomly generated, library and real-life test problems have confirmed the remarkable
convergence rate improvements involved by some BB-like steplength selections [12, 13,
20, 21, 28, 31, 32]. Thus, it seems natural to equip a gradient projection method with a
steplength selection that takes into account the recent advances on the BB-like updating
rules.
First of all we must recall the two BB rules usually exploited by the main steplength
updating strategies. To this end, by denoting with I the p × p identity matrix, we can
regard the matrix B(αk) = (αkI)

−1 as an approximation of the Hessian ∇2f(x(k)) and
derive two updating rules for αk by forcing quasi-Newton properties on B(αk):

αBB1
k = argmin

αk∈R
‖B(αk)s

(k−1)−z(k−1)‖ and αBB2
k = argmin

αk∈R
‖s(k−1)−B(αk)

−1z(k−1)‖,
(4)

where s(k−1) = x(k) − x(k−1) and z(k−1) = ∇f(x(k)) − ∇f(x(k−1)). In this way, the
steplengths

αBB1
k =

s(k−1)Ts(k−1)

s(k−1)Tz(k−1)
, αBB2

k =
s(k−1)Tz(k−1)

z(k−1)Tz(k−1)
, (5)

are obtained.
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Algorithm GP (Gradient Projection Method)

Choose the starting point x(0) ∈ Ω, set the parameters β, θ ∈ (0, 1), 0 < αmin < αmax and
fix a positive integer M .
For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the parameter αk ∈ [αmin, αmax];

Step 2. Projection: h(k) = PΩ(x
(k) − αk∇f(x(k)));

If h(k) = x(k) then stop, declaring that x(k) is a stationary point;

Step 3. Descent direction: d(k) = h(k) − x(k);

Step 4. Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x
(k−j));

Step 5. Backtracking loop:
If f(x(k) + λkd

(k)) ≤ fmax + βλk∇f(x(k))Td(k)
then

go to Step 6;

Else

set λk = θλk and go to Step 5;

Endif

Step 6. Set x(k+1) = x(k) + λkd
(k).

End

At this point, inspired by the steplength alternations successfully implemented in recent
gradient methods [21, 32], we propose a steplength updating rule for GP which adaptively
alternates the values provided by (5). The details of the GP steplength selection are given
in Algorithm SS. This rule decides the alternation between two different selection strate-
gies by means of the variable threshold τk instead of a constant parameter as done in [21]
and [32]. This trick makes the choice of τ0 less important for the GP performance and, in
our experience, seems able to avoid the drawbacks due to the use of the same steplength
rule in too many consecutive iterations. In the following we denote by GPSS the algorithm
GP equipped with the steplength selection SS.
We end this section by describing the setting for the GPSS parameters used in the com-
putational study of this work:

• line-search parameters: M = 1 (monotone line-search), θ = 0.5, β = 10−4;

• steplength parameters: αmin = 10−10, αmax = 1010,
α0 = max{αmin,min{‖PΩ(x

(0) −∇f(x(0)))‖−1
∞ , αmax}}, τ1 = 0.5, Mα = 2.

In our experience the above setting often provides satisfactory performance; however, it
can not be considered optimal for every application and a careful parameter tuning is
always advisable.

4 Numerical experiments

To assess the performances of our GPSS algorithm and estimate the gain in speed it
can provide with respect to the algorithms 1 to 5, we perform some numerical tests.
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Algorithm SS (Steplength Selection for GP)

if k = 0 then

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a non-negative integer Mα;

else

if s(k−1)Tz(k−1) ≤ 0 then

αk = αmax;
else

α
(1)
k = max

{

αmin,min
{

s(k−1)Ts(k−1)

s(k−1)Tz(k−1)
, αmax

}}

;

α
(2)
k = max

{

αmin,min
{

s(k−1)Tz(k−1)

z(k−1)Tz(k−1)
, αmax

}}

;

if α
(2)
k /α

(1)
k ≤ τk then

αk = min
{

α
(2)
j , j = max {1, k −Mα} , . . . , k

}

;

τk+1 = τk ∗ 0.9;
else

αk = α
(1)
k ;

τk+1 = τk ∗ 1.1;
endif

endif

endif

To this purpose we adopt the methodology proposed in [25] and based on the notion of
approximation isochrones. It improves on the comparisons made for a single value of λ or
ρ, i.e. for a single level of sparsity of the recovered object.

For values of λ in a given interval λmin ≤ λ ≤ λmax, one computes the minimizer
x̄(λ) of (1). When the number of nonzero components in x̄(λ) is not too large, this can
be done by means of the direct (non-iterative) homotopy method [27] or LARS algorithm
[17]. Then, for a fixed and given computation time, one runs one of the algorithms for each
value of λ (or ρ). The relative error e(k) = ‖x(k)(λ)− x̄(λ)‖/‖x̄(λ)‖ reached at the end of
the computation is plotted as a function of λ and hence this plot is just the approximation
isochrone showing the degree of accuracy reached in the given amount of computing time
for each value of λ. A set of such plots allow to quickly grasp the performances of a given
algorithm in various parameter regimes and to easily compare it with other methods;
it reveals in one glance under which circumstances the algorithms do well or fail. The
paper [25] also demonstrates the fact that the relative performances of the algorithms
may strongly depend on the specific application one considers, and in particular on the
properties of the linear operator K modelling the problem.

We test the different algorithms on two different operators arising typically either from
a compressed sensing or from an inverse problem. In both cases the matrix K is of size
1848x8192. In the first case, the elements of K are taken from a Gaussian distribution
with zero mean and variance such that ‖K‖ = 1. This matrix is rather well conditioned
and can serve as a paradigm of compressed sensing applications. It is applied to a sparse
vector and perturbed by additive gaussian noise (about 2%) to yield the data y. The
second matrix models a severely ill-conditioned linear inverse problem that finds its origin
in a problem of seismic tomography described in detail in [26].

For both operators, the minimizer x̄(λ) is computed for 50 different values of λ (or
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Figure 1: Approximation isochrones in the case of the gaussian random matrix for t =
6, 12, . . . , 60 seconds.
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Figure 2: The same as Figure 1 but in a semi-log plot.

equivalently, 50 different values of ρ). Then, for each iterative algorithm, we make plots
having the relative error e(k) on the vertical axis and log2 λmax/λ on the bottom horizontal
axis (on the top horizontal axis the value of ρ = ‖x̄‖1 is also reported). The number of
nonzero components m in x̄(λ) is indicated by vertical dashed lines. In each plot we report
the isochrone lines that correspond to a given amount of computer time. In this way one
can see how close, for the different values of λ, the iterates approach the minimizer after
a given time. Let us remark that although the reported computing times are of course
specific to a given computer and implementation, the overall behavior of the isochrones
should be fairly general. For example, the fact that they get very close to each other in
some places can be interpreted as a bottleneck feature of the algorithm.

In Figure 1, we report the results for the ISTA, FISTA, GPSR, SPARSA, PSD and
our new algorithm GPSS for the case of the gaussian random matrix. The proposed
GPSS algorithm compares favorably with the other five, especially for small values of
λ. Experiments made by varying the parameter M showing no significant difference, we
report here only the results obtained with M = 1 (monotonic line search). However, the
behavior for large penalties is not clearly visible on Figure 1. It is better demonstrated
when using a logarithmic scale for the relative error on the vertical axes as reported in
Figure 2.
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Figure 3: Approximation isochrones for the seismic inverse problem for t = 1, . . . , 10
minutes.

In Figures 3 and 4, we report the results for the case of the ill-conditioned matrix
arising from the seismic inverse problem. Clearly, for this operator, ISTA, GPSR and
PSD have a lot of difficulty in approaching the minimizer for small values of λ (lines
not approaching e = 0). The FISTA algorithm appears to work best for small penalty
parameters whereas GPSS and SPARSA compete for the second place in such instance.
From Figure 4, we see that the GPSS and SPARSA algorithms are performing best for
large values of λ.

The reported encouraging numerical results call of course for further experiments, but
we believe that they are sufficiently representative to allow honest extrapolation to reliable
conclusions holding more generally. As seen, the proposed GPSS algorithm performs well
for the compressed sensing problem: for small values of λ, it clearly outperforms the other
algorithms (see Figure 1) whereas it is still competitive for larger values of λ. In the
ill-conditioned inversion problem, GPSS an SPARSA appear to perform better than all
other tested algorithms for large values of λ, whereas they are challenged by the FISTA
method for smaller values.
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Figure 4: The same as in Figure 3 in a semi-log plot.

Acknowledgements

I.L. and C.D.M. are supported by grant GOA-062 of the VUB. I.L. is supported by grant
G.0564.09N of the FWO-Vlaanderen. M.B., R.Z. and L.Z. are partly supported by MUR
grant 2006018748.

References

[1] J. Barzilai, J.M. Borwein, Two point step size gradient methods, IMA J. Numer.
Anal. 8 (1988) 141–148.

[2] A. Beck, M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems, SIAM J. Imaging Sciences, forthcoming.

[3] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, 2nd edition, 1999.

[4] E.G. Birgin, J. M. Mart́ınez, M. Raydan, Inexact spectral projected gradient methods
on convex sets, IMA J. Numer. Anal. 23 (2003) 539–559.

9



[5] S. Bonettini, R. Zanella, L. Zanni, A scaled gradient projection method for con-
strained image deblurring, Inverse Problems 25:015002 (2009).

[6] E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal recon-
struction from highly incomplete frequency information, IEEE Trans. Inform. Theory
52 (2006) 489–509.

[7] E. Candès, T. Tao, Near optimal signal recovery from random projections: Universal
encoding strategies?, IEEE Trans. Inform. Theory 52 (2006) 5406–5425.

[8] A. Chambolle, An Algorithm for Total Variation Minimization and Applications, J.
Math. Imaging and Vision, 20 (2004) 89–97.

[9] S. S. Chen, D. Donoho, M. A. Saunders, Atomic Decomposition by Basis Pursuit,
SIAM J. Sci. Comput., 20 (1998) 33–61.

[10] P.L. Combettes, V.R. Wajs, Signal Recovery by Proximal Forward-Backward Split-
ting, Multiscale Model. Simul. 4 (2005) 1168–1200.

[11] Y.H. Dai, R. Fletcher, On the asymptotic behaviour of some new gradient methods,
Math. Programming 103 (2005) 541–559.

[12] Y.H. Dai, R. Fletcher, New algorithms for singly linearly constrained quadratic pro-
gramming problems subject to lower and upper bounds, Math. Programming 106
(2006) 403–421.

[13] Y.H. Dai, W.W. Hager, K. Schittkowski, H. Zhang, The cyclic Barzilai-Borwein
method for unconstrained optimization, IMA J. Numer. Anal. 26 (2006) 604–627.

[14] I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Comm. Pure Appl. Math. 57 (2004)
1413–1457.

[15] I. Daubechies, M. Fornasier, I. Loris, Accelerated projected gradient method for linear
inverse problems with sparsity constraints, J. Fourier Anal. Appl. 14 (2008) 764–792.

[16] D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006) 1289–1306.

[17] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, Ann. Statist.
32 (2004) 407–499.

[18] R. Fletcher, On the Barzilai-Borwein method, Technical Report NA/207, Department
of Mathematics, University of Dundee, Dundee, UK, 2001.

[19] M.A.T. Figueiredo, R.D. Nowak, An EM algorithm for wavelet-based image restora-
tion, IEEE Trans. Image Process. 12 (2003) 906–916.

[20] M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse recon-
struction: Application to compressed sensing and other inverse problems, IEEE J.
Selected Topics in Signal Process. 1 (2007) 586–597.

[21] G. Frassoldati, G. Zanghirati, L. Zanni, New adaptive stepsize selections in gradient
methods, J. Industrial and Management Optim. 4 (2008) 299–312.

10



[22] A. Friedlander, J.M. Mart́ınez, B. Molina, M. Raydan, Gradient method with retards
and generalizations, SIAM J. Numer. Anal. 36 (1999) 275–289.

[23] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line-search technique for New-
ton’s method , SIAM J. Numer. Anal. 23 (1986) 707–716.

[24] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, A method for large-scale
ℓ1-regularized least squares, IEEE Trans. on Selected Topics in Signal Processing 1
(2007) 606–617.

[25] I. Loris, On the performance of algorithms for the minimization of ℓ1-penalized func-
tionals, Inverse Problems 25:035008 (2009).

[26] I. Loris, G. Nolet, I. Daubechies, F.A. Dahlen, Tomographic inversion using ℓ1-norm
regularization of wavelet coefficients, Geophysical Journal International 170 (2007)
359–370.

[27] M.R. Osborne, B. Presnell, B.A. Turlach, A new approach to variable selection in
least squares problems, IMA J. Numer. Anal. 20 (2000) 389–403.

[28] T. Serafini, G. Zanghirati, L. Zanni, Gradient projection methods for quadratic pro-
grams and applications in training support vector machines, Optim. Meth. Soft. 20
(2005) 343–378.

[29] R. Tibshirani, Regression selection and shrinkage via the lasso, J. R. Stat. Soc. Ser.
B 58 (1996) 267–288.

[30] S. Wright, R. Nowak, M. Figueiredo, Sparse reconstruction by separable approxima-
tion, IEEE Transactions on Signal Processing (2009), forthcoming.

[31] L. Zanni, An improved gradient projection-based decomposition technique for support
vector machines, Comput. Management Sci. 3 (2006) 131–145.

[32] B. Zhou, L. Gao, Y.H. Dai, Gradient methods with adaptive step-sizes, Comput.
Optim. Appl. 35 (2006) 69–86.

11


	Introduction
	Iterative minimization algorithms
	Gradient Projection with Adaptive Steplength Selection
	Numerical experiments

