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Abstract. Picking operations inside a warehouse are the major share of the total 

costs of retailing operations. Optimization and harmonization of operations is 

therefore crucial in the economy of a successful business. In this paper we consider 
the case of a leading German grocery retailer company and we adapt to their case a 

Mixed Integer Linear Program solving the order batching, assignment and pickers 

routing problems. Improvements to the model are also discussed, Computational 
experiments are finally presented, validating the different models and ranking them 

in terms of their applicability to real scenarios. 
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1. Introduction 

An optimized warehouse management system (WMS) is nowadays at the basis of a 

successful business. Intelligent systems utilizing operations research and advanced 

analytics techniques are needed to enhance efficiency [1]. For example, it is estimated 

that the overall picking process typically represents 60% of total cost in a warehouse 

operation [2] and approximately 50% of a picker's time is spent in traveling with/without 

articles [3]. 

A diverse set of activities, including batching, picking, cartonizing, and shipping [4] 

needs to be optimized in a harmonized way. Depending on the characteristics of the 

business, the different activities have different peculiarities. For example, in e-commerce 

the way orders are batched together (batching problem) is very central [5], while in other 

contexts it is less important. How batches are assigned to the pickers (assignment 

problem), and how the pickers are routed for order picking (routing problem) are again 

very much dependent on the layout of the warehouse itself [6]. In this paper we consider 

the optimization of the hub-warehouse of a large German grocery retailer. The customers 

in such a case are the different supermarket of the chain, and orders are composed of 
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large amounts of goods, that will later be temporarily stored locally at supermarket for 

short times, or directly going to the shelves for customers to buy them [7].  

There are only a few studies that simultaneously consider batching, assignment and 

routing problems. Chen et al. [8] minimized tardiness but they cannot solve real-life 

instances. Scholz et al. [9] presented a method that scales up better. Ardjmand et al. [10] 

finally proposed a Mixed Integer Linear Programming model and some heuristics for the 

special case of wave-picking (connected to e-commerce). The goal of their model is to 

minimize the overall makespan for processing a set of orders, given a fixed set of pickers. 

In this paper we consider the model described in [10] and we specialize it to the 

business model of the German grocery retailer that inspired our study, and to the typical 

layout of their warehouses. We will improve the model and present some experimental 

results based on realistic orders on a real deep-frozen warehouse.  

2. Models 

In this section we provide the mathematical models for the minimization of the makespan 

simultaneously considering batching, assignment and routing problems. First we devise 

a (slightly) revised version of the general model M described in [10]. Then we tailor the 

general model for application to a real deep-frozen warehouse, obtaining two different 

models referred to as M1 and M2. Model M1 is based on a graph representation of the 

warehouse, and includes an explicit encoding of the routes. Model M2 drops the graph 

representation and adopts a compact encoding of pickers’ tours, as explained later. 

2.1. Model M 

The problem addressed in [10] assumes a one-to-one relation between item types and 

item locations (bays, houses), i.e., each type of items is contained in exactly one location, 

and each location contains exactly one item type. There number of item types/locations 

is N. There are O orders to be partitioned into batches and assigned to R pickers that can 

receive at most B batches each. Each batch includes at most order orders, and requires to 

pick at most unit item units. The items required by a batch are picked in a single picker’s 

tour; all tours start from the same entry point and ends in the same exit point. In each 

tour, an item location is visited at most once. 

In the model we use the following sets: 

� : set of batches for each picker 

� : set of orders 

� : set of pickers 

� : set of item types/locations 

� : set of nodes  

The set of nodes  is used to represent pickers’ tours, and includes the set of item 

locations , the entry point 0 and the exit point G. 

The model parameters are the following: 

� unit: maximum number of units to pick in a batch 

� order: maximum number of orders in a batch 

� : travel time from node I to node j 
� : number of items of type j in order o 

�  : set of item types required by order  
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� : total number of item types requests over all orders 

� M: sufficiently large number 

The following decision variables are introduced in the model: 

� : 1 if order o is assigned to batch b of picker r, zero otherwise 

�  : 1 if node i is visited right before node j in batch b of picker r, zero 

otherwise 

� : visit time of node j within batch b of picker r; note that  and the 

time taken by the batch is  

� : total makespan 

Model M (revised) 

  (1) 

   (2) 
Corder   (3) 

qo,i Cunit   (4) 
  (5) 

  (6) 

  (7) 

  (8) 

  (9) 

  (10) 

    (11) 

  (12) 

  

  

  

Constraints (2) require that each order is included in one batch, while (3) and (4) are 

the capacity constraints for a batch, respectively in terms of number of orders and of 

units. Constraints (5) enforce that if a batch requires item type  than the corresponding 

tour must visit location . Flow-conservation constraints (6)-(8) define the structure of a 

tour, while constraints (9)-(11) define the visit time for each location within each tour. 

Note that (10) play the role of subtour-elimination constraints, enforcing that a tour (as 

defined by variables y) is a simple path from the entry to the exit point. If batch b of a 

picker r is empty (i.e., r is assigned less than B batches) the corresponding tour is 

represented by setting , with . Finally, (12) define the total makespan 

as the maximum makespan over all pickers. The number of variables and constraints are 

 and , respectively. 
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2.2. Tailoring Model M for a Real Warehouse 

The layout of the particular warehouse addressed in our work is described in Fig. 1. The 

warehouse consists of seven parallel aisles, numbered left to right from one to seven. 

Each aisle contains 60 houses, 30 located on the right side and 30 on the left side of the 

aisle. Overall we have  houses, numbered as suggested in Figure 1: aisles are 

considered left to right, and in each aisle, left houses are progressively numbered bottom-

up, and then right houses are numbered top-down. Note that houses are numbered in 

order of visit, i.e., in a picker’s tour house  is visited before every house >i. Indeed, 

movements inside the warehouse follow a sharp routing policy that (for easiness of 

explanation) can be summarized as follows: a picker enters an aisle from the bottom left 

corner, makes a U-shaped tour, and leaves the aisle from the bottom right corner, either 

proceeding towards an aisle further right or leaving the warehouse. Pickers move from 

one aisle to another along the main corridor placed under the aisles; note that the entry 

and exit points are located on the left side of the main corridor. Consider the example in 

Figure 1: a picker’s U-shaped tour inside aisle five starts from house 241 and ends in 

house 300, after that, the picker may move to aisle six or seven, or go to the exit point. 

 

Figure 1. Warehouse layout, item location numbering and picker movements. 

To describe the layout of the warehouse, and the movements of pickers inside it, we 

introduce an acyclic directed graph . The node set is  as 

defined earlier. The set of arcs  is partitioned into three subsets ,  and , 

corresponding to different types of movements. With reference to Fig. 1, arcs in  

represent vertical movements along the left side (up) or right side (down) of an aisle; arcs 

in  represent U-turns inside aisles, i.e., crossing the aisle left to right; and arcs in 

 represent horizontal movements from a visited aisle, or the entry point, to the next 

aisle to visit, or the exit point. To formally define the three subsets we need to introduce 

some further notation; let  

� mod  

� mod  

� mod  

30 31 90 91 150 151 210 211 270 271 330 331 390 391

1 60 61 120 121 180 181 240 241 300 301 360 361 420
0

421

71 2 3 4 5 6

rig
ht

 

left

entry 

exit 
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The set  contains the houses on the left side of the aisles, and given a , 

the house in front of j on the right side is mod . Then we have 

 where: 

� mod  

�   

�   

It is easy to see that each possible tour of a picker corresponds to a directed path 

from  to G in graph W, in particular, the single arc  represents a fictitious 

tour corresponding to an empty batch. This graph representation is exploited in model 

M1. Moreover, note that a picker’s tour is completely described by the set of visited 

aisles and by the turning points inside them, i.e., where the picker crosses the aisle going 

from j to . This fact is exploited in model M2 to devise a compact representation of 

the tours and their durations. 

2.3. Model M1 

Similar to model M, model M1 represents pickers’ tours as directed paths from 0 to G in 

graph W, by means of the  variables. However, the meaning of  variables is slightly 

different here, namely,  is 1 if and only if arc  belongs to the path 

corresponding to batch b of picker r. In other words,  does not necessarily imply 

that some items are picked from house j.  
Moreover, the representation is significantly simplified. Being W acyclic, we no 

longer need subtour elimination constraints, thus we can drop the explicit time variables 

 and the constraints (9)-(11). The total travel time for a batch is obtained as the sum 

of the travel times  on the arcs of the corresponding tour; we replace constraints (12) 

by constraints (17) accordingly. 

In order to represent graph W in a compact way in M1 we define for each node 

 the set of outgoing arcs (forward star)  and the set of incoming arcs (backward 
star) . Constraints (5)-(8) are rewritten accordingly into (13)-(16). 

Model M1 

  (1) 

s.t. (2)-(4)  

  (13) 

  (14) 

  (15) 

  (16) 

  (17) 
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Being W a sparse graph, such that , the number of variables drops to 

, while the number of constraints drops to . 

2.4. Model M2 

In model M2 we drop the explicit representation of the pickers’ tours by means of  

variables. Instead, we introduce new variables to keep track of the visited aisles and of 

the length of the U-shaped walks inside them: for a picker crossing aisle  from house j 
to  the length of the walk inside  is mod . More precisely, we assume that 

the time taken by a tour is obtained as the sum of the following components: 

� for each visited aisle there is a fixed time  for entering/exiting the aisle, i.e. 

going from the main corridor to the bottom-left house and back; 

� a U-shaped walk of length  requires time  for moving up (from 

bottom-left house  to ) and down (from  to bottom-right 

house); here  is twice the time to move from a house to the next one on 

the same side; 

� given that  is the last (i.e., rightmost) visited aisle, there is a further time  

that accounts for the horizontal movements, i.e. the distance between  and the 

entry/exit points; we have , where j is the bottom-right house in . 

To write the model we introduce the set of aisles  and for each order 

 and aisle  we let  be the minimum length of a walk inside aisle  

required by order . We assume  if aisle  does not need to be visited to satisfy 

order . Since there are 30 houses on each side of an aisle, we have , in 

particular  where: 

mod   

We let , and we introduce the following sets of new variables:  

� : 1 if batch b of picker r requires aisle , zero otherwise 

� : 1 if  is the last aisle required by batch b of picker r, zero otherwise 

� : length of the U-shape walk inside aisle  for batch b of picker r, zero if  

is not entered 

Model M2 

  (1) 

s.t. (2)-(4)  

  (18) 

  (19) 

  (20) 

  (21) 
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Constraints (18) set variables ; constraints (19) set  if batch b of picker r 

requires aisle ; constraints (20) set  if  is the last aisle required by batch b of 

picker r: note that in an optimal solution at most one variable  will be set to one for 

each batch b and picker r. Finally, contraints (21) compute the makespan as described 

above. 

Both the number of variables and the number of constraints fall to . Note 

that M2 can be generalized to an arbitrary number  of aisles; in this case the number of 

variables is  and the number of constraints is . 

3. Computational Results 

In this section we present computational experiments with simulations of order picking 

tasks in different scenarios. We compare the performance of the three models described 

in Section 2 in terms of solvability under different conditions and execution time.  

The models are implemented in Python 3.8 and solved with Gurobi2 9.5.1. All the 

experiments were carried out on a computer with 3.5GHz Intel Core i7 processor and 

16GB of RAM. 

3.1. The Limitations of Model M 

First, we test the models on a small dataset of 5 orders that contains 20 items in total, 

with items all located in at most two aisles. As described in Section 2.2, an aisle for the 

warehouse studied in this work contains 60 houses on each side. The items are randomly 

assigned to a given number of locations . The number of 

pickers is set to 2. The instances are then solved with a time limit of 300 seconds for each 

instance. When no optimal solution can be found within the time limit, the instance is 

marked as out-of-time. The results are reported in Table 1. 

Table 1. Solving time (s) of Model M, M1 and M2 on a small dataset with different number of locations n 

        n 5 10 15 20 60 120 

M 0.371 15.663 out-of-time out-of-time out-of-time out-of-time 

M1 0.003 0.003 0.004 0.004 0.004 0.007 

M2 0.001 0.001 0.001 0.001 0.001 0.002 

From Table 1 we can observe that Model M is extremely sensible to the size of the 

instance. This limits the further use of it to the problem we study. Meanwhile both M1 

and M2 are able to solve the small instances within a very short amount of time. We 

therefore continue the experiments on the standard layout with 7 aisles (see Section 2.2) 

for both models and further increase the number of orders to study their solving limits. 

3.2. Number of Orders that the Models Can Handle 

To measure the quantity of picking tasks, the number of orders is considered intuitively 

in practice. Since each order contains a different number of items and each item can be 

 
2 https://www.gurobi.com/ 
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picked multiple times, the total number of units to be picked is set as another indicator. 

Three different scenarios are considered for experiments: In the first scenario, each order 

contains only one item, we refer to this set of instances as Single. In the second scenario, 

each order contains a random number of items in the interval [1, 5], we refer to this set 

of instances as Middle. In the third scenario, each order contains a random number of 

items in [1,10], we refer to this set of instances as Multiple. In all scenarios the required 

quantity of each item is generated with a random number in [1, 10]. The number of 

pickers is set to 4. In a single batch, a picker can handle at most 3 orders and a number 

of units given by the maximum possible number of units in an order, namely 10, 50 and 

100 for scenarios Single, Middle and Multiple, respectively. 

The instances are solved by Model M1 and M2 with a time limit of 300 seconds. We 

report the number of orders, the type of scenario, the total number of units to be picked, 

the minimum total Makespan found by the solver and the solving time for each model in 

Table 2.  

Table 2. Performance of Model M1 and M2 on instances with different number of orders O 

O 9 12 15 18 21 
Single 

Total units 54 68 87 98 103 
Makespan 268 326 364 398 446 

Time M1 2.63 33.42 out-of-time out-of-time out-of-time 

Time M2 0.24 2.21 26.34 47.49 out-of-time 

Middle 
Total units 168 201 268 294 324 

Makespan 446 572 684 730 770 
Time M1 5.97 24.38 249.58 out-of-time out-of-time 

Time M2 0.15 0.38 1.49 11.97 101.31 

Multiple 
Total units 220 299 395 526 633 
Makespan 568 594 722 966 1080 

Time M1 0.42 0.71 16.29 out-of-time out-of-time 

Time M2 0.03 0.09 3.74 7.96 30.44 

In Table 2 we can observe that M2 performs better than M1 in terms of solving time. 

The upper limit of the number of orders that can be solved by M1 is around 12 to 15 

depending on the scenarios, while the limit for M2 is around 21. We can also observe 

that the solving time of the models is not dominated by the total number of units but the 

number of orders and type of scenarios. In general, we can conclude that both models 

are able to provide the optimal solution for task assignment in applicable daily scenarios 

in a short amount of time, while model M2 offers a faster computing speed. To further 

optimize the task assignment, in the next section we will compare and suggest the 

appropriate number of pickers for a given order. 

3.3. Number of Pickers 

An example instance with 12 orders generated with the Middle scenario is considered in 

this section. We test the performance of the model with different number of pickers 

varying from 2 to 7. Each picker can deal with no more than 3 orders and 50 units for 

one batch. The minimum total Makespan (optimal) and the number of batches of the task 

assignment solution found for different number of pickers are reported in Table 3. We 

also compare the performance in terms of computing time for model M1 and M2. 
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Table 3. Comparison of Model M1 and M2 on an example instance with different number of pickers 

 2 3 4 5 6 7 

Makespan 1002 714 572 424 388 384 

Batches 4 3 2 2 1 1 

Time M1 out-of-time 27.22 55.26 12.58 0.36 0.52 
Time M2 0.49 0.52 0.75 0.23 0.07 0.09 

In Table 3 we can observe that the optimal total Makespan gradually decreases as 

the number of pickers increases. Each picker only needs to complete one batch when the 

number of pickers reaches 6. While the labor cost should be comprehensively calculated 

in practical applications, here we can roughly consider that it is not a reasonable 

arrangement to set more than 6 pickers for such a given problem size, for the reason that 

a further increase on the number of pickers will increase only the labor cost, but not 

reduce the optimal minimum Makespan in an effective manner. In terms of solving speed, 

M1 is able to solve the instance with a reasonable number of pickers between 3-5 within 

one minute while M2 is able to give an optimal solution for all settings with less than a 

second. This shows again that when the quality of the solution is the same, M2 is much 

faster in terms of computing speed. 

From the conclusions of the previous section, both M1 and M2 will reach their 

respective upper limits as the number of orders grows. Therefore, to further test their 

potentials, we run experiments with the linear relaxation of the models in the next section. 

3.4. Linear Relaxation of Model M1 and M2 

In this section, we test the linear relaxation of Model M1 and M2 with large number of 

orders  = {40, 60, 80, 100, 120}. The instances are generated with the scenario Middle 

that has a random number of items between [1, 5] in each order. The quantity of each 

item is generated between [1, 10] as mentioned in Section 3.2. 

First, we generate a set of instances with 4 pickers, where each picker can deal with 

no more than 3 orders and 50 units for one batch. The total number of orders are {40, 60, 

80, 100}. This set of instances is referred to as Large I. We then scale up the instances 

to 8 pickers, where each picker can deal with no more than 6 orders and 100 units for 

one batch. The total number of orders are {60, 80, 100, 120}. This set of instances is 

referred to as Large II. To these two datasets we apply the ILP solver setting a CPU limit 

of ten seconds, which in many cases suffices to solve the LP relaxation and a few nodes 

of the enumeration tree. In these cases the solver possibly returns a feasible solution 

(either found heuristically or during the enumeration) and the best lower bound found, 

together with the resulting optimality gap. We report the optimum value and CPU time 

for the LP relaxation, the best feasible solution, best lower bound and gap (%) and the 

number of batches for both datasets in Table 4 and 5. The instance is marked as 

out-of-time if the LP relaxation is not solved within the given time limit. For the sake of 

completeness, in a couple of cases (dataset Large I, 60 and 80 orders) we forced the 

solution of the LP relaxation dropping the CPU time limit. 

Table 4. Performance for the linear relaxation of Model M1 and M2 on large dataset Large I 

Model M1 
O LP opt CPU time Best sol Best bound Gap (%) Batches 
40 326 2.22 1846 438 76.3 5 

60 360.38(a) out-of-time - - - 7 
80 376.43(a) out-of-time - - - 9 

100 396.08 10 - 397 - 12 

Model M2 
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O LP opt CPU time Best sol Best bound Gap (%) Batches 
40 229.5 0.41 1694 738 56.5 5 

60 233.5 0.94 2898 354 87.8 7 

80 236.5 6.58 4472 238 94.7 9 
100 236.5 8.36 5420 238 95.6 12 

(a)Computed dropping the CPU time limit 

Table 5. Performance of the linear relaxation model of Model M1 and M2 on large dataset Large II 

Model M1 
O LP opt CPU time Best sol Best bound Gap (%) Batches 
60 116.75 0.82 1460 270 81.5 2 
80 118.25 1.38 1604 135 91.6 2 

100 118.25 4.01 2498 119 95.2 3 
120 119.25 7.63 2482 120 95.2 3 

Model M2 
O LP opt CPU time Best sol Best bound Gap (%) Batches 
60 116.75 0.36 890 474 46.7 2 

80 118.25 0.63 1178 474 59.8 2 
100 118.25 3.5 1786 120 93.3 3 

120 119.25 4.99 2026 120 94.1 3 

From Table 4 and 5 we can observe that the gap is large for the relaxation models, 

i.e. the relaxation bound is rather poor, and further work is expected in order to improve 

the performance of the models on large datasets. Remarkably, the relaxation bound 

provided by model M1 is never worse than the one of M2, and is better for dataset Large 
I. On the other side, M2 requires less time for solving the linear relaxation, and allows 

to find much better feasible solutions in short time. These results seem to indicate that 

both models deserve to be considered for further analysis, even if M2 seems to have 

higher potential to be adapted to large number of orders, possibly in a matheuristic 

fashion. 

4. Conclusion 

We considered the operational optimization of a hub-warehouse of a large German 

grocery retailer. In particular, we addressed the minimization of the order picking 

makespan, that simultaneously considers the batching, assignment and routing problems. 

Starting from a MILP model proposed in the literature, we devised new models 

specifically tailored for the above warehouse. We showed that the proposed models are 

clearly faster than the original model for the specific application and can find optimal 

solutions for relatively small sets of realistic orders. 

The above results are quite encouraging since they show that tighter and faster 

models can be devised for the specific layout and routing policy of the considered 

warehouse. Clearly, further work is needed to deal with large sets of orders. This include 

in particular the development of Lagrangean decomposition methods and Lagrangean 

heuristics, both based on the new formulations presented here. A further direction is 

given by (meta-)heuristic methods to be designed ad hoc for the particular warehouse. 

We remark that our models can be easily extended to consider picking times, in 

addition to travel times; moreover, the specific skills of each picker may be taken into 

consideration in the definition of the time taken by each operation, see e.g. [11]. Finally, 

the approach followed in models M1 and M2 may be adapted to warehouses with 

different layouts, provided that the movements of the pickers follow a specified routing 

policy, see the examples considered in [12]. 
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