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Abstract. Tunable magnetic phase plates may be realized as nanorings magnetized in the 

vortex state, where tunability would be granted by the temperature dependence of the 

saturation magnetization. Here, we study the statistical occurrence of the magnetic vortex state 

in circular and pentagonal rings within their magnetic phase diagram. We outline the useful 

operational range of parameters that may be utilized in practice. 

1.  Introduction 

In addition to a large number of promising applications in the field of magnetic memories [1] and 

spintronics [2], nanorings may be utilized as magnetic phase plates in electron microscopy to achieve 

Zernike-type phase contrast [3,4]. In fact, thanks to the Aharonov-Bohm effect experienced by the 

electrons traveling through a nanoring in the vortex state, a phase shift is induced between the 

transmitted and scattered beams. The main benefit is visible in-focus contrast associated with weak (or 

strong) phase objects such as biological samples [5]. Furthermore, it was hinted in [6] that employing 

Zernike mode may also result in a substantial decrease of the electron dose necessary to image single 

atoms or molecules, so that imaging radiation sensitive materials becomes more practical. 

Aiming at the development of magnetic phase plates we focus here on the stability region of the 

vortex state in rings within a suitable parameter space. This is a necessary preliminary step to ascertain 

the range of dimensions and shapes that are compatible with an operational phase plate. Furthermore, 

we analyze with micromagnetic simulations the statistics of obtaining a vortex from a random initial 

configuration, and how the statistics varies with shape and size. This is useful to select the appropriate 

parameters that results in more frequent vortex states and, hence, reliable operability. 

2.  The phase shift of a magnetic phase plate 

The vortex state is the sought magnetization state in the ring as it can induce the correct phase shift 

between the transmitted and scattered beam. The phase shift associated with a ring in the vortex state 

can be calculated from the standard expression [7] linking it to the magnetic vector potential 
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where φ0 =2.07×10-15 T m2 is the flux quantum, and we adopted a simplified description of a ring of 

thickness t and radii R2 (outer) and R1 (inner) as a circular flux line of radius R  carrying N flux quanta 
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(see Fig. 1). The phase shift described by equation (1) is what is required to achieve Zernike-type 

phase contrast: a constant phase equal to zero outside the ring (leaving the scattered electrons 

unperturbed), and another constant phase equal to φZ=Nπ (N times the phase shift of a flux quantum) 

inside the ring (inducing a shift to the transmitted electrons). If the vorticity of the ring changes, the 

phase shift within the inner radius of the ring changes sign, producing “negative” phase contrast. 

3.  Tunability with temperature and geometrical constraints 

As discussed in [8], in electron microscopy the quarter-wavelength phase shift typical of light optics 

may not always be the optimal choice, as it is only appropriate for weak phase objects. Furthermore, 

even under controlled growth, we can never be sure a priori that the thickness of magnetic material is 

exactly what is needed to realize the Zernike shift we seek. Hence, tunability of the phase plate is a 

necessity. While electrostatic phase plates [9] are tunable by controlling some applied voltage, in 

magnetic phase plates one possibility is to operate the device at different temperatures. In fact, as 

illustrated above, the Zernike phase shift induced on the electrons is proportional to N, the number of 

flux quanta enclosed in the ring. Since N is the ratio between the magnetic flux and the flux quantum, 

and the magnetic flux is the product of magnetization M (measured in Tesla) and ring cross section S, 

once we fix the ring dimensions we may achieve tunability from the proportionality between φΖ and 

M(T). Choosing then an appropriate magnetic material with a suitable Curie-Weiss behavior, we could 

define a temperature interval of operation, say T1 and T2, so that the magnetic flux M(T1)S~M(T2)S 

increases by a factor of 2. This would provide a tunable magnetic phase plate capable of producing 

Zernike shifts between π/2 (higher temperature) and π (lower temperature). 

Given the proportionality between magnetic flux and Zernike shift, in term of ring shape we may 

choose any combination of thickness and width of the ring that satisfies 
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where τ=t/2R2 and σ=R1/R2 are the dimensionless shape parameters of the ring. To give an example, 

suppose we choose to fabricate the phase plate with some yet unidentified Iron compound that has a 

Curie point around 600 K. Its saturation magnetization at T=0 might be, hypothetically, 2 T. If we 

choose T1 at room temperature we may expect from a rough mean-field estimate a magnetization 

around M(T1)~1.7 T. Choosing T2 just below the Curie point, e.g. T2/Tc=0.9, we expect M(T2)~ 0.85 T. 

We could then adjust the Zernike shift by π/2 as we vary the temperature in a 240 K wide range, 

which does not seem to require extensive technical efforts to be implemented in a microscope. 

With such material and temperature range chosen, we now illustrate what the geometrical 

constrain would dictate. Suppose we fabricate rings with R2=150 nm, which is a reasonable 

compromise between current patterning capabilities and electron-optical requirements of having the 

smallest possible hole. Equation (2) now reads 0.0177§τ(1-σ)§0.0354, so that we are free to choose 

thickness t and width (R2-R1) accordingly. For instance, if we set (R2-R1)=50 nm, which is well within 

patterning capabilities, we have σ=2/3 and a thickness constrained to 16§t§32 (in nm). 

4.  Vortex state statistical occurrence 
As a preliminary exploration of this parameter space, we aimed at developing some feeling on the 

likelihood of finding a stable vortex state using micromagnetic simulations [11]. We found a variety of 

competing states, the occurrence of which depends strongly on the input parameters of the simulations. 

Figure 2 shows four observed states: onion, horseshoe vortex and non-vortex. In this case, variety is a 

problem, as ideally we would like a set of shape parameters, compatible with the geometrical 

constraints, that results in 100% vortex occurrence. A possibility worth considering is to employ non-

circular rings, such as pentagons. The presence of corners, smooth or sharp as they may be depending 

on patterning resolution during fabrication, may have an effect in the occurrence and stability of 

vortices. To explore this perspective, we have compared the statistics of vortex occurrence in circular 

and pentagonal rings starting with the same initial condition of random magnetization. The results are 
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shown in Fig. 2, where a clear statistical improvement is observable for pentagonal rings: almost half 

(48%) of the simulations terminated in a vortex state (versus 30% for circular rings), with the 

remaining three states divided unevenly. In comparison, the statistic for circular rings is almost 

uniformly distributed over the four states. 
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Figure 1. A magnetized ring 

acting as a phase plate. 

Figure 2. Statistics of vortex occurrence from random initial 

magnetization in circular and pentagonal rings. 

 

There are two additional advantages in pentagonal rings: i) an enlargement of the region in 

parameter space where a vortex state is expected, which will be discussed in the next section, and ii) 

the possibility of restoring vortex states by application of a suitable external field, something that is 

prevented by the symmetry of a circular ring. The presence of corners, acting as pinning sites for 

domain wall motion, enables us to apply a suitable set of in-plane external fields and turn any non-

vortex into vortex states. This analysis will be the subject of future efforts. 

5.  The magnetic phase diagram 

A theoretical phase boundary separating the expected occurrence of in-plane and vortex states in 

circular rings as we vary the shape parameters (σ,τ) was derived in [10]. However, the simplified 

considerations therein turned out to be a rough underestimate of a realistic curve, such as one obtained 

by micromagnetic simulations. The likely reason is that the metastable onion state is located around a 

deep local minimum of the energy landscape, and it may not be possible for a system with a given 

magnetic history and at a certain finite temperature to overcome the barriers separating the metastable 

(onion) and ground (vortex) states. 

To establish the operational region of magnetic phase plates, we have calculated a phase diagram 

through micromagnetic simulations [11] on rings with different shape parameters. Simulations are 

carried out with the following choice of fixed parameters: Iron (A=21 pJ/m, MS=2.15 T), damping 

parameter α=0.1, crystal anisotropy was set to 0 to mimic a polycrystalline ring, outer radius of the 

ring R2=150 nm, uniform initial magnetization. From the simulations, we derive simulated phase 

boundaries that are expected to be more realistic than the idealized theoretical curves presented in Ref. 

[10]. Simulations were carried out varying the two aspect ratios τ and σ. For every value of σ  (which 

requires a different mask in the LLG simulation software), we increased the thickness progressively 

until a vortex state was obtained. The aspect ratio τ of the first simulation producing a vortex was 

assigned to the phase boundary. Further increase of τ always resulted in a vortex. Results are shown in 

Fig. 3, where we observe that, for pentagonal rings (circles), a substantial fraction of the operational 

domain (dark shade of grey) identified by the geometrical constraint, equation (2), is compatible with 

the expectation of a vortex. The curve corresponding to circular rings (squares) is substantially higher 

in the phase diagram, so that a smaller portion of the operational domain (C+P) is available. 
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With pentagonal rings, we observe that the phase boundary lies around smaller values of τ. For 

example, when τ =0.04, we expect a vortex in pentagonal rings, whereas in circular rings we do not. 

We also observe that, in both circular and pentagonal rings, as σ approaches 1 (thin shell), vortex 

occurrence seems to lose its dependence on σ. However, for pentagonal rings, most of the phase 

boundary is actually almost flat (little σ-dependence). We observe that after a critical τ value, any 

change in σ no longer influences or determines the vortex formation. This may grant us a bit of extra 

freedom in designing and fabricating a phase plate, as the role of the inner diameter appears not 

critical. Overall, we note a sizeable enlargement of the constraint-compatible (σ,τ)-region where 

vortex occurrence is expected, thus favouring the choice of pentagonal over circular rings. 

 

 

Figure 2. Numerical phase 

boundary separating vortex and 

in-plane/onion domains for 

circular (C) and pentagonal (P) 

rings. The operational region 

resulting from geometrical 

constraints is bounded between 

the two curves calculated from 

equation (2) for the hypothetical 

material as described in the text. 

6.  Conclusions 

In this paper we have analyzed rings that may be potentially employed in the development of tunable 

magnetic phase plates. LLG simulations and analysis reveal that i) a useful operation domain exists in 

the (σ,τ) plane compatible with geometrical constraints; ii) the operational domain appears larger 

when pentagonal rings are examined, suggesting a higher degree of freedom in the choice of shape 

parameters; iii) the statistical occurrence of the vortex state is more favourable with pentagonal rings; 

iv) the asymmetry of pentagonal rings results in a sensitivity to in-plane applied field (absent in 

circular rings) that open a pathway for restoring a vortex from a non-vortex state. From the analysis 

and simulations carried out on both the circular and noncircular rings, pentagon shape rings emerge as 

the most favored for the phase plate development. A strategy for vortex state restoration that relies 

solely on in-plane applied fields is the subject of our current efforts, and will be reported elsewhere. 
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