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Abstract: In the Set Orienteering Problem, a single vehicle, leaving from and returning to a depot, has
to serve some customers, each one associated with a given spacial location. Customers are grouped
in clusters and a given prize is collected once a customer in a cluster is visited. The prize associated
with a cluster can be collected at most once. Travel times among locations are provided, together
with a maximum available mission time, which normally makes it impossible to visit all the clusters.
The target is to design a route for the vehicle that maximizes the total prize collected within the given
time limit. In this study, building on the recent literature, we present new preprocessing rules and a
new constraint programming model for the problem. Thanks to the symmetry exploitation carried
out by the constraint programming solver, new state-of-the-art results are established.
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1. Introduction

The Orienteering Problem (OP) was introduced in [1]. In the problem, a single vehicle,
leaving from and returning to a depot, serves a set of customers, each one associated with a
spacial location and a prize, which is collected upon visit. Travel times among locations are
provided. Not all the customers can typically be serviced, since the vehicle mission cannot
be longer than a given maximum time. The aim is to maximize the total profit collected
by the vehicle in the given available time. The problem has attracted a lot of attention
due to its practical implications, and many variations of the original problem have been
introduced over the years. We refer the interested reader to [2] for an exhaustive review of
the literature on these problems.

The problem addressed in the present study is the Set Orienteering Problem (SOP),
which was introduced in [3], where customers are grouped in (non-overlapping) clusters
and a profit is associated with each cluster. Such a profit is collected if at least one customer
in the cluster is visited. The problem is not to be confused with the Sequential Ordering
Problem [4], which has been abbreviated with the same acronym for much longer.

The SOP has several real applications. It can be used to model situations where a
carrier delivers goods to a company with multiple warehouses, and the delivery can be
carried out to one of them. Another important application that emerged recently is in
last-mile delivery: when the delivery to a customer can be made in different locations (for
example, home, work, pickup station, or delivery locker), the carrier can choose the most
convenient one. There is a flourishing body of literature for these applications, where the
most disparate realistic constraints are added to the basic problem (see, for example, [5,6]).

Heuristic methods for the SOP, targeting instances of any practical size, were in-
troduced in [7,8]. The former method is based on variable neighbour search, while the
latter implements a biased random-key genetic algorithm. Exact methods, targeting small-
/medium-size instances only, but with the advantage of providing upper bounds in addition
to feasible solutions, were proposed in [3,7]. Very recently, a more elaborate Branch-and-Cut
method, representing the current state of the art for exact algorithms, was discussed in [9].
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The present work provides three main contributions. First, a new effective preprocess-
ing rule is introduced, able to substantially reduce the size of the instances by identifying
and removing vertices that cannot be part of any feasible solution. Second, a new con-
straint programming (CP) model, following the same approach recently proposed for other
problems [10], is introduced. Third, by combining the previous two contributions, new
state-of-the-art results are obtained. A main factor that led to such an achievement is the
heavy symmetry exploitation carried out by the CP solver adopted (see [11–14]).

2. Problem Description

Let G = (V, A) be a complete digraph, where V = {0} ∪ C. The depot (starting and
ending point of the route) is vertex 0, while C is the set of customers. Customers in C are
partitioned into clusters C0, C1, . . . , Cm. A profit pg is associated to each cluster Cg and such
a profit is collected if at least one customer i ∈ Cg is visited. Cluster C0 contains only the
depot 0 and has a null profit. A travel time cij is associated with each arc (i, j) ∈ A, and a
maximum time Tmax is given. The Set Orienteering Problem (SOP) consists of finding a
route no longer than Tmax that maximizes the profit collected. A simplified example of an
SOP instance and the relative solution is provided in Figure 1.

In the remainder of the paper, we assume—consistently with the previous literature—
that the travel times c satisfy the triangle inequality. This implies that an optimal solution
containing at most one vertex for each cluster exists. As a consequence, arcs between
vertices of a single cluster can be removed from the graph.
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Figure 1. Example of an SOP instance. Node 0 is the depot, while the other nodes are customers.
Clusters are represented as coloured rectangles, with the associated prize depicted in a corner. Travel
times are omitted for the sake of simplicity, together with the threshold Tmax. A tour with a total
prize of 90 is drawn in black.

3. Preprocessing Rules

Some preprocessing techniques, with the function of reducing the number of variables
and edges, are introduced in this section. We refer the interested reader to [8] for a more
detailed explanation of Theorems 1 and 2 and for their proofs.

Theorem 1 (Carrabs [8]). Given a cluster Cg, let S be the set of the shortest paths from every
u ∈ Ch to every v ∈ Ck passing through Cg, with h ̸= k ̸= g. Moreover, let AS be the set of arcs
incident to the vertices in Cg that do not belong to any shortest path of S. An optimal solution not
containing arcs in AS always exists. The arcs in AS can be removed from the graph.
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Theorem 2 (Carrabs [8]). Given a cluster Cg, let S be the set of the shortest paths from every
u ∈ Ch to every v ∈ Ck passing through Cg, with h ̸= k ̸= g. Moreover, let VS be the set of vertices
in Cg that do not belong to any shortest path of S. An optimal solution of the SOP not containing
vertices in VS always exists. The vertices in VS can be removed from the graph.

Theorem 3. Let SP(i, j) be the cost of the shortest path from vertex i ∈ G to vertex j ∈ G. Given
k ∈ V, if SP(0, k) + SP(k, 0) > Tmax, then the vertex k cannot be part of any feasible solution and
can be removed from the graph.

Proof. If vertex k is only part of vehicle routes longer than Tmax, then no feasible solution
with k exists and it can be eliminated from the graph.

Remark 1. In case the arc (i, j) exists in the graph, SP(i, j) = dij due to triangle inequalities.
Otherwise, an alternative path might exist, and it needs to be calculated explicitly.

In our implementation, the three theorems are applied sequentially within a loop,
which is executed until no further reduction is possible.

4. A Constraint Programming Model

The SOP can be described through the following constraint programming model,
designed according to the syntax of the Google OR-Tools CP-SAT solver [14]. Given a
vertex i ∈ V, we will indicate with cl(i) the unique cluster containing i. A binary variable
xij, with i, j ∈ V, takes value 1 if vertex i is visited right before vertex j in the solution
tour, and value 0 otherwise. In case a customer i ∈ C is not visited, then xii is set to 1, and
0 otherwise.

max ∑
i∈V

pcl(i) ∑
j∈V,j ̸=i

xij (1)

s.t. AddCircuit(xij; i, j ∈ V; i ̸= 0 ∨ j ̸= 0) (2)

∑
i∈V

∑
j∈V,j ̸=i

cijxij ≤ Tmax (3)

xij ∈ {0; 1} i, j ∈ V (4)

The objective function (1) maximizes the profit collected in the tour. Constraint (2)
imposes that the tour associated with the active x variables forms a feasible circuit. This is
imposed by the CP-SAT statement AddCircuit that also ensures that xii = 1 for each variable
i ∈ C not touched by the circuit itself. The constraints will ensure that only solutions
in the shape of a tour will be considered, and, combined with the objective function (1)
and the following constraints (3), will guarantee that only feasible solutions are generated.
Constraint (3) is a budget constraint requiring that the length of the tour described by the
active x variables has a length of at most Tmax. Notice that the critical values of Tmax that
will make the optimization harder are those in the medium range: small values would
lead to an easy problem because just a few vertices could be selected and, conversely, large
values would take the problem closer to a traditional Traveling Salesman Problem, with the
selection of just a few vertices to be left out. Constraints (4) finally define the domain of
the variables.

The following constraints are added to tighten the model, although they would not
be required:

AddAtMostOne(¬xii; i ∈ Cg) g ∈ {1, 2, . . . , l} (5)

Constraints (5) impose that for each cluster g at most one customer is selected, since
every optimal solution will respect this property due to the distances fulfilling triangle
inequalities. The constraints are based on the use of the AddAtMostOne of CP-SAT and
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the negation operator “¬” (Not in CP-SAT). These constraints are included for all the
experiments reported in Section 5, since they contribute to speeding up the solving process.

5. Computational Experiments

The computational tests were carried out on the instances previously adopted in the
literature on exact algorithms. Two sets of instances were introduced in [3], for a total of
228 instances. Set1 is composed of instances with a number of vertices between 52 and 198.
The parameter ω, taking values 0.4, 0.6, and 0.8, regulates the value of Tmax. Two different
rules, g1 and g2, are finally used to assign the profit to the clusters. The instances of Set2
contain the same vertices and the same number of clusters as those in Set1, but the vertices
are assigned in a different way to the clusters. We refer the interested reader to [3] for the
full details of these instances.

In Table 1, we report statistics about the preprocessing procedures used in [8]—
employing Theorems 1 and 2 only—and the full methodology we propose, which also
uses Theorem 3. All the procedures were implemented from scratch in Python and the
results reported were obtained on a computer equipped with an Intel Core i7 12700F pro-
cessor and 32 GB of RAM. For each procedure, we considered the percentage of dominated
nodes, the percentage of dominated arcs, and the computation time required. For each
of these indicators, we report the minimum, maximum, and average values over the
228 instances considered.

Table 1. Preprocessing performance. Statistics over the 228 instances considered.

Theorems 1 and 2 (Carrabs [8]) Theorems 1–3

Dominated nodes (%)
Min 0.00 0.00
Max 13.00 65.66
Avg 2.46 20.18

Dominated arcs (%)
Min 19.02 22.98
Max 68.93 93.71
Avg 40.76 57.88

Computation time (s)
Min 0.26 0.05
Max 153.15 23.04
Avg 11.26 3.61

When Theorem 3 is considered, the percentage of dominated nodes increases sub-
stantially, together with the percentage of dominated arcs (although in a weaker form).
In particular, looking at the Min and Max values, it appears that some instances benefit
substantially from the new reduction. Looking at the computation times required by prepro-
cessing, a remarkable reduction is associated with the use of Theorem 3, which eventually
leads to an early identification of dominated elements. Also in this case, the impressive
gain in the Max row suggests that there are instances very sensitive to Theorem 3. The
success of Theorem 3 as a preprocessing method can be explained by observing that it
is the first method to take into account Tmax, the maximum travel time allowed for the
tour of the truck, and travel times. In the economy of the problem, this is an important
factor, since the results often show the existence of several vertices that cannot simply be
visited in the given time. Moreover, it must be observed how Theorem 3 builds on the
results on the other theorems, and in turns boost them back. However, the results remain
dependent on the characteristics of each instances, and this explains the fluctuations in the
results achieved.

In Tables 2–5, we compare the method proposed in this paper with the existing
approaches from the literature. We consider the Mixed Integer Program (MIP) from [3]
(clucut), solved as described in [9], and the Branch-and-Cut method introduced in [9]
(BC). For these methods, we report the results published in the literature, with Theorem 1
and 2 used for preprocessing. Conversely, the constraint programming model discussed
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in Section 4 (CP) uses all the results discussed in Section 3 for preprocessing. For each
of the three methods, the cost of the best solution found in the time allowed, the time
required to eventually prove optimality and the eventual optimality gap (calculated as
(UB − LB)/LB, where UB and LB are the best upper and lower bounds returned by the
solver, respectively), are reported for each instance. The maximum time allowed (also
considering preprocessing) is 3600 s on an Intel Core i9-10910 3.6 GHz processor with 64 GB
of RAM for clucut and BC, and 36,000 s on a Intel Core i7 2.1 GHz processor with 32 GB
of RAM for CP. We decided to extend the time allowed to CP in the hope of closing more
instances. CP-SAT 9.8 [14] with standard settings has previously been adopted as a solver
for constraint programming models.

The results are clearly in favour of the CP method (combined with the use of Theorem 3)
for all the instances considered, both in terms of average computation times and solution
quality. Only two instances remain open, namely, 22pr107 with ω = 0.8 and Set1 for both
profit rules g1 and g2. The dominating results depend both on the new preprocessing
rule described in Theorem 3 and on the effectiveness of the solver for the constraint
programming model discussed in Section 4, which—as observed in Section 1—depends
strongly on symmetry exploitation carried out by the solver itself, as documented in [14].
Some tests not reported—as the aim of this report is mainly to present the new state-of-the-
art results—indicated that the new preprocessing rule and the efficiency of the constraint
programming model on the new model both contributed to the results obtained. Notice in
particular that CP-SAT models being faster to solve than traditional MIPs is consistent with
results recently presented for other similar vehicle routing-like problems [10].
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Table 2. Experimental results on the instances from Set1 with ω = 0.4.

Instance

g1 g2

clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP
Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap

Set1

11berlin52 37 0.6 0.0 37 0.5 0.0 37 0.7 0.0 1829 0.6 0.0 1829 0.5 0.0 1829 0.6 0.0
11eil51 24 0.1 0.0 24 0.2 0.0 24 1.1 0.0 1279 0.3 0.0 1279 1.2 0.0 1279 1.0 0.0
14st70 33 0.5 0.0 33 0.5 0.0 33 1.4 0.0 1672 0.6 0.0 1672 0.5 0.0 1672 1.7 0.0
16eil76 40 3.9 0.0 40 2.6 0.0 40 6.2 0.0 2223 3.8 0.0 2223 1.8 0.0 2223 9.0 0.0
16pr76 47 5.0 0.0 47 5.2 0.0 47 11.7 0.0 2449 15.3 0.0 2449 4.0 0.0 2449 13.3 0.0
20kroA100 42 49.1 0.0 42 29.0 0.0 42 75.3 0.0 2151 84.6 0.0 2151 32.6 0.0 2151 160.6 0.0
20kroB100 49 15.8 0.0 49 8.9 0.0 49 26.1 0.0 2431 28.0 0.0 2431 16.1 0.0 2431 30.0 0.0
20kroC100 42 3.1 0.0 42 2.1 0.0 42 6.9 0.0 2174 3.1 0.0 2174 4.6 0.0 2174 11.8 0.0
20kroD100 39 3.4 0.0 39 3.1 0.0 39 7.1 0.0 1740 9.6 0.0 1740 8.5 0.0 1740 40.0 0.0
20kroE100 52 3.7 0.0 52 3.9 0.0 52 8.0 0.0 2415 2.6 0.0 2415 5.3 0.0 2415 17.4 0.0
20rat99 37 0.9 0.0 37 1.7 0.0 37 2.0 0.0 1905 0.8 0.0 1905 0.6 0.0 1905 2.0 0.0
20rd100 45 6.6 0.0 45 7.9 0.0 45 19.3 0.0 2228 13.6 0.0 2228 7.4 0.0 2228 49.1 0.0
21eil101 67 48.9 0.0 67 12.6 0.0 67 62.2 0.0 3365 61.4 0.0 3365 15.9 0.0 3365 152.9 0.0
21lin105 50 16.9 0.0 50 32.5 0.0 50 6.8 0.0 2489 13.3 0.0 2489 13.5 0.0 2489 11.5 0.0
22pr107 41 0.0 0.0 41 0.0 0.0 41 0.2 0.0 2123 0.1 0.0 2123 0.1 0.0 2123 0.2 0.0
25pr124 46 2375.0 0.0 46 114.7 0.0 46 494.7 0.0 2302 3635.9 32.8 2302 182.2 0.0 2302 1328.2 0.0
26bier127 109 3761.2 8.6 110 1002.4 0.0 110 257.6 0.0 5069 3686.8 15.5 5420 2991.9 0.0 5420 860.5 0.0
26ch130 67 3752.9 28.5 70 371.6 0.0 70 2638.8 0.0 3320 3747.8 26.5 3423 820.3 0.0 3423 6863.9 0.0
28pr136 53 286.1 0.0 53 33.2 0.0 53 5938.8 0.0 2699 449.7 0.0 2699 327.5 0.0 2699 4506.2 0.0
29pr144 6 3663.4 94.1 60 1739.5 0.0 60 2690.1 0.0 3055 3774.9 39.2 3055 1707.9 0.0 3055 2231.4 0.0
30ch150 61 3741.8 21.0 61 536.1 0.0 61 5113.6 0.0 3078 * 3527.5 0.0 3078 * 749.8 0.0 3131 7300.5 0.0
30kroA150 58 3748.0 30.9 58 654.2 0.0 58 2919.2 0.0 3026 3739.4 18.2 3039 779.7 0.0 3039 2316.5 0.0
30kroB150 66 3722.5 16.8 66 354.7 0.0 66 8119.6 0.0 3172 3731.6 24.7 3172 2081.3 0.0 3172 10,963.6 0.0
31pr152 9 3653.2 91.4 57 949.2 0.0 57 2841.2 0.0 2440 3651.9 54.7 2915 1574.6 0.0 2915 3000.1 0.0
32u159 76 1791.0 0.0 76 1429.4 0.0 76 2336.9 0.0 4002 2568.6 0.0 4002 584.4 0.0 4002 2838.6 0.0
39rat195 71 1354.3 0.0 71 311.4 0.0 71 2850.2 0.0 3656 1034.4 0.0 3656 287.2 0.0 3656 3416.1 0.0
40d198 67 * 181.3 0.0 67 * 85.9 0.0 70 502.2 0.0 3400 * 229.7 0.0 3400 * 49.0 0.0 3595 929.5 0.0

Average 49.4 1192.2 10.8 53.3 284.9 0.0 53.4 1368.1 0.0 2655.3 1259.8 7.8 2690.1 453.6 0.0 2699.3 1742.8 0.0
[*] This cost is not consistent with the results of CP or with the results reported in [7,8] for some heuristic approaches. As a consequence, the entry in the table of [9] requires recalculation
and update [15].



Symmetry 2024, 16, 340 7 of 10

Table 3. Experimental results on the instances from Set2 with ω = 0.4.

Instance

g1 g2

clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP
Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap

Set2

11berlin52 50 1.0 0.0 50 1.0 0.0 50 0.5 0.0 2584 0.8 0.0 2584 0.9 0.0 2584 0.6 0.0
11eil51 37 0.3 0.0 37 2.5 0.0 37 1.3 0.0 1929 0.2 0.0 1929 0.6 0.0 1929 3.7 0.0
14st70 56 2.0 0.0 56 0.8 0.0 56 5.3 0.0 2736 1.8 0.0 2736 0.9 0.0 2736 7.5 0.0
16eil76 51 4.1 0.0 51 2.7 0.0 51 19.2 0.0 2518 6.8 0.0 2518 11.8 0.0 2518 44.6 0.0
16pr76 70 161.9 0.0 70 156.1 0.0 70 29.4 0.0 3550 146.1 0.0 3550 33.1 0.0 3550 19.3 0.0
20kroA100 80 1478.1 0.0 80 42.4 0.0 80 139.3 0.0 3894 848.4 0.0 3894 56.7 0.0 3894 205.5 0.0
20kroB100 86 664.7 0.0 86 52.4 0.0 86 46.3 0.0 4357 678.8 0.0 4357 433.0 0.0 4357 56.0 0.0
20kroC100 72 132.1 0.0 72 28.2 0.0 72 169.8 0.0 3586 206.2 0.0 3586 99.6 0.0 3586 398.8 0.0
20kroD100 78 28.3 0.0 78 11.0 0.0 78 51.2 0.0 3799 112.8 0.0 3799 33.4 0.0 3799 51.7 0.0
20kroE100 90 191.2 0.0 90 8.0 0.0 90 19.7 0.0 4614 25.4 0.0 4614 28.7 0.0 4614 19.3 0.0
20rat99 73 0.3 0.0 73 1.7 0.0 73 2.9 0.0 3624 1.1 0.0 3624 43.5 0.0 3624 8.2 0.0
20rd100 80 * 44.4 0.0 80 * 26.6 0.0 82 89.4 0.0 4038 * 34.1 0.0 4038 * 47.1 0.0 4181 163.3 0.0
21eil101 83 47.7 0.0 83 31.1 0.0 83 245.1 0.0 4264 72.8 0.0 4264 48.0 0.0 4264 451.2 0.0
21lin105 95 753.1 0.0 95 378.5 0.0 95 117.8 0.0 4814 879.2 0.0 4814 403.0 0.0 4814 156.5 0.0
22pr107 94 10.6 0.0 94 14.3 0.0 94 7.6 0.0 4740 76.3 0.0 4740 20.2 0.0 4740 4.4 0.0
25pr124 90 3625.7 25.6 101 832.8 0.0 101 1831.8 0.0 4334 3622.9 28.4 3859 3625.2 36.3 5035 3501.1 0.0
26bier127 11 3656.2 91.3 124 3656.5 1.6 125 78.5 0.0 6236 3673.1 1.5 6004 3637.1 5.2 6329 176.0 0.0
26ch130 9 3622.2 93.0 9 3632.6 92.9 111 3193.2 0.0 153 3625.7 97.6 4833 3633.2 24.4 5630 20,566.6 0.0
28pr136 120 2524.2 0.0 120 37.8 0.0 120 134.7 0.0 6106 1789.0 0.0 6106 157.3 0.0 6106 367.4 0.0
29pr144 4 3637.3 97.2 4 3630.0 97.2 137 754.9 0.0 166 3628.3 97.7 166 3626.4 97.7 6848 1591.4 0.0
30ch150 90 3627.8 39.6 111 * 1524.7 0.0 114 2501.2 0.0 4361 3633.8 42.1 5896 * 2552.9 0.0 6025 1155.1 0.0
30kroA150 11 3626.8 92.6 99 3634.2 33.6 110 10,533.2 0.0 141 3626.6 98.1 4478 3636.8 39.9 5450 12,838.2 0.0
30kroB150 9 3631.1 93.9 115 3630.1 22.0 120 13,969.2 0.0 171 3627.9 97.7 6190 3624.8 17.7 6255 15,700.5 0.0
31pr152 89 3632.4 40.7 9 3629.2 94.0 136 30,240.8 0.0 431 3636.3 94.3 431 3630.9 94.3 6928 8101.4 0.0
32u159 143 3627.6 7.1 143 428.1 0.0 143 565.1 0.0 7507 3620.3 4.4 7507 913.5 0.0 7507 464.2 0.0
39rat195 135 740.9 0.0 135 467.6 0.0 135 244.0 0.0 6813 1190.8 0.0 6813 288.8 0.0 6813 485.7 0.0
40d198 148 * 844.7 0.0 148 * 178.1 0.0 149 1192.9 0.0 7412 * 1082.8 0.0 7412 * 393.3 0.0 7480 2082.2 0.0

Average 72.4 1493.2 21.5 82.0 964.4 12.6 96.2 2451.3 0.0 3662.1 1475.9 20.8 4249.7 1147.4 11.7 4873.9 2541.5 0.0
[*] This cost is not consistent with the results of CP or with the results reported in [7,8] for some heuristic approaches. As a consequence, the entry in the table of [9] requires recalculation
and update [15].



Symmetry 2024, 16, 340 8 of 10

Table 4. Experimental results on the instances with ω = 0.6.

Instance

g1 g2

clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP
Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap

11eil51 39 0.6 0.0 39 1.9 0.0 39 1.3 0.0 1911 0.6 0.0 1911 1.2 0.0 1911 4.1 0.0
14st70 50 101.2 0.0 50 21.7 0.0 50 63.8 0.0 2589 39.2 0.0 2589 20.7 0.0 2589 112.1 0.0
16eil76 59 76.9 0.0 59 8.9 0.0 59 10.1 0.0 3119 82.0 0.0 3119 21.5 0.0 3119 24.0 0.0
16pr76 65 69.8 0.0 65 133.8 0.0 65 207.4 0.0 3275 1496.7 0.0 3275 190.7 0.0 3275 2286.2 0.0
20kroA100 65 1979.6 0.0 65 110.0 0.0 65 177.0 0.0 3192 1740.7 0.0 3192 140.0 0.0 3192 1088.5 0.0
20kroB100 59 3628.8 39.8 66 100.8 0.0 66 1161.2 0.0 3203 1966.9 0.0 3203 167.7 0.0 3203 1713.8 0.0
20kroC100 62 521.3 0.0 62 74.9 0.0 62 575.0 0.0 3110 1700.9 0.0 3110 255.1 0.0 3110 876.1 0.0
20kroD100 64 2517.9 0.0 64 78.3 0.0 64 438.6 0.0 3133 2324.2 0.0 3133 84.4 0.0 3133 473.8 0.0
20kroE100 63 107.7 0.0 63 190.1 0.0 63 146.9 0.0 2950 318.5 0.0 2950 89.8 0.0 2950 324.5 0.0
20rat99 52 130.3 0.0 52 50.5 0.0 52 185.0 0.0 2643 80.6 0.0 2643 44.1 0.0 2643 383.7 0.0
20rd100 72 450.0 0.0 72 67.1 0.0 72 186.9 0.0 3585 * 413.5 0.0 3585 * 278.7 0.0 3591 901.9 0.0
21eil101 82 913.4 0.0 82 85.7 0.0 82 261.5 0.0 4187 720.2 0.0 4187 447.3 0.0 4187 1657.9 0.0
21lin105 78 504.6 0.0 78 137.8 0.0 78 82.9 0.0 3955 1178.4 0.0 3955 171.1 0.0 3955 197.2 0.0
22pr107 53 3623.0 36.1 53 3624.2 31.2 53 30.6 0.0 2697 3626.8 34.7 2697 3627.4 30.4 2697 127.9 0.0

Average 60.4 975.2 5.1 60.9 312.7 2.1 60.9 235.4 0.0 3049.3 1046.1 2.3 3049.3 369.6 2.0 3049.7 678.4 0.0

Set2

11berlin52 51 0.1 0.0 51 0.1 0.0 51 0.5 0.0 2608 0.1 0.0 2608 0.2 0.0 2608 0.5 0.0
11eil51 50 0.6 0.0 50 3.8 0.0 50 0.9 0.0 2575 0.6 0.0 2575 0.6 0.0 2575 0.9 0.0
14st70 64 2152.4 0.0 64 341.9 0.0 64 979.2 0.0 3218 3619.3 8.4 3218 569.4 0.0 3218 815.3 0.0
16eil76 74 526.1 0.0 74 193.9 0.0 74 8.2 0.0 3728 117.1 0.0 3728 108.6 0.0 3728 26.7 0.0
16pr76 74 3619.8 1.3 74 2088.3 0.0 74 12.5 0.0 3729 3621.3 1.9 3729 532.5 0.0 3729 36.5 0.0
20kroA100 91 3624.9 8.1 95 3624.0 4.0 98 533.0 0.0 3763 3630.4 24.9 4554 3621.7 9.1 4920 912.6 0.0
20kroB100 93 3628.7 6.1 2 3621.6 98.0 98 2087.6 0.0 3578 3630.6 28.6 4668 3624.1 6.8 4925 390.7 0.0
20kroC100 5 3625.9 94.9 90 3620.4 9.1 93 11,210.5 0.0 3915 3622.6 21.8 4534 3618.5 9.5 4717 2482.3 0.0
20kroD100 4 3623.2 96.0 93 3618.9 6.1 93 2211.4 0.0 4394 3628.4 12.3 4570 3619.6 8.7 4695 2160.7 0.0
20kroE100 97 3621.6 2.0 97 2619.0 0.0 97 66.0 0.0 4910 3622.6 2.0 4910 3617.8 2.0 4910 93.2 0.0
20rat99 87 162.3 0.0 87 216.2 0.0 87 118.8 0.0 4516 76.8 0.0 4516 165.9 0.0 4516 76.6 0.0
20rd100 97 3628.6 2.0 99 3459.8 0.0 99 86.5 0.0 5008 1113.8 0.0 5008 572.6 0.0 5008 12.0 0.0
21eil101 95 3623.4 5.0 97 1111.3 0.0 97 221.8 0.0 4925 3622.6 2.5 4925 3623.8 2.5 4933 1988.6 0.0
21lin105 102 3642.8 1.9 104 888.4 0.0 104 32.1 0.0 4495 3631.2 14.0 5103 3627.8 2.4 5228 21.7 0.0
22pr107 106 243.7 0.0 106 11.2 0.0 106 4.8 0.0 5363 29.3 0.0 5363 139.7 0.0 5363 5.3 0.0

Average 72.7 2381.6 14.5 78.9 1694.6 7.8 85.7 1171.6 0.0 4048.3 2264.5 7.7 4267.3 1829.5 2.7 4338.2 601.6 0.0
[*] This cost is not consistent with the results of CP or with the results reported in [7,8] for some heuristic approaches. As a consequence, the entry in the table of [9] requires recalculation
and update [15].
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Table 5. Experimental results on the instances with ω = 0.8.

Instance

g1 g2

clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP clucut (Archetti et al. [9]) BC (Archetti et al. [9]) CP
Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap Val Sec Gap

11eil51 43 4.3 0.0 43 2.2 0.0 43 16.6 0.0 2114 7.4 0.0 2114 7.4 0.0 2114 42.9 0.0
14st70 65 1110.4 0.0 65 445.8 0.0 65 26.8 0.0 3355 692.9 0.0 3355 661.5 0.0 3355 29.6 0.0
16eil76 69 695.4 0.0 69 178.5 0.0 69 38.9 0.0 3573 1852.7 0.0 3573 97.0 0.0 3573 65.5 0.0
16pr76 72 3619.4 2.7 72 1952.1 0.0 72 30.1 0.0 3611 3625.6 3.2 3611 3620.8 2.2 3611 632.0 0.0
20kroA100 68 3629.7 31.3 79 240.7 0.0 79 1035.2 0.0 2713 3632.4 45.8 4115 3466.8 0.0 4115 2456.3 0.0
20kroB100 77 3636.5 22.2 86 3125.6 0.0 86 2007.6 0.0 4188 3628.9 16.4 4117 3640.6 16.3 4188 3894.9 0.0
20kroC100 76 3631.9 23.2 83 466.7 0.0 83 228.6 0.0 3999 3625.9 20.1 3999 300.1 0.0 3999 1423.3 0.0
20kroD100 68 3635.7 31.3 85 480.4 0.0 85 219.5 0.0 3854 3630.9 23.0 4026 3626.0 19.6 4267 380.6 0.0
20kroE100 77 3627.7 22.2 80 372.3 0.0 80 1500.6 0.0 3887 3628.6 14.0 4002 414.4 0.0 4002 1281.3 0.0
20rat99 69 3634.3 21.6 79 2046.6 0.0 79 512.7 0.0 3855 3623.5 13.1 3992 3113.5 0.0 3992 1074.3 0.0
20rd100 83 3636.9 16.2 90 3629.8 6.3 91 96.7 0.0 4155 3632.6 17.0 4640 1982.4 0.0 4640 102.1 0.0
21eil101 89 3631.5 11.0 91 347.5 0.0 91 325.0 0.0 4538 3633.8 10.1 4717 1969.2 0.0 4717 615.4 0.0
21lin105 87 3642.1 16.3 90 302.2 0.0 90 6099.5 0.0 4245 3649.0 18.8 4561 3641.8 10.7 4561 1535.9 0.0
22pr107 6 3635.6 94.3 53 3650.2 50.0 65 36,000.0 26.2 2156 3638.3 59.8 2697 3636.8 49.7 3275 36,000.0 28.9

Average 66.4 2788.7 19.5 74.1 1149.8 3.8 75.0 3209.3 1.7 3508.5 2834.3 16.1 3726.9 2012.8 6.6 3786.2 3302.5 1.9

Set2

11berlin52 51 0.0 0.0 51 0.0 0.0 51 0.4 0.0 2608 0.1 0.0 2608 0.1 0.0 2608 0.4 0.0
11eil51 50 1.4 0.0 50 0.8 0.0 50 0.7 0.0 2575 0.6 0.0 2575 0.5 0.0 2575 0.7 0.0
14st70 69 8.9 0.0 69 3.7 0.0 69 3.4 0.0 3513 28.8 0.0 3513 14.1 0.0 3513 3.2 0.0
16eil76 75 14.1 0.0 75 4.1 0.0 75 3.8 0.0 3800 3.7 0.0 3800 177.3 0.0 3800 4.3 0.0
16pr76 75 2600.9 0.0 75 8.6 0.0 75 5.8 0.0 3800 2501.0 0.0 3800 753.5 0.0 3800 7.5 0.0
20kroA100 99 395.4 0.0 99 10.1 0.0 99 10.8 0.0 4086 3628.3 18.4 4241 3624.2 15.3 5008 11.0 0.0
20kroB100 69 3636.2 30.3 99 1362.2 0.0 99 12.7 0.0 83 3631.3 98.3 4668 3624.6 6.8 5008 13.0 0.0
20kroC100 4 3633.3 96.0 94 3623.6 5.1 99 16.2 0.0 249 3641.9 95.0 3043 3622.8 39.2 5008 8.5 0.0
20kroD100 5 3631.7 94.9 95 3632.2 4.0 99 10.1 0.0 3750 3624.9 25.1 4776 3635.7 4.6 5008 17.2 0.0
20kroE100 97 3626.7 2.0 98 3621.1 1.0 99 7.9 0.0 325 3633.3 93.5 325 3628.2 93.5 5008 14.3 0.0
20rat99 98 1511.3 0.0 98 166.3 0.0 98 7.8 0.0 5007 595.1 0.0 5007 360.5 0.0 5007 10.5 0.0
20rd100 70 3633.4 29.3 99 53.9 0.0 99 6.7 0.0 5008 40.2 0.0 5008 121.4 0.0 5008 7.1 0.0
21eil101 99 3622.5 1.0 100 1798.2 0.0 100 8.9 0.0 4831 3628.6 4.3 4933 3630.7 2.3 5050 12.4 0.0
21lin105 104 3.8 0.0 104 4.7 0.0 104 6.8 0.0 5228 2185.6 0.0 5228 1737.9 0.0 5228 5.4 0.0
22pr107 106 12.0 0.0 106 9.0 0.0 106 6.0 0.0 5363 64.4 0.0 5363 145.4 0.0 5363 5.6 0.0

Average 71.4 1755.4 16.9 87.5 953.2 0.7 88.1 7.2 0.0 3348.4 1813.9 22.3 3925.9 1671.8 10.8 4466.1 8.1 0.0
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6. Conclusions

The Set Orienteering Problem, where the tour of a single vehicle has to be calculated
in order to collect the maximum possible profit from visiting clusters in the given available
time, is the subject of the present report. We presented a new preprocessing rule, exploiting
for the first time the limited available time, and a new constraint programming model to
formally describe the problem. From an empirical point of view, the effectiveness of the new
preprocessing rule is shown. Moreover, through solving the new constraint programming
model with modern solvers, and therefore exploiting the high symmetry characterising the
model, new state-of-the-art results for the instances commonly adopted in the literature for
exact algorithms that improve on those of very recent publications are disclosed.
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