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Abstract: Near-infrared spectroscopy (NIRS) is widely used in fruit and vegetable quality evaluations,
usually after harvesting. In particular, the moisture content is a key parameter for determining
product quality; processing phase, e.g., drying process; and economical value. NIRS methods are well-
established for laboratory practices where the specimens are properly prepared and measurement
conditions are well controlled. On the other hand, it is known that in-field NIRS measurements
present several difficulties, as many influencing variables, such as mechanical vibrations, electrical
and optical disturbances, and dust or dirt in general, can affect the spectral measurement. In this
paper, we propose the design and present the prototype of a NIRS-based measuring system for
the rapid determination of the moisture content of bales. The new system uses of a halogen lamp
illumination unit to recover water absorption spectral data in the range of 900–1700 nm. The compact
stainless steel body makes the instrument portable and easy to transport for rapid in-field MC
measurements. The prototype system was characterized and its performance extensively evaluated
in a laboratory environment. Finally, a preliminary test was carried out, where the moisture contents
of 12 freshly harvested crops samples were measured using the partial least squares (PLSs) regression
method. The obtained results show that our prototype system can estimate the alfalfa moisture
content information with a coefficient of determination R2 of 0.985 and a root mean square relative
error of estimation of 7.1%.

Keywords: crop moisture content (MC) measurement; multivariate statistics; near-infrared spec-
troscopy (NIRS); partial least squares (PLSs) estimation; NIRS instrument

1. Introduction

In recent years, great efforts have been made for the research and development of
techniques that allow the evaluation of the physical properties of agricultural products [1].
For instance, the moisture content (MC) of a crop is an important physical parameter to
define the right storage process and should be monitored during the harvesting and stor-
age [1]. Storing crops in unsuitable conditions can lead to awful consequences, including
fires. For this reason, it is essential to measure the humidity levels before and during
storage. Measurements of humidity in static, i.e., storage, and dynamic, i.e., harvesting,
conditions obviously present different levels of difficulty.

During storage, the MC measurement can be performed by taking samples and ana-
lyzing them using moisture analyzers [2], or less accurately, using a humidity tester [3]. MC
measurements during harvesting are much more difficult due to the operating conditions
in which they must be performed. Firstly, the time available to acquire the information is
limited and depends on the harvesting machine. Second, many influential variables, such
as mechanical vibrations, electrical and optical disturbances, and dust or dirt in general, can
heavily affect the measurements. Moreover, in order not to hinder and/or slow down the
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operation of the harvesting machine, the MC measurement should be performed while the
crop bale is in motion. To our knowledge, the most common commercial systems exploit
a conductometric measurement method that uses two-star wheels as electrodes [1]. Al-
though very robust, as is the case for all contact measurement systems, this approach offers
performance highly dependent on mechanical devices that often experience premature
aging compared to electrical devices. Therefore, non-contact measurement methods would
be desirable.

To date, two techniques offer the potential to perform MC measurements without
contact: (i) microwave attenuation [1] and (ii) near-infrared spectroscopy (NIRS) [1,4,5].
The first technique offers the possibility of examining the sample with a greater inspection
depth than the second, even if it is very sensitive to the electromagnetic environment and
the presence of ferromagnetic structures. Other research works [6] evidence that a rapid
determination of soil MC could be achieved with a PMMA Bragg grating sensor that uses
the dependence of the light absorption on the water content of the organic sample.

Recently, in our previous paper [7], we evaluated the feasibility of a NIRS approach
to the MC measurement. As we showed, the MC in Alfalfa grass can be evaluated by
exploiting absorption peaks of water in the near-infrared spectral region. In the paper
by Cassanelli et al., we tested the feasibility of our approach in our laboratory using
an integrating sphere and other standard laboratory equipment. After this phase, we
designed and realized the prototype for the in-field crop moisture measurements described
in this paper.

Unfortunately, numerous physical quantities, e.g., crop density [8], can affect the rela-
tionship between MC and the near-infrared (NIR) spectrum, especially when measurements
are performed in harsh and uncontrolled conditions. Therefore, the instrument’s design
requires an accurate optical scheme, a compact and robust assembly, and the possibility of
periodic self-calibration to compensate for any drift or misalignment caused by vibrations
or dirt accumulated on the optics.

As discussed in our previous papers [7,8], a robust statistical analysis can help to
recover the information of interest, even with the presence of different densities or leaf-
stem ratios in the sample. Accordingly, a statistical analysis on numerous samples must be
considered for the development of a model for the MC and density estimation [9,10]. Other
researchers [11,12], have shown that multivariate statistics, such as partial least squares
(PLSs), are among the best tools to perform such analysis [13,14].

As experienced by Rodriguez et al. [15,16], the signal-to-noise ratio can be increased if
pre-processing is performed before the regression. In addition, as showed and explained in
this (Section 4.2) and in previous research [7,14], properly selecting spectral bands according
to correlation matrices can improve the prediction capabilities of the model.

Following, Section 2 describes a new portable and semi-automated near-infrared
spectroscopy system, which can be potentially used on a harvesting machine. The perfor-
mances of the proposed measurement system are evaluated in Section 3, where calibration,
reflectance sensitivity, warm-up, and a repeatability test performed on National Institute of
Standards and Technology (NIST)-certified standard diffuser targets, are presented. Finally,
the results obtained from in-filed measurements on fresh alfalfa (Medicago sativa L.) grass
samples are presented in Section 4, and conclusions are drawn in Section 5.

2. System Description

The realized system is shown in Figure 1. The compact and robust 300 mm (W)
× 150 mm (D) × 125 mm (H) housing is entirely made of stainless steel and has been
developed to be rugged and portable. The housing has been divided into two compartments
that separate optical components from electronic boards. The design was optimized to be
modular, as each part can be easily swapped for future upgrades. The system allows one
to easily acquire back-scattered light in the range 900–1700 nm from a 24 mm diameter
optical window (Figure 1: item A). An essential I/O panel is realized on the side of the
device; here 3 LEDs indicate the status of operation and a standard USB port can be
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used to control the system through a simple user interface that has been designed with
LabVIEW©. This compact system can be easily installed on a harvesting machine and set up
to acquire spectral raw data that can be saved for further elaborations. In the next sections,
the measuring principle and the main functional blocks of the system are fully described.

300 mm

125 m
m

A

B
C

D

E

F

G

H I

J

K

Figure 1. CAD image and a picture of the NIRS instrument measuring head. On the top-left,
the orange area indicates optical-component housing, while on the right, the blue area indicates the
electronic component housing. A is the hole-mounting for the 24 mm diameter optical sapphire
window. A mechanical flap that can slide horizontally is used to open or close the reading window.
B is the mounting hole for the halogen lamp marked with D. C is the optical fiber head holder. E is
the OH-silica optical fiber connected to the Insion spectrometer J. F is an 80 mm cooling fan for the
halogen lamp. G and I are the control and conditioning boards, respectively. H is the MCU board
provided with a PIC32 microcontroller. K is a DC–DC converter used to supply the 12 V to the lamp
and the cooling fan.

2.1. Measuring Principle

The NIRS measuring principle proposed to estimate crop MC was discussed in detail
in our previous paper [7]. Below we provide the fundamental information on which our
approach is based. Photons’ propagation through a turbid sample is governed by scattering
and absorption phenomena. As a matter of fact, information about sample constituents
can be recovered from the analysis of a diffused light spectrum. In particular, in the
NIR spectral region, OH functional groups exhibit absorption peaks at 1200, 1450, and
1940 nm [4,5,17–19]. Therefore, information about sample moisture content can theoretically
be derived by analyzing the light diffusion spectrum in this NIR region.

Unfortunately, many other variables influence the scattered light spectrum, including:
(i) the scattering coefficient [8], determined by morphology, e.g., leaf-stem ratio, and the
density of the sample; (ii) the geometry and optical characteristics of the measurement,
which mainly determine the depth at which the investigation is performed [1]; (iii) other
organic constituents, e.g., CH and NH functional groups, which cause different absorption
or scattering coefficients [1].

For these reasons, it is important to adopt a precise and specific calibration proce-
dure for the instrument to obtain information on the MC. As discussed in our previous
paper [7], we propose to extract the information on MC by analyzing the NIR absorption
spectrum in in a properly selected band of interest (BOI) ∈ [1.37 µm, 1.55 µm] where the
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maximum correlation with the MC contents and the least correlation with the density of
the collected samples is achieved. As explained later (Section 4.2), this spectral region has
been determined by analyzing the behavior of samples with known MC and density using
statistical methods. Thanks to this analysis, as experienced in this and in the previous
research [7], the development of a PLS regression model showed superior results in MC
content estimation for the type of crop harvested.

To achieve a good PLS model, the first step involves processing the raw acquired
NIR spectra by focusing our attention on the sample water absorption. The back-scattered
spectral light intensity from a target can be expressed with the modified Lambert–Beer
law as:

I(λ) = I0(λ) · e−(cW ·ε(λ)·L·DPF(λ)+G(λ)), (1)

where I0 is the incident beam intensity, cW the water molar concentration, ε the water molar
extinction coefficient [20], and L the geometrical path-length of photons within the sample.
The term G takes into account the losses due to scattering, and the differential pathlength
factor (DPF) accounts for the increasing photon pathlength due to scattering. Therefore,
the spectral sample absorbance A can be defined as:

A(λ) = − log10
I(λ)
I0(λ)

= − 1
2.303

ln
I(λ)
I0(λ)

=
1

2.303
· (cW · ε(λ) · L · DPF(λ) + G(λ)).

(2)

In the back-scattering configuration, the term G refers to the loss of optical signal
due to light that is not collected by the system on the illumination side. For crop samples,
as for many other biological samples [21], the back-scattered light beams will exit from
each sample very close to the initial illumination position. Since the optical window of the
system is wide and close to the sample, we can assume almost all of the back-scattered light
beams are collected and analyzed by the system. This allows us, as a first approximation,
to neglect the losses due to scattering, i.e., the term G in Equation (2).

Note, the sample density directly influences the scattering coefficient of the sample,
and therefore the DPF, which, unfortunately, also depends partially on the absorption
coefficient and therefore on the MC. Hence, the estimation of the water content cW and thus
MC from (2) is a non-trivial task.

As discussed in our previous paper [7], to extract the information of interest, i.e., MC,
we propose to analyze the logarithmic transformation of the absorbance spectrum:

LA = ln A = ln
[

1
2.303

· cW · ε
]
+ ln[L · DPF]. (3)

This quantity allows us, as a first approximation, to separate the two main contribu-
tions of absorption and scattering. In fact, the first addendum in 3 is mainly related to the
sample MC, and the second to its density. To estimate MC, the logarithmic transformation
of the absorbance spectrum has been analyzed in the spectral BOI ∈ [1.37 µm, 1.55 µm] (See
Section 4.2) where the contribution of the sample water absorption is maximized, whereas
the contribution of sample density variations is minimal. By considering this spectral band
BOI, Equation (3) can be simplified as:

LAB ∼= ln
[

1
2.303

· cW · ε
]

, (4)

from which the MC can be easily derived.

2.2. System Block Diagram

Block function diagram of the developed measuring system is illustrated in Figure 2.
The 24 mm-diameter sapphire optical window that is placed very close to the sample under
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test (SUT) surface on the harvesting processing line, allows the permanent protection of
optical components from dust and external environment contamination. Additionally,
a flap mechanism which can be opened and closed, allows one to control the three different
measurement phases. When the flap mechanism is closed and the illumination is off,
the dark-spectrum is acquired, whereas by turning on the illumination, a pre-measurement
calibration phase is performed, presenting a known reflectance target to the optical system.
In particular, on the side opposite the optical window, the flap houses a sheet of white
paper, i.e., the reflectance reference target (RRT), whose reflectivity has been determined
by comparison with NIST certified reflectance standards (Spectralon® Diffuse Reflectance
Standards, LABSPHERE©Inc., North Sutton, NH, USA). More information on this aspect
is described in Section 3.1. When the flap mechanism is open, from the optical window,
the surface of the SUT is illuminated and the back-scattered light is collected and guided
to the spectrometer through an optical fiber. A micro-controller unit is used to collect and
pre-process spectral data that are finally sent to the PC on which a LabVIEW GUI allows
monitoring and controlling the acquisition process.

PC 
LabVIEW User

Interface

USB Serial
Interface

chipKIT Wi-FIRE
board - MCU 
PIC32MZEC

UART/RS232Spectrometer 
MSM NIR1.7
OEM System

Optic fiber
with SMA
connector

Optical
Head 

Holder

NIRS 
Conditioning

Board

NIRS 
Control 
Board

Halogen  
Lamp

Flap 
Mechanism

IR

Integrating
Sphere

RRT

Optical 
Shappire Windows 

(24 mm) 

Sample

Figure 2. Block function diagram of the developed measuring system.

2.2.1. Illumination Unit

To obtain sufficient optical radiation in the spectral region of interest at a low cost,
the system exploits a 20 W halogen lamp, the DECOSTAR 51 ALU (OSRAM GmbH©,
Munich, Germany). This device, in addition to guaranteeing a low cost, also has a suffi-
ciently long average life, i.e., 4000 h. The distance between the halogen lamp and the optical
window was chosen in such a way as to guarantee the maximum irradiance on the sample
surface and a sufficient uniformity of illumination. The normalized spectrum of the light
emitted by this halogen lamp is shown in Figure 3.
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Figure 3. The normalized emission spectrum of the halogen lamp Decostar 51 ALU by OSRAM GmbH©.

The main electrical and optical characteristics of the light bulb are reported in Table 1.

Table 1. OSRAM Decostar 51 ALU halogen lamp’s specifications.

Electrical Parameters

Nominal Power 20.0 W

Nominal Voltage 12.0 V

Photometric Parameters

Optical Power 0.81 W/sr

Color Temperature 2800 K

Illuminometric Parameters

Beam Size 36◦

2.2.2. Detection Unit

To detect back-scattered light, the instrument exploits the microspectrometer (MSN)
NIR1.7 OEM (INSION GmbH©, Obersulm, Germany), which has a measuring range
from 900 to 1700 nm with 8 nm spectral resolution. This spectrometer is based on a
128 InGaAs photodiodes array detector and pre-integrated readout electronics, which offer
high performances in terms of accuracy, sensitivity, and signal to noise ratio (SNR). All
parameters of the spectrometer can be set and optimized by the user to match the specific
requirements of different applications. The MSM NIR1.7 OEM module includes readout
electronics (BIM-NIRP) based on an analog to digital converter with 16-bit-resolution.

The spectral analysis is performed by a hollow cavity wave-guide design without
moving parts. As shown in Figure 2, the light is coupled to the spectrometer through a
300/330 nm low OH-silica optical fiber up to the spectrometer entrance slit.

2.2.3. Control and Data Acquisition Unit

Control and data acquisition are performed by the micro-controller unit (MCU) based
on a ChipKIT Wi-FIRE (Digilent©, Pullman, WA, USA) board, i.e., the conditioning and
control boards shown in Figure 2. The Wi-FIRE board takes advantage of a powerful
32-bit micro-controller from PIC running at 200 MHz, i.e., PIC32MZEC. This tiny board
allows simultaneously collecting data through the serial interface while performing hard-
coded fast Fourier transformation on the acquired absorption spectrum. In addition,
the board allows the user to change different measuring parameters that can be set from the
designed GUI in LabVIEW©. The board’s digital outputs are programmed to control the
measurement phases and to drive different system components, such as the halogen lamp,
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the cooling fan, and the movement of the mechanical flap on the optical sapphire window.
Finally, acquired spectral data are transmitted by the board by means of a UART/RS232 to
the LabVIEW GUI.

2.3. Measurement Procedure

Assuming the SUT is facing the system’s sapphire optical window, the complete
measurement procedure consists of four steps.

• Step 1: Halogen lamp: off, flap mechanism: close. Instrument offset intensity spectrum
IDarkI is acquired.

• Step 2: Halogen lamp: off, flap mechanism: open. Ambient offset intensity spectrum
IDarkA is acquired.

• Step 3: Halogen lamp: on, flap mechanism: close. RRT faces the optical system.
Reference intensity IRRT is acquired.

• Step 4: Halogen lamp: on, flap mechanism: open. Sample intensity spectrum ISUT
is acquired.

This procedure is performed once after power-on and warm-up; IDarkI , IDarkA,
and IRRT are memorized. Assuming the environmental and instrumental conditions
remain unchanged—i.e., environment illumination, ambient temperature, and distance
between SUT and optical window—subsequent measurements include only step four.
Depending on the application, the instrument settings panel allows the user to establish
how often the complete measurement procedure must be repeated.

The SUT reflectivity spectrum is then obtained from the following equation:

RSUT(λ) =
ISUT(λ)− IDarkA(λ)

IRRT(λ)− IDarkI(λ)
· RRRT(λ), (5)

where RRRT(λ) is the reflectance spectrum of RRT determined during the system calibration
(see Section 3.1). SUT absorbance spectra could be obtained as:

ASUT(λ) = 1− RSUT(λ) (6)

3. System Performance

After assembling the system, the functioning of the various functional blocks and of
the whole system has been verified. Afterward, the system was carefully calibrated and
characterized in terms of: (i) warm-up, (ii) linearity, and (iii) repeatability. Calibration
and characterization procedures were performed by comparing the measured reflectance
with certified reflectivity standards targets. In particular, the used reflectivity indexes
were 0.99 (S099), 0.75 (S075), 0.50 (S050), and 0.02 (S002) (Spectralon® Diffuse Reflectance
Standards, LABSPHERE©Inc., North Sutton, NH, USA). All the experimental activities
were performed in our laboratory under controlled ambient conditions.

3.1. System Calibration

The calibration of the system has basically two objectives: (i) make the measurement
independent of instrumental parameters, and (ii) make the reflectance measurement trace-
able. For the use of the system, the first objective would be sufficient and easily achievable
using a reference target to perform a comparison. However, this approach allows obtaining
“qualitative” and non-referable reflectance measurements. To make the measurements
provided by our instrument comparable with those performed by other researchers with
different instrumentation, it is important to make the measurement traceable, and therefore,
refer the reference target to a certified standard. In our system, the RRT is a sheet of white
paper housed on the flap mechanism. This target faces the spectrometer optical head when
the flap mechanism is closed.

RRT reflectivity (RRRT(λ)) over the considered spectral band was obtained for com-
parison with the certified reflectivity standard’s index 0.99 S099. In accordance with the
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measurement procedure illustrated in Section 2.3, the reflectance standard S099 was posi-
tioned in front of the optical sapphire window of the system as a replacement for the SUT.
Afterward, the measurement procedure was started, but instead of acquiring the intensity
of the back-scattered optical signal from SUT, ISUT , the optical signal coming from S099,
IS099 was acquired. Thus, the RRT reflectivity was derived from the following equation:

RRRT(λ) =

(
IRRT(λ)− IDarkI(λ)

IS099(λ)−IDarkA(λ)
0.99

)
, (7)

where the values of IRRT , IDarkI , IS099, and IDarkA were obtained. We averaged 60 acquisi-
tions within the same measurement session. Figure 4a shows the intensities IRRT and IS099.
In the same figure both dark contributions, IDarkI and IDarkA, are completely overlapped.
The reflectivity RRRT of the the reference target obtained from Equation (7) is shown in
Figure 4b.
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Figure 4. (a) Intensities IRRT (blue line) and IS099 (red line) back-reflected by the instrument reflectance
reference target and reflectance standard S099, respectively. Both dark intensities IDarkA and IDarkI
(yellow line) were almost equal over the measured spectral range. (b) Reflectivity of the instrument
reflectance reference target (RRT) obtained from Equation (7).

3.2. Instrument Warm-Up

Exploiting a complete measurement procedure, the system was calibrated; and the
information relating to IDarkI , IDarkA, and IRRT was stored. The system was turned off,
and we waited for all parts to reach room temperature. Immediately after a new system
power-on, the S050 reference sample was positioned close to the sapphire optical window,
the lamp was switched on, and the flap mechanism was opened. Acquisitions of the IS050
intensity were then performed at 30 s intervals for 120 min. In this way, the intensity
spectral measurements were performed from a “cold–start” condition until the system
thermal regime was reached.

For each acquisition, according to Equation (5), the reflectivity RS050(λ) was estimated
and its average value RS050 in the spectral interval 900–1700 nm calculated. Figure 5
shows the trend of RS050 in the acquisition time interval and the corresponding fit to an
exponential decay function obtained by minimizing the mean square deviations.

In the warm-up period, the system exhibited a decrease in the measured average
reflectivity well approximated by an exponential decay (R2 = 0.9876). The observed average
reflectivity reduction was about 1.4 % with a decay constant of 13.6 s. At the end of the
transient, the measurement error was 0.6 %.
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Figure 5. Warm-up reflectivity measurement performed on the NIST standard diffuser S050. Orange
dots: 240 measurements of the RS050 over the 120 min warm-up test. Blue dash–dot line: fit of
experimental data to an exponential decay function.

3.3. Instrument Linearity

The linearity of the system was evaluated using certified reflectance standards. The in-
strument was turned on, and after waiting for the warm-up time, a complete measurement
procedure was performed to calibrate the system. The information related to IDarkI , IDarkA,
and IRRT was stored. The reference standards S099, S075, S050, and S002 were positioned in
front of the sapphire optical window in place of the SUT. For each standard, ten intensity
spectra were acquired, and their average was calculated. Therefore, in accordance with
Equation (5), the reflectivity of each standard was calculated. Moreover, for each reflectivity
spectrum, the average reflectivity in the spectral interval 900–1700 nm was calculated.
Figure 6a shows the reflectivity spectra obtained. The spectra show a sufficiently flat trend
with a slight positive slope towards high wavelengths. The average reflectances of the
standards with reference to the certified value are shown in Figure 6b. The integral linearity
error calculated as the root mean square deviation of the measurements with respect to the
reference values was 0.93%.

3.4. Measurement Repeatability

Finally, the repeatability test was performed on a single NIST target to check mea-
surement consistency over an extended 13 h long session. The instrument was turned
on, and after waiting for the warm-up time, a complete measurement procedure was per-
formed to calibrate the system storing the information relating to IDarkI , IDarkA, and IRRT .
Afterward, a reference standard target S050 was positioned in front of the sapphire optical
window in place of the SUT, and 26 reflectivity measurements were carried out every
30 min. For each measurement, an average of eight single acquisitions, i.e., IS050(λ), were
performed, and in accordance with Equation (5), the reflectivity spectrum RS050(λ) was
computed. Moreover, for each measurement the average reflectivity RS050 in the spectral
interval 900–1700 nm was calculated. After each measurement, the S050 standard was
moved randomly to simulate a different positioning of the SUT. The results are shown in
Figure 7. We noted that when comparing these results with the warm-up results after the
transient (see Figure 5), the variability observed in this experimental phase was mainly due
to the re-positioning of the sample.
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Figure 6. (a) Reflectance sensitivity measurement. Normalized spectra distribution acquired from
back–scattered light of different NIST standard diffusers. The solid blue line (1) refers to RS099, dotted
orange line (2) to RS075, ◦ yellow marks (3) to RS050, and dash–dot purple (4) to RS002. (b) Linearity
in reflectivity measurement of a different NIST standard diffuser. * marks show experimental
data obtained from the mean of reflectance distributions from Figure 6a. Solid blue line is the
ideal behavior.

Figure 7. Repeatability test performed over a 13 h long session. * blue markers represent the S050

reflectivity measurements. The red dash–dot line is the average reflectivity value, and the light green
area corresponds to the region delimited by the standard deviation of the entire set.

The measurements showed an average value of 49.76% and a sample standard devia-
tion equal to 0.71%.

4. In-Field Results
4.1. Sample Preparation

Preliminary tests were performed on alfalfa (Medicago sativa L.) grass samples prop-
erly harvested in September from farmlands in Modena (Italy). Twelve fresh cuttings,
with weights ranging from 8.7 to 26 g, were collected from three different cultivation fields.
Specifically, four cuttings were collected in each cultivation field, where naturally, differ-
ent MC values were obtained. Each alfalfa sample was cut at a length of 2 cm from the
ground and held in a hermetically-sealed plastic bag to preserve MC during the transport
to our laboratory. As normal harvesting conditions were satisfied, each crop cutting was
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constituted by a heterogeneous composite of stems, leaves, and air interstices with variable
moisture content related to the specific conditions of the cultivation field, i.e., exposure to
climatic variables, irrigation, soil conformation.

In the laboratory, each sample under test (SUT) was prepared by taking material each
cutting and filling a Petri dish with it, without exerting pressure on the sample.

Three different densities, each calculated as the ratio between the net weight of the al-
falfa sample and the Petri dish volume, were obtained: ρ1 = 83 kg/m3, ρ2 = 125 kg/m3, and
ρ3 = 250 kg/m3. After performing the NIRS measurements, the SUT MC was determined
according to the American Society of Agricultural and Biological Engineers standard [1],
as explained in our previous paper [7]. This procedure allowed us to obtain a total of
12 Petri dishes with naturally different MCs ranging from (8± 0.4)% to (76± 0.4)%, three
of which had MC equal to 75%.

4.2. NIRS Absorbance Measurement Procedure and Data Analysis

Once each SUT was prepared in a Petri dish, the absorbance measurements were
performed with the NIRS instrument properly warmed-up and calibrated. In particular,
eight single NIR spectral measurements were performed in different regions of the Petri dish
surface. In accordance with Equation (6), for each measurement position, the absorbance
ASUT(λ) was calculated, thereby providing a total of 96 absorption spectra. Due to the
poor uniformity of the harvested samples, each observation was considered unique and
independent from the others.

As discussed in our previous paper [7], before estimating the MC and density content
of collected samples, data pre-processing was performed using MATLAB (MathWorks,
Sherborn, MA, USA). Firstly, according to Equation (3), the logarithmic transformation of
the absorbance spectrum LASUT(λ) was calculated for each SUT. Subsequently, the first
derivative of LASUT(λ) was computed to eliminate any possible baseline effects [22,23].
Then, smoothing was performed through the second-order “Savitzky–Golay” filter (SG
method), and the resulting spectrum has been normalized to its maximum.

Following the pre-processing of the acquired data, the spectral band BOI for the SUT
MC estimation was determined. Wavelengths of interest were selected by analyzing the
correlation coefficients between reference variables, i.e., SUT MC and density ρ, and predic-
tor variables, i.e., the first derivatives of LASUT(λ). Figure 8 shows the obtained MC and ρ
correlation coefficients as functions of the radiation wavelength.
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Figure 8. Correlation coefficients between reference, i.e., SUT MC and ρ, and predictor, i.e., first
derivative of LASUT(λ), variables. The dash–dot line relates to SUT MC while dashed orange line to
SUT ρ. The light-blue region defines the spectral band of interest (BOI) where the first derivative of
LASUT(λ) is correlated maximally with SUT MC and minimally with SUT ρ.
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The spectral band of interest (BOI), was then defined as the spectral region where the
first derivative of LASUT(λ) is correlated maximally with SUT MC and minimally with SUT
ρ. Conventionally, we defined BOI as the spectral band where the correlation coefficient
of MC is greater than 85% of its maximum value, and at the same time, the correlation
coefficient of ρ is less than 50% of its maximum. As expected the resulting BOI = (1.371 µm,
1.547 µm) included the main water absorption peak in the measured spectral region,
i.e., 1.45 µm.

A linear regression model, i.e., a partial least squares (PLS) model, was then developed
using the 96 first derivatives of LASUT(λ), i.e., FDLA, in the spectral BOI as predictor
variables and SUTs’ reference MC as response variables. In the PLS model, according to
our previous experiments [7], to maximize estimation accuracy while avoiding over-fitting,
the number of latent variables for the regression was set to 10. Additionally, the complete
predictor dataset, i.e., the 96 first derivatives of LASUT(λ), was randomly split into the
calibration dataset, composed of 67 predictor variables, and validation dataset, including
the remaining 29 predictor variables. This splitting operation was performed maintaining
the ratio between calibration and validation predictor variables for each MC value equal
to 0.7.

Finally, this PLS model was evaluated on both calibration and validation datasets by
taking into account two different statistics: calibration and validation root mean square
errors (C-RMSE and V-RMSE, respectively) and the coefficients of determination (C-R2 and
V-R2, respectively). All the calculations, i.e., data pre–processing, model estimations, and
statistical results, were performed with functions integrated in the MATLAB (MathWorks,
Sherborn, MA, USA) software suite.

4.3. Crop Moisture Estimation

Figure 9 shows the PLS response variable obtained from calibration as a function of
the MC reference values, whereas the results obtained from validation dataset are shown
in Figure 10. For completeness, each figure shows the PLS response variable, i.e., the
logarithmic transformation of MC (ln(MC(%)) (a), and the corresponding value of MC
in linear scale (b). Statistics of the developed PLS model are reported in Table 2, whereas
Figure 11 shows the root mean square relative error of the MC estimation εr (MC)%.

Although we performed our analysis on a low number of samples, the results are
encouraging, and show how the instrument can potentially estimate a crop’s MC with an
average relative error of 7.1%. Thanks to the developed PLS model, which exploits the
logarithmic transformation of the NIRS absorbance spectra, this relative error remained
quite constant over the fitting range [7].
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Figure 9. Calibration PLS response variables as a function of the reference values (a). Predicted vs.
reference moisture content for the calibration dataset (b).
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Figure 10. Validation PLS response variables as a function of the reference values (a). Predicted vs.
reference moisture content for the validation dataset (b).
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Figure 11. Root mean square relative error of the MC estimations. (a) Results obtained for the
calibration dataset and (b) for the validation dataset. The red dash–dot lines are the means of single
measurements: C_MEAN_ERR in (a) and V_MEAN_ERR.

Table 2. Statistical results of the PLS model. C-RMSE and C-R2 refer to the calibration dataset’s
root mean square error and R-squared values; V-RMSE and V-R2 refer to the validation dataset’s
equivalents. C_MEAN_ERR and V_MEAN_ERR are the mean relative errors for the calibration and
validation datasets, respectively.

Parameter Results

C-RMSE 0.1671

C-R2 0.9507

V-RMSE 0.0897

V-R2 0.9846

C_MEAN_ERR 14.83%

V_MEAN_ERR 7.11%

5. Conclusions

A NIRS measuring system for in-field crop moisture measurement has been developed,
and preliminary tests have been performed on freshly harvested alfalfa samples. Great care
has been devoted to the design and realization of the system, which must be able to operate
in-field during crop harvesting phases.

In this paper, we presented a completed characterization of the instrument and a
preliminary test on alfalfa grass samples collected directly from cultivation fields. Thanks



Photonics 2022, 9, 178 14 of 15

to the reference reflectance target (RRT) inserted directly into the instrument, measurement
traceability can be achieved.

The analytical approach and the PLS regression modeling methodology used to esti-
mate the crop MC, already presented and discussed in our previous article [7], require an
initial calibration phase performed on the specific crop samples of interest. This phase can
be expensive in the early phases of the use of the instrument. Nevertheless, by collecting
this calibration information for different types of crop, a database of model parameters
could be implemented, avoiding repeating the PLS calibration every time before using
the system.

Future experimental phases should involve the assembly of the instrument directly
on a harvesting machine. This will allow us to perform the MC measurements directly on
crop bales.
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