This is the peer reviewd version of the followng article:

Hamiltonian/Stroh formalism for anisotropic media with microstructure / Nobili, Andrea; Radi, Enrico. - In: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A: MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES. - ISSN 1364-503X. - 380:2231(2022), pp. N/A-N/A.
[10.1098/rsta.2021.0374]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

## PHILOSOPHICAL TRANSACTIONS A

rsta.royalsocietypublishing.org

Research


CrossMark click for updates

Article submitted to journal

## Subject Areas:

74B05, 37K06

## Keywords:

Stroh formalism, couple-stress, canonical system, variational principles, microstructure

## Author for correspondence:

Andrea Nobili
e-mail: andrea.nobili@unimore.it

# Hamiltonian/Stroh formalism for anisotropic media with microstructure 

Andrea Nobili ${ }^{1,3}$ and Enrico Radi ${ }^{2,3}$

${ }^{1}$ Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy
${ }^{2}$ Department of Sciences and Methods of Engineering, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
${ }^{3}$ Centre En\&Tech, Tecnopolo, p.le Europa 1, 42124 Reggio Emilia, Italy

Moving from variational principles, we develop the Hamiltonian formalism for generally anisotropic microstructured materials, in an attempt to extend the celebrated Stroh formulation. Microstructure is expressed through the indeterminate (or MindlinTiersten's) theory of couple stress elasticity. The resulting canonical formalism appears in the form of a Differential Algebraic system of Equations (DAE), which is then recast in purely differential form. This structure is due to the internal constraint that relates the micro- to the macro- rotation. The special situations of plain and anti-plane deformations are also developed and they both lead to a 7-dimensional coupled linear system of differential equations. In particular, the antiplane problem shows remarkable similarity with the theory of anisotropic plates, with which it shares the Lagrangian. Yet, unlike for plates, a classical Stroh formulation cannot be obtained, owing to the difference in the constitutive assumptions. Nonetheless, the canonical formalism brings new insight into the problem's structure and highlights important symmetry properties.
© The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited.

## 1. Introduction

3 The celebrated Stroh formalism [27] is a reformulation of the equations of elasticity which proves particularly useful for solving problems in plane anisotropic elastostatics [28]. These are reduced to a six-dimensional eigenvalue problem, of which they share all the relevant features. Besides, the method may be readily extended to steady-state elastodynamics [29]. In particular, the formalism is especially suited for discussing travelling wave propagation and it has gained considerable attention since it allows to prove existence of surface waves in generally anisotropic materials, a result that has eluded early researchers dealing with leaky waves [26]. As an example, in [10] it is illustrated how to derive the Stroh form of the governing equations for localized edge vibration modes in a circular isotropic Kirchhoff-Love shell, and then use the impedance matrix to efficiently compute the real roots of the frequency equation. It is now established that the secular equation governing surface waves is always real and that, whenever a surface wave exists, it is unique [3].

Only recently, it could be recognized that the essence of the formalism lies in its Hamiltonian nature, thereby a space variable is treated as a time-like coordinate [8]. Despite this knowledge having been already noted in passing [2], the realization of its full potential is a recent progress, which has been put to advantage to systematically generalise the formalism to more complicated situations. For example, it could bring constrained elasticity [5] and laminated plates [7,9] in Stroh form. Also, it provided a basis to develop asymptotic reduced models for near-resonance disturbances in anisotropic media [11]. Indeed, in the absence of such a guidance, the right firstorder formulation may only be developed by trial and error, such as it occurred for plates, see [8] and references therein. Furthermore, to the best of the authors' knowledge, no similar attempts appear in the literature in the direction of applying the Stroh formalism to complex media. As a remarkable exception, we mention the extension of the Stroh formalism to piezoelectricity in the form of a 8-dimensional eigenvalue problem [4], and to piezo-magneto-elastic or magneto-electro-elastic media, as a 10-dimensional eigenproblem [1]. Similarly, anisotropic micropolar elasticity is considered in [15], where a 14-dimensional system is found for generalized plane strain and 6-dimensional for plane strain. It is worth emphasizing that all such papers develop the Stroh formalism through ad-hoc assumptions, in a trial and error approach, and it is not entirely clear how conjugate variable have been selected (that is whether they are the conjugate momenta of the variational principle or a linear combination thereof). In similar fashion, we mention the extension of the Stroh formalism to self similar problems in elastodynamics by the Smirnov-Sobolev method [30]. Although moving from a different perspective, that is directed at the problem's solution rather than at elucidating the underlying variational structure, the paper reveals that a Stroh-like formalism still holds in dynamics.

In this paper, we apply the Hamiltonian formalism to systematically develop the canonical form of the governing equations of elastostatics for a microstructured medium. Microstructure is described in the spirit of the indeterminate (or Mindlin-Tiersten's) couple stress theory, which is a Cosserat theory wherein the couple stress is related to the gradient of the continuum (or macro) rotation $[14,17,24]$. Introduction of the microstructure has important downfalls on fracture mechanics [18,21] as well as body [12], Rayleigh [20,25], Stoneley [23] and Love [6] wave propagation, with important potential for applications [22]. It is therefore natural to investigate the variational structure of the associated Hamiltonian system. We show that the internal constraint relating the micro to the macro behaviour prevents reaching a classical Stroh formalism. This is especially surprising for antiplane problems, whose variational structure parallels that of anisotropic plates, which are amenable to the Stroh formalism. Still, the canonical system provides new insight into the fundamental structure of the equations.

## 2. Couple stress elasticity

Let us consider a Cartesian co-ordinate system ( $O, x_{1}, x_{2}, x_{3}$ ), with the triad of unit vectors $\left(\boldsymbol{e}_{\mathbf{1}}, \boldsymbol{e}_{\mathbf{2}}, \boldsymbol{e}_{\mathbf{3}}\right)$ directed alongside the relevant axes, attached to an elastic couple stress (CS) material. This is a polar material, for which, alongside the classical Cauchy force stress tensor $s$, we define the couple stress tensor $\boldsymbol{\mu}$ (a table of symbols is presented in the Appendix). Across any surface of unit normal $n$, an internal reduced couple vector acts, determined by the couple stress tensor as $\boldsymbol{q}_{\boldsymbol{n}}^{\boldsymbol{e}}=\boldsymbol{\mu} \boldsymbol{n}$. It is expedient to decompose the force stress tensor $\boldsymbol{s}$ into its symmetric and skew-symmetric parts, respectively

$$
\boldsymbol{\sigma}=\operatorname{Sym} \boldsymbol{s}=\frac{1}{2}\left(s+s^{T}\right), \quad \text { and } \quad \boldsymbol{\tau}=\operatorname{Skw} \boldsymbol{s}=\frac{1}{2}\left(s-s^{T}\right)
$$

where the superscript $T$ denotes the transposed tensor. Componentwise, we have $s_{i j}=\sigma_{i j}+\tau_{i j}$, with

$$
\sigma_{i j}=s_{(i j)}=\frac{1}{2}\left(s_{i j}+s_{j i}\right), \quad \tau_{i j}=s_{<i j>}=\frac{1}{2}\left(s_{i j}-s_{j i}\right) .
$$

In addition, the couple stress tensor $\boldsymbol{\mu}$ is split into its deviatoric and spherical parts

$$
\boldsymbol{\mu}=\boldsymbol{\mu}^{D}+\boldsymbol{\mu}^{S}, \quad \boldsymbol{\mu}^{S}=\frac{1}{3}(\boldsymbol{\mu} \cdot \mathbf{1}) \mathbf{1},
$$

where 1 is the rank 2 identity tensor and • denotes the scalar product, i.e. componentwise, $1_{i j}=\delta_{i j}$, with $\delta_{i j}$ indicating Kronecker's delta symbol, while $\boldsymbol{A} \cdot \boldsymbol{B}=A_{i j} B_{i j}$ and Einstein's summation convention over twice repeated subscripts is assumed.

In terms of kinematics, we introduce the displacement vector $\boldsymbol{u}$ and the rotation vector $\varphi$. Unlike Cosserat micro-polar theories, for which displacements and micro-rotations are independent fields, CS theory relates one to the other, through [14, Eqs.(4.9)]

$$
\begin{equation*}
\boldsymbol{\varphi}=\frac{1}{2} \operatorname{curl} \boldsymbol{u}, \quad \Leftrightarrow \quad \varphi_{i}=\frac{1}{2} e_{i j k} u_{k, j}, \tag{2.1}
\end{equation*}
$$

where E is the rank-3 permutation (Levi-Civita) tensor, whose components are denoted by $e_{i j k}$, and a subscript comma denotes partial differentiation, e.g. $(\operatorname{grad} u)_{k j}=u_{k, j}=\partial u_{k} / \partial x_{j}$. It follows that $\varphi$ is solenoidal

$$
\begin{equation*}
\operatorname{div} \varphi=0, \quad \Leftrightarrow \quad \varphi_{j, j}=0 \tag{2.2}
\end{equation*}
$$

As in CE, we define the linear strain tensor

$$
\varepsilon=\text { Sym } \operatorname{grad} \boldsymbol{u}, \quad \Leftrightarrow \quad \varepsilon_{i j}=u_{(i, j)} .
$$

For a linear elastic anisotropic material, we have

$$
\sigma=\mathbb{C} \varepsilon
$$

where $\mathbb{C}$ is the rank 4 tensor of elastic moduli, i.e. $\mathbb{C}_{i j k l}=c_{i j k l}$, possessing the major and the minor symmetry property, i.e. $c_{i j k l}=c_{k l i j}$ and $c_{i j k l}=c_{j i k l}=c_{i j l k}$, respectively. By $\mathbb{C} \varepsilon$ we mean the rank 2 tensor obtained by double summation over the last pair of indices: $c_{i j k l} \varepsilon_{k l}$. For isotropic materials, we have

$$
\mathbb{C}=2 G \mathbb{I}+\lambda \mathbf{1} \otimes \mathbf{1}, \quad \Leftrightarrow \quad c_{i j k l}=2 G \delta_{i k} \delta_{j l}+\lambda \delta_{k l} \delta_{i j}
$$

where $\mathbb{I}$ is the rank 4 identity tensor and $\Lambda$ and $G>0$ are Lamé moduli. Here, the dyadic product is introduced for rank 2 tensors such that $(\boldsymbol{A} \otimes \boldsymbol{B}) \boldsymbol{C}=(\boldsymbol{B} \cdot \boldsymbol{C}) \boldsymbol{A}$, for any triple of rank 2 tensors $\boldsymbol{A}, \boldsymbol{B}$ and $\boldsymbol{C}$.

We introduce the torsion-flexure (wryness or curvature) tensor as the gradient of the rotation field

$$
\begin{equation*}
\chi=\operatorname{grad} \varphi, \quad \Leftrightarrow \quad \chi_{i j}=\varphi_{i, j} . \tag{2.3}
\end{equation*}
$$

In light of the connection (2.2) and recalling that $\operatorname{tr} \operatorname{grad} \equiv \operatorname{div}$, it is seen that $\chi$ is purely deviatoric, i.e. $\chi=\chi^{D}$. Here, the divergence operator on rank 2 tensors operates on the second component, i.e. $(\operatorname{div} \boldsymbol{s})_{i}=s_{i j, j}$.

For a linear elastic CS material, we have the constitutive law

$$
\boldsymbol{\mu}=\ell^{2} \mathbb{G} \boldsymbol{\chi}
$$

where $\ell>0$ is a characteristic length related to the microstructure and $\mathbb{G}$ is the rank 4 tensor of couple stress moduli possessing the major symmetry property $g_{i j k l}=g_{k l i j}$. Immediately, it appears that, to any effect, $\boldsymbol{\mu}$ may be replaced by $\boldsymbol{\mu}^{D}$ and in fact, the CS theory is named indeterminate after the observation that the first invariant of the couple stress tensor, i.e. $\operatorname{tr} \boldsymbol{\mu}=$ $\boldsymbol{\mu} \cdot \mathbf{1}=\mu_{11}+\mu_{22}+\mu_{33}$, rests indeterminate. Therefore, we are free to set it equal to zero without any loss of generality, i.e. $g_{i i k l}=g_{k l i i}=0$. In the following, for the sake of brevity, we shall write $\boldsymbol{\mu}$ with the understanding that $\boldsymbol{\mu}^{D}$ is meant. For isotropic materials, we have

$$
\begin{equation*}
\boldsymbol{\mu}=2 G \ell^{2}\left(\boldsymbol{\chi}+\eta \boldsymbol{\chi}^{T}\right) \Leftrightarrow g_{i j k l}=2 G\left(\delta_{j l} \delta_{i k}+\eta \delta_{j k} \delta_{i l}\right), \tag{2.4}
\end{equation*}
$$

where $-1<\eta<1$ is a dimensionless number similar to Poisson's ratio.
The equilibrium equations, in the absence of body forces, read [19, Eq.(2)]

$$
\begin{array}{r}
\operatorname{div} \boldsymbol{s}=\boldsymbol{o}, \\
\operatorname{axial} \boldsymbol{\tau}-\frac{1}{2} \operatorname{div} \boldsymbol{\mu}=\boldsymbol{o}, \tag{2.5b}
\end{array}
$$

where axial $\boldsymbol{\tau}=\frac{1}{2} \mathrm{E} \boldsymbol{\tau}$, i.e. $(\operatorname{axial} \boldsymbol{\tau})_{i}=\frac{1}{2} e_{i j k} \tau_{j k}$, denotes the axial vector attached to a skewsymmetric tensor. It is observed that, introducing the curl of a tensor as $(\operatorname{curl} \boldsymbol{W})_{i j}=e_{j k l} W_{i l, k}$, it can be easily proved that

$$
2 \text { axial } \operatorname{curl} \boldsymbol{W}=\operatorname{div}\left[(\operatorname{tr} \boldsymbol{W}) \mathbf{1}-\boldsymbol{W}^{T}\right]
$$

Consequently, Eqs.(2.5) admit a solution in terms of the Günther stress tensors $\boldsymbol{W}$ and $\boldsymbol{Z}[13,15]$

$$
\begin{equation*}
\boldsymbol{s}=\operatorname{curl} \boldsymbol{W}, \quad \boldsymbol{\mu}=\operatorname{curl} \boldsymbol{Z}+(\operatorname{tr} \boldsymbol{W}) \mathbf{1}-\boldsymbol{W}^{T} . \tag{2.6}
\end{equation*}
$$

However, as pointed out in [15], this representation leads to a formalism that is not closed. Through the inverse formula

$$
\begin{equation*}
\boldsymbol{\tau}=\mathrm{E} \operatorname{axial} \boldsymbol{\tau}, \quad \Leftrightarrow \quad \tau_{i j}=e_{i j k}(\operatorname{axial} \boldsymbol{\tau})_{k}, \tag{2.7}
\end{equation*}
$$

Eq.(2.5b) may be solved for $\boldsymbol{\tau}$

$$
\begin{equation*}
\boldsymbol{\tau}=\frac{1}{2} \mathbf{E} \operatorname{div} \boldsymbol{\mu}=-\mathrm{Skw} \operatorname{curl} \boldsymbol{\mu}^{T}, \tag{2.8}
\end{equation*}
$$

that in components read $\tau_{i j}=\frac{1}{2} e_{i j k} \mu_{k l, l}$. Hence, the skew-symmetric part of the force stress tensor $s$ is determined by rotational equilibrium. Clearly, CE is retrieved taking $\ell=0$, for then $\boldsymbol{\mu}=\boldsymbol{\tau}=\mathbf{0}$.

We now write the total energy in the sense of Eshelby [8]

$$
\begin{equation*}
\mathcal{L}=\int_{\mathcal{B}}\left[\frac{1}{2} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}+\frac{1}{2} \boldsymbol{\mu} \cdot \boldsymbol{\chi}-\boldsymbol{p} \cdot\left(\boldsymbol{\varphi}-\frac{1}{2} \operatorname{curl} \boldsymbol{u}\right)\right] \mathrm{d} V-\int_{\partial \mathcal{B}}\left(\boldsymbol{t}_{\boldsymbol{n}} \cdot \boldsymbol{u}+\boldsymbol{q}_{\boldsymbol{n}} \cdot \boldsymbol{\varphi}\right) \mathrm{d} A, \tag{2.9}
\end{equation*}
$$

having introduced the Lagrangian multiplier vector $\boldsymbol{p}=\left[p_{i}\right]$ to account for the constraint (2.1) and being $\boldsymbol{n}$ the unit normal, in the outwards direction, to the surface element $\mathrm{d} A$. Besides, we let the normal tensor $\mathfrak{N}=\boldsymbol{n} \otimes \boldsymbol{n}$, the projector tensor $\mathfrak{P}=\mathbf{1}-\mathfrak{N}$, and the skew tensor $\boldsymbol{P}=\mathbf{E} \boldsymbol{p}$ associated with the vector $\boldsymbol{p}$ thought of as an axial vector. The prescribed boundary force and couple vector are given by

$$
\boldsymbol{t}_{\boldsymbol{n}}=\boldsymbol{t}_{\boldsymbol{n}}^{\boldsymbol{e}}+\boldsymbol{\tau} \boldsymbol{n}-\frac{1}{2} \boldsymbol{n} \times \operatorname{grad} \mu_{n n}, \quad \boldsymbol{q}_{\boldsymbol{n}}=\mathfrak{P} \boldsymbol{q}_{\boldsymbol{n}}^{\boldsymbol{e}}=\boldsymbol{q}_{\boldsymbol{n}}^{\boldsymbol{e}}-\mu_{n n} \boldsymbol{n},
$$

${ }_{85}$ being $\boldsymbol{t}_{\boldsymbol{n}}^{e}=\boldsymbol{\sigma} \boldsymbol{n}$ and $\boldsymbol{q}_{\boldsymbol{n}}^{\boldsymbol{e}}=\boldsymbol{\mu} \boldsymbol{n}$ the "elastic" part of the force and couple stress vector and $\mu_{n n}=$

87 may be equivalently rewritten as

$$
-\int_{\partial \mathcal{B}}\left[\left(\boldsymbol{t}_{\boldsymbol{n}}^{e}+\boldsymbol{\tau} \boldsymbol{n}\right) \cdot \boldsymbol{u}+\boldsymbol{q}_{\boldsymbol{n}}^{\boldsymbol{e}} \cdot \boldsymbol{\varphi}\right] \mathrm{d} A
$$

Indeed, recalling the vector identities

$$
\begin{align*}
\operatorname{div}(\boldsymbol{a} \times \boldsymbol{b}) & =\boldsymbol{b} \cdot \operatorname{curl} \boldsymbol{a}-\boldsymbol{a} \cdot \operatorname{curl} \boldsymbol{b},  \tag{2.10a}\\
\operatorname{div}(\phi \boldsymbol{b}) & =\operatorname{grad} \phi \cdot \boldsymbol{b}+\phi \operatorname{div} \boldsymbol{b},  \tag{2.10b}\\
\operatorname{curl} \operatorname{grad} \phi & =\boldsymbol{o}, \tag{2.10c}
\end{align*}
$$

and making use of the divergence theorem, it is easily proved that

$$
\begin{aligned}
& -\frac{1}{2} \int_{\partial \mathcal{B}}\left(\boldsymbol{n} \times \operatorname{grad} \mu_{n n} \cdot \boldsymbol{u}\right) \mathrm{d} A=\frac{1}{2} \int_{\partial \mathcal{B}}\left(\boldsymbol{u} \times \operatorname{grad} \mu_{n n} \cdot \boldsymbol{n}\right) \mathrm{d} A \\
& =\frac{1}{2} \int_{\mathcal{B}} \operatorname{div}\left(\boldsymbol{u} \times \operatorname{grad} \mu_{n n}\right) \mathrm{d} V=\frac{1}{2} \int_{\mathcal{B}}\left(\operatorname{grad} \mu_{n n} \cdot \operatorname{curl} \boldsymbol{u}\right) \mathrm{d} V \\
& =\int_{\mathcal{B}}\left(\operatorname{grad} \mu_{n n} \cdot \boldsymbol{\varphi}\right) \mathrm{d} V=\int_{\mathcal{B}} \operatorname{div}\left(\mu_{n n} \boldsymbol{\varphi}\right) \mathrm{d} V=\int_{\partial \mathcal{B}}\left(\boldsymbol{\varphi} \cdot \mu_{n n} \boldsymbol{n}\right) \mathrm{d} A
\end{aligned}
$$

having made use of Eq.(2.2). Therefore, $-\frac{1}{2} \boldsymbol{n} \times \operatorname{grad} \mu_{n n}$ in $\boldsymbol{t}_{\boldsymbol{n}}$ cancels out the term $\mu_{n n} \boldsymbol{n}$ in $\boldsymbol{q}_{\boldsymbol{n}}$. By the divergence theorem and making use of the equilibrium equations (2.5), we get

$$
\mathcal{L}=-\int_{\mathcal{B}} L \mathrm{~d} V,
$$

having introduced the Lagrangian density function $L$

$$
\begin{equation*}
L(\operatorname{grad} \boldsymbol{u}, \boldsymbol{\varphi}, \operatorname{grad} \boldsymbol{\varphi}, \boldsymbol{p})=\frac{1}{2} \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon}+\frac{1}{2} \boldsymbol{\mu} \cdot \boldsymbol{\chi}+\boldsymbol{p} \cdot\left(\boldsymbol{\varphi}-\frac{1}{2} \operatorname{curl} \boldsymbol{u}\right), \tag{2.11}
\end{equation*}
$$

that, component-wise, reads

$$
L(\operatorname{grad} \boldsymbol{u}, \boldsymbol{\varphi}, \operatorname{grad} \boldsymbol{\varphi}, \boldsymbol{p})=\frac{1}{2} \sigma_{i j} u_{(i, j)}+\frac{1}{2} \mu_{i j} \varphi_{i, j}+p_{i}\left(\varphi_{i}-\frac{1}{2} e_{i j k} u_{k, j}\right)
$$

The Euler-Lagrange (E-L) equations are

$$
\begin{array}{r}
-\frac{\partial}{\partial x_{j}} \frac{\partial L}{\partial u_{i, j}}+\frac{\partial L}{\partial u_{i}}=-\sigma_{i j, j}+\frac{1}{2} p_{m, j} e_{m j i}=0 \\
-\frac{\partial}{\partial x_{j}} \frac{\partial L}{\partial \varphi_{i, j}}+\frac{\partial L}{\partial \varphi_{i}}=-\mu_{i j, j}+p_{i}=0 \\
\frac{\partial L}{\partial p_{i}}=\varphi_{i}-\frac{1}{2} e_{i j k} u_{k, j}=0 \tag{2.12c}
\end{array}
$$

that, recalling (2.7), amount to

$$
\begin{array}{r}
-\operatorname{div}\left(\boldsymbol{\sigma}+\frac{1}{2} \boldsymbol{P}\right)=0 \\
\boldsymbol{p}-\operatorname{div} \boldsymbol{\mu}=0 \tag{2.13b}
\end{array}
$$

${ }_{91}$ and the constraint (2.1). In particular, looking at $(2.5 b, 2.13 b)$, we are able to give a physical
92 meaning to the Lagrange multiplier $\boldsymbol{p}$

$$
\begin{equation*}
\boldsymbol{p}=2 \operatorname{axial} \boldsymbol{\tau}=2\left(\tau_{23}, \tau_{31}, \tau_{12}\right) \tag{2.14}
\end{equation*}
$$

${ }_{93} \quad$ wherefrom, $\frac{1}{2} \boldsymbol{P}=\boldsymbol{\tau}$ and Eqs.(2.13) correspond to (2.5).

$$
\boldsymbol{p}=-\operatorname{curl} \boldsymbol{h}
$$

with the gauge relation $\operatorname{div} \boldsymbol{h}=0$. Consequently, making use of the vector identities (2.10) alongside

$$
\operatorname{curl} \boldsymbol{h} \cdot \operatorname{curl} \boldsymbol{u}=2 \operatorname{grad} u \cdot \text { Skw } \operatorname{grad} \boldsymbol{h}
$$

we may equivalently write

$$
L(\operatorname{grad} \boldsymbol{u}, \boldsymbol{\varphi}, \operatorname{grad} \boldsymbol{\varphi}, \boldsymbol{h})=\frac{1}{2} \sigma_{i j} u_{(i, j)}+\frac{1}{2} \mu_{i j} \varphi_{i, j}-e_{k j i} h_{k} \varphi_{i, j}+\frac{1}{2} u_{i, j}\left(h_{i, j}-h_{j, i}\right)
$$

and

$$
\boldsymbol{\mu} \cdot \boldsymbol{\chi}=\boldsymbol{\mu} \cdot \operatorname{grad}_{2} \varphi_{3}=\mu_{31} \chi_{31}+\mu_{32} \chi_{32}=q_{13}^{e} \varphi_{3,1}+q_{23}^{e} \varphi_{3,2} .
$$

Besides, specializing (2.13b), the Lagrangian multiplier $\boldsymbol{p}$ has the single non-zero component

$$
p_{3}=\mu_{31,1}+\mu_{32,2}=q_{13,1}^{e}+q_{23,2}^{e},
$$

${ }_{111}$ and from $(2.7,2.14)$ we get the single non-zero component in the skew part of the force stress 112 tensor

$$
\begin{equation*}
\tau_{12}=\frac{1}{2} P_{12}=\frac{1}{2} p_{3}=-\tau_{21} . \tag{3.6}
\end{equation*}
$$

$$
\begin{aligned}
L\left(\boldsymbol{u}_{, 1}, \boldsymbol{u}_{, 2}, \varphi_{3}, \varphi_{3,1}, \varphi_{3,2}, p_{3}\right)=\frac{1}{2}\left[\boldsymbol{t}_{\mathbf{1}}^{\boldsymbol{e}} \cdot \boldsymbol{u}_{, 1}+\boldsymbol{t}_{\mathbf{2}}^{\boldsymbol{e}} \cdot \boldsymbol{u}_{, 2}+\right. & \left.q_{13}^{e} \varphi_{3,1}+q_{23}^{e} \varphi_{3,2}\right] \\
& +p_{3} \varphi_{3}-\frac{1}{2} p_{3}\left(\boldsymbol{u}_{, 1} \cdot \boldsymbol{e}_{\mathbf{2}}-\boldsymbol{u}_{, 2} \cdot \boldsymbol{e}_{\mathbf{1}}\right)
\end{aligned}
$$

where it is understood that the scalar product now carries over 2 components only. The conjugate momenta are

$$
\begin{align*}
\frac{\partial L}{\partial \boldsymbol{u}_{, 1}} & =\boldsymbol{t}_{\mathbf{1}}^{\boldsymbol{e}}-\frac{1}{2} p_{3} \boldsymbol{e}_{2}=\boldsymbol{t}_{\mathbf{1}}^{\boldsymbol{e}}+\tau_{21} \boldsymbol{e}_{2}=\boldsymbol{s}_{\mathbf{1}}  \tag{3.7a}\\
\frac{\partial L}{\partial \boldsymbol{u}_{, 2}} & =\boldsymbol{t}_{\mathbf{2}}^{\boldsymbol{e}}+\frac{1}{2} p_{3} \boldsymbol{e}_{1}=\boldsymbol{t}_{\mathbf{2}}^{\boldsymbol{e}}+\tau_{12} \boldsymbol{e}_{1}=\boldsymbol{s}_{\mathbf{2}}  \tag{3.7b}\\
\frac{\partial L}{\partial \varphi_{3,1}} & =q_{13}^{e}  \tag{3.7c}\\
\frac{\partial L}{\partial \varphi_{3,2}} & =q_{23}^{e} \tag{3.7d}
\end{align*}
$$

whereupon the Lagrangian may be rewritten as

$$
\begin{aligned}
& L\left(\boldsymbol{u}_{, 1}, \boldsymbol{u}_{, 2}, \varphi_{3}, \varphi_{3,1}, \varphi_{3,2}, p_{3}\right)=\frac{1}{2} \boldsymbol{u}_{, 1} \cdot \mathbf{Q} \boldsymbol{u}_{, 1}+\boldsymbol{u}_{, 1} \cdot \mathbf{R} \boldsymbol{u}_{, 2}+\frac{1}{2} \boldsymbol{u}_{, 2} \cdot \mathbf{T} \boldsymbol{u}_{, 2} \\
& \quad+\frac{1}{2} U_{11} \varphi_{3,1}^{2}+U_{12} \varphi_{3,1} \varphi_{3,2}+\frac{1}{2} U_{22} \varphi_{3,2}^{2}+p_{3} \varphi_{3}+\frac{1}{2} p_{3}\left(\boldsymbol{u}_{, 2} \cdot \boldsymbol{e}_{\mathbf{1}}-\boldsymbol{u}_{, 1} \cdot \boldsymbol{e}_{\mathbf{2}}\right)
\end{aligned}
$$

We now come to an important juncture and treat either co-ordinate as a time-like variable, say $x_{2}$ to fix ideas. Consequently, we introduce the Legendre transformation

$$
\begin{aligned}
& H\left(\boldsymbol{u}_{, 1}, \boldsymbol{s}_{\mathbf{2}}, \varphi_{3}, \varphi_{3,1}, q_{23}^{e}, p_{3}\right)=\boldsymbol{s}_{\mathbf{2}} \cdot \boldsymbol{u}_{, 2}+q_{23}^{e} \varphi_{3,2}-L \\
& \quad=\frac{1}{2} \boldsymbol{s}_{\mathbf{2}} \cdot \boldsymbol{u}_{, 2}+\frac{1}{2} q_{23}^{e} \varphi_{3,2}-\frac{1}{2} \boldsymbol{t}_{\mathbf{1}}^{e} \cdot \boldsymbol{u}_{, 1}-\frac{1}{2} q_{13}^{e} \varphi_{3,1}-p_{3} \varphi_{3}-\frac{1}{4} p_{3}\left(\boldsymbol{u}_{, 2} \cdot \boldsymbol{e}_{\mathbf{1}}-2 \boldsymbol{u}_{, 1} \cdot \boldsymbol{e}_{\mathbf{2}}\right)
\end{aligned}
$$

provided that we write $\boldsymbol{u}_{, 2}$ in terms of $\boldsymbol{s}_{\mathbf{2}}$ by (3.7b) and $\varphi_{3,2}$ in terms of $q_{23}^{e}$ by (3.7d). For the former, making use of (3.4), we get

$$
\begin{equation*}
\boldsymbol{u}_{, 2}=\mathbf{T}^{-1}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+s_{\mathbf{2}}\right) \tag{3.8}
\end{equation*}
$$

assuming that $\mathbf{T}$ is invertible, while for the latter

$$
\begin{equation*}
\varphi_{3,2}=U_{22}^{-1}\left(q_{23}^{e}-U_{21} \varphi_{3,1}\right), \tag{3.9}
\end{equation*}
$$

assuming $U_{22} \neq 0$. Therefore, we can write the Hamiltonian density function (whose arguments are omitted for brevity)

$$
\begin{aligned}
& H=\frac{1}{2} s_{\mathbf{2}} \cdot \mathbf{T}^{-1}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+s_{\mathbf{2}}\right)+\frac{1}{2} q_{23}^{e} \frac{q_{23}^{e}-U_{21} \varphi_{3,1}}{U_{22}}-\frac{1}{2} \boldsymbol{u}_{, 1} \cdot \mathbf{Q} \boldsymbol{u}_{, 1} \\
&-\frac{1}{2} \boldsymbol{u}_{, 1} \cdot \mathbf{R T}^{-1}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+s_{\mathbf{2}}\right)-\frac{1}{2} U_{11} \varphi_{3,1}^{2}-\frac{1}{2} U_{12} \varphi_{3,1} \frac{q_{23}^{e}-U_{21} \varphi_{3,1}}{U_{22}} \\
& \quad-p_{3} \varphi_{3}-\frac{1}{4} p_{3}\left[\mathbf{T}^{-1}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+\boldsymbol{s}_{\mathbf{2}}\right) \cdot \boldsymbol{e}_{\mathbf{1}}-2 \boldsymbol{u}_{, 1} \cdot \boldsymbol{e}_{\mathbf{2}}\right]
\end{aligned}
$$

which reduces to

$$
\begin{align*}
& H=\frac{1}{2}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+\boldsymbol{s}_{\mathbf{2}}\right) \cdot \mathbf{T}^{-1}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+\boldsymbol{s}_{\mathbf{2}}\right) \\
&+\frac{1}{2} \frac{\left(q_{23}^{e}-U_{21} \varphi_{3,1}\right)^{2}}{U_{22}}-\frac{1}{2} \boldsymbol{u}_{, 1} \cdot \mathbf{Q} \boldsymbol{u}_{, 1}-\frac{1}{2} U_{11} \varphi_{3,1}^{2}-p_{3}\left(\varphi_{3}-\frac{1}{2} \boldsymbol{u}_{, 1} \cdot \boldsymbol{e}_{\mathbf{2}}\right) \tag{3.10}
\end{align*}
$$

Indeed, letting the generalized co-ordinate vector $\overline{\boldsymbol{q}}=\left(\boldsymbol{u}, \varphi_{3}\right)$ and the conjugate momenta $\overline{\boldsymbol{p}}=$ $\left(s_{2}, q_{23}^{e}\right)$, the first set of canonical equations

$$
\begin{equation*}
\frac{\delta H}{\delta \overline{\boldsymbol{p}}}=\dot{\overline{\boldsymbol{q}}} \tag{3.11}
\end{equation*}
$$

is

$$
\frac{\delta H}{\delta \boldsymbol{s}_{\mathbf{2}}}=\mathbf{T}^{-1}\left(-\frac{1}{2} p_{3} \boldsymbol{e}_{1}-\mathbf{R}^{T} \boldsymbol{u}_{, 1}+\boldsymbol{s}_{\mathbf{2}}\right)=\boldsymbol{u}_{, 2}
$$

corresponding to (3.8), and

$$
\frac{\delta H}{\delta q_{23}^{e}}=\frac{\left(q_{23}^{e}-U_{21} \varphi_{3,1}\right)}{U_{22}}=\varphi_{3,2}
$$

whereupon we find

$$
\begin{equation*}
\Lambda_{, 1}=\zeta\left(\phi_{, 1} \cdot \boldsymbol{f}_{\mathbf{1}}-\boldsymbol{u}_{, 1} \cdot \boldsymbol{f}_{\mathbf{2}}+2 \varphi_{3}\right) \tag{3.16}
\end{equation*}
$$

having let the shorthand vectors

$$
f_{1}=\mathbf{T}^{-1} e_{1}, \quad \text { and } \quad f_{2}=e_{2}+\mathbf{R} f_{1}
$$

129 and $\zeta^{-1}=\mathbf{T}^{-1} \boldsymbol{e}_{1} \cdot \boldsymbol{e}_{\mathbf{1}}=\boldsymbol{f}_{\mathbf{1}} \cdot \boldsymbol{e}_{\mathbf{1}}$. The connection (3.16) shows that, similarly to classical ${ }_{130}$ incompressible elasticity, the Lagrange multiplier is determined by an algebraic relation where
no $x_{2}$ derivative appears. Consequently, the governing equations (3.15,3.16) form a system of Differential Algebraic Equations (DAEs) in semi-explicit form. However, in contrast to incompressible elasticity, Eqs.(3.15d) and (3.16) indicate that a Stroh classical formulation, where the unknown vectors only appear in differential form, is not accessible.

We now show that this system of DAEs has differential index 1. For the sake of convenience, we let the matrices

$$
\begin{align*}
& \mathbf{N}_{1}=-\mathbf{T}^{-1} \mathbf{R}^{T},  \tag{3.17a}\\
& \mathbf{N}_{2}=\mathbf{R T}^{-1} \mathbf{R}^{T}-\mathbf{Q}=-\mathbf{R} \mathbf{N}_{\mathbf{1}}-\mathbf{Q}=\mathbf{N}_{2}^{T},  \tag{3.17b}\\
& \mathbf{N}_{3}=U_{22}^{-1}\left[\begin{array}{cc}
-U_{21} & 1 \\
U_{21}^{2}-U_{22} U_{11} & -U_{21}
\end{array}\right] . \tag{3.17c}
\end{align*}
$$

Differentiating (3.16) with respect to $x_{2}$ and then making use of (3.15c), we get

$$
\zeta^{-1} \Lambda_{, 2}=\phi_{, 2} \cdot \boldsymbol{f}_{\mathbf{1}}-\boldsymbol{u}_{, 2} \cdot \boldsymbol{f}_{\mathbf{2}}+2 U_{22}^{-1}\left(-U_{21} \varphi_{3}+\Phi\right)
$$

and, by (3.15a,3.15b),

$$
\begin{aligned}
\zeta^{-1} \Lambda_{, 2}=\left(\mathbf{N}_{2} \boldsymbol{u}_{, 1}+\mathbf{N}_{1}^{T} \boldsymbol{\phi}_{, 1}+\right. & \left.\Lambda_{, 1} \boldsymbol{f}_{2}\right) \cdot \boldsymbol{f}_{\mathbf{1}} \\
& -\left(\mathbf{N}_{1} \boldsymbol{u}_{, 1}+\mathbf{T}^{-1} \boldsymbol{\phi}_{, 1}-\Lambda_{, 1} \boldsymbol{f}_{1}\right) \cdot \boldsymbol{f}_{\mathbf{2}}+2 U_{22}^{-1}\left(-U_{21} \varphi_{3}+\Phi\right),
\end{aligned}
$$

that provides the evolution equation for $\Lambda$

$$
\begin{aligned}
& \zeta^{-1} \Lambda_{, 2}=\left(\mathbf{N}_{2} \boldsymbol{f}_{\mathbf{1}}-\mathbf{N}_{1}^{T} \boldsymbol{f}_{\mathbf{2}}\right) \cdot \boldsymbol{u}_{, 1}+\left(\mathbf{N}_{1} \boldsymbol{f}_{\mathbf{1}}-\mathbf{T}^{-1} \boldsymbol{f}_{\mathbf{2}}\right) \cdot \boldsymbol{\phi}_{, 1}+2 \Lambda_{, 1} \boldsymbol{f}_{\mathbf{1}} \cdot \boldsymbol{f}_{\mathbf{2}} \\
&+2 U_{22}^{-1}\left(-U_{21} \varphi_{3}+\Phi\right) .
\end{aligned}
$$

For better understanding, we adopt the convention that vectors are columns and their transpose are rows. Thus, letting the 7 -component row vector

$$
\boldsymbol{\xi}^{T}=\left[\boldsymbol{u}^{T}, \boldsymbol{\phi}^{T}, \Lambda, \varphi_{3}, \Phi\right]
$$

we finally obtain the system of first order linear PDEs

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{\xi}}{\mathrm{~d} x_{2}}=\mathbf{N} \frac{\mathrm{d} \boldsymbol{\xi}}{\mathrm{~d} x_{1}}+\boldsymbol{b} \tag{3.18}
\end{equation*}
$$

where we have let the 7 by 7 Stroh matrix

$$
\mathbf{N}=\left[\begin{array}{cc}
\mathbf{N}_{5 \times 5} & \mathbf{O}  \tag{3.19}\\
\mathbf{O} & \mathbf{N}_{\mathbf{3}}
\end{array}\right]
$$

with the 5 by 5 matrix

$$
\mathbf{N}_{5 \times 5}=\left[\begin{array}{ccc}
\mathbf{N}_{\mathbf{1}} & \mathbf{T}^{-1} & -\boldsymbol{f}_{\mathbf{1}} \\
\mathbf{N}_{\mathbf{2}} & \mathbf{N}_{1}^{T} & \boldsymbol{f}_{\mathbf{2}} \\
\zeta\left(\mathbf{N}_{2} \boldsymbol{f}_{\mathbf{1}}-\mathbf{N}_{1}^{T} \boldsymbol{f}_{\mathbf{2}}\right)^{T} & \zeta\left(\mathbf{N}_{1} \boldsymbol{f}_{\mathbf{1}}-\mathbf{T}^{-1} \boldsymbol{f}_{\mathbf{2}}\right)^{T} & 2 \zeta \boldsymbol{f}_{\mathbf{1}} \cdot \boldsymbol{f}_{\mathbf{2}}
\end{array}\right]
$$

and the right hand side is a linear function of $\boldsymbol{\xi}$

$$
\mathbf{b}=\left[\begin{array}{c}
\boldsymbol{o}  \tag{3.20}\\
\boldsymbol{o} \\
2 \zeta U_{22}^{-1}\left(-U_{21} \varphi_{3}+\Phi\right) \\
0 \\
2 \Lambda
\end{array}\right]
$$

Clearly, the Stroh (or fundamental elasticity) matrix (3.19) has block structure and coupling of the unknowns $\boldsymbol{\xi}_{1}^{T}=\left[\boldsymbol{u}^{T}, \boldsymbol{\phi}^{T}, \Lambda\right]$ and $\boldsymbol{\xi}_{2}^{T}=\left[\varphi_{3}, \Phi\right]$ only occurs through the right hand side (3.20).

Indeed, we can write the coupled system

$$
\begin{align*}
& \frac{\mathrm{d} \boldsymbol{\xi}_{1}}{\mathrm{~d} x_{2}}=\mathbf{N}_{5 \times 5} \frac{\mathrm{~d} \boldsymbol{\xi}_{1}}{\mathrm{~d} x_{1}}+\mathbf{L}_{5 \times 2} \boldsymbol{\xi}_{2},  \tag{3.21a}\\
& \frac{\mathrm{~d} \boldsymbol{\xi}_{2}}{\mathrm{~d} x_{2}}=\mathbf{N}_{\mathbf{3}} \frac{\mathrm{d} \boldsymbol{\xi}_{2}}{\mathrm{~d} x_{2}}+\mathbf{L}_{2 \times 5} \boldsymbol{\xi}_{1}, \tag{3.21b}
\end{align*}
$$

with

$$
\mathbf{L}_{5 \times 2}=2 \zeta U_{22}^{-1}\left[\begin{array}{cc}
0 & 0  \tag{3.22}\\
0 & 0 \\
0 & 0 \\
0 & 0 \\
-U_{21} & 1
\end{array}\right], \quad \mathbf{L}_{2 \times 5}=2\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(a) Isotropic material

140
governing equations of plane isotropic CS elasticity. These are [12,19]

$$
\begin{equation*}
(G+\lambda) \operatorname{grad}_{2} \operatorname{div}_{2} \boldsymbol{u}+G \triangle_{2}\left[\boldsymbol{u}-\frac{1}{2} \ell^{2} \operatorname{curl}_{2} \operatorname{curl}_{2} \boldsymbol{u}\right]=0 \tag{3.23}
\end{equation*}
$$

where $\triangle_{2} \equiv \operatorname{div}_{2}$ grad $_{2}$, while $\left(\operatorname{curl}_{2} \boldsymbol{u}\right)_{\alpha}=e_{\alpha \beta} u_{\beta, \alpha}$, having let the rank 2 alternating tensor $e_{\alpha \gamma}$ such that $e_{11}=e_{22}=0$ and $e_{12}=-e_{21}=1$. Besides, the sharing force is connected to the rotation through

$$
\tau_{12}=G \ell^{2} \triangle_{2} \varphi_{3}
$$

Upon introducing the potentials $\omega, H$ such that

$$
\begin{equation*}
u_{1}=\omega_{, 1}+H_{, 2}, \quad u_{2}=\omega_{, 2}-H_{, 1}, \tag{3.24}
\end{equation*}
$$

the governing equations (3.23) decouple as [19, Eqs.(14)]

$$
(2 G+\lambda) \triangle_{2} \omega=0, \quad \text { and } \quad G \triangle_{2}\left(1-\frac{1}{2} \ell^{2} \triangle_{2}\right) H=0 .
$$

Indeed, $\varphi_{3}=-\frac{1}{2} \triangle_{2} H$ and

$$
\begin{equation*}
\mu_{3 \alpha}=2 G \ell^{2} \varphi_{3, \alpha}=-G \ell^{2} \triangle_{2} H_{, \alpha} . \tag{3.25}
\end{equation*}
$$

${ }_{144}$ whence we get the physical meaning of $H$, whose bilaplacian is related to the shearing force $\tau_{12}$,

$$
\begin{equation*}
\tau_{12}=\Lambda_{, 1}=G \ell^{2} \triangle_{2} \varphi_{3}=-\frac{1}{2} G \ell^{2} \triangle_{2}^{2} H \tag{3.26}
\end{equation*}
$$

Finally, the scalar potential is related to displacement flux

$$
\operatorname{div}_{2} \boldsymbol{u}=\triangle_{2} \omega .
$$

We let the matrices (3.2,3.3)

$$
\begin{array}{ll}
\mathbf{U}=2 G \ell^{2} \mathbf{1}_{2}, & \mathbf{Q}=\left[\begin{array}{cc}
2 G+\lambda & 0 \\
0 & G
\end{array}\right], \\
\mathbf{R}=\left[\begin{array}{cc}
0 & \lambda \\
G & 0
\end{array}\right], & \mathbf{T}=\left[\begin{array}{cc}
G & 0 \\
0 & 2 G+\lambda
\end{array}\right],
\end{array}
$$

where $\mathbf{1}_{2}$ is the rank 2 identity matrix. It easily follows that

$$
\mathbf{N}_{1}=-\left[\begin{array}{cc}
0 & 1 \\
\frac{\lambda}{2 G+\lambda} & 0
\end{array}\right], \quad \mathbf{N}_{2}=-4 G\left[\begin{array}{cc}
\frac{G+\lambda}{2 G+\lambda} & 0 \\
0 & 0
\end{array}\right]
$$

while $\zeta=G$,

$$
\boldsymbol{f}_{\mathbf{1}}=G^{-1} e_{\mathbf{1}}, \quad \boldsymbol{f}_{\mathbf{2}}=2 \boldsymbol{e}_{\mathbf{2}} .
$$

$$
\begin{align*}
u_{1,2} & =-u_{2,1}+\frac{1}{G} \phi_{1,1}-\frac{1}{G} \Lambda_{, 1}  \tag{3.27a}\\
u_{2,2} & =-\frac{\lambda}{2 G+\lambda} u_{1,1}+\frac{1}{2 G+\lambda} \phi_{2,1},  \tag{3.27b}\\
\phi_{1,2} & =-4 G \frac{G+\lambda}{2 G+\lambda} u_{1,1}-\frac{\lambda}{2 G+\lambda} \phi_{2,1},  \tag{3.27c}\\
\phi_{2,2} & =-\phi_{1,1}+2 \Lambda_{, 1},  \tag{3.27d}\\
\Lambda_{, 2} & =-2 G u_{1,1}-\phi_{2,1}+\ell^{-2} \Phi,  \tag{3.27e}\\
\varphi_{3,2} & =\frac{1}{2 G \ell^{2}} \Phi_{, 1},  \tag{3.27f}\\
\Phi_{, 2} & =-2 G \ell^{2} \varphi_{3,1}+2 \Lambda . \tag{3.27g}
\end{align*}
$$

Differentiation of Eq.(3.27d) with respect to $x_{1}$ gives

$$
s_{12,1}+s_{22,2}=2 \tau_{12,1},
$$

that immediately corresponds to (2.5a) in consideration of the connection $s_{21}=\sigma_{21}+\tau_{21}=s_{12}-$ $2 \tau_{12}$. Similarly, differentiation of (3.27c) lends

$$
s_{12,2}+\frac{\lambda}{2 G+\lambda} s_{22,1}+4 G \frac{G+\lambda}{2 G+\lambda} u_{1,11}=0
$$

which, with a bit of algebra, corresponds to the first of Eqs.(3.23). Cross differentiation of (3.27f) and $(3.27 \mathrm{~g})$ allows eliminating $\Phi_{, 12}$ to give

$$
\Lambda_{, 1}=G \ell^{2} \triangle_{2} \varphi_{3},
$$

that matches Eq.(3.26). Besides, plugging this result in either equation lends

$$
\Phi_{, 12}=q_{23,2}^{e}=\mu_{32,2}=2 G \ell^{2} \varphi_{3,22},
$$

which corresponds to (3.25).

## 4. Antiplane deformations

147 Under antiplane shear deformations, the displacement field $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ is completely defined by the out-of-plane component $u_{3}=w\left(x_{1}, x_{2}\right)$. Thus we have

$$
u_{1}=u_{2}=\varphi_{3}=0,
$$

${ }_{149}$ and again no dependence of the deformation on $x_{3}$. Thus, Eq.(2.1) lends the rotation $\varphi=\frac{1}{2} \operatorname{curl}_{2} w$
${ }_{150}$ (see [19] for the definition of curl operating on a scalar field)

$$
\begin{equation*}
\varphi_{\alpha}=\frac{1}{2} e_{\alpha \gamma} w_{, \gamma} . \tag{4.1}
\end{equation*}
$$

Thus, we define the 2D rotation vector

$$
\varphi^{T}=\left[\varphi_{1}, \varphi_{2}\right],
$$

whence the curvature tensor (2.3) is immediately obtained and it is deviatoric

$$
\chi_{\alpha \beta}=\varphi_{\alpha, \beta}=\frac{1}{2} e_{\alpha \gamma} w_{, \gamma \beta}, \quad \Leftrightarrow \quad \chi=\frac{1}{2}\left[\begin{array}{cc}
w_{, 12} & w_{, 22} \\
-w, 11 & -w, 12
\end{array}\right] .
$$

${ }_{151}$ Furthermore, from (2.8) and (2.13b), we get the non-zero components of the skew force stress 152 tensor

$$
\begin{equation*}
\tau_{13}=-\frac{1}{2} \mu_{2 \beta, \beta}=-\frac{1}{2} p_{2}, \quad \tau_{23}=\frac{1}{2} \mu_{1 \beta, \beta}=\frac{1}{2} p_{1} . \tag{4.2}
\end{equation*}
$$

$L\left(\operatorname{grad}_{2} w, \boldsymbol{\varphi}, \operatorname{grad}_{2} \boldsymbol{\varphi}, \boldsymbol{p}\right)=\frac{1}{2}\left[\sigma_{3 \alpha} w_{, \alpha}+\boldsymbol{q}_{\mathbf{1}}^{\boldsymbol{e}} \cdot \boldsymbol{\varphi}_{, 1}+\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}} \cdot \boldsymbol{\varphi}_{, 2}\right]+p_{1}\left(\varphi_{1}-\frac{1}{2} w_{, 2}\right)+p_{2}\left(\varphi_{2}+\frac{1}{2} w_{, 1}\right)$.
The Euler-Lagrange equation associated with the variation of $w$ reads

$$
-\sigma_{3 \alpha, \alpha}+\frac{1}{2} p_{1,2}-\frac{1}{2} p_{2,1}=0,
$$

154 that, by (4.2), reduces to (2.13a). Similarly, through varying $\varphi$, we get the vector E-L equation,

$$
\begin{equation*}
-\boldsymbol{q}_{\mathbf{1}, 1}-\boldsymbol{q}_{\mathbf{2}, 2}+\boldsymbol{p}=\boldsymbol{o} \tag{4.4}
\end{equation*}
$$

that corresponds to (2.13b).
We now try to relate antiplane problems in CS elasticity with the theory of anisotropic Kirchhoff plates, which admits a classical Stroh formalism. If we identify the Lagrange multiplier $\boldsymbol{p}$ with the shearing force for plates, by assuming $\boldsymbol{p}=-\operatorname{curl}_{2} h$, we immediately obtain the plate equilibrium equation $\operatorname{div}_{2} \boldsymbol{p}=0$. Besides, employing the divergence theorem, (4.3) attains the alternative form

$$
\begin{equation*}
L_{p}\left(\operatorname{grad}_{2} w, \operatorname{grad}_{2} \varphi, h, \operatorname{grad}_{2} h\right)=\frac{1}{2}\left[\left(\sigma_{3 \alpha}+h, \alpha\right) w_{, \alpha}+\mu_{\alpha \beta} \varphi_{\alpha, \beta}\right]+h\left(\varphi_{1,2}-\varphi_{2,1}\right), \tag{4.5}
\end{equation*}
$$

161 that is formally equivalent to the Lagrangian density adopted for anisotropic plates [8, Eq.(4.15)],
162 provided we identify $\varphi$ with $\boldsymbol{\theta}, \mu_{\alpha \beta}$ with the bending moment in the plate, $M_{\alpha \beta}$, and $\sigma_{3 \alpha}+h, \alpha$

We proceed with the Lagrangian density (4.3) and, making use of (2.14), obtain the conjugate momenta

$$
\begin{align*}
\frac{\partial L}{\partial w_{, 2}} & =\sigma_{32}-\frac{1}{2} p_{1}=\sigma_{32}-\tau_{23}=s_{32}  \tag{4.6a}\\
\frac{\partial L}{\partial \boldsymbol{\varphi}_{, 2}} & =\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}} \tag{4.6b}
\end{align*}
$$

168 In analogy with (3.3), we let the symmetric matrix

$$
\begin{equation*}
\hat{U}_{\alpha \beta}=c_{3 \alpha 3 \beta}, \tag{4.7}
\end{equation*}
$$

169 whence

$$
\begin{equation*}
\sigma_{3 \alpha}=\hat{U}_{\alpha \beta} w_{, \beta}, \tag{4.8}
\end{equation*}
$$

170 and Eq.(4.6a) may be easily solved for $w, 2$

$$
\begin{equation*}
w_{, 2}=\hat{U}_{22}^{-1}\left(s_{32}+\frac{1}{2} p_{1}-\hat{U}_{21} w_{, 1}\right) . \tag{4.9}
\end{equation*}
$$

171 For (4.6b) we need to let, in analogy with (3.2),

$$
\begin{equation*}
\hat{Q}_{\alpha \beta}=\ell^{2} g_{\alpha 1 \beta 1}, \quad \hat{R}_{\alpha \beta}=\ell^{2} g_{\alpha 1 \beta 2}, \quad \hat{T}_{\alpha \beta}=\ell^{2} g_{\alpha 2 \beta 2}, \tag{4.10}
\end{equation*}
$$

172 so that, paralleling (3.4),

$$
\begin{equation*}
\boldsymbol{q}_{\mathbf{1}}^{\boldsymbol{e}}=\hat{\mathbf{Q}} \boldsymbol{\varphi}_{, 1}+\hat{\mathbf{R}} \boldsymbol{\varphi}_{, 2}, \quad \boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}=\hat{\mathbf{R}}^{T} \boldsymbol{\varphi}_{, 1}+\hat{\mathbf{T}} \boldsymbol{\varphi}_{, 2} \tag{4.11}
\end{equation*}
$$

173 we can write

$$
\begin{equation*}
\boldsymbol{\varphi}_{, 2}=\hat{\mathbf{T}}^{-1}\left(\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}-\hat{\mathbf{R}}^{T} \boldsymbol{\varphi}_{, 1}\right) \tag{4.12}
\end{equation*}
$$

174 Besides, from (4.4) and the constitutive law (4.11), we get

$$
\begin{equation*}
\boldsymbol{p}=\hat{\mathbf{Q}} \boldsymbol{\varphi}_{, 11}+\left(\hat{\mathbf{R}}+\hat{\mathbf{R}}^{T}\right) \boldsymbol{\varphi}_{, 12}+\hat{\mathbf{T}} \boldsymbol{\varphi}_{, 22} \tag{4.13}
\end{equation*}
$$

which shows that indeed $\operatorname{div}_{2} \boldsymbol{p}=0$, inasmuch as (2.2) holds, as discussed in Sec.2. Recalling (2.14), this implies

$$
\begin{equation*}
\tau_{31,2}-\tau_{32,1}=0, \tag{4.14}
\end{equation*}
$$

which is in fact satisfied by Eqs.(2.14) of [20].
We define the Hamiltonian density function $H=H\left(s_{32}, w_{, 1}, \boldsymbol{\varphi}, \boldsymbol{\varphi}_{, 1}, \boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}, \boldsymbol{p}\right)$

$$
\begin{align*}
& H=s_{32} w_{, 2}+\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}} \cdot \boldsymbol{\varphi}_{, 2}-L=\frac{1}{2} \hat{U}_{22}^{-1}\left(s_{32}+\frac{1}{2} p_{1}-\hat{U}_{21} w_{, 1}\right)^{2} \\
& +\frac{1}{2}\left(\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}-\hat{\mathbf{R}}^{T} \boldsymbol{\varphi}_{, 1}\right) \cdot \hat{\mathbf{T}}^{-1}\left(\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}-\hat{\mathbf{R}}^{T} \boldsymbol{\varphi}_{, 1}\right)-\frac{1}{2} \hat{U}_{11} w_{, 1}^{2}-\frac{1}{2} \boldsymbol{\varphi}_{, 1} \cdot \hat{\mathbf{Q}} \boldsymbol{\varphi}_{, 1}-\boldsymbol{p} \cdot \boldsymbol{\varphi}-\frac{1}{2} p_{2} w_{, 1} \tag{4.15}
\end{align*}
$$

whence, from (3.11), we retrieve (4.9)

$$
\frac{\delta H}{\delta s_{32}}=\hat{U}_{22}^{-1}\left(s_{32}+\frac{1}{2} p_{1}-\hat{U}_{21} w, 1\right)=w_{, 2}
$$

and (4.12)

$$
\frac{\delta H}{\delta \boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}}=\hat{\mathbf{T}}^{-1}\left(\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}-\hat{\mathbf{R}}^{T} \boldsymbol{\varphi}_{, 1}\right)=\boldsymbol{\varphi}_{, 2}
$$

The canonical equation (3.12) gives

$$
\frac{\delta H}{\delta \boldsymbol{\varphi}}=\left[\hat{\mathbf{Q}} \boldsymbol{\varphi}_{, 1}+\hat{\mathbf{R}} \hat{\mathbf{T}}^{-1}\left(\boldsymbol{q}_{\mathbf{2}}^{\boldsymbol{e}}-\hat{\mathbf{R}}^{T} \boldsymbol{\varphi}_{, 1}\right)\right]_{, 1}-\boldsymbol{p}=-\boldsymbol{q}_{\mathbf{2}, 2}^{\boldsymbol{e}},
$$

and

$$
\frac{\delta H}{\delta w}=\left[\hat{U}_{21} \hat{U}_{22}^{-1}\left(s_{32}+\frac{1}{2} p_{1}-\hat{U}_{21} w_{, 1}\right)+\hat{U}_{11} w_{, 1}+\frac{1}{2} p_{2}\right]_{, 1}=-s_{32,2}
$$

corresponding to $(2.13 b)$ and $(2.13 a)$, respectively. We introduce the stream functions, which are
o having let

$$
\hat{\mathbf{N}}_{1}=-\hat{\mathbf{T}}^{-1} \hat{\mathbf{R}}^{T}, \quad \hat{\mathbf{N}}_{2}=-\hat{\mathbf{R}} \hat{\mathbf{N}}_{1}-\hat{\mathbf{Q}}
$$

It only remains to determine an expression for the Lagrange multiplier $\boldsymbol{p}$, which amounts to acknowledging the constraint (2.1). In fact, Eq.(4.1) allows to solve (4.16c) for $\Lambda_{1,1}$ and to dispense with $w_{, 1}$ and $w_{, 2}$

$$
\begin{equation*}
\Lambda_{1,1}=2 \hat{U}_{22} \varphi_{1}-2 \hat{U}_{21} \varphi_{2}-\phi_{, 1} \tag{4.17}
\end{equation*}
$$

${ }^{34}$ In light of (4.1) and (4.8), this algebraic condition simply states that $\tau_{23}=\sigma_{32}-s_{32}$. When we plug ${ }_{55}$ this result into (4.16d) and use (4.8), we find

$$
\begin{equation*}
\phi_{, 2}=2 \hat{U}_{11} \varphi_{2}-2 \hat{U}_{12} \varphi_{1}-\Lambda_{2,1}=-\sigma_{31}-\tau_{31}=-s_{31} \tag{4.18}
\end{equation*}
$$

that, differentiated with respect to $x_{1}$, gives the equilibrium equation (2.5a). To get an equation for $\Lambda_{2}$, we cannot directly employ the connection $2 \varphi_{2}=-w_{1}$, for it is algebraic. Instead, we take
advantage of $\operatorname{div}_{2} \boldsymbol{p}=0$, whereby

$$
\operatorname{div}_{2} \boldsymbol{\Lambda}=0
$$

Mathematically, this amounts to exploiting (2.2), which is obtained cross differentiating and adding (4.1), whence a differentiation index 2 is implied. Thus, Eq.(4.17) immediately lends the evolution equation

$$
\Lambda_{2,2}=-2 \hat{U}_{22} \varphi_{1}+2 \hat{U}_{21} \varphi_{2}+\phi_{, 1}
$$

that corresponds to (4.14), integrated with respect to $x_{1}$. In this form, the problem's variables are $\boldsymbol{\varphi}, \boldsymbol{\Phi}, \phi, \boldsymbol{\Lambda}$, and they are governed by a semi-explicit system of first order DAE, the single algebraic relation being (4.17). To obtain a pure system of ODEs, an evolution equation for $\Lambda_{1}$ is demanded. This is obtained differentiating (4.17) with respect to $x_{2}$ and then integrating with respect to $x_{1}$

$$
\Lambda_{1,2}=2\left[\hat{\mathbf{N}}_{1} \boldsymbol{\varphi}+\hat{\mathbf{T}}^{-1} \boldsymbol{\Phi}\right] \cdot\left(\hat{U}_{22} \boldsymbol{e}_{\mathbf{1}}-\hat{U}_{21} \boldsymbol{e}_{\mathbf{2}}\right)-\phi_{, 2}=2 \boldsymbol{\varphi} \cdot\left[\hat{\mathbf{N}}_{1}^{T} \boldsymbol{f}_{\mathbf{2}}+\boldsymbol{f}_{\mathbf{1}}\right]+2 \boldsymbol{\Phi} \cdot \hat{\mathbf{T}}^{-1} \boldsymbol{f}_{\mathbf{2}}+\Lambda_{2,1}
$$

186 having made use of $(4.16 a, 4.18)$ and let

$$
\boldsymbol{f}_{\mathbf{1}}=\hat{U}_{12} \boldsymbol{e}_{1}-\hat{U}_{11} \boldsymbol{e}_{\mathbf{2}}, \quad \boldsymbol{f}_{\mathbf{2}}=\hat{U}_{22} \boldsymbol{e}_{1}-\hat{U}_{21} \boldsymbol{e}_{\mathbf{2}}
$$

187 Consequently, the system of DAEs has differentiation order 3, that is typical of constrained mechanical systems. Also, we note that

$$
\begin{equation*}
\sigma_{31}=2 \boldsymbol{\varphi} \cdot \boldsymbol{f}_{\mathbf{1}}, \quad \sigma_{32}=2 \boldsymbol{\varphi} \cdot \boldsymbol{f}_{\mathbf{2}} \tag{4.19}
\end{equation*}
$$

We thus obtain the linear system in the variables $(\boldsymbol{\varphi}, \boldsymbol{\Phi}, \phi, \boldsymbol{\Lambda})$

$$
\begin{align*}
\boldsymbol{\varphi}_{, 2} & =\hat{\mathbf{N}}_{1} \boldsymbol{\varphi}_{, 1}+\hat{\mathbf{T}}^{-1} \boldsymbol{\Phi}_{, 1}  \tag{4.20a}\\
\boldsymbol{\Phi}_{, 2} & =\hat{\mathbf{N}}_{2} \boldsymbol{\varphi}_{, 1}+\hat{\mathbf{N}}_{1}^{T} \boldsymbol{\Phi}_{, 1}+2 \boldsymbol{\Lambda}  \tag{4.20b}\\
\phi_{, 2} & =-\Lambda_{2,1}-2 \boldsymbol{\varphi} \cdot \boldsymbol{f}_{\mathbf{1}}  \tag{4.20c}\\
\Lambda_{1,2} & =\Lambda_{2,1}+2 \boldsymbol{\varphi} \cdot\left[\hat{\mathbf{N}}_{1}^{T} \boldsymbol{f}_{2}+\boldsymbol{f}_{1}\right]+2 \boldsymbol{\Phi} \cdot \hat{\mathbf{T}}^{-1} \boldsymbol{f}_{\mathbf{2}}  \tag{4.20d}\\
\Lambda_{2,2} & =\phi_{, 1}-2 \boldsymbol{\varphi} \cdot \boldsymbol{f}_{\mathbf{2}} \tag{4.20e}
\end{align*}
$$

189 Cross-differentiating Eqs.(4.20a,4.20b) to eliminate $\boldsymbol{\Phi}_{, 12}$ yields (4.13). Besides, multiplying 190 (4.20a) by $-\mathbf{R}$ and substituting in (4.20b) gives (4.4). In light of Eqs.(4.19), Eq.(4.20c) gives the 191 equilibrium equation (2.5a), while (4.20e) amounts to (4.14), both having being integrated along $192 x_{1}$. Finally, adding (4.20c) and (4.20d) and differentiating lends (4.6a), while cross-differentiating ${ }_{193}(4.20 c, 4.20 e)$ and adding lends the second order connection for $\phi$

$$
\begin{equation*}
\triangle_{2} \phi=2 \boldsymbol{\varphi}_{, 1} \cdot \boldsymbol{f}_{\mathbf{2}}-2 \boldsymbol{\varphi}_{, 2} \cdot \boldsymbol{f}_{\mathbf{1}}=\sigma_{32,1}-\sigma_{31,2} \tag{4.21}
\end{equation*}
$$

194 that supports the interpretation of $\phi$ as a stress function for the problem.
195 Thus, letting $\hat{\boldsymbol{\xi}}^{T}=\left[\boldsymbol{\varphi}^{T}, \boldsymbol{\Phi}^{T}, \phi, \boldsymbol{\Lambda}^{T}\right]$, we have

$$
\begin{equation*}
\frac{\mathrm{d} \hat{\boldsymbol{\xi}}}{\mathrm{~d} x_{2}}=\hat{\mathbf{N}} \frac{\mathrm{d} \hat{\boldsymbol{\xi}}}{\mathrm{~d} x_{1}}+\hat{\boldsymbol{b}} \tag{4.22}
\end{equation*}
$$

196
where we have let the Stroh matrix

$$
\hat{\mathbf{N}}=\left[\begin{array}{ccccc}
\hat{\mathbf{N}}_{1} & \hat{\mathbf{T}}^{-1} & \boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o}  \tag{4.23}\\
\hat{\mathbf{N}}_{2} & \hat{\mathbf{N}}_{1}^{T} & \boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o}^{T} & \boldsymbol{o}^{T} & 0 & 0 & -1 \\
\boldsymbol{o}^{T} & \boldsymbol{o}^{T} & 0 & 0 & 1 \\
\boldsymbol{o}^{T} & \boldsymbol{o}^{T} & 1 & 0 & 0
\end{array}\right]
$$

and the right hand side is a linear function of $\hat{\boldsymbol{\xi}}$

$$
\hat{\boldsymbol{b}}=2\left[\begin{array}{ccccc}
\mathbf{O} & \mathbf{O} & \boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o}  \tag{4.24}\\
\mathbf{O} & \mathbf{O} & \boldsymbol{o} & \boldsymbol{e}_{\mathbf{1}} & \boldsymbol{e}_{\mathbf{2}} \\
-\boldsymbol{f}_{\mathbf{1}}^{T} & \boldsymbol{o}^{T} & 0 & 0 & 0 \\
\left(\hat{\mathbf{N}}_{1}^{T} \boldsymbol{f}_{\mathbf{2}}+\boldsymbol{f}_{\mathbf{1}}\right)^{T} & \left(\mathbf{T}^{-1} \boldsymbol{f}_{\mathbf{2}}\right)^{T} & 0 & 0 & 0 \\
\boldsymbol{f}_{\mathbf{2}}{ }^{T} & \boldsymbol{o}^{T} & 0 & 0 & 0
\end{array}\right] \hat{\boldsymbol{\xi}} .
$$

whence

$$
\begin{equation*}
\sigma_{31}=G w_{, 1}=-2 G \varphi_{2}, \quad \sigma_{32}=G w_{, 2}=2 G \varphi_{1} . \tag{4.25}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{32,1}-\sigma_{31,2}=2 G \operatorname{div} \varphi=0 \tag{4.26}
\end{equation*}
$$

and, by (4.21), $\phi$ turns harmonic. From (2.4), we get the curvature tensor

$$
\begin{align*}
& \mu_{11}=2 G \ell^{2}(1+\eta) \varphi_{1,1}=G \ell^{2}(1+\eta) w_{, 12}=-\mu_{22},  \tag{4.27a}\\
& \mu_{21}=2 G \ell^{2}\left(\varphi_{2,1}+\eta \varphi_{1,2}\right)=-G \ell^{2}\left(w_{, 11}-\eta w_{, 22}\right),  \tag{4.27b}\\
& \mu_{12}=2 G \ell^{2}\left(\eta \varphi_{2,1}+\varphi_{1,2}\right)=-G \ell^{2}\left(\eta w_{, 11}-w_{, 22}\right), \tag{4.27c}
\end{align*}
$$

whereby, from (2.13b,2.14), we have [20, Eq.(2.14)]

$$
\begin{equation*}
\tau_{13}=-G \ell^{2} \triangle_{2} \varphi_{2}, \quad \tau_{23}=G \ell^{2} \triangle_{2} \varphi_{1} \tag{4.28}
\end{equation*}
$$

which clearly satisfy (4.14) in light of (2.2). The equilibrium equation (2.5a) reads [20, Eq.(2.15)]

$$
\begin{equation*}
G\left(1-\frac{1}{2} \ell^{2} \triangle_{2}\right) \triangle_{2} w=0 \tag{4.29}
\end{equation*}
$$

205
or, equivalently, given that $\operatorname{curl}_{2} \varphi=-\frac{1}{2} \triangle_{2} w$,

$$
\begin{equation*}
2 G \operatorname{curl}_{2} \varphi-\tau_{31,1}-\tau_{32,2}=0 \tag{4.30}
\end{equation*}
$$

206
We let the vectors

$$
\boldsymbol{f}_{\mathbf{1}}{ }^{T}=[0,-G], \quad \boldsymbol{f}_{2}^{T}=[G, 0],
$$

alongside the matrices $(4.7,4.10)$

$$
\begin{array}{ll}
\hat{\mathbf{U}}=G \mathbf{1}_{2}, & \hat{\mathbf{Q}}=2 G \ell^{2}\left[\begin{array}{cc}
1+\eta & 0 \\
0 & 1
\end{array}\right], \\
\hat{\mathbf{R}}=2 G \ell^{2}\left[\begin{array}{ll}
0 & 0 \\
\eta & 0
\end{array}\right], & \hat{\mathbf{T}}=2 G \ell^{2}\left[\begin{array}{cc}
1 & 0 \\
0 & 1+\eta
\end{array}\right],
\end{array}
$$

where $\mathbf{1}_{2}$ is the rank 2 identity matrix. It easily follows that

$$
\hat{\mathbf{N}}_{1}=-\left[\begin{array}{ll}
0 & \eta \\
0 & 0
\end{array}\right], \quad \hat{\mathbf{N}}_{2}=-2 G \ell^{2}\left[\begin{array}{cc}
1+\eta & 0 \\
0 & 1-\eta^{2}
\end{array}\right] .
$$

Eq.(4.20) gives the first order system

$$
\begin{align*}
\varphi_{1,2} & =-\eta \varphi_{2,1}+\frac{1}{2 G \ell^{2}} \Phi_{1,1},  \tag{4.31a}\\
\varphi_{2,2} & =\frac{1}{2 G \ell^{2}(1+\eta)} \Phi_{2,1}  \tag{4.31b}\\
\Phi_{1,2} & =-2 G \ell^{2}(1+\eta) \varphi_{1,1}+2 \Lambda_{1}  \tag{4.31c}\\
\Phi_{2,2} & =-2 G \ell^{2}\left(1-\eta^{2}\right) \varphi_{2,1}-\eta \Phi_{1,1}+2 \Lambda_{2}  \tag{4.31d}\\
\phi_{, 2} & =2 G \varphi_{2}-\Lambda_{2,1}  \tag{4.31e}\\
\Lambda_{1,2} & =-2 G(1+\eta) \varphi_{2}+\Lambda_{2,1}+\ell^{-2} \Phi_{1}  \tag{4.31f}\\
\Lambda_{2,2} & =\phi_{, 1}-2 G \varphi_{1} . \tag{4.31~g}
\end{align*}
$$

Cross-differentiating and adding Eqs.(4.31e) and (4.31g) shows that $\phi$ is harmonic inasmuch as (2.2) holds, which result is in line with (4.21). Consequently, letting the harmonic conjugate function $\phi^{*}$, upon recalling that $\phi_{, 2}=-\phi_{, 1}^{*}$, we get, from (4.31e),

$$
\phi^{*}=G w+\Lambda_{2}=\int^{x_{1}} s_{31} \mathrm{~d} \xi_{1},
$$

which gives to the harmonic conjugate function the role of the stress function for $s_{31}$. Eqs.(4.31a,4.31b) correspond to Eqs.(4.27c) and (4.27a), respectively. Eqs.(4.31c,4.31d) represent rotational equilibrium (2.13b), provided that we use (4.31a) to eliminate $\Phi_{1,1}$. Similarly, in light of (4.25) and of (2.14), Eq.(4.31e) lends translational equilibrium (4.18). Eq.(4.31g) amounts to (4.14), while (4.31f) is (4.30), having differentiated and used (4.31a) to eliminate $\ell^{-2} \Phi_{1,1}$.

## 5. Conclusions

We derived the Hamiltonian formalism associated with the indeterminate couple stress theory of elasticity for general anisotropic media. The Hamiltonian framework is known to lead to the celebrated Stroh formalism in classical elasticity. This canonical rewriting of the governing equations is of great theoretical and practical value, because it lends fundamental existence and uniqueness results, as well as providing a powerful tool for solving problems in generally anisotropic media. For such reasons, we extend the formalism to the couple stress theory. This is a strain gradient theory that incorporates microstructural effects in a fashion similar to lattice elasticity [16]. We show that, unlike classical and constrained elasticity, the theory does not allow for a standard Stroh formalism, owing to the nature of the internal constraint on the micro-rotation vector. Indeed, the constraint is algebraic and it cannot be eliminated. The resulting canonical formulation is a differential algebraic system of equations (DAE), which may be rewritten in purely differential terms by developing suitable evolution equations. However, the simple structure of classical elasticity cannot be reproduced.

The developed canonical system is then specialized to the case of plane and antiplane strain for couple stress anisotropic media. The antiplane framework is especially noteworthy because it admits a Lagrangian formulation that exactly matches that of flexural/extensional Kirchhoff anisotropic plates, which are amenable to a Stroh formalism. Nonetheless, the corresponding canonical system in couple stress elasticity still lacks the features of a classical Stroh formulation, because the term corresponding to the normal force in the plate is not determined constitutively, owing to the presence of tangential stresses. This notwithstanding, the Hamiltonian formalism still provides a wealth of informations, including unexpected connections which are not apparent from the standard treatment.

Competing Interests. The authors declare that they have no competing interests
Funding. AN gratefully acknowledge financial support under the H2020 MSCA RISE project EffectFact, GA 101008140

## Table of symbols

| Symbol | Description | Symbol | Description |
| :---: | :--- | :---: | :--- |
| $s$ | Cauchy stress tensor | $\mu$ | Couple-stress tensor |
| $\boldsymbol{\epsilon}$ | Strain tensor | $\chi$ | Curvature tensor |
| $\boldsymbol{\sigma}$ | Sym part of the stress tensor | $\tau$ | Skew-sym part of the stress tensor |
| $\boldsymbol{u}$ | Displacement field | $\varphi$ | Micro-rotation field |
| $L$ | Lagrangian density | $H$ | Hamiltonian density |
| $\mathbf{N}$ | Stroh matrix | $\mathbf{U}$ | Microstructure matrix (symmetric) |
| $\mathbf{Q}, \mathbf{T}$ | Diagonal blocks in $\mathbf{N}$ (symmetric) | $\mathbf{R}, \mathbf{R}^{T}$ | Off-diagonal blocks in $\mathbf{N}$ |
| $e_{i j k}$ | Rank 3 permutation tensor | $\delta_{i j}$ | Kroneker delta tensor |
| $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ | Orthonormal basis vectors | $\Lambda, G, \ell, \eta$ | Constitutive parameters |

## References

1. VI Alshits, AN Darinskii, and J Lothe.

On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties.
Wave motion, 16(3):265-283, 1992.
2. DM Barnett.

Bulk, surface, and interfacial waves in anisotropic linear elastic solids.
International Journal of Solids and Structures, 37(1-2):45-54, 2000.
3. DM Barnett and J Lothe.

Consideration of the existence of surface wave (rayleigh wave) solutions in anisotropic elastic crystals.
Journal of physics F: Metal physics, 4(5):671, 1974.
4. DM Barnett and J1 Lothe.

Dislocations and line charges in anisotropic piezoelectric insulators.
Physica status solidi (b), 67(1):105-111, 1975.
5. RT Edmondson and YB Fu.

Stroh formulation for a generally constrained and pre-stressed elastic material.
International Journal of Non-Linear Mechanics, 44(5):530-537, 2009.
6. Hui Fan and Limei Xu.

Love wave in a classical linear elastic half-space covered by a surface layer described by the couple stress theory.
Acta Mechanica, 229(12):5121-5132, 2018.
7. YB Fu.

Existence and uniqueness of edge waves in a generally anisotropic elastic plate.
Quarterly Journal of Mechanics and Applied Mathematics, 56(4):605-616, 2003.
8. YB Fu.

Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088):3073-3087, 2007.
9. YB Fu and DW Brookes.

Edge waves in asymmetrically laminated plates.
Journal of the Mechanics and Physics of Solids, 54(1):1-21, 2006.
10. YB Fu and J Kaplunov.

Analysis of localized edge vibrations of cylindrical shells using the stroh formalism.
Mathematics and mechanics of solids, 17(1):59-66, 2012.
11. YB Fu, J Kaplunov, and D Prikazchikov.

Reduced model for the surface dynamics of a generally anisotropic elastic half-space.
Proceedings of the Royal Society A, 476(2234):20190590, 2020.
12. K F Graff and Y-H Pao.

The effects of couple-stresses on the propagation and reflection of plane waves in an elastic half-space.
Journal of Sound and Vibration, 6(2):217-229, 1967.
13. W Günther.

Zur statik und kinematik des cosseratschen kontinuums.
Abh. Braunschweig. Wiss. Ges, 10(213):1, 1958.
14. WT Koiter.

Couple-stress in the theory of elasticity.
In Proc. K. Ned. Akad. Wet, volume 67, pages 17-44. North Holland Pub, 1964.
15. M Lazar and H Kirchner.

Cosserat (micropolar) elasticity in stroh form.
International journal of solids and structures, 42(20):5377-5398, 2005.
16. R D Mindlin.

Micro-structure in linear elasticity.
Archive for Rational Mechanics and Analysis, 16(1):51-78, 1964.
17. RD Mindlin and HF Tiersten.

Effects of couple-stresses in linear elasticity.
Archive for Rational Mechanics and analysis, 11(1):415-448, 1962.
18. G Mishuris, A Piccolroaz, and E Radi.

Steady-state propagation of a mode III crack in couple stress elastic materials.
International Journal of Engineering Science, 61:112-128, 2012.
19. A Nobili.

Asymptotically consistent size-dependent plate models based on the couple-stress theory with micro-inertia.
European Journal of Mechanics-A/Solids, 89:104316, 2021.
20. A Nobili, E Radi, and C Signorini.

A new Rayleigh-like wave in guided propagation of antiplane waves in couple stress materials.
Proceedings of the Royal Society A, 476(2235):20190822, 2020.
21. A Nobili, E Radi, and A Vellender.

Diffraction of antiplane shear waves and stress concentration in a cracked couple stress elastic material with micro inertia.
Journal of the Mechanics and Physics of Solids, 124:663-680, 2019.
22. A Nobili and V Volpini.

Microstructured induced band pattern in love wave propagation for novel nondestructive testing (ndt) procedures.
International Journal of Engineering Science, 168:103545, 2021.
23. A Nobili, V Volpini, and C Signorini.

Antiplane stoneley waves propagating at the interface between two couple stress elastic materials.
Acta Mechanica, 232(3):1207-1225, 2021.
24. W Nowacki.

Theory of asymmetric elasticity.
Pergamon Press, Headington Hill Hall, Oxford OX 30 BW, UK, 1986., 1986.
25. N S Ottosen, M Ristinmaa, and C Ljung.

Rayleigh waves obtained by the indeterminate couple-stress theory.
European Journal of Mechanics-A/Solids, 19(6):929-947, 2000.
26. LP Solie and BA Auld.

Elastic waves in free anisotropic plates.
The Journal of the Acoustical Society of America, 54(1):50-65, 1973.
27. AN Stroh.

Dislocations and cracks in anisotropic elasticity.
Philosophical magazine, 3(30):625-646, 1958.
28. AN Stroh.

Steady state problems in anisotropic elasticity.
Journal of Mathematics and Physics, 41(1-4):77-103, 1962.
29. TCT Ting.

## 30. KC Wu .

Extension of stroh's formalism to self-similar problems in two-dimensional elastodynamics. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(1996):869-890, 2000.

