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Abstract. The current trend in recently released Graphic Processing Units (GPUs) is to exploit
transistor scaling at the architectural level, hence, larger and larger GPUs in every new chip
generation are released. Architecturally, this implies that the clusters count of parallel processing
elements embedded within a single GPU die is constantly increasing, posing novel and interesting
research challenges for performance engineering in latency-sensitive scenarios. A single GPU
kernel is now likely not to scale linearly when dispatched in a GPU that features a larger cluster
count. This is either due to VRAM bandwidth acting as a bottleneck or due to the inability of the
kernel to saturate the massively parallel compute power available in these novel architectures.
In this context, novel scheduling approaches might be derived if we consider the GPU as a
partitionable compute engine in which multiple concurrent kernels can be scheduled in non-
overlapping sets of clusters. While such an approach is very effective in improving the GPU
overall utilization, it poses significant challenges in estimating kernel execution time latencies
when kernels are dispatched to variable-sized GPU partitions. Moreover, memory interference
within co-running kernels is a mandatory aspect to consider. In this work, we derive a practical
yet fairly accurate memory-aware latency estimation model for co-running GPU kernels.

Keywords: Latency Prediction · Concurrent Kernels · GPGPU-Simulator · Partitionable GPU.

1 Introduction

In the context of cyber physical systems (CPS) and related applications, in order to cope with data
and compute intensive task-sets, processing platforms usually feature multi-core CPUs able to work in
concert with massively parallel compute accelerators. A nowadays very common architectural solution
when dealing with compute accelerators is represented by General-Purpose Graphics Processing Units
(GP-GPUs or simply GPUs), as are often chosen on the account of their impressive performance
per watt ratio, high availability, and the presence of fairly mature ecosystems of APIs, libraries and
development kits aiming to simplify their usability. As applications complexity grows and their compute
demands increase over time, novel GPU architectural blueprints must keep up with such a trend. In this
sense, GPU vendors’ road-maps suggest that transistor scaling enables GPU performance to continue
to rise, due to higher GPU frequencies and growth in die size [21]. This latter point translates into
the increasing count of clusters of parallel processing elements embedded within a single GPU die.
In Layman’s terms, we can say that larger GPUs are released generation after generation. However,
compute kernels running alone are therefore not always able to exploit this new degree of parallelism
offered by novel GPUs [3,18]. As a consequence of this, system engineers are researching mechanisms
and methodologies to dispatch multiple kernels onto the GPU within overlapping time windows, hence
assigning a variable number of GPU cores and memory resources to different kernels according to their
timing and latency requirements. GPU resources to kernels assignment can be achieved in many ways:
one of such mechanism has been termed Multi-Kernel Execution in which groups of threads belonging
to different kernels might be distributed to all the GPU’s compute clusters. This solution implies that
blocks of threads of different kernels share the same clusters within overlapping time windows. Despite
being proven to be very effective in increasing overall throughput [24], it is very difficult to control
individual kernel latencies in such a scenario [17]. This is due to the fact that GPU threads are not
only forced to compete for compute resources (i.e. internal cluster schedulers, ALU pipelines etc...)
but also for the GPU cluster’s cache hierarchy and local scratch-pad memories.

On the other hand, spatial kernel partitioning can be considered: in such a paradigm, the GPU’s
compute clusters are divided within non-overlapping partitions so that one or more clusters are assigned
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to individual kernels. In this way, the GPU last level cache (LLC, L2) is the first and most important
contention point when multiple kernels are executing within overlapping time windows, which allows
the system engineer to focus on a single memory contention point, once the scaling of kernels execution
time as a function of assigned GPU partitions is known. Kernel execution time scaling on variable
compute cluster partitions is not trivial to derive.

While ideally such a scaling function should be linear, i.e. the kernel’s execution time decreases
linearly as we linearly assign more GPU compute clusters, the GPU parallel capabilities might exceed
the kernel degree of parallelism, hence reaching the theoretical performance peak without actually
using the entire sets of GPU partitions. Moreover, memory bandwidth plays a crucial role, as highly
memory-bound kernels cause L2 to VRAM memory bandwidth to act as a bottleneck so to further
hinder the expected performance scaling. This latter aspect has been extensively studied and it is
known as GPU roofline model [26,14].

In this work, we therefore aim to study the behaviour of GPU spatial partitioning when multi-
ple kernels run concurrently in separated GPU partitions. More specifically, we present an intuitive,
yet practical memory-interference aware performance prediction model that takes into account the
individual kernels’ features and memory behaviour. Compared to previous literature, our proposed
methodology is able to provide reasonable accuracy when predicting kernels’ execution time, and it
is able to scale well when increasing the number of concurrent GPU kernels. This research is a pre-
liminary study aimed at managing memory interference in partitions, with the future ultimate goal of
assisting in the design of effective schedulers for multiple concurrent execution of kernels in a GPU.

2 Background

In this section, we briefly summarize the most important architectural characteristics of a GPU, the
GPU programming model and the chosen simulation environment. As far as GPU terminology is
concerned, without excessive loss of generality we will introduce and use throughout this paper the
NVIDIA terminology in the context of the widely adopted CUDA API1.

2.1 GPU Architecture

Even if the original purpose of GPUs was to accelerate graphic processing, in recent decades a GPU
can be thought of as a massively parallel compute accelerator able to be deployed in a wide variety
of general purpose scenarios [16]. Hardware-wise, the GPU execution model is a hybrid between a
SIMT (Single Instruction Multiple Threads) and SIMD (Single Instruction Multiple Data) parallel
compute engine, in which multiple instructions are executed by a large number of ALU (Arithmetical
Logical Unit) pipelines in a lock-step fashion. There are evident similarities among GPUs released
by different device vendors, as GPUs’ ALU pipelines are always grouped into clusters of processing
elements. Inside each processing cluster, both L1 cache and scratch-pad memories are shared among
the ALU pipelines within the cluster. Just outside the cluster and shared among the other clusters,
a last level cache (LLC) is present. This latter memory is connected to the rest of the system with
an interconnection fabric. In case of a discrete GPU, this represents the connection between the LLC
and the dedicated VRAM (Video Random Access Memory), or directly to system RAM in case of
integrated GPUs commonly implemented in embedded System-on-Chips.

In NVIDIA terminology, ALU pipelines are named CUDA cores (Figure 1), which are grouped into
computing clusters named SM, Streaming Multiprocessors. Inside an SM, the explicitly addressable
scratch-pad memory is called shared memory. An L1 Cache is also present.

2.2 Programming Model and Scheduling

Software-wise, implementing a GPU application means tackling a heterogeneous programming problem.
This is because the host CPU has the duty to submit copy and compute commands to the GPU
and this is achieved with specific APIs designed to simplify access to the GPU compute acceleration

1 https://docs.nvidia.com/cuda/

https://docs.nvidia.com/cuda/
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Fig. 1: GPU architectures are composed of a set of SMs with L2 cache shared among each SM.

capabilities [5]. Examples of such APIs are the NVIDIA CUDA (Compute Unified Device Architecture),
which is a proprietary API, and OpenCL2 which, in contrast, is an open-standard.

In GPU APIs such as CUDA and OpenCL, commands submitted from the CPU to the GPU are
related to the execution of the parallel programs onto the GPU’s processing clusters. These GPU
runnables are commonly referred to as kernels. A GPU application, therefore, has to manage data
allocation, buffer movements from the CPU-only visible to the GPU-only visible memory areas (and
vice versa) and kernels’ dispatch calls.

The programmer has very little margin to influence the scheduling mechanisms of a GPU appli-
cation. Kernels are dispatched through parallel queues of commands, that in CUDA terminology are
called streams. In NVIDIA GPUs, commands enqueued in the same stream are executed following a
FIFO order. Multiple kernels belonging to different streams might execute in parallel if the occupancy
of a kernel within a stream does not saturate the compute capability of every SM. Blocks of threads
of each kernel tend to be distributed among all the sets of SMs in a round-robin fashion: in this way,
if a kernel does not saturate all the memory (i.e. shared memory and register) or compute resources
(i.e. CUDA cores) of the SMs, another kernel of a different stream can execute in parallel [17].

It is important to note that the current CUDA APIs available on consumer-level GPUs do not
allow programmers to control how kernels are assigned to partitions on NVIDIA GPUs. There is no
publicly available method to specify which partitions should be used for a particular kernel in the
CUDA programming model. As a result, the baseline CUDA stream scheduler will enforce resource
sharing among blocks of threads belonging to different kernels within a single SM, which can impact
the predictability of execution latencies.

The term partition refers to a selected subset of SMs that are, in our case, contiguous, meaning that
they are ordered by their IDs. For example, if there is a GPU with 30 SMs numbered from 0 to 29, a
contiguous partition of 10 SMs could include SMs with IDs ranging from 0 to 9, while a non-contiguous
partition is one that includes SMs with IDs that are not ordered.

Workarounds for research and experimental purposes have been proposed for enabling inter-SM re-
source partitioning rather than the default behaviour (e.g. CUDA persistent threads [8]). Due to evident
limitations on GPU partitioning present in these workarounds, detailed in Section 9, we implemented
and discuss our memory-aware latency prediction model on partitionable GPUs on a cycle-accurate
simulator (GPGPU-Sim).

2.3 Cycle Accurate Simulation Through GPGPU-Sim

In order to achieve cycle-level accuracy in simulating novel hardware architectures, we implemented
and simulated our approach by means of the widely used GPGPU-Sim [13]. GPGPU-Sim is a cycle-
level simulator capable of modelling arbitrary GPU architectures and executing computing workloads
written using widely known APIs such as CUDA or OpenCL. As demonstrated by the research group
that develops and maintains GPGPU-Sim, this simulator allows us to analyze the majority of archi-
tectures available on the market, somehow compensating for the scarce amount of documentation on
low-level architectural details that are usually provided by manufacturers.

2 https://www.khronos.org/opencl/

https://www.khronos.org/opencl/
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Fig. 2: Workflow from host to GPGPU-Sim.

In order to evaluate the correlation between the simulations and the real GPU hardware behaviour,
GPGPU-Sim authors observed the Instruction Per Clock (IPC) measured through simulations and the
average value obtained on real NVIDIA GPUs for a set of benchmark kernels. An impressive similarity
index of 98.37% was reached. This value allows us to assume that the analysis performed with this
simulator is reliable; it also enables us to modify some parts of the hardware characteristics in order
to expose the limits of the existing GPU devices and to test architectural improvements for further
optimization. In our work, we used GPGPU-Sim for timing analysis (emulation cycles) and measure
the interference occurring at the L2 cache memory level during the concurrent execution of multiple
kernels. The L2 is the point in the memory hierarchy in which we focus our attention, as this is the first
contention point for GPU thread blocks of different kernels mapped in non-overlapping sets of SMs.
In order to be able to define the mapping of concurrent kernels within user-defined SM partitions, we
created an ad-hoc extension for GPGPU-Sim.

GPGPU-Sim produces a compiled library that allows the simulator to interpret the compiled in-
struction program set of CUDA device low-level source code (called PTX - Parallel Thread Execution)
and simulates it within the desired hardware architecture (Figure 2). The emulated architecture is com-
posed of many Single Instruction Multiple Thread (SIMT) cores that model multithreaded pipelined
Single Instruction Multiple Data (SIMD) execution units. Such execution units are grouped within
clusters that represent what NVIDIA calls Streaming Multiprocessor (SM). Each SM contains differ-
ent ALU units, application specific co-processors, and the whole memory hierarchy and interface we
described in the previous section. The emulated SMs are connected to the memory partition through
an interconnection network. From the interconnection network, packets that contain operations to
perform are injected into a SIMT FIFO (First Input First Output) queue that manages and redirects
them to the corresponding SIMT SM instruction cache. The packets contain a memory response that
could be servicing an instruction fetch miss or a memory pipeline (through a Load Store unit - LDST).
Instructions loaded in the instruction cache, are then fetched, decoded, and the operations to perform
are eventually executed by the entire core set.

3 Overview

Our methodology is illustrated in Figure 3. It details the steps taken to conduct an in-depth analysis
to derive the different predictive models presented in this paper. In order to study the behaviour of a
partitioned GPU, we define the concept of dynamic partition in a GPU so to be able to assign SMs to
kernels and, in the following section, we describe the engineering effort that we put into GPGPU-Sim in
order to modify its thread block scheduling algorithm to enable multiple concurrent kernels executions
within partitioned sets of SMs.

With the necessary infrastructure in place to perform our study (Figure 3 blocks a and b), we
proceed with two profiling phases: 1. isolation profiling and, 2. parallel kernel profiling.
In the isolation profiling phase, detailed in Section 5, we profile the kernels in a baseline scenario in
which isolated kernels are potentially dispatched among the whole set of available SMs (default GPU
behaviour). This allows us to collect a profile of each kernel’s execution times and memory behaviour.
Then, we observe how this profile evolves when the same kernel is mapped onto a subset of SMs, Figure
3 block c. In this way, we construct the completion latency and requested memory bandwidth (BW)
vs SM partition size trend for each kernel. Such profile is then used to find a predictive model that
allows the system engineer to derive the kernel behaviour (Figure 3 block d) in isolation, without the
need to test all possible partition sizes for each specific kernel (Section 6).
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In the parallel profiling phase (Section 7), we aim to find the interference effect of multiple kernels
running concurrently. Therefore, we collect memory accesses of co-running kernels, in order to infer a
predictive model able to derive the kernel completion latency including memory interference, Figure 3
blocks e and f.

We also present a method in Section 8 for predicting the L2 cache BW required by a single kernel
executing in isolation on varying sets of SMs, Figure 3 block g.

Fig. 3: Methodology overview.

4 Simulation Settings and our GPGPU-Sim Extension

We chose to simulate an NVIDIA RTX 2060 as the target GPU for our experiments, since it is
the most recent hardware that GPGPU-Sim Version 4.0.0 can emulate, and, also the one with the
highest correlation index with respect to real hardware (99% [13]). Table 1 shows our configuration
environment. In order to analyze our target scenarios, we modified GPGPU-Sim to enable the concept
of mapping a GPU kernel to a subset of available SMs. Our modification of GPGPU-Sim implies a
special configuration file given as input. During the simulator initialization phase, this configuration
file is loaded by the createSIMTCluster() function, located in gpu-sim.cc source file.

Table 1: GPGPU-Sim configuration for a NVIDIA RTX 2060.
Name NVIDIA RTX 2060

Clusters 30

SM per Cluster 1

Total SM 30

L1 Cache 4 banks, 64 KB per SM

L2 Cache 24 banks, 128 KB block, total 3MB

Machine ISA sm 75

Nominal BW 348 GB/s

Our configuration file contains at each line: a kernel name and a range of integer values correspond-
ing to SMs IDs. The kernel names, retrieved after the first execution, are used in the configuration
file. The ranges associated to the kernels represent the partition on which the kernel will be mapped.
We assume that such partitions are contiguous and un-fragmented: each kernel will be mapped to a
partition composed of contiguous SMs, and the different partitions are prevented from overlapping.
The mapping is therefore stored as a data structure visible by all emulated streaming multiprocessors.
It implies having a static task-set with which static partitions can be defined. We extended GPGPU-
Sim in order to dynamically create kernel-to-SM-partition mapping during the execution of the whole
simulation.

From the CPU side code (host), multiple kernels are dispatched using multiple streams. The emu-
lated CUDA runtime divides the work belonging to the different kernels in thread blocks, also known as
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CTAs (Cooperative Thread Arrays) that each individual emulated SM is able to schedule. In the vanilla
version of GPGPU-Sim, this is implemented by first selecting a kernel, then considering dispatching
blocks belonging to that kernel, which follows the regular stream scheduling logic (see Section 2.2).
More specifically, a method gets called for every SM instance (called SIMT cluster in GPGPU-Sim)
to retrieve a kernel to execute. Once a kernel is selected, its CTAs are dispatched in a round-robin
fashion among the SMs.

We modified the kernel selection method, which is called select kernel() in order to restrict the
eligible kernels among the ones that have been associated to the partition containing the SIMT cluster
in which CTAs are going to be dispatched. This will effectively map thread blocks of specific kernels
to pre-defined sets of SMs (Figure 4).

Fig. 4: Example of 2 kernels mapped onto 2 GPU partitions with our GPGPU-Sim extension.

We have written a host CUDA application that launches different CUDA kernels in different CUDA
streams in order to perform our simulations. Such a benchmark application is used in combination
with multiple settings for our added configuration files in order to be able to observe the behaviour of
concurrently executing kernels in different partition sizes. We aim to understand how the performance of
individual kernel scales when executed in varying partitions and by accounting for memory interference
on shared memory hierarchy, i.e. the GPU L2 cache.

5 Memory Aware Performance Estimation

The initial profiling phase involves eight different kernels: these kernels have different computational
and memory requirements and range from synthetic or very basic operations to significantly more
complex kernels. Such kernels are either implemented by ourselves or taken from known benchmark
suites. The group of kernels is composed of:

– Vector add (VADD) performs a vector addition.

– Single Precision A X plus Y (SAXPY) is a combination of scalar multiplication and vector addition.

– Copy (COPY) operates a copy between two device-side buffers.

– Ray tracing (RAYTRACE) performs a ray-tracing based shading on a 3D scene.

– Direct X texture compression (DXTC) is a texture compression algorithm.

– Convolutional (CONV) is a convolutional kernel over 2D matrices.

– Matrix vector product and transpose (MVT) realises operations on a matrix.

– Path finder (PF) is a path finding algorithm.

The kernels, their launch configurations, the working set size and other important information are
listed in Table 2.

During this phase, we profiled the cycles required by each kernel to complete, the L2 memory BW,
and the number of accesses to the GPU L2. These metrics were collected for each kernel individually
while varying the SM partition size. The number of SMs assigned for each kernel across the different
experiments is ∈ [5, 10, 15, 20, 25, 30].
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Table 2: Kernels used for profiling on an NVIDIA GeForce RTX 2060 emulated architecture.
Kernel Input Output Shared Mem. Launch Config. KIA Duration Origin

MiB MiB ms

VADD 40*2 40 0 (81920,1,1),(128,1,1) 0.056 0.379 Synthetic / In house implementation

SAXPY 40*2 40 0 (81920,1,1),(128,1,1) 0.059 0.379 Synthetic / In house implementation

COPY 40 40 0 (81920,1,1),(128,1,1) 0.064 0.271 Synthetic / In house implementation

RAYTRACE - 1.5234 0 (104,80,1),(8,8,1) 3.575 2.621 In house Implementation

DXTC 0.003 + 0.5 0.25 1.5 Kb (46,1,1),(512,1,1) 149.265 3.273 Cuda Samples

CONV 0.00001 + 40 40 128 B (327680,1,1),(32,1,1) 0.291 1.089 In house Implementation

MVT 64 + 0.01*4 0.01*2 0 (64,1,1),(64,1,1) 0.015 2.878 Polybench

PF 0.5 + 255.5 0.5 2 Kb (1024,1,1),(256,1,1) 0.475 0.337 Rodinia [6]

5.1 Kernels Memory Bandwidth Analysis

First, we observe how the requested memory BW changes for each kernel as we scale up the number
of SM in which they are scheduled to be executed, shown in Figure 5. Trivially, access to the memory
interface by different SMs occurs in parallel, as each SM is directly connected to different L2 banks.
This implies that, as we scale down the number of SMs assigned to a kernel, its memory BW tends to
decrease, as the parallelism in which the memory interface is accessed is also decreased.

Out of this first profiling phase of experiments, we can make an initial quantitative categorization
of the maximum BW required by each kernel to access the L2 cache when dispatched on all the 30
SMs. We labelled the kernels in 3 different types:

– Memory Intensive: {V ADD,SAXPY,COPY } the BW demand (≥ 70%) reaches a saturation
point, and does not scale linearly, even if we increase the SM count, Figure 5a.

– Hybrid : {CONV,MV T, PF} the BW demand ([10%, 70%)) scales linearly based on the number
of SMs with average utilization of compute units, Figure 5b.

– Computational : {RAY TRACE,DXTC}, the BW utilization is low (< 10%) while the computa-
tion requirement linearly increases with the number of SMs, Figure 5b.
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Fig. 5: Memory BW required by each kernel.

We performed multiple tests to understand whether there were any profiling errors on MVT, but
we could not understand why MVT (Figure 5b) has an unexpected behaviour when the set of SMs is
20 and 30 having similar near values to the previous sets. Such strange behaviour could be driven by
the simulated architecture or by the kernel behaviour.

We also note that the saturation point of the BW is 330 GB/s while the nominal BW of the
architecture is 348 GB/s. This saturation point will be later referred to as the Effective Maximum
Bandwidth (EMBW ).
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5.2 Kernels Completion Latency Analysis

Second, we focus on how the latency completion time scales with the number of assigned SMs. The
collected results are summarized in Figure 6 in which execution latencies are expressed in simulation
cycles. As far as memory intensive kernels are concerned, we observe a decreasing exponential behaviour
of the kernel latencies that tend to stabilize as soon as the memory saturation point shown in Figure
5 is reached. In other words, the expected behaviour of a linearly decreasing latency gets interrupted
due to memory latencies being prevalent over instruction execution times. Such a behaviour is not
exhibited in the other kernel type: while not being perfectly linear, a plateau is never reached in most
of the tested kernels, instead, we observe an uninterrupted exponential decrease in the completion
times.
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Fig. 6: Completion latencies analysis for each kernel (cycle analysis).

These in-depth analyses of BW and kernel latency shed some lights on the construction of further
predictive models.

6 Predicting Latencies Depending on Assigned SMs

With the above initial results, it is trivial to understand that the number of SMs strongly influences
both the memory BW and the kernel completion latency. More specifically, for non-memory intensive
kernels, a linear demand on memory produces a proportional scaling on completion cycles. For memory
intensive kernels, as memory requirement increases, the ability of the kernel to fully exploit the available
parallelism of a larger SM count is jeopardized. Hence, our predictive model is the first to account for
this kernel categorisation of memory/latency behaviour.

We first determine the BW utilisation Ubw(k) of a kernel k, eq. 1, as the ratio between the maximum
nominal L2 BW (BWmax), i.e. 348 GB/s with our hardware architecture, and the effective requested
BW by the kernel when executed on the maximum available SMs N , noted as BWisolated(k,N).

Ubw(k) =
BWisolated(k,N)

BWmax
(1)

Then, we define a memory saturation memory Sat(Ubw(k)), eq. 2, based on the BW utilisation
Ubw(k), eq. 1. By analyzing the equation (1), the more Ubw(k) is closer to 1, the faster the memory
BW saturation point is reached. Hence, the saturation function Sat(Ubw(k)) is able to capture the BW
behaviour of all three kernel categories.

Sat(Ubw(k)) =
1

1 + e−α(Ubw(k)−Sp)
(2)
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(d) RAYTRACE
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Fig. 7: Kernel latency prediction with varying SM size using eq. 4.

In eq. (2), the term α is used to model the saturation function steepness. We experimentally
tested several values for our predictive model and found the best results when α = 100. The Sp term
represents the saturation point, which corresponds to a theoretical individual L2 memory bank per
SM. In the GPU we are simulating, the L2 is composed of 24 banks to be accessed by 30 SMs, hence
Sp = 24/30 = 0.8 gives us an estimation of the saturation point within the L2 cache.

We further define a factor able to estimate the memory intensity KAI, eq. (3), as the ratio between
the total number of executed instructions and the number of L2 accesses, scaled down by a factor of
1000.

KAI =
ExecutedInstructions

L2Accesses
× 1

1000
(3)

At last, we define our kernel latency prediction function Tc(k, n), eq. 4, that infers the simulation
cycles needed by a kernel k to complete on n SMs, with n ≤ N . Ck(N) is the total cycles required
by the kernel to complete in isolation with the full set of N SMs, see Fig. 6. It is easy to realize that
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equation (4) is a proportion calculated by scaling the completion time for the fraction of utilized SMs,
and such proportion gets biased as kernel memory utilization increases.

Tc(k, n) =
Ck(N)

(Sat(Ubw) + 1) · (N −KAI · Ubw)
· N

2

n
(4)

Analyzing the behaviour of equation (4) compared to the actually simulated execution cycles in
GPGPU-Sim, in Figure 7, the prediction has a larger error in the 3 memory intensive kernels, while it
works fine in the other cases. However, it has been observed that the errors committed by our predictive
formula, as analyzed on individual kernels and depicted in Figure 8, range from an underestimation of
30% to a maximum of 10% in situations where excessive memory usage is not required. In predictive
models for real-time systems, it is essential to establish a margin of correctness. This is because it
is improbable that the prediction will match the reference value precisely. In our results, we set an
arbitrary margin of 20%, which aligns with the industry and academic practices in many application
domains for estimating the worst-case execution time (WCET) [25,20,19]. Analyzing the absolute error
produced by the predictive formula (Figure 8), we observe that the kernels with the highest bandwidth
demand (VADD, SAXPY, and COPY) are the most challenging to predict due that the formula does
not catch the exact behavior of the three kernels. Instead, the remaining ones, including the hybrid
and compute-intensive kernels, show good results, remaining within the arbitrary margin of 20% of
WCET estimation domain.
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Fig. 8: Cycles prediction errors, using eq.(4) . Negative values are underestimations.

7 Modeling Memory Interference

Previous Section 6 defined Tc(k, n) to effectively predict the number of cycles required for a kernel to
complete in isolation as the number of SMs varies. When multiple kernels are concurrently executing
on the same architecture, they all interfere with each other when accessing the memory, which has an
impact on completion latencies.

In this section, we define a model for the amount of interference that can occur when two or more
concurrent kernels are allocated to different and non-overlapping SM partitions on the GPU. This
involves considering two very important aspects: 1. modelling the decrease in the required memory BW
of a kernel when mapped onto a n-sized partition, such as n < N , and 2. if m concurrent kernels run in
different partitions, and each has its own memory BW requirement, then the sum of those BWs might
exceed BWmax. In this case, the latency of the running kernels will deteriorate due to interference.
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It is also reasonable to assume that the more the available BW limit is exceeded, the higher the
magnitude of interference and related performance deterioration will be observed. Following is a series
of experiments testing our assumptions.

7.1 Experiments and Analysis

To analyze the interference behaviour, we conducted 7 experiments with the objective of covering both
critical (total required BW < max BW) and non-critical (total required BW ≥ max BW). For each
experiment, labelled from 1 to 7, the number of concurrent kernels varies between 2 and 6. The kernels
involved in each experiment are then mapped to non-overlapping sets of SMs, such that the sum of the
size of each partition of each kernel in a single experiment coincides with the maximum number of SMs
(N = 30). These settings are summarized in Table 3, which lists the seven experiments, indicating for
all concurrent kernels: their SM partition size, and their theoretical requested memory BW, calculated
as the sum of the individual memory BW requirement as measured in isolation (Section 5.1). All the
kernels in the experiments run to completion.

Table 3: Memory BW theoretical requirements: experimental settings.
ID Kernel Name and SMs Individual theoretical BW (GB/s) Total theoretical BW (GB/s)

1 VADD 15 | RAYTRACE 15 296.03 | 19.32 315.35

2 VADD 5 | SAXPY 5 | MVT 20 120.9 | 113.19 | 109.5 343.61

3 RAYTRACE 10 | DXTC 10 | PF 10 13.39 | 0.09 | 59.55 73.14

4 COPY 15 | SAXPY 15 250.33 | 291.77 542.11

5 VADD 15 | CONV 15 296.03 | 140.37 436.40

6 VADD 20 | MVT 10 325.58 | 74.33 399.91

7
PF | MVT | RAYTRACE | DXTC 30.04 | 45.39 | 8.84 | 0.04

224.16| CONV | COPY each with 5 | 46.96 | 92.87
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Fig. 9: Observed kernel latency deviation, requested BW (solid line), and nominal BW (dotted line).

Figure 9 exhibits the kernel latency deviation with the ratio concurrent
isolation for the respective set of SM.

It shows that interference exists and is likely to change depending on the memory access patterns of
concurrently executing kernels and L2 cache accesses. From these experiments, we can also observe
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that the increase of kernel latency is dependent on the initial requested BW (solid line, right y-axis)
compared to the nominal BW (dotted line). This consideration is the first pillar of our further prediction
model.

Figure 10 presents the actual execution pattern, starting and completion time (in cycles) of its
corresponding set of kernels. Zooming in on this execution view, we identified a set of time windows
(separated by vertical dotted lines), hereafter W , in which the set of concurrently running kernel
changes. We assume a function K(w) which returns the set of kernels present in the execution window
w ∈ W . For example, in the last window wl ∈ W only DXTC ∈ K(wl) executes, while in the
previous one wl−1 ∈ W , both {MV T,DXTC} = K(wl−1) are concurrently executing. Moreover, we
can compute the proportion of execution Poverlap(k, n, w) of a kernel k mapped on n in a window w,
assuming k ∈ K(w), using eq. (5), with Ck(n) from Fig. 6. This notion of execution windows is the
second pillar of our predictive model.

Poverlap(k, n, w) =
size(w)

Ck(n)
(5)

Fig. 10: Experiment 7 overlapping time windows of PF/MVT/RAYTRACE/DXTC/CONV/COPY,
5 SMs each.

However, to avoid the necessity to actually execute the set of kernels, we must make a set of
assumptions to construct the set of execution windows W :

1. all kernels start at time 0, and

2. all kernels run for their worst-observed execution time in isolation on the designed set of SMs, i.e.
Section 5.2.

For each overlapping time window w ∈ W , we can compute a portion of additional execution that
a kernel will suffer following the two pillars applied in equations (6) and (7). The former applies a
penalty only if the requested BW in the time window is higher than the effective BW EMBW , and
the latter computes the interference factor I(w) of the over-requested BW. If the BW requested by
the set of kernels K(w) exceeds the effective BW, the penalty must be increased proportionally. In eq.
(7), Sp, BWmax, and BWisolated(k, n) are identical as in Section 6.

Π(k, n, w) =


1

∑
l∈K(w)

BWisolated(l, n) < EMBW

Penalties(k, n, w)
∑

l∈K(w)

BWisolated(l, n) ≥ EMBW

(6)

I(w) = MAX(1,

∑
l∈K(w)

BWisolated(l, n)

BWmax × Sp
) (7)
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We therefore define a function Tc(k, n,W ), eq. (8), which predicts the completion latency accounting
for the interference of a kernel k mapped on n SMs considering a set of execution window W . For each
time window w ∈ W (k) where k is present, it sums up the execution time portion of the kernel
augmented with some penalty cycles.

Tc(k, n,W ) =
∑

w∈W (k)

Tc(k, n)× Poverlap(k, n, w)× I(w)×Π(k, n, w) (8)

We identified three penalties a kernel k can suffer from, eq. (9)3. The PenaltySM , eq. (10), serves
to guide the inequity of the partitions amongst the kernels mapped in the same window when kernel
k is mapped on n SMs. The Penaltyaccess, eq. (11) keeps track of the level of interference experienced
by kernel k on a portion of its execution as if the L2 accesses were evenly distributed, with eq. (13),
amongst the kernels present in the same time window w. Finally, the PenaltyBW , eq. (12) is used to
capture the imbalance of BW demand considering that the BW is evenly shared, with eq. (3), amongst
the kernels present in the same window w.

Penalties = PenaltySM × Penaltyaccess × PenaltyBW (9)

PenaltySM =
N

n
× 1

size(K(w))
(10)

Penaltyaccess =
L2Accesses(k,w)

L2Access(w)
× Poverlap (11)

PenaltyBW =
BWisolated(k, n)

EquityBW (w)
(12)

L2Access =
∑

l∈K(w)

L2Access(l, w)

(13)

EquityBW =
BWmax

size(K(w))
(14)

However, we must bound the term Penalties to avoid unrealistic scenarios. The Penalties term
represents the percentage number of cycles that needs to be added to the kernel latency to account
for interference, it therefore cannot be lower than 1. On the other hand, having Penalties above 2
means that a single kernel concurrently running with another can, in the worst-case scenario, be totally
stalled on L2 cache accesses, and a BW demand at 0. This case is impossible to reach with our working
hardware architecture. We define Penalties as in eq. (15) and to use it in previous equation (6). To
effectively manage the kernel that addresses the majority of access requests and accommodates more
requests to the memory controller, we elect a single kernel for each time window that is privileged and
less penalized based on its high traffic BW demand. The elected kernel has the Penalties set as the
scenario where the Penalties(k, n, w) is less than 1.

Penalties =


min(PenaltiesBW (k, n, w), I(w)) Penalties(k, n, w) < 1

PenaltyMPD(k, n, w) Penalties(k, n, w) ≥ 2

Penalties(k, n, w) Otherwise

(15)

In order to leverage the 2x term in Penalties, we define a Max Penalty Density (PenaltyMPD),
eq. (16a). The concept of the request density of a kernel k, DRk eq. (16b), and the maximum density
value done in a certain time window w, is given by the term MDAw, eq. (16c).

PenaltyMPD(k, n, w) =
DR(k, n, w)

MDA(w)
(16a)

DR(k, n, w) =
L2Access(k,w)

Tc(k, n)
(16b)

MDA(k, n, w) = max
k∈K(w)

(
L2Access(k,w)

Tc(k, n)

)
(16c)

7.2 Comparison with a Worst-interference Method

Most of the related works we could find aim to predict the efficiency, e.g. [28], of kernels while we
aim to predict the execution time in presence of interference. We compare our method to a predictive

3 Arguments (k, n, w) in eq. from (9) to are skipped for clarity.
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model that considers the worst possible interference happening during concurrent executions of kernels,
similarly to [28]. Then, a margin is added to the kernel latency in isolation to form a prediction of the
latency accounting for interference.

Let us consider a set of kernels with different in-isolation latencies. The kernel X with the largest
latency experiences interference from other kernels up to the completion of the second largest one. Then,
the kernel X executes alone and does not suffer anymore from interference. Moreover, in our naive
method, the kernels with a latency shorter or equal than the second largest one suffer a maximum
interference as they would never have a time interval where they execute alone on the GPU. This
behaviour is exhibited in Figure 12, where DXTC is the only kernel with a time interval without
interference.

Fig. 11: A set of concurrent kernels with the maximum interference time interval in the light grey
overlay.

In Figure 9, we observe that the kernel COPY from experiment 4 suffered a maximal slowdown of
73%. As an arbitrary value, the naive approach uses that value on all kernels fully present and on the
portion of execution present in the maximum interference time window. We note that our 73% is a
lower margin than the one presented in [28] (over 100%), however, this plays against us, as we expect
that a larger margin for a naive approach generates a larger error.
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Fig. 12: Naive latency estimation, kernel cycles increased by a factor of 73%.

In Figures 12 and 13, the x-axis identifies the considered experiments from Table 3, and the y-axis
represents the error percentage. A positive error percentage means an overestimation, while a negative
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Fig. 13: Kernel latency estimation prediction error, using eq. (8), on experiments from Table 3.

one means an underestimation. The naive method results only in overestimation, while our method is
more mitigated. However, the average error of the naive method is 42.38%, in contrast, our predictive
model outperforms it with an absolute average error of 5%.

7.3 Latency and Interference Prediction Evaluations

To validate our predictive model and estimate its error, we randomly generated 100 groups of kernels, in
addition to the 7 previous, with a size varying in [2, 6], resulting in 107 experiments. In each group, for
each kernel, we randomly decide the number of used SMs in the set 5, 10, 15, 20, 25, with the constraints
that the total number of used SM for the group must not exceed the total number of available SMs
(30).
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Fig. 14: Kernel latency prediction error, using eq. (8), of the 107 kernel sets.

Figure 14 shows the error distributions of our predictive mode in equation (8). In order to derive
general and useful information about the distribution of errors, we considered the error calculated
from the difference between the emulated cycle and the one estimated by our formula. On Overall,
the formula demonstrated an average error rate of 10.7% with an overestimation bias and a variance
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Fig. 15: Absolute and average kernel latency prediction error per number of concurrent kernels using
eq. (8). All averages are positive, due to the weight of the overestimation.

of 2.71%. As shown in Figure 14, sporadic underestimations (negative values) and overestimations
(positive values) occur during the prediction process. It is important to note that in the real-time field,
particularly in the scheduling field where timing is critical, it is more favorable to overestimate rather
than underestimate the execution time required by a kernel to perform its tasks. The results of our
experiments, in which 2, 3, 4, 5, or 6 kernels were executed concurrently, resulted in a total of 420
single kernel predictions with 135 instances of underestimation and 285 instances of overestimation.
The maximum sporadic overestimation was 76%, which occurred in 1 case out of 420, and the minimum
sporadic underestimation was 20%, which also occurred in 1 case out of 420, or about 0.2%.

By also analyzing the individual different sub-classes error obtained in Figure 15, we can recover
more information. Based on the normal average (not the absolute one), the obtained formula over-
estimated the whole experiment’s classes (Figure 15). On average, in the sub-classes with 2 and 3
concurrent kernels, the formula overestimated the execution of each kernel by 3.11% and 0.47% re-
spectively, with also an absolute average error of 3.98% and 4.17% respectively, indicating a high level
of accuracy in predicting the cycles compared to the emulation engine. For the two sub-classes of 4
and 5 kernels, the formula overestimates on average, 8.37% and 8.95% respectively, meanwhile for the
last sub-class with 6 kernels, we obtain the larger error committed of 17.24%. These last 3 sub-classes
cases turn out to be the most unstable ones because more kernels require access to the same L2 banks
and thus generate more interference than expected by our formula.

The results of the predictive model on different sub-classes remain well below the absolute error of
20% used in various domains for predicting the WCET, as already mentioned in Section 6, indicating
excellent performance.

8 Bandwidth Prediction

In the previous sections, we successfully developed a predictive model that is able to predict the number
of execution cycles required for the completion of a single kernel in both isolated and concurrent
execution scenarios. To fully complete our model, we now aim to accurately predict the memory BW
required by a kernel mapped on a set of SMs in isolation from an initial profile on all SMs. Hence,
preventing the need to experimentally acquire the memory BW by repeatedly executing a kernel on
different SM cluster sizes.

To achieve this goal, we model the BW measured during the isolated execution with the full set of
SMs as BWisolated(k,N), and the BWthreshold as BWMAX ∗Sp (defined in Section 6). By utilizing the
BWthreshold, we are able to switch between linear and nonlinear forms in order to adaptively change
the predictor behaviour. We define the BW (k, n) as the BW requirement for a kernel k when it is
executed on a different set of SMs (n), as outlined in eq. (17).
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BW (k, n) =

{
BWisolated(k,N)

N · n BWisolated(k,N) < BWThreshold

EMBW · (1− e
(− n

MAX(1,Missbanks)
)
) BWisolated(k,N) ≥ BWThreshold

(17)

The EMBW , with the value of 330 GB/s, is the maximum bandwidth that we measured during our
initial phase analysis in Section 5.1, meanwhile, the Missbanks are defined as the difference between
the N SMs available and the number of total L2 banks defined by the hardware architecture. In this
part of the study, we used the same configuration present in Table 1, where the L2 cache is with 24
banks, hence, the Missbanks is set to 6. With this exponent, we tried to model the hardware bottleneck
in which each SM does not have a separate L2 bank to work without interference generated by the
other SMs.
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Fig. 16: Predicted BW for each kernel.

8.1 Bandwidth Prediction Results

The overall error obtained through Equation 17 is 4.60% on average and 11.23% using the absolute
average and the results of the L2 cache BW prediction are presented in Figure 16, along with the
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Fig. 18: BW avg and variance prediction error of eq. (17) varying the SMs size.

associated errors in Figure 17. Our approach demonstrates an overestimation of the L2 BW requirement
for memory-intensive kernels such as VADD, SAXPY, and COPY when a smaller set of SMs is used.
In contrast, the BW demand predictions for hybrid and computational kernels are shown to be highly
accurate with our formula; nevertheless, underestimations still occur.

A summary of the overall BW prediction error average and variance is presented in Figure 18, along
with the error obtained for individual SMs set (ranging from 5 to 30). On average, the error ranges
from 0.3% to 19% when smaller SMs sets are chosen for kernel execution. The highest error prediction
occurs when the SMs set is 5, with a prediction error of 19%.

9 Related Work

Not so many works found in the literature explicitly deal with performance estimation based on
memory interference. The most recent one is HSM [29], in which performance decrease in co-running
kernels scenarios are calculated as the ratio between instruction per cycle in isolated and shared
modes in the different kernel-SM partition configurations. Another important work on this topic is
the DASE (Dynamical Application Slowdown Estimation) model proposed in [10]. The authors of
this work estimate the slowdowns caused by shared resources on concurrent GPGPU kernels and
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provide a performance estimation model for a single GPGPU application. Similarly to our work, their
contribution involves a profiling phase, in which they consider cases where two kernels run concurrently.
Our research takes into account different sets of concurrent kernels, potentially unlimited (tested up to
six co-runners). Another related work is presented by Hong et al. in [9], in which they propose a model
to estimate the execution cycles for the GPU architecture for a single kernel. They model the memory
BW differently, by assuming that it is equally distributed among active SMs at runtime. The presented
and other works highlighted that this is not always the case as BW distribution unfairness might occur
depending on different key metrics that characterize the concurrent kernels [12]. Moreover, the concept
of unfairness caused by the memory intensity of concurrent kernels is also present in the work of Adwait
Jog et al. in [11], where they analyze the percentage BW utilization of different applications. Our work
highlights the importance of the BW utilization term in predicting memory interference and defines
different terms to model it. In the work of Hongwen Dai et al. [7], they demonstrate the benefits of
balancing memory access between two kernels that are respectively memory-intensive and compute-
intensive by limiting the number of memory instructions from two concurrent kernels to achieve fair
memory access requests and avoid memory pipeline stalls. Another key aspect highlighted in this work,
which is also present in our research in Section 7, is that a memory-intensive kernel may dominate
the usage of the memory pipeline and execution in an SM, leading to significant performance loss for
a compute-intensive kernel whose memory requests suffer delays and cannot be timely served. Other
researchers have also proposed hardware schemes and methods to better exploit concurrent kernel
execution on GPUs. For example, Xu et al. [27] proposed an intra-SM slicing approach to exploit
underutilized memory throughput with an improved intra-SM partitioning for the CTA of two different
kernels. Additionally, Thomas et al. used the roofline model to classify applications as compute-bound
or memory-bound based on their operational intensity and applied different CTA scheduling modes
based on the task category and core partitioning to improve performance [22]. In this work, they
also highlighted the potential performance degradation when memory-bound tasks were assigned to
small SM partitions. We proposed a similar analysis by predicting and measuring the memory BW
required by a kernel mapped to different GPU partitions. Adriaens et al. [1] proposed the use of
spatial multitasking to group SMs into different sets that can run different kernels (up to four) in
order to maximize application speedup. Ukidave et al. [23] studied the real-time support for adaptive
spatial partitioning on GPUs and highlighted the importance of L2 in this process. Aguilera et al. [2]
demonstrated the unfairness of spatial multitasking and proposed a fair resource allocation strategy
for both performance and fairness. Emir C. Marangoz et al. [15] showed that co-running applications
can have interference in L2 cache, as we also highlighted in our work, and proposed a new architecture
for managing BW reservation for a single kernel during concurrent execution. Unlike most of the
research efforts we summarized in this section, our goal was to provide a predictive model for memory
interference in cases of GPU SM spatial partitioning. This model should then be used by a memory-
aware scheduler [4] that can dynamically assign the correct SM partition to each kernel, ensuring that
each kernel can meet its temporal constraints. The sequence of operations that we present for modelling
the effect of interference in shared memory hierarchies can be adapted to any GPU architecture and,
unlike many of the previously cited papers, does not impose constraints on the number of kernels
running simultaneously on the GPU.

It is also worth mentioning the recently released NVIDIA MiG (Multi Instance GPU) technology,
that is able to provide stronger isolation among GPU partitions, by allocating cache partitions. While
this approach is very effective to avoid memory interference, it is only available in only a subset
of highend hardware. Moreover, limitations on the dinamicity in which we can define partitions are
present.

10 Conclusion

In this paper, we conducted a thorough examination of the performance of inter-SM partitioning of
concurrent kernels using GPGPU-Sim. More specifically, we modified GPGPU-Sim in order to perform
an analysis of the interference caused by concurrent kernel execution in a multi-kernel partitioning
scenario. Based on the number of concurrent kernels, the cycles required for each kernel during overlap
with other kernels, and the single BW required by each kernel, we developed a methodology able
to predict kernel performance deterioration in the presence of memory interference caused by L2
cache sharing. In order to test the validity of our proposed approach, an extensive set of experiments
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has been set up. The results of these experiments indicate that, on average, our predictive model
overestimated the number of cycles required during concurrent kernel executions by 10.7% (absolute
value) with a variance of 2.71%. Furthermore, when 2 or 3 kernels were competing on the GPU, our
formula overestimated the cycles required by 3.11% and 0.47% respectively. Additionally, we developed
a formula to predict the L2 cache BW demand by a single kernel in order to have prior knowledge
of the BW requirements for individual kernels in relation to the SMs that will be assigned for their
execution. Our prediction formula of the BW demand for a kernel when a smaller set of SMs is used
yielded an average error range of 0.3% to 35% on different SMs sets and a total average error of 4%
and 11% of absolute average error. System engineers may use our modified version of GPGPU-Sim
to conduct an initial analysis of the kernels under examination, and gain insights into how the cycles
required for completion and BW demand vary as the number of allocated Streaming Multiprocessors
changes in an isolated scenario. By doing so, then the predictive models we presented in this paper
can be easily adapted for different hardware architectures, i.e. GPUs with a different SM count and
memory bank configurations. When dealing with additional kernels – that were not involved in the
model construction phase – once an interference predictive model that is specific of the utilized HW is
found, only a minimal, but necessary, set of profiling actions are required to be taken. These profiling
phases involve measuring individual kernel performance in isolation and with no SM partitioning, as
only measures about execution time, BW and compute-to-instruction ratio are needed. It is important
to notice how such measures can also be easily extracted on real hardware. In the future, the developed
predictive formulas will be further tailored to different types of HW architecture, including the new
Nvidia RTX 3000 series. We also plan to use our predictive model to extend state-of-the-art task
models in real-time literature with the purpose of accounting for memory interference among GPU
kernels.
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