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Abstract: Adaptive optics can improve the performance of optical systems and devices by
correcting phase aberrations. While in most applications wavefront sensing is employed to drive
the adaptive optics correction, some microscopy methods may require sensorless optimization of
the wavefront. In these cases, the correction is performed by describing the aberration as a linear
combination of a base of influence functions, optimizing an image quality metric as a function of
the coefficients. The influence functions base is generally chosen to either efficiently represent
the adaptive device used or to describe generic wavefronts in an orthogonal fashion. A rarely
discussed problem is that most correction bases have elements which introduce, together with
a correction of the aberration, a shift of the imaging field of view in three dimensions. While
simple methods to solve the problem are available for linear microscopy methods, nonlinear
microscopy techniques such as multiphoton or second harmonic generation microscopy require
non-trivial base determination. In this paper, we discuss the problem, and we present a method
for calibrating a shift-less base on a spatial light modulator for two-photon microscopy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Adaptive optics has proven to be an effective method in microscopy [1] for correcting both
sample-induced and system-induced optical aberrations during imaging, improving resolution,
contrast and imaging depth of most microscopy methods, which is particularly crucial in deep
brain imaging [2]. In an ideal situation wavefront-sensor based systems [3] can rapidly provide a
measurement of the aberration to be corrected. However, several factors limit the possibility of
using wavefront sensors in microscopy, such as the technical difficulty of implementation, the
unavailability of bright point-like sources within three-dimensional biological samples, as well
as the limited field of view of validity of the correction. Due to these limitations, sensorless
adaptive optics [4] is often preferred in applications where the ease of implementation and wider
fields of view take priority over the correction speed.

Sensorless adaptive optics is generally performed by optimizing a numerical image metric
which is maximum (or minimum) when the aberration is fully corrected. The aberration Φ is
defined as a linear combination of N elements of an orthogonal base

Φ =

N∑︂
i=1

aiϕi (1)
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so that the aberration Φ is entirely defined by the vector of coefficients a = {a1, . . . , an}. The
base B = {ϕ1, . . . , ϕN} can vary depending on the application: common examples are the
Zernike polynomials base or the influence functions of the actuators of a deformable mirrors. A
variety of optimization algorithms can be employed in order to find the set of coefficients for a
optimizing the metric, such as hill-climbing methods [5], model-based methods [6], nonlinear
optimizations [7] or neural networks [8]. An important aspect for successful optimization lies
in the selection of the aberration base B chosen for optimization. Previous studies have shown
how, while any generic base can be used for optimization, gradient orthogonal bases [6,9] (e.g.
Lukosz Polynomials) have several beneficial effects for optimization, allowing for particularly fast
model-based algorithms to be implemented, and importantly guaranteeing that the geometrical
center of the point spread function (PSF) of the system remains invariant during optimization, and
therefore the acquired images are not spatially shifted. While several definitions can be employed,
in order to define the geometrical center of the PSF we will, throughout this manuscript, use the
PSF intensity distribution PSF(x, y, z), and the definition of center of mass (COM) at a given
axial depth z:

COMx(z) =
∑︂
x,y

(x ∗ PSF(x, y, z)) /
∑︂
x,y

(PSF(x, y, z)) (2)

COMy(z) =
∑︂
x,y

(y ∗ PSF(x, y, z)) /
∑︂
x,y

(PSF(x, y, z)) (3)

and define the axial position of the center Cz of the PSF as the coordinate for which the second
moment SM(z) of PSF(x, y, z) is minimum:

Cz = minzSM(PSF, z) (4)

with

SM(PSF, z) =

∑︁
x,y

(︂
PSF(x, y, z) ∗

[︂
(x − COMx(z))2 +

(︁
y − COMy(z)

)︁2]︂ )︂∑︁
x,y (PSF(x, y, z))

. (5)

We then define the lateral coordinates of the PSF center as the center of mass in the Cz axial
plane:

Cx = COMx(Cz), Cy = COMy(Cz). (6)

The shift-less nature of corrections through a gradient orthogonal base can be proven
mathematically for linear imaging methods [10], where the PSF is effectively represented by the
distribution of light intensity at the focal plane of the system. As shown in Fig. 1, this invariance
does not hold true for two-photon microscopy, or in general for methods with a PSF non-linearly
proportional to light intensity (e.g. second/third harmonic generation imaging, Raman imaging
[11], three-photon fluorescence microscopy [12]).

While small shifts in the field of view may be considered negligible, a conventional aberration
base can lead to significant problems during optimization. A typical problematic situation
arises when optimizing signal on a focal plane with dim features, directly above or below planes
containing brighter objects. In these cases, optimizations may introduce significant amounts of
aberrations, shifting the image field of view towards the brighter features, instead of correcting
the aberration on the plane of interest. Moreover, recent research [13–17] has shown how imaging
on wide fields of view can significantly benefit from applying space-varying corrections on small
subregions of the field of view. In these applications, a shift-less correction base is extremely
important in order to avoid significant artifacts when merging the subregion images in a single
output image.

This manuscript presents a calibration method for the determination of a shift-less correction
base for adaptive optics in nonlinear microscopy setups. The calibration was performed on a
custom setup for multiphoton anisoplanatic adaptive optics imaging and optogenetics, but can
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Fig. 1. Simulation of point spread function in both lateral and axial planes, for Zernike and
Lukosz polynomials describing coma-like and spherical-like aberrations. Aberrations are
simulated for A) linear imaging methods and B) quadratic imaging methods (e.g. two-photon
microscopy, second harmonic generation imaging). It should be noticed how, for linear
PSFs, Lukosz polynomial aberrations produce no shift in the centre of the PSF as defined in
Eqs. (2), (3) and (4), due to the gradient orthogonal nature of the base. This does not hold
true for nonlinear imaging, as reported in panel B.

easily be adapted to any microscope equipped with an adaptive optical element for aberration
correction (e.g. deformable mirror, spatial light modulator). The correction base was tested on a
standard hill-climb optimization algorithm, both on a synthetic sample of microspheres and in
in-vivo imaging experiments.

2. Methods

2.1. Experimental setup

The only modification required to perform the calibration of the base on a traditional purpose-built
nonlinear microscopy setup is the addition of a pixelated detector (e.g. CMOS or CCD camera)
conjugated to the image plane of the system in a fluorescence emission light optical path. This
can generally easily be achieved by temporarily substituting one of the regular detectors of the
microscope with a tube lens followed by the camera. In the specific case of these experiments,
however, a slightly more complex setup was employed, intended for holographic random access
imaging [18], anisoplanatic adaptive optics imaging [13] and photostimulation. This more
complex setup is however not required to replicate the base calibration procedure reported in this
manuscript, for which a traditional detector and an inexpensive camera would suffice.

The setup, as schematically represented in Fig. 2, panel B, uses as a light source a titanium-
sapphire laser (Chameleon Ultra II, Coherent), expanded to a 1/e2 radius of 6 mm. The beam
impinges on a liquid cristal on silicon spatial light modulator (31 Hz refresh rate, 1,152 by 1,920
pixels, 9.2 µm pixel pitch, Meadowlark, USA). The SLM is conjugated with the plane between a
couple of galvanometric mirrors (GVS-012/M, Thorlabs, USA) by a 4-f telescope (AC-508-200-B
and AC-508-150-B, Thorlabs), with a physical point blocker in the focal plane of the first lens,
blocking the zeroth diffraction order of the SLM. A second 4-f telescope (AC-508-180-AB and
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AC-508-400-AB, Thorlabs, USA) conjugates the galvanometric mirrors with the back aperture
of the objective (XLUMPlanFL N, 20X, 1.0 NA, Olympus, Japan). A long-pass dichroic mirror
(FF665-Di02-25x36, Semrock, USA) is positioned between the SLM and the galvanometric
mirrors, separating fluorescence light from the excitation laser in a descanned optical path. After
further filtering with a short-pass filter (FF01-680/SP-25, Semrock, USA) and an appropriate
bandpass filter, fluorescence light is collected on an EMCCD camera (Hnu 128 AO, Nuvu,
Canada) through an adjustable magnification lens (12 − 72 mm, 1.2 f #, Cosina, Sony, Japan).

Fig. 2. Methods figures: A) Simulation of displacement of the PSF center as defined in
Eqs. (4), (6). Blue lines represent axial displacement, green and orange lines represent lateral
displacement. B) Schematic representation of the experimental setup, not to scale. SLM,
spatial light modulator; DM, dichroic mirror; GM, galvanometric mirror; OBJ, objective;
CCD, detector. C) Dataset for the calibration of S3,−1. D) Dataset for the calibration of S4,0.

The SLM was employed as the adaptive optical element of the system, projecting phase patterns
equal to the desired aberration phase, summed to a tilt pattern displacing the laser focus laterally,
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in order to avoid it being blocked by the zeroth-order remover. The camera was employed both as
a image plane detector for base calibration, and, by integrating on a small subregion around the
focus image, as a "single pixel" detector for two-photon imaging.

2.2. Base determination procedure

In order to calibrate a shift-less correction base, the Zernike polynomials base Zn,m [19] was
chosen as a starting point. This selection is due to the fact that, as empirically shown in the
simulations in Fig. 2, panel A, the center of the PSF is shifted laterally only for coma-like
polynomials (with odd n coefficient and m = ±1), and axially for radial (even n and m = 0)
polynomials. This allows to define a shift-less base S of polynomials sn,m as:

Sn,m =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Zn,m − sn,mZ1,−1, if n is odd and m = −1
Zn,m − sn,mZ1,1, if n is odd and m = 1
Zn,m − sn,mZ2,0, if n is even and m = 0
Zn,m, otherwise

(7)

where Z1,1 and Z1,−1 are the Tip and Tilt Zernike polynomials, and Z2,0 is the Defocus polynomial.
The Tip, Tilt and Defocus aberrations only shift the PSF on the three main axes, without affecting
its intensity profile. While the appropriate coefficients sn,m of added Tip, Tilt and Defocus
could theoretically be computed through simulations, they are dependent on the exact numerical
aperture of the system, as well as on inevitable small mismatches and misalignment between the
adaptive optical element and the objective pupil, so that no simulated base would be perfectly
shift-less in experimental scenarios. The experimental determination of the coefficients was
performed on the microscope setup while imaging a solid slide of fluorescent plastic (FSK3,
Thorlabs), focusing approximately 200 µm below the slide surface. Initially, an auto-focus
procedure was performed by acquiring a series of images of fluorescence emission on the camera
for a static excitation focus, adding linearly modulated amounts of defocus aberration at each
image, and measuring for each image the second moment of the intensity distribution as defined
in Eq. (5). The value of defocus minimizing the second moment of the distribution was chosen
through quadratic fitting of the second moment function, and used as an offset for the rest of the
measurements. The position of the center of mass of the intensity distribution was determined
according to Eqs. (2) and (3). In order to determine the coefficients sn,1 with odd n, representing
horizontal coma-like polynomials, aberrations in the form

Φ = aZn,1 + bZ1,1 (8)

were introduced in the system, and the displacement of the center of mass from the original
position was measured for linearly increasing values of both the coefficients a and b. This
procedure generated the dataset reported in Fig. 2, panel C, in which each color of the spots
represents a different tested value of a, and the x-axis shows the peak-to-valley amplitude of b.

For each value of a, the curve was smoothed with a Savitzky-Golay filter, and interpolated
with a polynomial to find its minimum value. The value of the sn,1 coefficient is calculated as
the slope of the fitted line passing through all minima. The identical procedure was applied for
vertical coma-like polynomials to find the coefficients sn,−1 with odd n.

A similar procedure was applied to determine the coefficients sn,0 with even n, representing
radial aberrations. In this case, aberrations in the form:

Φ = aZn,0 + bZ2,0 (9)

were introduced, and instead of measuring the displacement of the center of mass, the second
moment of the intensity distribution was computed according to Eq. (5). The obtained dataset
is represented in Fig. 2, panel D, and the same interpolation and fitting procedure, as for the
previous two coefficients, was employed to determine the coefficients sn,0 with even n.
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2.3. Sensorless correction method

In order to test the shift-less nature of the calibrated base, as well as comparing its performance
with a more conventional base, three-dimensional images of two-photon fluorescence were
acquired on a sample of fluorescent microspheres embedded in agarose gel, and by performing
imaging in-vivo in the barrel cortex of anesthetized mice. The base was calibrated on our setup up
to the sixth aberration order. Optimizations were performed on all elements of the base, excluding
Piston, Tip, Tilt and Defocus. Sensorless optimization was performed with an hill-climbing
algorithm, as fast convergence times and/or optimal correction performance were not critical for
the experiments. During correction, the excitation foci were scanned on the sample in a spiral
pattern, with a period equal to the camera exposure. The average intensity of the fluorescent
spots was employed as a metric for optimization. For each of the polynomials of the selected
optimization base, the aberration amplitude was linearly modulated, measuring the intensity
metric at each step of the modulation. The metric function was filtered with a Savitzky-Golay
filter and interpolated. The peak-to-valley polynomial amplitude maximizing the metric value
was chosen as the correction coefficient.

2.4. In-vivo imaging preparation

All animal procedures were performed according to the guidelines established by the Italian
Council on Animal Care, and were approved by Italian Government Decree No. 947/2017-PR.
Every effort was made to minimise the number of mice used, and their suffering. A single
female six months old C57BL/6 mouse was used for this study. The mouse was anesthetized with
2,2,2-tribromoethanol (Sigma) and mounted in a stereotaxic frame. Craniotomy and durotomy
were performed with 3 mm diameter biopsy punch in the parietal lobe of the left hemisphere.
2 µL of a 10 µM solution of sRhoVR1-GP1 [20] (a synthetic fluorophores with high voltage
sensitivity, excellent two-photon performance, and compatibility in intact mouse brains) in
ACSF was injected with a 26-gauge blunt tip Hamilton syringe (1 µL/min). Here, sRhoVR1
was prepared in-house following a modified procedure that will be reported elsewhere. The
injection site was at the centre of craniotomy, 1 mm under the surface of the brain. The needle
was left in place for 10 minutes before withdrawal. A cranial window composed of two coverslip
glasses (3 mm and 4 mm diameters, respectively) was placed over the brain and attached with
cyanoacrylate glue. Then, when the glue was completely dry, a metal head plate was placed over
the skull with bicomponent epoxy glue. Imaging was performed 8 days after surgery. The mouse
was positioned under the microscope and kept anesthetized with 2,2,2-tribromoethanol for 1 hour.

3. Results

For both fluorescent microbeads and in-vivo imaging, three separate three-dimensional datasets
were acquired: one without any applied correction, one using the Zernike polynomials as a
correction base, and one using the shift-less base calibrated as reported in the methods section. To
ensure the fairest possible comparison and prevent motion artefacts from invalidating results, all
datasets were acquired first without correction, then correcting with the Zernike base, followed by
the shift-less base, and finally a second uncorrected dataset was acquired to ensure no significant
sample drift appeared during the experiment.

Figure 3 reports results for microbeads experiments. Experiments were performend on
≈ 200 nm diameter green-fluorescent microbeads, embedded in a 10% w/v agarose gel. Images
were acquired approximately 500 µm inside the agarose gel sample, where the sample-induced
aberration was dominated by a spherical-like component due to index mismatching. Three-
dimensional datasets with 200 by 200 by 500 nm3 size voxels were acquired over the same 20
by 20 by 10 µm3 field of view for all three correction cases. Panel A of the Fig. 3 shows the
two-dimensional plane at the axial center of the three-dimensional datasets. It can immediately
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Fig. 3. Microbeads experiment: A) Uncorrected, shift-less corrected and Zernike corrected
images in the focal plane. Scale bar is 3 µm. B) Images of the planes with highest correlation
with the uncorrected focal plane in the three three-dimensional datasets. C) Example x-z
slices from the datasets, red line represents the microscope’s focal plane. Scale bar is 1 µm.
D) Maximum intensity projections of a sub-diffraction object in the field of view. Scale bar
is 200 nm. E) x-z and y-z maximum intensity projections of the object in D. Vertical scale
bar is 500 nm, horizontal scale bar is 200 nm F) schematic representation of the position of
the focal planes in B. G) Phase correction after optimization with the shift-less base. H)
Phase correction after optimization with the Zernike base.
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Fig. 4. In-vivo experiments: Images of fluorescence from sRhoVR-1 injection in the barrel
cortex of anesthetized mouse. Images are reported in the absence of correction, in the
case of correction with the shift-less base, and of correction with the Zernike base. A)
Two-dimensional image at the focal plane of the microscope. Scale bar is 20 µm. B) Detail
from the red highlighted area of panel A, both in x-y and x-z projection. Scale bars are 10 µm.
C) Detail from the magenta highlighted area of panel A, both in x-y and x-z projection.
Scale bars are 10 µ.D) Phase correction after optimization.

be noticed how, while correction with a shift-less base only increases the average intensity of
the image, the details in the field of view are significantly changed when optimizing with a
Zernike base, due to an axial shift in the imaging plane. Panel B reports, for each dataset, the
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two-dimensional plane with highest correlation with the uncorrected original image, which for
the shift-less base case is found at only 1 µm from the dataset’s axial center, while for the Zernike
base is at the edge of the dataset, at 4 µm from the dataset’s axial center. Most importantly, even
when recovering the original plane in the Zernike-corrected dataset, a significant lateral shift of
approximately 1µm between the two images can be observed. This is empircally compatible with
the fact that the wavefront corrected with the shift-less base presented a tip-tilt component of
1.2λ peak to valley, corresponding to a lateral shift of 1.2 Airy units in the focal plane, which for
the reported setup is equivalent to approximately 1µm. Panel C shows an x − z plane within the
dataset, where the Zernike-corrected dataset was extended in the axial direction for clarity. The
data clearly shows how the shift-less base corrected the mild spherical aberration, making the
PSF brighter and axially shorter, while the Zernike-based correction introduced a significant
deformation on the PSF and significantly shifted the imaging plane. Panel D shows the same
small bead in the three datasets. The resolution of the datasets was measured as the full width at
half maximum of the detail. The uncorrected resolution was 710 ± 2 nm. While the Zernike
based correction improved the resolution to 600 ± 2 nm, using the shift-less base for correction
reduced it further to 540 ± 2 nm.

Experiments in a more realistic scenario for adaptive optics in two-photon microscopy were
performed in-vivo in an anesthetized mouse. Datasets were acquired with 1 by 1 by 1 µm3 voxels,
a relatively lower sampling compared to the microbeads measurements due to the necessity of
minimizing the experimental time for the animal due to ethical necessity. Datasets were acquired
over a 200 by 200 by 50 µm3 field of view. Results are reported in Fig. 4. While, due to the
nature of the experiment, small motion artefacts are present in the images, evident shifts can
be observed in the Zernike-corrected dataset when compared to the uncorrected and shift-less
corrected datasets. In this case, while an increase in resolution can be observed after correction
with the shift-less base, it is quite evident how correction with the Zernike base, due to the
sparsity of the distribution of the fluorophore, actually slightly impaired the resolution of the
system in order to shift the image focus on brighter details of the three-dimensional image. This
can be easily observed, for example, in the two cell bodies visible in the y-z projection in panel C,
where the shift-less base correction allowed to visibly distinguish the two bodies, while after
Zernike correction they appear as a single mass.

4. Discussion

In this manuscript, we described and tested a procedure for calibration of a shift-less aberration
base for sensorless adaptive optics in nonlinear microscopy applications. The described method
requires some modifications of a nonlinear microscopy setup which can be converted into an
adaptive setup with a relatively low cost. Most importantly, its implementation is extremely
simple and is within the reach of research groups with expertise in the development of nonlinear
optical setups.

As discussed in the introduction, shifts in the microscope’s field of view position during
adaptive optics correction are generally considered negligible. However, in samples presenting
sparse and particularly bright objects throughout their three-dimensional field of view, such as
those imaged in the results section of this manuscript, a generic image metric may reach higher
values when applying aberrations shifting the field of view towards brighter features.

In addition, it is increasingly popular in microscopy applications of adaptive optics to
independently correct tiled regions of the field of view. In this case, even in the presence of an
optimal correction, relative shifts in the field of view of the image tiles can lead to artefacts in the
full reconstructed image.

Due to the simple implementation of the calibration procedure, as well as the potential benefits
in its use, we would recommend the use of a calibrated shift-less base in any sensorless adaptive
optics system for nonlinear microscopy methods.
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