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Abstract 

The goal of this paper is to provide a detailed analysis of the complex dynamic scenario of spiral 

bevel gears by considering the torsional shaft stiffness. The dynamic model takes into account: time-

dependent stiffness and non-smooth nonlinearity due to the backlash, i.e., teeth contact loss. The 

time-varying meshing stiffness is evaluated by means of a nonlinear finite element model, which 

allowed an accurate evaluation of the global and local teeth deformation in both directions: forward 

and reverse motions. Due to intentional tooth profile errors, e.g., profile modification, manufacturing 

error, or assembly error, the loaded and unloaded tooth contact analyses were conducted. The 

dynamic model was validated by comparisons with a verified SDOF model in terms of linear natural 

frequencies and nonlinear dynamic response. The present study provides amplitude frequency 

diagrams and bifurcation diagrams; for specific regimes, periodic, quasiperiodic, and chaotic 

responses were found. The dynamic behavior of the systems was evaluated using various tools such 

as modal analysis, nonlinear time series analysis, spectra, 3D-phase diagrams, and Poincaré maps. This 

study proves that decreasing the DOFs of the system can lose some dynamics. Different phenomena 

have been found such as trapping and boom-and-bust cycle. The dynamic response of different cases 

is evaluated by estimating the largest Lyapunov exponent and the correlation dimension. It is found 

that the system undergoes complex dynamic phenomena including nT-periodic, trapping, and 

aperiodic motions, which are evidenced in 3D-bifurcation diagrams, spectra, Poincaré maps, and 3D-

phase diagrams. The chaotic motion found in this study is an undesirable behavior from a practical 

point of view, which can be avoided by adjusting the designed parameters. The results provide a basis 

for parameter design and dynamic characteristic control of the spiral bevel gear drive system. 

Keywords: Spiral bevel gear, Mesh stiffness, Torsional shaft stiffness, Bifurcation and chaos 

analyses, nonlinear time series analysis. 
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1. Introduction

The dynamic behavior of gear systems is a topic of great interest in mechanical transmissions.

Both the lifetime and the noise generated by a gear set can be influenced by its dynamic response. 

The presence of spiral bevel gears (SBGs) in many examples of high-power transmission systems has 

drawn attention to the importance of comprehending their dynamic behavior. SBGs are often utilized 

when a high-power density is required between intersected shafts. The complex geometry of SBGs 

makes it necessary to carefully consider the parameters that have a significant impact on the system 

response, for example the backlash and the gear tooth mesh stiffness (MS) which may lead to a non-

smooth time-varying dynamic system. 

It is interesting to note that the dynamic models for the gear systems may have great variety; 

however, it may still be possible to achieve similar predictions by employing completely different 

models for certain systems [1]. This depends on the dynamic characteristics of the systems under 

investigation; for instance, it may be sufficient to use a single-degree-of-freedom (SDOF) model to 

obtain accurate prediction, when the shaft torsional and flexural stiffnesses are decoupled from the 

other modes. In such cases, using a multi-degree-of-freedom model that accounts for the coupling 

between the torsional and transverse vibrations will not significantly improve the accuracy. On the 

contrary, when the dynamic properties lead to a strong coupling among meshing modes and other 

modes, the SDOF model cannot be significantly accurate. In such cases, no matter how sophisticated 

the SDOF is (considering non-linearity of the elements, excitation due to gear errors, time variation of 

MS, and damping), it cannot be accurate enough for response predictions. 

Yassine et al. [2] developed a three-dimensional model of a two-stage straight bevel gear system 

and conducted an investigation of its dynamic response. The main source of excitation was deemed 

to be the periodic fluctuations of the gear MS. They made a comparison between the behavior of a 

defective gear system (i.e., runout, profile error, tooth crack) and that of a flawless system. Their 
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results have implications in the design and maintenance of straight bevel gear transmissions. In 2018, 

Yavuz et al. [3] carried out a study on a dynamic model of a drivetrain consisting of a spiral bevel gear 

pair, shafts, and bearings. The dynamic model included the flexibilities of the shaft bearings, the 

backlash, and the time-varying MS. The multi-term harmonic balance method was applied to solve the 

governing equations, in conjunction with Newton’s method with arc-length continuation. They 

investigated the impact of backlash, fluctuation of gear MS, and variation of bearing stiffness on the 

dynamic scenario. Sun et al. [4] developed a 12-DOF model, besides a tooth pair mesh model proposed 

to improve describing mesh characteristics of individual tooth pairs. Three different approaches were 

compared to investigate the effect of mesh stiffness representation, including the average slope 

approach, local slope approach, and a quasi-statically defined interpolation function. In 2020, a 

dynamic model for the nonlinear time-varying behavior of a drivetrain consisting of parallel and 

intersecting axes was presented by Yavuz et al. [5]. Shaft and bearing flexibilities are included in the 

model through the use of finite element modeling and mesh models that account for backlash 

nonlinearity and fluctuating MS. 

A significant part of the scientific literature has been dedicated to developing dynamic models for 

gear pairs in order to consider the influence of specific parameter parts, e.g., backlash [6], 

manufacturing error [7], external load [8], and shaft flexibility [9]. Shi and Li [10] proposed two 

different dynamic models: 4-DOF and 10-DOF, for hypoid gears that consider MS dependent on the 

dynamic mesh force. The model takes into account the interaction between MS and dynamic 

response; a parametric surface approach was used to overcome the computational challenges of 

determining the dynamic mesh stiffness. The study showed that dynamic mesh stiffness has a 

significant impact on hypoid gear dynamic response, especially at lower loads, and provided a physics-

based tool for understanding the interaction between mesh stiffness and dynamic mesh force. In 

2022, a torsional-bending-axial dynamic model (12-DOFs) of the straight bevel gear system was 
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proposed by Gou et al. [11] to investigate the dynamic characteristics. Their research provided a 

theoretical basis for the parametric design and dynamic characteristics control of straight bevel gear 

systems. 

The main goal of the present study is to investigate the nonlinear dynamic scenario of spiral bevel 

gears, considering the effect of torsional shaft stiffness on the dynamic response of a real model of 

the SBG used in the transmission power system of helicopters. Shafts can have different lengths and 

diameters, which significantly affects the dynamic response of the system. In this study, the possibility 

of backside contact is considered, which leads to calculating the tooth-MS in both the forward and the 

reverse motions due to the geometry of the SBG. A nonlinear finite element method-based program, 

Transmission3D Calyx, is used to perform a precise static analysis to determine the system's MS. 

Because of the mismatch between the tooth surface of gear and pinion, a loaded tooth contact 

analysis (LTCA) and an unloaded tooth contact analysis (UTCA) are conducted. The dynamic model is 

used for investigating the nonlinear dynamic scenario; the analysis is carried out through a three-DOF 

model considering: torsional shaft stiffness, the effect of backlash, which leads to the non-smooth 

equation, variable stiffness, i.e., time-varying coefficients equation and consequent parametric 

excitation and the effect of stiffness variation and phasing in the case of backside contact (reverse 

motion). For a deeper understanding of the torsional shaft stiffness effect, a reduced single degree of 

freedom is compared with a system with three-DOF. Besides, the effect of shaft stiffness was 

investigated from a design point of view. The dynamic behavior of the systems has been evaluated 

through different tools: modal analysis, amplitude-frequency diagrams, bifurcation diagrams, time-

history responses, spectra, 3D-phase diagrams, Poincaré maps, largest Lyapunov exponent, and 

correlation dimension. 
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2. Dynamic system 

Fig. 1 shows a scheme of a spiral bevel gear system, where mechanical power is transmitted 

between two orthogonal axes. A purely torsional dynamic model is used, i.e., all translational DOFs 

are constrained and both the gear and the pinion rotate only around their axes. 

 
Fig. 1. The dynamic model of the gear system with torsional-DOF. 

2.1. System with three-DOF 

To consider the effect of torsional shaft stiffness on the dynamic response of the system, the 

governing equations of motion are derived for the system with three-DOF, see Fig. 2.  

 
Fig. 2. Torsional dynamic model of the gear system with three-DOF. 

The dynamic equations of motion in “𝜃” and “𝜑” direction for the gear (𝜃!) and the pinion (𝜑") 

are: 

𝜃!-DOF:				𝐼!"𝜃̈! = −𝑟!𝐹# −𝐾$!/𝜃! − 𝜃%0 − 𝐶$!/𝜃̇! − 𝜃̇%0	 (1)	𝜑&-DOF:				𝐼&'𝜑̈& = 𝑟&𝐹# −𝐾$&/𝜑& − 𝜑(0 − 𝐶$&/𝜑̇& − 𝜑̇(0	 (2)	
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The torsional shaft stiffness is: 

88 𝐾$)) = 𝐺	𝐽𝑙
𝜏(*' = 𝑇 ∙ 𝑑2𝐽 	 %+,-	@AAB							𝐾$)) = 𝑇) ∙ 𝐺10 ∙ 𝜏 	 , (𝑖 = 𝑚, 𝑙; 		𝑖𝑖 = 𝑝, 𝑔)	 (3)	

Where, 𝜏𝑚𝑎𝑥 is the maximum torsional stress of the shaft, 𝐺 is the shear modulus, 𝐽 is the second

polar moment of shaft area,	𝑟" and 𝑟! are the mean radii at the meshing points, 𝐶'" and 𝐶'! are the

material damping of the pinion and gear shafts. The gear system is simulated taking the motor and 

load masses into consideration. Their relative governing equations in the “𝜑” and “𝜃” directions are

respectively given for the motor (𝜑() and load (𝜃#) by:

𝜑(-DOF:				𝐼(𝜑̈( = 𝑇( −𝐾$&/𝜑( − 𝜑&0 − 𝐶$&/𝜑̇( − 𝜑̇&0	 (4)	𝜃%-DOF:				𝐼%𝜃̈% = −𝑇% −𝐾$!/𝜃% − 𝜃!0 − 𝐶$!/𝜃̇% − 𝜃̇!0	 (5)	
Where, 𝑇% =	/N/ N0⁄ 0 ∙ 𝑇1, N0 and N/ are the pinion and gear teeth number respectively. Due to

mounting, manufacturing error (Fig. 3), or intentional teeth profile modifications, a local gap between 

mating teeth can appear, it is called geometric transmission error (GTE), 

which is here calculated through a UTCA for forward and reverse motions, 𝑒	*(𝑡) and 𝑒	+(𝑡)
respectively: 

𝑒(𝑡) =
⎩⎪
⎨
⎪⎧𝑒	𝐹(𝑡) = 𝑒23 +V𝑒𝑎43cos(𝑗𝜔(𝑡)5

4+6

+V𝑒𝑎43sin(𝑗𝜔(𝑡)5

4+6

forward	motion

𝑒	𝑅(𝑡) = 𝑒27 +V𝑒𝑎47cos(𝑗𝜔(𝑡)5

4+6

+V𝑒𝑎47sin(𝑗𝜔(𝑡)5

4+6

reverse	motion
(6)	

The linear dynamic transmission error (DTE), 𝜆, along the line of action is defined as:

𝜆 = /𝑟&𝜑& − 𝑟!𝜃!0𝑎	 (7)	
where, 𝑎 = cos 𝛼 × cos 𝛽, β is the spiral angle and α is the normal pressure angle.
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Fig. 3. Geometric transmission error: lack of material along the line of action 

The dynamic load of pinion and its component along the line of action is 𝐹, and along the 𝑧-axis is

𝐹- which are defined as:

𝐹# = −𝐹8𝑎;								𝐹8 = 𝐶(/𝜆̇ − 𝑒̇0 + 𝐾(	 (𝑡)𝑓(𝜆 − 𝑒)	 (8)
In (8) the nominal force is given by a linear and an elastic nonlinear term, where: 

𝑓(𝜆 − 𝑒) = d𝜆 − 𝑏 − 𝑒, 𝜆 − 𝑒 > 𝑏0, −𝑏 ≤ 𝜆 − 𝑒 ≤ 𝑏𝜆 + 𝑏 − 𝑒, 𝜆 − 𝑒 < −𝑏 ;	𝐾(	 (𝑡) = i𝐾(3 (𝑡), 𝜆 − 𝑒 > 𝑏
𝐾(7 (𝑡), 𝜆 − 𝑒 < −𝑏 (9)	

𝑓(𝜆 − 𝑒)	is the backlash function that is piecewise linear; see Fig. 4. This function multiplied by

the stiffness returns the elastic restoring force [12]. Whenever 𝜆 − 𝑒	is between −𝑏 and +𝑏, the

contact loss happens [13], [14]. For 𝜆 − 𝑒 > 𝑏, the mesh is expected to be in the forward contact

(desired situation), where 𝐾𝑚𝐹 (𝑡) is extracted from static nonlinear FEA during the forward motion.

While if 	𝜆 − 𝑒 < −𝑏, undesired backside contact happens (double-sided impact), where 𝐾𝑚𝑅 (𝑡) is

obtained from static simulation during the reverse motion; see Ref. [14]. The results of the 

experiments given in Ref. [15] revealed that tooth separation is likely to take place, which suggests 

that gear backlash non-linearity needs to be considered in the dynamic models. Furthermore, it was 

clarified that the mesh stiffness fluctuation is one of the predominant sources of excitation from the 

gear mesh and must therefore be considered in the governing equations. 
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Fig. 4. Equivalent gear model and backlash function. 

The meshing stiffness of the gear pair is a time-varying periodic function, with the mesh 

frequency,	𝜔( = 01

23
𝑁"𝑛4, where 𝑛4 is the input shaft speed and 𝑁" is the number of pinion teeth;

the equivalent meshing stiffness Fourier series is given by: 

d𝜔( = 2𝜋60𝑁&𝑛5𝑠 = (𝑁6 − 1)/2 ⇒ 𝐾((𝑡) = 𝑘2 +V𝑎4cos(𝑗𝜔(9

4+6

𝑡) +V𝑏4sin(𝑗𝜔(9

4+6

𝑡)	 (10)	
Where 𝜔( is the fundamental frequency of 𝐾(, technically meshing frequency, 𝑁5 is the number

of samples considered within a meshing period when the 𝐾( is numerically analyzed by nonlinear FEA.

In order to normalize the governing equation, the following parameters are introduced.  

𝜏 = 𝜔8𝑡	 𝜆̅ = /𝑟̅&𝜑& − 𝑟̅!𝜃!0𝑎: + 𝑒̅(𝑡) 𝜃̈ = 𝜔8;𝜃<<	 𝜃̇ = 𝜔8𝜃<	 (11)	𝑟̅& = 𝑟& 𝑏s 𝑟̅! = 𝑟! 𝑏s 𝜑̈ = 𝜔8;𝜑<<	 𝜑̇ = 𝜔8𝜑<	
𝐾t$! = 𝐾$!𝐼!"𝜔8; 𝐶$̅! = 𝐶$!2𝐼!"𝜔8 (12)	
𝐾t$& = 𝐾$&𝐼&'𝜔8; 𝐶$̅& = 𝐶$&2𝐼&'𝜔8 (13)	

𝐾t$( = 𝐾$&𝐼(𝜔8; 𝐶̅$( = 𝐶$&2𝐼(𝜔8 𝑇u( = 𝑇(𝐼(𝜔8; (14)	
𝐾t$% = 𝐾$!𝐼%𝜔8; 𝐶$̅% = 𝐶$!2𝐼%𝜔8 𝑇u% = 𝑇%𝐼%𝜔8; (15)	
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Consequently, Eqs. (1)-(5) can be rewritten as follows: 

𝜃!<< = 𝑚=>𝑏𝑟!𝑎:𝐼!" /𝐾t((𝑡)𝑓/𝜆̅ − 𝑒̅0 + 2𝜉𝜆̅<0 + 𝐾t$!/𝜃% − 𝜃!0 + 2𝐶$̅!/𝜃%< − 𝜃!<0 (16)	
𝜑&<< = 𝐾t$&/𝜑( − 𝜑&0 + 2𝐶̅$&/𝜑(< − 𝜑&< 0 −𝑚=>𝑏𝑟&𝑎:𝐼&' /𝐾t((𝑡)𝑓/𝜆̅ − 𝑒̅0 + 2𝜉𝜆̅<0 (17)	

𝜑(<< = 𝑇u( +𝐾t$(/𝜑& − 𝜑(0 + 2𝐶$̅(/𝜑&< − 𝜑(< 0 (18)	𝜃%<< = 𝐾t$%/𝜃! − 𝜃%0 + 2𝐶$̅%/𝜃!< − 𝜃%<0 − 𝑇u% (19)	
where, 

𝑓(λu − eu) = iλu − eu − 1, λu − eu > 10, −1 ≤ λu − eu ≤ 1𝜆̅ − eu + 1, λu − eu < −1 	 (20)	
𝐾((𝑡) = 1 +V 𝑎4𝑚?@𝜔8; cos	(𝑗𝜔(

9

4+6

𝑡) +V 𝑏4𝑚?@𝜔8; sin	(𝑗𝜔(
9

4+6

𝑡)	 (21)	
Typically, in gearboxes the driven shaft is connected to big inertial masses; therefore,	𝜃𝑙	can	be

neglected	 in	 Eqs.	 (16)-(19). The four-DOF system is then reduced to a three-DOF system as 

represented in Eqs.	(22)-(24): 

𝜃!<< = 𝑚=>𝑏𝑟!𝑎:𝐼!" /𝐾t((𝑡)𝑓/𝜆̅ − 𝑒̅0 + 2𝜉𝜆̅<0 − 𝐾t$!/𝜃!0 − 2𝐶̅$!/𝜃!<0	 (22)	
𝜑&<< = 𝐾t$&/𝜑( − 𝜑&0 + 2𝐶̅$&/𝜑(< − 𝜑&< 0 −𝑚=>𝑏𝑟&𝑎:𝐼&' /𝐾t((𝑡)𝑓/𝜆̅ − 𝑒̅0 + 2𝜉𝜆̅<0 (23)	

𝜑(<< = 𝑇u( +𝐾t$(/𝜑& − 𝜑(0 + 2𝐶$̅(/𝜑&< − 𝜑(< 0 (24)	
2.2. System with single DOF 

To investigate the effect of shaft stiffness on the dynamic behavior of the system, the three-DOF 

model is compared with the SDOF system. The dynamic model of the SDOF system is represented in 

Fig. 5. If the shaft compliance can be neglected, i.e., they are extremely stiff, then 𝜃! − 𝜃# ≈ 0
and 𝜑" − 𝜑( ≈ 0. Then the three-DOF system can be reduced to SDOF system in Fig. 5.

Fig. 5. Dynamic model of gear system with SDOF. 
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Considering the aforementioned assumption on the shaft stiffness Eqs.	 (16-(19) can be 

reduced to: 

𝐼!"𝜃̈! = −𝑟!𝐹# − 𝑇%	 (25)	𝐼&'𝜑̈& = 𝑟&𝐹# + 𝑇(	 (26)	
Following Refs. [12], [16]–[19], we can introduce the parameter 𝜆 of Eq. (11) and the following

parameters: 

𝑇u=> = 1𝑏𝑚=>𝜔8; y 𝑇(𝑟&𝑎:z	 𝜔8 = {𝐾2 𝑚=>
s (27)	𝜉 = 𝐶(2𝑚=>𝜔8 𝑚=> = |/𝑟&𝑎0;𝐼&' + /𝑟!𝑎0;𝐼!" }A6

Then the rigid body motion is removed to get the SDOF model, in terms of the DTE (𝜆). The

governing equations (25)and (26) are combined to obtain the following: 

𝜆̅<< +𝐾((𝑡)𝑓/𝜆̅ − 𝑒̅0 + 2𝜉𝜆̅< = 𝑇u=>	 (28)
It must be noted that the backlash function 𝑓G𝜆̅ − 𝑒̅I, the mesh stiffness 𝐾((𝑡), and DTE 𝜆̅ are

the same for both the SDOF and the three-DOF systems. 

2.3. Mesh stiffness calculation  

One of the fundamental steps needed to carry out the vibration analysis, is the evaluation of the 

mesh stiffness through the loaded and unloaded contact analyses, namely LTCA and UTCA. LTCA and 

UTCA provide the transmission error under nominal and negligible loading conditions, respectively. 

The difference between the transmission error obtained from the LTCA and the UTCA is the part of 

the transmission error related exclusively to the elastic deformation. This value, known as static 

transmission error, is used for calculation of the mesh stiffness. 

SBGs are typically manufactured with an intentional tooth profile error, i.e., the mismatch 

between two teeth surfaces of gear and pinion [20]–[22]. Such intentional profile error leads to 

effectively performs gear mesh even in the presence of misalignments, manufacturing errors, or high 
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torque levels which cause the gears to deflect to imperfect locations. Although conjugate teeth 

profiles provide an ideal transmission with a constant transmission ratio, which is not practical for 

SBGs. Consequently, SBGs operate with a certain amount of geometric transmission error [20], [22], 

[23], and therefore LTCA and UTCA are of utmost importance in obtaining the correct mesh stiffness. 

The LTCA and UTCA could be conducted using different approaches: theoretical models, experiments, 

and FEM: 

1. Theoretical models provide solutions for simplified cases while, for complex gear

geometry, such as the case of SBGs, closed form or approximate solutions are not accurate 

enough. 

2. Experimental methods rely on well-equipped testing facilities. Despite their effectiveness,

tests are time-demanding, expensive, and measurements on rotating parts are limited to 

non-contact surfaces. 

3. FEM is well-established for providing affordable and reliable results within a reasonable

time. More specifically, nonlinear FEM has become increasingly popular thanks to the 

possibility of including contact nonlinearities throughout the analysis [18], [19], [24], [25]. 

In the present study, a nonlinear finite element software was used to perform tooth contact 

analysis. The kinematics of gear cutting was implemented in ANSOL-Calyx (Calyx-HypoidFaceMilled 

product form ANSOL company – Version 2011) to generate the spiral bevel gear geometry. A mesh 

sensitivity analysis was carried out to determine the appropriate mesh size (see details given in Ref. 

[19]), and the simulation output was validated considering NASA experimental data [26]. 

The results of the loaded and unloaded tooth contact analysis are displayed in Figs. 6-9., both the 

forward and the reverse motions, where red dots represent the mesh stiffness and transmission error 

evaluated from FEM analyses, and the continuous line represents the Fourier series used to fit the 

FEM results. 
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Considering the normalized meshing period, it is worth noticing that, in the LTCA, the teeth 

undergo deflection due to a combination of elastic deformation and rigid transmission error, see Fig. 

6, while, during the UTCA, the teeth are subjected to a pure rotational displacement, see Fig. 7. 

a) forward motion b) reverse motion

Fig. 6. Transmission error (gear rotation) – LTCA: torque 537.13 N⋅m:

a) forward motion, b) reverse motion; ▬ Fitted curve, ● FEM results.

a) forward motion b) reverse motion

Fig. 7. Rigid body transmission error (gear rotation) – UTCA: torque 0.001 N⋅m:

a) forward motion, b) reverse motion; ▬ Fitted curve, ● FEM results.

a) forward motion b) reverse motion

Fig. 8. Elastic transmission error after LTCA and UTCA: 

a) forward motion, b) reverse motion; ▬ Fitted curve, ● FEM results.
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The static transmission error obtained from the difference between the LTCA and UTCA is shown 

in Fig. 8. Since the LTCA and UTCA are performed under constant torque, the knowledge of the static 

transmission error allows for the evaluation of the mesh stiffness over the meshing period, see Fig. 9. 

Once the mesh stiffness is known, its approximated expression, obtained from interpolation, can be 

used in Eqs. (16)-(19). 

a) Forward motion b) Reverse motion 

  
Fig. 9. Mesh stiffness diagram: 

a) forward motion, b) reverse motion; ▬ Fitted curve by Fourier series, ● FEM results. 

2.4. Modal analysis 

Modal analysis is one of the effective tools for identifying the mechanical properties within gear 

systems; for such analysis, a simplified linear time-invariant form of equations is employed (i.e., Eqs. 

(1)-(5) for the system with three-DOF, and Eqs. (25)-(26) for the system with SDOF). The dynamic load 

along the line of action is 𝐹, = 𝐾(𝜆 + 𝐶(𝜆̇, where 𝐾( is the mean value of the mesh stiffness, 

(𝐾( = 𝑘3), and the backlash is considered exactly zero. Eqs. (1)-(5) can be rewritten as follows: 

𝜽𝒈-𝐃𝐎𝐅:	𝐼!"𝜃̈! − 𝑟!𝑎;𝐾(𝑟&𝜑& − 𝑟!𝑎;𝐶(𝑟&𝜑̇& + �𝐾$! + 𝑟!𝑎;𝐾(𝑟!�𝜃! + �𝐶$! + 𝑟!𝑎;𝐶(𝑟!�𝜃̇! −𝐾$!𝜃% − 𝐶$!𝜃̇%= 0	 (29)	
𝝋𝒑-𝐃𝐎𝐅:	𝐼&'𝜑̈& + �𝐾$& + 𝑟&𝑎;𝐾(𝑟&�𝜑& + �𝐶$& + 𝑟&𝑎;𝐶(𝑟&�𝜑̇& − 𝑟&𝑎;𝐾(𝑟!𝜃! − 𝑟&𝑎;𝐶(𝑟!𝜃̇! −𝐾$&𝜑(− 𝐶$&𝜑̇( = 0	 	 (30)	
𝝋𝒎-𝐃𝐎𝐅:		 𝐼(𝜑̈( +𝐾$&𝜑( + 𝐶$&𝜑̇( −𝐾$&𝜑& − 𝐶$&𝜑̇& = 𝑇(	 (31)	𝝋𝒍-𝐃𝐎𝐅: 𝐼%𝜃̈% +𝐾$!𝜃% + 𝐶$!𝜃̇% −𝐾$!𝜃! − 𝐶$!𝜃̇! = −𝑇%	 (32)	
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Finally, we can obtain the stiffness and mass matrices: 

[𝑀] = ⎣⎢⎢
⎢⎡𝐼&' 0 0 00 𝐼!" 0 00 0 𝐼( 00 0 0 𝐼%⎦⎥⎥

⎥⎤ ; [𝐾] =
⎣⎢⎢
⎢⎡𝐾$& + 𝑟&𝑎;𝐾(𝑟& −𝑟&𝑎;𝐾(𝑟! −𝐾$& 0−𝑟!𝑎;𝐾(𝑟& 𝐾$! + 𝑟!𝑎;𝐾(𝑟! 0 −𝐾$!−𝐾$& 0 𝐾$& 00 −𝐾$! 0 𝐾$! ⎦⎥

⎥⎥⎤	; 𝑞⃑ = �𝜑&𝜃!𝜑(𝜃% �	 (33)	
Likewise, for the reduced system, Eqs. (25)-(26) can be written as follows: 𝜽𝒈-𝐃𝐎𝐅:	𝐼!"𝜃̈! − 𝑟!𝑎;𝐾(𝑟&𝜑& − 𝑟!𝑎;𝐶(𝑟&𝜑̇& + �𝑟!𝑎;𝐾(𝑟!�𝜃! + �𝑟!𝑎;𝐶(𝑟!�𝜃̇! = −𝑇%	 (34)	

𝝋𝒑-𝐃𝐎𝐅:𝐼&'𝜑̈& + �𝐾$& + 𝑟&𝑎;𝐾(𝑟&�𝜑& + �𝐶$& + 𝑟&𝑎;𝐶(𝑟&�𝜑̇& − 𝑟&𝑎;𝐾(𝑟!𝜃! − 𝑟&𝑎;𝐶(𝑟!𝜃̇! = 𝑇(	 (35)	
Therefore, the stiffness and mass matrices for the reduced system are given by: 

[𝑀] = �𝐼&' 00 𝐼!"� ; [𝐾] = � 𝑟&𝑎;𝐾(𝑟& −𝑟&𝑎;𝐾(𝑟!−𝑟!𝑎;𝐾(𝑟& 𝑟!𝑎;𝐾(𝑟! �	; 𝑞⃑ = {𝜑& 𝜃!}F (36)	
Under the hypothesis of synchronous motion, i.e., 𝑞⃑ = ℎ(𝑡) ∙ 𝑢R⃑ , Eqs. (33) and (36) can be

expressed in a compact form as: 

([𝐾] − 𝜔8;[𝑀]) ∙ 𝑢�⃑ 8 = 0	 (37)	
Where 𝑢��⃑ 𝑛 represents the n-th eigenvector associated with the n-th eigenvalue 𝜔,	 . By solving Eq.

(37), we can obtain four natural frequencies, one of which must be zero due to the rigid body motion. 

Table 1 shows the non-zero natural frequencies for two different systems. 

Table 1. Non-zero natural frequencies, [rad/s]. 

System with three-DOF (+1 rigid body mode) 𝜔8GH.6 𝜔8GH.; 𝜔8GH.: (meshing natural frequency)2704 17957 35140
System with SDOF (+1 rigid body mode) 𝜔8JKLM19592

Fig. 10 shows all three rotational mode shapes associated with the natural frequencies. Four nodes 

represent the rotational modes of motor (node no. 1), pinion (node no. 2), gear (node no. 3), and load 

(node no. 4) when the excitation frequency comes to the natural frequencies, see Table 2. 
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Fig. 10. Normilized mode shapes for all three natural frequencies: 

First natural frequency (●), second natural frequency (●), and third natural frequency(●). 

The normalized mode shapes are represented in Table 2. For each mode, the maximum parameter 

is considered to normalize the mode. 

Table 2. Normalized mode shapes of three-DOF system. 

No. 
Natural frequency 

[rad𝑠 ] 
Mode shape 

motor pinion gear load 

1 2704 1 0.993 0.967 0 

2 17957 1 0.680 0.140 0 

3 35140 -1 0.222 -0.001 0 

a) First mode:

𝜔/012.4	 = 2704 rad sN  

b) Second mode: 

𝜔/012.5	 = 17957rad sN  

c) Third mode: 𝜔/012.6	 = 35140rad sN  

Node No. 1 represents rotation of Motor. 

Node No. 2 represents rotation of Pinion. 

Node No. 3 represents rotation of Gear. 

Node No. 4 represents rotation of Load. 

Node No. 1 
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Modal torsional amplitude 

Node No. 2 

Node No. 3 
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2.5. Generic viscous damping 

A classical method for considering a dissipation in a dynamical system is the Rayleigh proportional 

damping: the damping matrix C is a linear combination of the mass matrix M and the stiffness matrix 

K, i.e.: [𝐶] = 𝛼[𝑀] + 𝛽[𝐾]. It should be kept in mind that this damping model is a kind of

approximation of unknown dissipation mechanisms, while it does not change the modes of vibration 

(eigenvectors). It means that, for a generic system, i.e., non-proportionally damped systems, the 

damping matrix C cannot be diagonalized by the modes of the undamped system. Indeed, the 

presence of dissipation changes both the eigenvalues and the eigenvectors, which are in general 

complex. In order to generalize the modal analysis to generic damping, working in the phase space 

(𝑞̇, 𝑞) is required; in particular, in this paper, the Duncan approach is applied [27]. what can be

expressed in a general form governing equations is: 

� [𝑀]𝑞̇ − [𝑀]𝑞̇ = 0[𝑀]𝑞̈ + [𝐶]𝑞̇ + [𝐾]𝑞 = f	 (38)	
Where, 𝑞⃑ = {𝜑& 𝜃!}F for the SDOF system and 𝑞⃑ = {𝜑& 𝜃! 𝜑( 𝜃%}F for the three-DOF

system. Similar to the undamped systems for the free vibration problem, it can be written as: 

[𝐴]{𝑦̇} + [𝐵]{𝑦} = 0	 (39)	
(39) is the governing equation in the state space. Where: 

[𝐴] = �0 𝑀
𝑀 𝐶� ;	{𝑦̇} = d𝑞̈	𝑞̇� ; 	[𝐵] = �−𝑀 0

0 𝐾� ;	{𝑦} = d𝑞̇	𝑞�	 (40)	
Using a general form of the solution, i.e., 𝑦(𝑡) = 𝑣	𝑒8', into Eq. (39), one obtains an eigenvalue

problem; (𝐴𝜆+ 𝐵)𝑣 = 0. The characteristic equation is a polynomial of degree 2N: det(𝐴𝜆+ 𝐵) = 0.

It provides 2N complex conjugate eigenvalues and 2N complex conjugate eigenvectors. The 

introduction of damping changes the nature of the eigenvalue problem associated with the free 

vibration of a mechanical system: without damping one has N real eigenvalues and eigenvectors; with 

damping, one has 2N pairs of complex conjugate eigenvalues and eigenvectors. Table 3 represents the 

eigenvalues and eigenvectors for damped and undamped systems with three-DOF. 
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Table 3. extracted eigenvalues and eigenvectors for the three-DOF system. 

Damped system Undamped system Damped system Undamped system 

Eigenvalues 

[rad/s] 
0 0 Eigenvalues 

[rad/s] 
55.1 + 2703.7i 2704i

Eigenvectors Eigenvectors: 

Motor 1 1	 Motor 0.692 + 4.0 × 10!"i 0.692 + 0i 

Pinion 1 1	 Pinion 0.687 + 4.2 × 10!"i 0.687 + 0i 

Gear 1 1 Gear 0.669 + 4.7 × 10!"i 0.669 + 0i

Load 1 1	 Load 0 0 

Damped system Undamped system Damped system Undamped system 

Eigenvalues 

[rad/s] 
431.1 + 17952.3i 17957i Eigenvalues 

[rad/s] 
1571.3 + 35105.2i 35140i

Eigenvectors: Eigenvectors: 

Motor 0.826 − 9.7 × 10!#i 0.826 + 0i	 Motor −0.976 − 0.6 × 10!#i −0.976 + 0i 

Pinion 0.562 − 0.2 × 10!#i 0.562 + 0i	 Pinion 0.217 − 2.5 × 10!#i 0.217 + 0i 

Gear −0.116 + 7.5 × 10!#i −0.116 + 0i	 Gear −0.01 + 0.7 × 10!#i −0.001 + 0i 

Load 0 0 Load 0 0

As seen from (41), extracted damping ratios are represented: ξ6 = 0.045 ξ; = 0.024 ξ: = 0.020	 (41)	
Eigenvalues discrepancy for the damped and undamped systems is not observable as considered 

damping for the system are small so their effects on the eigenvectors are not remarkable. 

3. Numerical results

Nonlinear differential Eqs. (16)-(19) and Eq. (28) with time-varying parameters represent a non-

smooth and non-autonomous dynamical system with three and single DOFs, respectively after 

removing the rigid body motion. These equations are solved numerically through an implicit fifth-

order Runge-Kutta scheme (RADAU) coded in FORTRAN language, the algorithm is enough stable and 

accurate, see e.g., Refs. [12], [18], [24], [25]. In addition to the external constant torque (power 

transmitted), the time-varying mesh stiffness excites the system parametrically. 

The time responses calculated by direct simulation are used for building amplitude-frequency and 

bifurcation diagrams of Poincaré maps, where the control parameter is the pinion rotation speed. For 

each simulation, the transient is separated from the steady-state part, i.e., the first 10000 periods are 

assumed to be transient, and beyond that, the influence of excitation frequency variation is 

considered expired; therefore, the first 10000 periods of simulation are never recorded and analyzed. 
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The Poincaré map diagrams are derived from the last 1000 periods of time responses. Each Poincaré 

map is obtained by sampling the time histories with the same period of meshing frequency. It must 

be pointed out that the governing equations are written in dimensionless form for using the natural 

frequencies for dimensionless time; in particular, 𝜔,GHIJ is used for the SDOF, and the second natural 

frequency, 𝜔,KL.0 is used for the three-DOF. All necessary data for dynamic simulation are given in 

Appendix A. and Appendix B. 

3.1. SDOF vs three-DOF systems: effect of the low torsional shaft stiffness 

In this section, the three-DOF system, see Fig. 2, is analyzed considering low torsional stiffness: in 

particular, when the shaft flexibility is extremely low, 𝐾'" = 𝐾'! ≈ 0, Eqs. (1)-(5) can be reduced to a 

single degree of freedom. The analyses are carried out on the linearized system and the nonlinear one. 

For the linear analysis, natural frequencies and modes are investigated. For the nonlinear analysis, the 

forced response is studied.  

The following stiffness is considered for the three-DOF model, 𝐾'" = 2.76 × 10M	N ∙ m	and 𝐾'! =
8.27 × 10M	N ∙ m, and zero for the SDOF model to obtain the natural frequencies of the systems (Table 

1); the differences between meshing natural frequency and second natural frequency is 9%. In order 

to understand the relationship between the natural frequencies of and torsional shaft stiffness, the 

three natural frequencies are plotted vs 𝛤, where 𝑘NOPQR",! = T7
8,:

U
, see Fig. 11.  
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a) Third non-zero natural frequency of

the system with three-DOF 

b) First and second non-zero natural

frequencies of the system with three-DOF 

Fig. 11. Non-zero natural frequency of the system with three-DOF. 

If a sufficiently low value for the  𝐾'" and  𝐾'! is considered (𝐾'" = 27.6	N ∙ m	and 𝐾'! = 82.7	N ∙
m), the mesh natural frequency for both systems gradually approaches each other,	𝜔,OKL.VNWXQQOHIJ =
19595 XYZ

[
≈ 𝜔,GHIJ, while the first and second natural frequencies for the three-DOF system tend

toward  zero. Besides, a linear simulation is carried out to extract the DTE time-history of both systems, 

see Fig. 12. As shown, the SDOF and three-DOF systems vibrate with the same period, and after 

passing the transient part, their responses tend to the same value, which is 0.175. Indeed, the torque 

is the same (179.04 N ∙ m) and the static transmission error depends on the meshing stiffness only

(see Eq. (11)). 

Fig. 12. Extracted time-history response from linear solutions with the low torsional shaft 

stiffness; system with SDOF (●), and three-DOF (●). 

Now the fully nonlinear models are considered for investigating the differences between the SDOF 

and three-DOF models, while a low value for the  𝐾'" and  𝐾'! is considered, 27.6	N ∙ m	and 82.7	N ∙ m

𝜔/012.6';<==0>?@

𝜔/A>?@ = 19595rads
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respectively. The accuracy of the system with a SDOF is analyzed in Refs. [12], [17]–[19], so by this 

comparison, we can assume that the three-DOF model is validated as well. Fig. 13 depicts the root-

mean-square (RMS) of the system response vs the excitation frequency; simulations are carried out 

for both increasing and decreasing the excitation frequency (forward and backward). As the excitation 

frequency depends on the rotation speed of the input shaft for backward simulation, the rotation 

speed starts from the highest value to the lowest value; on the contrary, in the forward simulation, 

the speed starts from the lowest to the highest speed (from low to high excitation frequency). In 

agreement with the linear analysis, in these simulations, the damping ratio for the SDOF is 0.024, while 

for the three-DOF system, the damping ratios are ξ5 = 0.045, ξ0 = 0.024, and ξV = 0.020.

Fig. 13. RMS response extracted from nonlinear dynamic simulations with the low torsional 

shaft stiffness; system with SDOF (●), and three-DOF (●). 

As the comparison revealed, both the SDOF and the three-DOF models experienced backside 

contact and tooth-separation phenomena at the approximately same speed; there are no apparent 

differences in the dynamic responses. Resonance jumps occurred almost at the same excitation 

frequencies in both the SDOF and the three-DOF systems: primary resonance 
\C
\D
EF.G = 0.93, and

parametric resonance 
\C
\D
	 = 2.09. Principle resonances of the higher harmonics of the time-varying

stiffness (Eq. (21)) are present at 
\C
\D
	 = 5

0
, 5
V
, 5
M
. The slight difference is due to the existence of torsional 

shaft stiffness. 
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3.2. Nonlinear dynamic scenario: bifurcation analysis, nominal torsional shaft stiffness 

In this section, the dynamic behavior of the system is analyzed. The nominal value of torsional 

shaft stiffness is considered, 𝐾'" = 2.76 × 10M	N ∙ m	and 𝐾'! = 8.27 × 10M	N ∙ m. Fig. 14  shows the

amplitude-frequency diagram vs the excitation frequency for both the SDOF and the three-DOF 

models. 

Fig. 14. RMS diagram, comparison between the system with SDOF (●), and three-DOF (●). 

The backlash function is the main source of nonlinearity, as it introduces a discontinuity; the 

system may experience three different states: drive-side contact (desirable contact), tooth separation, 

and backside contact (coast-side contact). As it was explained in section 2, when the amplitude of 𝜆
(DTE) is between -1 and 1, tooth separation takes place. The discontinuity and presence of torque give 

rise to a softening-type resonance (vibration amplitude bent to the left). 

Both the SDOF and the three-DOF models experience three different jumps due to different 

resonances: the primary resonance, the super-harmonic resonance, and the parametric resonance: 

• Super-harmonic resonance,
N!

N"
	 = 0.5: 

Ø Forward: jump occurs at 
N!

N"
$%.' = 0.49 for the three-DOF system, and 

N!

N"
()*+ = 0.489 for the 

SDOF system; see Table 4 – case 𝑫.
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Ø Backward: jump occurs at 
N!

N"
$%.' = 0.505 for the three-DOF system; see Table 4 – case 𝑪.

• Primary resonance, 
N!

N"
	 = 1:

Ø Forward: jump occurs at 
N!

N"
$%.' = 0.859	for the three-DOF system, and 

N!

N"
()*+ = 0.849 for 

the SDOF system; see Table 4 – case 𝑬.

Ø Backward: jump occurs at 
N!

N"
$%.' = 1.132	for the three-DOF system, and 

N!

N"
()*+ = 0.936 for 

the SDOF system; see Table 4 – case 𝑩.

• Sub-harmonic resonance, 
N!

N"
	 = 2:

Ø Forward: jump occurs at 
N!

N"
$%.' = 1.907 for the three-DOF system, and 

N!

N"
()*+ = 1.9 for the 

SDOF system; see Table 4 – case 𝑭.

Ø Backward: jump occurs at 
N!

N"
$%.' = 2.087 for the three-DOF system, and 

N!

N"
()*+ = 2.095 for 

the SDOF system; see Table 4 – case 𝑨.

Additionally, instability is observed in both the SDOF and the three-DOF systems at different regimes: 

• The three-DOF system:

Ø Backward simulation; 
N!

N"
$%.' ∈ [2.087, 1.975], [1.088, 0.970], [0.874, 0.850], [0.649, 0.637], [0.613, 0.595].

Ø Forward simulation, 
N!

N"
$%.' ∈ [0.858, 0.874], [0.984, 1.088], [1.975, 2.087].

• The SDOF system: forward simulation; 
N!

N"
()*+ ∈ [1.078, 1.082].

The tooth separation in the system represents itself as a jumping phenomenon: when the system 

is excited from low to high frequencies, the response grows until the point that any further increase 

in excitation frequency would cause a spontaneous jump in the amplitude of the dynamic transmission 

error, after the jump a further increase in the frequency causes a reduction of amplitude. The super-

harmonic peaks (
N!

N"
	 = 6

;
, 6
:
, 6
O
, …) are resonances caused by the super-harmonics of the meshing 

stiffness; the one at the fundamental frequency close to 
N!

N"
= 1 is the primary resonance, which is due 

to the fundamental harmonic. Close to 
N!

N"
= 2, instability due to the principal parametric resonance 

(Mathieu type) is present, and the resonance branch shows a softening character due to loosing of 

contact. 
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As soon as the nondimensional amplitude of the response falls below -1, the undesired backside 

contact occurs; this phenomenon takes place at different frequencies for the SDOF system. Once the 

backside contact is developed, increasing excitation frequency causes an increment of amplitude, 

indicating a hardening behavior. The response exhibits backside contacts at the end of the softening 

branch for  
\C

\D
HIJK ∈ [0.937, 0.973	] (see Table 4 – Case 𝐴_). On the contrary, backside contact does

not appear in the model of the system with three-DOF. 

By analyzing the amplitude-frequency diagram, the main and remarkable difference between 

SDOF and three-DOF systems comes to the possibility of backside contact phenomena. In the current 

case, considering torsional shaft stiffness, i.e., the three-DOF model, prevents the system from 

experiencing undesirable backside contact. 

Table 4. The properties of starting and ending points of separation and backside contact for the forward 

motion 

SDOF Three-DOF 

starting point ending point starting point ending point 

T
e

e
th

 s
e

p
a

ra
ti

o
n

 

B
a

ck
w

a
rd

 s
im

u
la

ti
o

n
 𝐴 𝜔( 𝜔8s 2.095 0.974 2.087 1.268 min	(𝜆̅) 0.998 -0.995 0.977 0.054 max	(𝜆̅) 1.553 2.074 1.606 1.865 

𝐵 𝜔( 𝜔8s 0.936 0.484 1.132 0.513 min	(𝜆̅) 0.854 -0.964 0.899 -0.761 max	(𝜆̅) 1.538 2.065 1.535 2.033 

𝐶 𝜔( 𝜔8s
No teeth separation 

0.505 0.480 min	(𝜆̅) 0.998 0.960 max	(𝜆̅) 1.510 1.509 

F
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n

 𝐷 𝜔( 𝜔8s 0.489 0.507 0.490 0.505 min	(𝜆̅) 0.968 0.998 0.979 0.998 max	(𝜆̅) 1.530 1.502 1.527 1.509 

𝐸 𝜔( 𝜔8s 0.849 1.148 0.859 1.132 min	(𝜆̅) 0.725 0.995 0.645 0.899 max	(𝜆̅) 1.588 1.479 1.580 1.535 

𝐹 𝜔( 𝜔8s 1.900 2.095 1.907 2.087 min	(𝜆̅) 0.916 0.998 0.926 0.997 max	(𝜆̅) 1.597 1.551 1.613 1.606 
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𝐴<
𝜔( 𝜔8s 0.973 0.937 

No backside contact min	(𝜆̅) -1.206 -1.065 max	(𝜆̅) 2.243 2.208 
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Now the bifurcation diagrams of the Poincaré maps are analyzed in order to complete the analysis. 

The maps are built by sampling the time histories at the same frequency of excitation. When the 

frequency is changed, the initial condition is the final state of the system at the previous step. In order 

to eliminate the transient due to change of frequency, the first 10000 periods are not recorded. From 

the bifurcation diagram, the differences between the SDOF and three-DOF systems are highlighted in 

Fig. 15 (backward) and Fig. 16 (forward). Comparing the bifurcation and amplitude-frequency 

diagrams explain better the dynamic phenomena. Indeed, by considering amplitude-frequency 

diagrams, it seems that SDOF and three-DOF systems experience the same behavior, conversely there 

are remarkable differences in the bifurcation diagrams, see Fig. 15 and Fig. 16 (light blue islands). 

Forward simulation: results shown in Fig. 15. First, both systems experience a periodic behavior, 

until the excitation frequency approaches the fundamental frequency, where the system experiences 

a jump phenomenon due to the primary resonance followed by a tooth separation; at 
N!

N"
	 = 0.86 

(three-DOF) and 0.85 (SDOF). At the beginning of tooth separation, the SDOF system remains periodic, 

but the three-DOF system exhibits chaotic behavior. After that, both systems first experienced a 

chaotic response, then at 
N!

N"
	 ≈ 1.08   4-T responses take place, and again the SDOF and three-DOF 

systems become periodic at 
N!

N"
	 = 1.13, and	1.15 respectively, see zone-I. By increasing the speed and 

approaching the sub-harmonic range, both systems move from periodic response to the 2-T responses 

for the SDOF system, and non-periodic response for the three-DOF system, see zone-II. Therefore, we 

can claim that using a SDOF system, some dynamics are not correctly captured. 
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Fig. 15. Bifurcation diagram extracted from forward simulation; 

comparison between the systems with SDOF (●), and three-DOF (●). 

Backward simulation: Fig. 16 shows the bifurcation diagrams of the Poincaré maps vs the mesh 

frequency ratio in the case of backward speed variations. For each frequency, the final condition of 

each response is considered the initial condition of the subsequent frequency. The dynamic behavior 

initially (high frequency) exhibits a periodic response until the excitation frequency attains (
N!

N"
= 2), 

where instability due to parametric resonance occurred. The dynamic response of the SDOF system 

results in the attainment of a 2-T response; while an non-periodic response is evidenced from the 

three-DOF system at the onset (
N!

N"
$%.' ∈ [2.087, 1.975]), see Fig. 16: zone-I. Subsequently, the dynamic 

response of the three-DOF system shifts to 2-T ( 
N!

N"
$%.' ∈ [1.955, 1.415], [1.328, 1.268]) and 4-T ( 

N!

N"
$%.' ∈

[1.974, 1.956], [1.414, 1.329], [1.130, 1.089]) responses, Fig. 16: zone-II. The phenomenon, visible in Fig. 

16: zone-II, is called a boom-and-bust cycle. It is a phenomenon where a system or a process 

experiences a period of strong expansion or growth, often characterized by high levels of activity, 

followed by a sudden and severe contraction or decline. Indeed, During the boom phase, oscillators 
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experience high levels of vibration. However, this growth is often unsustainable and eventually leads 

to a plummet to a low level of vibration [28]. Finally, it leads to an aperiodic behavior, Fig. 16: zone-III. 

At the super-harmonic frequency regime, the three-DOF system experiences an unsteady behavior 

due to the second super-harmonic resonance, see Fig. 16: zone-IV. 

Fig. 16. Bifurcation diagram extracted from backward simulation; 

comparison between the systems with one-DOF (●), and three-DOF (●). 

3.3. Nonlinear dynamic scenario: complex analysis 

From the analysis of Fig. 15 and Fig. 16, it can be proved that the three-DOF system experienced 

some phenomena that do not occur in the SDOF system although in both systems just rotational DOFs 

are considered. Based on the frequency at which the system is excited, we can observe a specific type 

of state or phenomena: periodic, period doubling route to chaos, quasiperiodic, chaos, trapping, 

sideband, and modulation. The trapping phenomenon refers to the phenomenon of a vibrating object 

becoming stuck or confined to a particular region of motion. The motion of the system is often 

complex and can involve multiple frequencies and modes of vibration. In some cases, the system may 
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encounter non-linearities or energy dissipation mechanisms that cause it to become trapped in a 

particular region of the phase space. One way to understand trapping in vibrating systems is to 

consider the concept of resonance. Resonance occurs when the frequency of the external excitation 

matches one of the natural frequencies of the vibrating object. At resonance, the amplitude of the 

vibration can increase dramatically, which can lead to instability and even damage to the object. 

However, in some cases, the vibration may not be able to escape the region of the resonance due to 

damping or other factors. This can result in trapping, where the object remains stuck in a particular 

region of the phase space despite the presence of external excitation. For further information about 

trapping phenomena see Refs. [29]–[31]. 

All Four cases, plotted in Fig. 17 and Fig. 18 with distinctive characteristics belong to states where 

the system response is non-periodic and the Poincaré map presents a complex shape. To illustrate the 

nonlinear dynamic behavior of the three-DOF system, amplitude-frequency, and bifurcation diagrams 

are shown in Fig. 17 and Fig. 18, for the backward and forward simulations; in order to improve the 

graphical impact, bifurcation, and amplitude-frequency diagrams are plotted with different vertical 

axes: non-dimensional amplitude and root-mean-square of the amplitude, respectively; the same 

horizontal axis is considered: frequency ratio 
\C
\D
	 . The challengeable zones are recognized and some 

cases at specified excitation frequencies are chosen for further investigation. There are several regions 

where the system experienced non-periodic behavior, the most remarkable of which are represented 

in subfigures: details-I, II, and III for the backward simulation, and details-I and II for the forward 

simulation. Among all ranges of frequency ratios in these three highlighted zones, four cases are 

chosen to analyze the behavior of the system in detail by means of time-histories, spectra, 3D-phase 

portrait, and Poincaré maps, see cases-I, II, III, and IV in Fig. 17 and Fig. 18. 
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By analyzing and investigating the results of Fig. 17 and Fig. 18, it can be claimed that the system 

represented the same behavior in both the forward and the backward simulations although with 

different amplitudes at different frequency regimes. Each case of Fig. 17 and Fig. 18, case-I, II, III, and 

IV, represent different dynamic scenarios. In the following parts, a comprehensive explanation is 

provided on each case: case-I, quasiperiodic behavior; case-II, trapped response; case-III, aperiodic 

response; and case-IV, a combination of aperiodic and modulation behavior [32], [33]. 

A) Case-I: quasiperiodic behavior

Quasiperiodic and modulated behaviors are observed in the case-I of Fig. 17 and Fig. 18, 

backward and forward simulations respectively, since we can see a closed curve in the 

Poincaré map and sideband in the spectrum. The spectrum shows a series of peaks at discrete 

frequencies, indicating the presence of periodic behavior with slight fluctuations over time. 

The strength of periodic behavior is an important key point. If the periodic behavior is strong 

and there is a clear and prominent repetition of a particular frequency, the spectrum will 

exhibit pronounced peaks at those frequencies. Indeed, narrow and distinct peaks indicate 

that the system has a well-defined periodicity. However, if the periodic behavior is weak and 

the repetition is not as clear or prominent, the spectrum will not exhibit pronounced peaks. 

Instead, the spectrum will appear more like a continuous band with some level of variability, 

indicating that the system has a weaker or more complex periodicity. 

By investigating the spectrum, some peaks may be observed with a constant frequency shift, 

𝛽;, which represented a beat frequency. Therefore, the approximate period of the torus cycle

can be defined as: 𝑇torus ≈ 	2π/𝛽;.  The distribution of the remaining incommensurate

frequency peaks, in the spectrum is governed by the following formula [34]: 

𝛺8 = 𝛺2 + 𝑛 ∙ 𝛽;	 (42)	
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Where 𝛺𝑛 is known also as the second disproportionate frequency, and 𝑛 is the number of

tori frequency; 𝑛D-torus or 𝑛-frequency quasiperiodic solution. Besides, the third

disproportionate frequency can be described as: 

𝛺8,( = 𝛺8 +𝑚 ∙ 𝛽6	 (43)	
Where 𝑛 and 𝑚 are the number of frequency peaks. One of the applications of the FFT

spectrum diagram is to help us to understand more about modulation in the dynamic behavior 

of the system by observing the sideband in the plotted results. There are various types of 

modulation, including amplitude modulation (AM), frequency modulation (FM), phase 

modulation (PM), and pulse width modulation (PWM). Each type of modulation is used to 

convey information in different ways, depending on the specific requirements of the 

application. The FFT spectrum is a useful tool that helps us to recognize types of modulation, 

for instance, Fig. 19 represents an amplitude modulation for case-I for backward simulation. 

Let us show this parameter for the case-I of Fig. 17 in Fig. 19 (backward simulation) and the 

case-I of Fig. 18 in Fig. 20 (forward simulation), where  
N!

N"
= 0.64 and  

N!

N"
= 0.87 respectively. 
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B) Case-II: trapping phenomenon

Fourier spectrum analyses associated with cases-II of Fig. 17 and Fig. 18 are shown in Fig. 22 

for the backward and forward simulations respectively, where 
\C
\D

= 0.98. We can define the

excitation frequency ratio, 
\C
\D

, as the control parameter of the three-DOF system. For values 

of the control parameter less than the critical value, the dynamical system has an attracting 

limit cycle. Thus, the system oscillates in a regular fashion and is stable. As 
\C
\D

 slightly exceeds 

the threshold value 
\C
\D

, the system response appears to be regular and closely resembles the 

oscillatory behavior for the 
\C
\D

  less than the critical excitation frequency ratio (i.e., where the 

system has a periodic behavior). With increasing 
\C
\D

, the transient phase between two 

periodic and aperiodic responses passed and it becomes more and more difficult to recognize 

any regularity in the system response. As 
\C
\D

 is increased further, eventually the response 

becomes fully irregular (chaotic). Therefore, case-II belongs to the zone where the system 

experiences a route to chaos; see Fig. 21, blue dots. 

By observing the 2D and 3D-Bifurcation diagram (see Fig. 17 and Fig. 21), during the transient 

phase, 6 different branches (red dots) are recorded. Besides, the Poincaré map represents six 

trapped regions and the Fourier spectrum shows a weak modulation with a complex periodic 

behavior. Indeed, the chaotic attractors become a chaotic sea with islands representing semi-

quasiperiodic behavior and the semi-quasiperiodic islands surrounded by the chaotic orbit. As 

shown in Fig. 22, due to the weak modulation, there is a weak regularity in the time-history 

response of the system although the periodicity is not strong enough to be followed all over 

time; after a while, some irregularity is observed in the system behavior. 
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Fig. 21. 3-D bifurcation diagram for the backward simulation, 
N!

N"
$%.' ∈ [0.88, 1.1]

𝝀a − 𝝀a𝒎𝒆𝒂𝒏

𝝀aT

𝝎𝒎𝝎𝒏
𝐍𝐨.𝟐



3
9

 

F
ig

. 
2

2
. 

F
F

T
 s

p
e

ct
ru

m
 o

f 
ca

se
s-

II
 f

o
r 

b
a

ck
w

a
rd

 (
A

) 
a

n
d

 f
o

rw
a

rd
 (

B
) 

si
m

u
la

ti
o

n
s.

 

Ω 3	 β] N2∙β] N3∙β] N

𝝀'

𝑭𝑭𝑻
	𝒔𝒑

𝒆𝒄𝒕
𝒓𝒖𝒎

	

𝑭𝑭𝑻
	𝒔𝒑

𝒆𝒄𝒕
𝒓𝒖𝒎

	

𝒕	
[𝒔
]	

𝒕	
[𝒔
]	

A
)

B
a

ck
w

a
rd

B
)

F
o

rw
a

rd

𝝀'

Ω 3	 β] N2∙β] N3∙β] N

𝛽� 0=
0.16

7
𝑇 N≈0

.0021
4	𝑠	

𝑇 3	

𝑇 3	



40 

C) Case-III: aperiodic response:

By analyzing the results of case-III in Fig. 17 and Fig. 18, for backward and forward simulations, 

the system experiences an aperiodic behavior. The bifurcation diagram can provide a clearer 

exhibition of the behavior of the system, particularly the 3D-diagram, see Fig. 23 where the 

simulation is carried out for the backward simulation. As shown in Fig. 23, there is a zone with 

the cloud of points (Fig. 23, blue dots) which evolves from having three branches into four 

branches by increasing 
𝝎𝒎
𝝎𝒏

. As 
𝝎𝒎
𝝎𝒏

 slightly exceeds 
𝝎𝒎
𝝎𝒏

= 1, four cloudy branches of the

dynamic responses of the system turn into 4T-periodic responses (Fig. 23, pink dots). 

Case-III belongs to the zone where there are no remarkable peaks at the FFT spectrum except 

at frequencies that are simple multiples of the system's meshing frequency. The results of 

case-III in Fig. 17 and Fig. 18 are obtained at excitation frequency before the dynamic response 

evolved into four cloudy branches; for this reason, the Poincarè map clearly shows three 

branches instead of four branches. These irregularities in the response lead to the spreading 

out of the energy of system over a wide range of frequency. It can be expressed that there is 

a relation between results that are shown in Poincarè map, where there are three branches 

for the case-III for instance, and Fourier spectrum, where an increase of the energy 

(concentration energy) in the spectrum at 1/3 and 2/3 of the meshing frequency is observed. 

Therefore, by considering the 𝛽�
0
≈ 0.333, a weak regularity is found in the time-history 

response of the system, see Fig. 24. 
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Fig. 23. 3-D bifurcation diagram for the backward simulation, 
N!

N"
$%.' ∈ [0.9, 1]

𝝀a − 𝝀a𝒎𝒆𝒂𝒏

𝝀aT

𝝎𝒎𝝎𝒏
𝐍𝐨.𝟐
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D) Case-IV: combination of irregularity and period-doubling behavior 

Considering the frequency range 
\C
\D
EF.G ∈ [0.85, 1.1], a coincidence of 2T and aperiodic 

behavior are observed in the bifurcation diagram, see Fig. 17 and Fig. 18 for the backward and 

forward simulations respectively. Case-IV in Fig. 17 and Fig. 18, where 
\C
\D
EF.G = 2.02, is a 

sample that is chosen among the specific range of frequencies to analyze the behavior of the 

system in detail. From Fourier spectrum, 2T responses are conducted through the clear spike 

at 
\	
\C

= 0.5. The broadband in the FFT spectrum with two remarkable peaks appeared, and 

also in the Poincaré map we can see that plotted points are separated into two distinct parts. 

However, due to the strong irregularity and the weak regularity, it cannot be observable by 

analyzing the time-history responses. Indeed, the pattern that we expect to see due to 2T-

responses does not regularly occur.  

 
Fig. 25. FFT spectrum of case-I for backward simulation 

 

  

Ω3	
β
4
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3.4. Largest Lyapunov exponent and Correlation dimension estimations: 

Investigating complex nonlinear dynamical systems, computational techniques are utilized such 

as nonlinear time series analysis. Chaos arises from the exponential growth of infinitesimal 

perturbations, together with global folding mechanisms to guarantee boundedness of the solutions. 

This exponential instability is characterized by the spectrum of Lyapunov exponents [35]. If one 

assumes a local decomposition of the phase space into directions with different stretching or 

contraction rates, the spectrum of exponents represents the average of these rates across the entire 

invariant set, and thus such spectrum includes an exponent for each spatial direction [36]. 

In terms of chaos theory, attractors, which are geometrical objects formed by the trajectories of 

the system, are characterized by fractal dimensions. The fractal dimension of attractors arising from 

regular deterministic systems, such as limit cycles or tori, is equal to their topological dimension. 

However, in the case of attractors derived from chaotic systems, called strange attractors, their fractal 

structure is usually characterized by a non-integer fractal dimension. Among various measures of the 

fractal dimension the most common is the correlation dimension due to its computational simplicity 

[37].  

Before estimating the largest Lyapunov exponent and correlation dimension, the phase space 

reconstruction approach must be defined. One of the main techniques used to reconstruct a phase 

space from a time series is the Method of Delays, which is based on the evaluation of the embedding 

dimension and the delay time. It has become quite familiar in the analysis of “observe time series” 

from nonlinear systems to make a time-delay reconstruction of a phase space (Method of Delay 

approach) to illustrate the dynamics [38].  
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3.4.1. Method of Delays 

Method of Delays is a technique of phase space reconstruction. Vectors in a new space, the 

embedding space, are formed from delay time values of the scalar measurements. The literature on 

the delay coordinate technique [38]–[42] is vast, and for the sake of brevity are not explained in this 

paper. To reconstruct the trajectories by means of time response, one needs to obtain the embedding 

dimension, 𝑚, and the delay time or lag, 𝜏. Depending on the type of structure we want to explore a 

suitable delay time. Small delays yield strongly correlated vector elements, large delays lead to 

uncorrelated vectors and components, i.e., the data are randomly distributed in the embedding space 

[39]. In practice, the appropriate values for delay time 𝜏, and embedding dimension 𝑚 to use in this 

reconstruction have a variety of answers. In this study, embedding dimension is defined by “false 

nearest neighbors” approach [38] and the delay time obtained by “mutual information” method [43]. 

• Delay time: The delay time mutual information was suggested by Fraser and Swinney [43] 

as a tool to determine a reasonable delay. Unlike the autocorrelation function, mutual 

information also takes into account nonlinear correlations. Indeed, the mutual 

information method measures the general dependence of two variables, regardless of 

whether it is linear or not; the value of τ giving the firs minimum in the mutual information 

function can be considered as a good candidate delay time value. 

• Embedding dimension: Kennel et al [38] introduced a method to determine the minimal 

sufficient embedding dimension 𝑚. It is called the “false nearest neighbor” method. In an 

embedding space with a dimension of 𝑚3, this implies that the reconstructed attractor 

perfectly mirrors the attractor in the original phase space in a one-to-one manner. 

Especially, the topological properties are preserved. Thus, the neighbors of a given point 

are mapped onto neighbors in the embedding space. Due to the assumed smoothness of 

the dynamics, neighborhoods of the points are mapped onto neighborhoods repeatedly. 
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This point must be considered that the shape and size of the neighborhoods are adjusted 

based on the Lyapunov exponents. It considers that embedding in an 𝑚-dimensional

space where 𝑚 < 𝑚3. As a result of this projection, the original topological structure is

no longer maintained. It means that points are mapped into neighbors’ points which they 

would not belong in higher dimensions. These points are called false neighbors. If now the 

dynamics is applied, these false neighbors are usually not mapped into the vicinity of their 

original neighbors but rather to different locations, causing the average diameter to 

increase significantly [39], [44], [45]. 

3.4.2. Largest Lyapunov exponent: 

Lyapunov exponents, which associated with the fast divergence or convergence of neighboring 

trajectories in phase space, provide us with this ability to characterize the dynamical behavior of a 

system, both qualitatively and quantitatively [46]: 

• The signs of the Lyapunov exponents (positive or negative) provide a qualitative

understanding of the dynamic response of a system. As an example, one-dimensional 

maps are characterized by a single Lyapunov exponent which is positive for chaos, 

zero for a marginally stable orbit, and negative for a periodic orbit. 

• The magnitudes of the Lyapunov exponents quantify an attractor's dynamics in terms

of information theory. The exponents measure the rate at which system processes 

generate or dissipate information. 

Lyapunov exponents are convenient for categorizing steady-state behavior. Attractors are 

classified as follows [47], [48]: 

• Positive Lyapunov Exponent (𝜆g > 0) indicates a chaotic system: It means that nearby

trajectories in phase space diverge from each other exponentially over time. It is a
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characteristic of chaotic behavior, as a small perturbation in initial conditions result in a 

bounded aperiodic response over time. 

• Zero Lyapunov Exponent (𝜆g = 0) indicates periodicity in system: It means that nearby 

trajectories neither converge nor diverge but stay close together over time. Systems with 

zero Lyapunov exponents are often associated with periodic or quasiperiodic behavior. 

For instance, for a stable limit cycle, 𝜆5 = 0 and 𝜆g < 0 for i = 2,… , 𝑛,	and for a stable 

torus, 𝜆5 = 𝜆0 = 0 and 𝜆g < 0 for i = 3,… , 𝑛. 

• Negative Lyapunov Exponent (𝜆g < 0) indicates the existence of a stable equilibrium 

points: It means that nearby trajectories in phase space converge toward each other 

exponentially. Negative exponents are associated with stable or asymptotically 

converging behavior. 

The maximal Lyapunov exponent can be determined without the explicit construction of a model 

for the time series. [44], [49]. 𝑥(𝑡) is the time evolution of initial condition, 𝑥(0), in an appropriate 

state space. Then the maximal Lyapunov exponent is found with “probability one”, which is: 

𝜆1UV = lim
W→Y

lim
Z→2

1t lny|x(t) − xZ(t)|𝜖 z	 (44)	
for all difference vectors 𝜖 = x(0) − xh(0).  
The first algorithm to compute Lyapunov exponents for a time series was introduced in 1985 by 

Wolf et al. [46]. In delay coordinates of appropriate dimension, one seeks a point within the time 

series that is closest to its initial point. This is considered as the beginning of a neighboring trajectory, 

determined by the consecutive delay vectors. Therefore, one calculates the growth or increase in the 

distance between these two trajectories over time. When the distance exceeds some threshold, a new 

neighboring trajectory is sought with the closest distance and similar direction as the old one. This is 

the direction of the local eigenvector associated to 𝜆max. The logarithms of the stretching factors of 
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the difference vectors are averaged over time to calculate the maximal Lyapunov exponent [49]. 

Similar to Wolf et al. [46], Kantz et al. [39], [49] used of the fact that the distance between two 

trajectories typically increases with a rate given by the maximal Lyapunov exponent.  

3.4.3. Correlation dimension 

A dynamical system with 𝑁 degrees of freedom may choose to evolve on a lower-dimensional 

manifold, so that only a fraction of the total number of degrees of freedom remains active. In such 

scenarios, it becomes valuable to determine the number of active degrees of freedom, and it is 

obvious that this information can be deduced from the dimension of the attractor associated with the 

system [50]. If it looks like an open subset of ℝ, in a neighborhood of every point, an attractor could 

be defined to be 𝑛-dimensional, i.e., it is diffeomorphic to an open subset of ℝ,. This is the approach 

to define the dimension of a manifold in differential topology. For instance, a limit cycle is one 

dimensional since it looks, locally, like an interval. A torus is two-dimensional since, locally, it 

resembles an open subset of ℝ0. An equilibrium point is considered to have zero dimension. The 

neighborhood of any point of a strange attractor, however, has a fine structure and does not resemble 

any Euclidean space. Hence, strange attractors are not manifolds and do not have integer dimensions. 

This point worth to mention that an attractor of a Poincare map with dimension d corresponds to an 

attractor of the underlying flow with dimension d + 1. For example, if the attractor of the Poincare 

map is a closed curve (dimension, d =1), the attractor of the flow is a torus (dimension 2). 

There are several ways to generalize dimension to the fractional case [47] such as capacity, 

information dimension, Lyapunov dimension and correlation dimension. In this study, the correlation 

dimension, which is introduced in 1983 by Grassberger et al. [51], is chosen to characterize the 

dynamic behavior of system in different working conditions.   
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3.4.4. Validation: periodic case, 
𝝎𝒎

𝝎𝒏
𝐍𝐨.𝟐 = 𝟏. 𝟐 

As mentioned before, the parameters used in chaotic recognition, are the largest Lyapunov 

exponents (𝜆lYm) and correlation dimensions. In the present study, to conduct the nonlinear time

series analysis, “nonlinear time series analysis package (TISEAN-V3.0.1)” [39], and a script written in 

MATLAB [37], [44] are used. In appendix C, the script to carry out the calculations by TISEAN and 

MATLAB is defined. The TISEAN package was employed to validate the accuracy of the data extracted 

from the MATLAB algorithm in the case of 
\C
\D
EF.G = 1.2, (backward simulation, Fig. 26-a) where the

behavior of system has already recognized, and then for other cases the MATLAB code written is used 

to calculate the 𝜆lYm and correlation dimension. As it is clear from Fig. 26-a and Fig. 26-b, where time

history and Poincaré map of the system is represented, the system experiences a periodic response. 

Fig. 26. Dynamical response of the three-DOF model at 
N!

N"
$%.' = 1.2: a) time history, and b) Poincaré

map 

As explained, the delay time is determined as the first local minimum of the mutual information 

function (Fig. 27-a), and embedding dimension is defined by using a 10% threshold [45] of fraction of 

false neighbors (Fig. 27-b). 

Fig. 27. Extracting a) delay time and b) embedding dimension for the periodic case in backward simulation at 
N!

N"
$%.' = 1.2

a) Time history b) Poincaré map

b) Embedding dimension a) Delay time
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By defining the embedding dimension and delay time, the largest Lyapunov exponent and 

correlation dimension is calculated. The number of samples to carry out the time series analysis is 

39270, and the sampling interval for this case is 36. From Fig. 28-a and Fig. 28-b, the λlYm for both 

approaches is illustrated.  

 
Fig. 28. Extracted largest Lyapunov exponent and correlation dimension from simulation done by TISEAN and 

MATLAB  

Fig. 28-c allows for the estimation of the correlation dimension. Considering a neighborhood 

radius within 1.5 × 10AO and 2 × 10A;, the slope of the correlation integral function multiplied 

sampling interval provides the correlation dimension. Fig. 28-d shows the slope of the correlation 

integral for 10 different embedding dimensions (𝑚 = 1,… , 10) extracted from TISEAN package. 

Extracted results from Fig. 28 are listed in Table 5. The estimated correlation dimension is equal to 1, 

and the calculated λlYm for both approaches is weakly negative, i.e., the system exhibits a stable 

steady state response. By comparing the extracted results between two techniques, TISEAN and 

TISEAN MATLAB 

a) average log divergence vs the expansion step 

d) Slope of the Correlation integral versus the 

neighborhood size 

c) Correlation integral versus the neighborhood 

size 

a) average log divergence vs the expansion step 
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MATLAB code, 1% difference in the calculated correlation dimension and 2% difference in the 

calculated λlYm is observed. 

Table 5. extracted data from nonlinear time series analysis for the periodic case-backward simulation 

Case study 
Correlation 

dimension 

Largest Lyapunov 

exponent 
Delay time 

Embedding 

dimension 

Total 

samples 

Sampling 

interval 

MATLAB 1.01 -4.2094e-07 
6 3 39270 36 

TISEAN 1 -4.1199e-07 

 

3.4.5. Estimation of Largest Lyapunov exponent and correlation dimension  

The calculations have been performed using the results extracted during the backward simulation 

for all the four investigated cases, where a different excitation frequency was considered as shown in 

Fig. 17. The parameters required for the calculation are given in Table 6, such as delay time, 

embedding dimension, total considered samples, and sampling intervals.   

Table 6. extracted data from nonlinear time series analysis for all four cases of backward simulation 

Case study 
Correlation 

dimension 

Largest Lyapunov 

exponent 

Delay 

time 

Embedding 

dimension 

Total 

samples 

Sampling 

interval 

Case I: 𝜔	𝜔! = 0.64 

value 2.08 -0.00013 
9 3 587547 43 

Figure’s number Fig. 29-a2 Fig. 29-a1 

Case II: 𝜔	𝜔! = 0.98 

value 1.86 0.053826 
6 3 480269 44 

Figure’s number Fig. 29-b2 Fig. 29-b1 

Case III: 𝜔	𝜔! = 1 

value 2.66 0.38378 
6 4 456708 41 

Figure’s number Fig. 29-c2 Fig. 29-c1 

Case IV: 𝜔	𝜔! = 2.08 

value 2.32 0.13425 
10 3 453337 42 

Figure’s number Fig. 29-d2 Fig. 29-d1 

By analyzing the extracted results in Table 6 and Fig. 29, the following key points is concluded: 

• For case-I, where the behavior of the system is quasiperiodic, a flat plot for the Average 

Log Divergence function is expected [44] as we can see in Fig. 29-a1, and the largest 

Lyapunov exponent is almost zero with a negative sign [52]. The calculated correlation 

dimension is approximately equal to 2, in agreement with the closed curve in Poincaré 

map diagram, see Fig. 17-Case-I.  
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• For case-II, where the trapping phenomenon occurred, the Poincaré map represents a 

discontinuous curve with six separate lines, Fig. 17-Case-II. A non-integer correlation 

dimension of about 1.86 reveals the fractal nature of the attractor. A weak modulation 

with a complex periodic behavior is observed; therefore, the sign of largest Lyapunov 

exponent supposed to be positive which is, 𝜆1UV = 0.054. 

• For case-III and case-IV, where the system experiences a strong irregularity in the time-

histories, the correlation dimensions are not integer, 2.6 and 2.3 respectively; besides, 

positive Lyapunov exponents are obtained for both cases. 
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3.5. Torsional shaft stiffness effects on the dynamic response 

The effect of shaft stiffness on dynamic behavior is critical from a design perspective. This analysis 

offered guidelines for the design of gear systems in order to choose suitable shafts and bearings. 

Indeed, it would be interesting if we can change the dynamic response of the system from unstable 

behavior to periodic response. In this section, the dynamic behavior of the system is evaluated by 

varying the torsional shaft stiffness. In order to perform this analysis, it is first necessary to determine 

the excitation frequency at which the system must operate. Therefore, a fixed-initial condition 

simulation is carried out. Then at a specific frequency ratio, the new simulation is conducted to extract 

the bifurcation diagram vs the torsional shaft stiffness. This diagram can help to determine the 

torsional shaft stiffness value at which the system transitions to either an aperiodic or periodic 

response. In other words, we can prevent the system from chaotic behavior by considering the 

suitable stiffness for the shaft, i.e., considering different shapes or materials for the shaft. 

Fig. 30-a shows the dynamic response of the three-DOF system with the values which are defined 

in Appendix B., where 𝐾�'! = 0.0227 and 𝐾�'" = 0.421. To delve into the effect of torsional shaft

stiffness, two different parts of the excitation frequency range are selected, see Fig. 30-b. Now, there 

are different zone that the system experiences aperiodic behavior which can be chaotic, quasiperiodic, 

or period-doubling responses. Two different excitation frequencies are considered as the system 

works at: 
\C
\D
	 = 0.87 (case-I) and 

\C
\D
	 = 0.87 (case-II). Let us do the analysis at these two excitation

frequencies by considering the torsional shaft stiffness of pinion (𝐾�'") and gear (𝐾�'!) as the control

parameter of the system, see Fig. 30, Analyses 1-4. 

Fig. 30-Analysis-1 (where the 𝐾�'" is the control parameter) and Fig. 30-analysis-2 (where the 𝐾�'! is

the control parameter) are associated with the case-I where the system experiences an aperiodic 

behavior that can be chaos. By analyzing the bifurcation diagrams, it is conducted that by increasing 

the 𝐾�'! and reaching the highlighted zone with green color in Fig. 30-analysis-2 (where 𝐾�'! ∈
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[0.176,0.192]), the system response turned into a periodic behavior. Another solution to achieve a 

periodic response is changing the torsional shaft stiffness of pinion, 𝐾�'", in two possible ranges: first 

decreasing the 𝐾�'" until 𝐾�'" ∈ [0.143,0.284] or increasing 𝐾�'" until 𝐾�'" ∈ [0.44,0.8].  
The same analysis can be carried out for the case-II, see Fig. 30-Analysis-3 (where the 𝐾�'" is the 

control parameter) and Fig. 30-analysis-4 (where the 𝐾�'! is the control parameter). Therefore, to skip 

the period doubling responses, the behavior that the system experienced at case-II, there are two 

different ways: decrease 𝐾�'" or increase 𝐾�'!. Indeed, based on the analyses which are done for the 

analysis-3 and analysis-4, it can be concluded that to have a periodic response for the system, 𝐾�'" must 

be less than 0.367, or 𝐾�'! must be higher than 0.146.  
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4. Conclusion 

This paper described the nonlinear dynamic behavior of a spiral bevel gear pair by considering the 

effects of torsional shaft stiffness. The dynamic simulation of the system was conducted considering 

the possibility of backside contact. This consideration led to extracting the mesh stiffness in forward 

and reverse motions. A modal analysis of the linear system was conducted, and validations were 

carried out to ensure the accuracy of the present model. The dynamical model, which is governed by 

a set of non-smooth and non-autonomous equations of motion, was numerically solved by means of 

an implicit Runge–Kutta algorithm. Nonlinear time series analysis was carried out to investigate more 

the dynamic behavior of different cases where we observe different complexity. To understand the 

effect of the shaft stiffness on the system’s dynamics, two different models were represented: three-

DOF and SDOF. Dynamic simulations were carried out both increasing and decreasing the excitation 

frequency. The main outcomes of this investigation are listed below: 

• At first glance, it might be concluded that the dynamic behavior of SDOF and three-DOF 

systems are identical; however, by analyzing the dynamic response and delving into the 

possibility of phenomena occurrence, it is proved that by decreasing the DOF of the 

system, some phenomena might be lost.   

• Different phenomena appeared in the system by considering the shaft stiffness, such as 

the trapping phenomenon and boom-and-bust cycle. By estimating the largest Lyapunov 

exponent and the correlation dimension, the behavior of the phenomena is evaluated. 

• There were some situations where the SDOF system represents a periodic or 2T-periodic 

responses, whereas the behavior of the three-DOF model was markedly different in the 

same scenarios, even an aperiodic or quasiperiodic responses might be recorded. 

Consequently, designing the system based on the results of the SDOF model might not be 

suitable for manufacturing a gear set. 
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• The results provide a foundation for designing parameters and controlling the dynamic 

characteristics of spiral bevel gear drive systems. 

Acknowledgments: The authors thank Dr. Giorgo Bonori and Advanced Numerical Solutions, Inc. 

for providing Transmission3D software and their support.  

Funding Source Declaration: The financial support provided by the “SUSTAINABLE MOBILITY 

CENTER (Centro Nazionale per la Mobilità Sostenibile - CNMS)” Spoke 13 “Electric Traction and 

Batteries (ETB)” project code CN00000023– CUP E93C22001070001 

Declaration of Competing Interest: The authors declare that they have no known competing 

financial interests or personal relationships that could have appeared to influence the work reported 

in this paper. 

Supplementary data: Supplementary data and codes associated with this article can be found, in 

the online version, at: https://doi.org/10.17632/fcpgtmgxsf.1 

 

 

  

https://doi.org/10.17632/fcpgtmgxsf.1


59 

 

 

 

Appendix A.  

geometric parameters of the considered SBG. 

Table 7. System data 

Hand of pinion Left 

Shaft offset 0 

Shaft angle 90 Deg 

Loaded side of gear Convex 

Driver Pinion 

Coefficient of friction 0 

Pinion speed [rpm] 100 

Diametral pitch [1/in] 5.141 

 

Table 8. Pinion and gear data 

Tooth parameters Pinion Gear 

No. of teeth 12 36 

Transverse Circular Tooth Thickness at Pitch 

Cone [in] 
0.32 0.15 

Outer cone distance [in] 3.691 3.691 

Face Width [in] 1.0 1.0 

Face Angle [deg] 22.31667 72.5 

Back Angle [deg] 18.433 71.5666 

Spiral Angle [deg] 35 35 

Pitch Angle [deg] 18.433 71.5666 

Young’s Modulus [psi] 30.0×10` 30.0×10` 

Poisson’s Ratio 0.3 0.3 

Machine settings Concave Convex Concave Convex 

Radial setting [in] 2.947802 2.801049 2.85995 2.85995 

Blank offset [in] 0.1545759 -0.1742616 0 0 

Root Angle [deg] 16.8666 16.8666 67.68333 67.68333 

Machine Center to Back [in] -0.04023062 0.05414291 0 0 

Sliding Base [in] 0.01167273 -0.01570932 0 0 

Cradle Angle [deg] 63.94203 53.92599 59.2342023 59.2342023 

Ratio of Roll 3.242698536 3.105176807 1.051674445 1.051674445 

Cutter geometry Concave Convex Concave Convex 

Cutter type Straight Straight Straight Straight 

Point radius [in] 2.965621 3.071306 3.0325 2.9675 

Blade angle [deg] 18.6015 24.90 22.0 22.0 

Edge radius [in] 0.045 0.045 0.01 0.01 
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Appendix B.  

definition and values of considered dimensional and non-dimensional parameters in the 

present study. 

1. Dimensional parameters: 

Table 9. Values of considered parameters 

parameter unit value parameter unit value 

𝑎 -  0.76975 𝑏 mm 0.35 

𝐶'" N ∙ s/m 0.07 𝐶'! N ∙ s/m 1.25 

𝐶( N ∙ s/m 380 G	 GPa 77 

𝑟" mm 25.6 𝑟! mm 76.9 

𝐼"n kg ∙ m0 1.7 × 10OM 𝐼!o kg ∙ m0 9.5 × 10OV 

𝐼( kg ∙ m0 2.7 × 10Oe 𝐼#  kg ∙ m0 2.84 

𝐾'" N ∙ m rad�  2.76 × 10M 𝐾'! N ∙ m rad�  8.27 × 10M 

𝐾( = 𝑘3 N/m 1.4478 × 10p 𝑁5 - 21 

𝑇( N ∙ m 179.04 𝑇#  N ∙ m 537.12 

𝑠 - 5 𝜏(qn MPa 50 

𝛼 deg 20 𝛽 deg 35 

𝑚-. = bc𝑟&𝑎d5𝐼&Z + c𝑟%𝑎d5𝐼%[ f
04

 kg 0.377182 𝜔8A9ab3	 = {𝑘2 𝑚=>
s  rad s�  19592 

 

Table 10. definition of considered parameters 

Half of the gear backlash 𝑏 Material damping of the gear shaft 𝐶'!  

Material damping of the pinion shaft 𝐶'" Shear	Modulus G 

Mesh damping 𝐶( Rotational inertia of gear 𝐼!o 

Rotational inertia of pinion 𝐼"n Rotational inertia of load 𝐼#  
Rotational inertia of motor 𝐼( Torsional shaft stiffness of the gear 𝐾'! 

Torsional shaft stiffness of the pinion 𝐾'" Number of samples for UTCA and LTCA 𝑁5 

mean value of mesh stiffness 𝐾( = 𝑘3 mean radius at meshing point of the gear 𝑟! 

mean radius at meshing point of the 

pinion 
𝑟" Constant output torque 𝑇#  

Constant input torque 𝑇(  maximum torsional stress 𝜏(qn  

Number of harmonics 𝑠 The spiral angle 𝛽 

Normal pressure angle 𝛼   
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Table 11. GTE and mesh stiffness values, for both the forward and the reverse motions 

Normalize 

step 

Time 

step 

Forward motion Reverse motion 

GTE [µm] MS [N/m] GTE [µm] MS [N/m] 

0 0.0025 57.4199 167077194 57.9535 65259864 

0.05 0.0050 66.7241 161191031 68.2185 64663942 

0.10 0.0075 76.1594 154213691 78.7352 63708319 

0.15 0.0100 85.7161 146394176 089.5220 62397179 

0.20 0.0125 95.1830 138138892 100.3302 60805706 

0.25 0.0150 102.8398 130738422 108.8252 59282854 

0.30 0.0175 108.3649 124235413 114.4459 57890915 

0.35 0.0200 111.6688 119726715 117.3800 56589953 

0.40 0.0225 112.7251 117679839 117.4634 55386935 

0.45 0.0250 111.5323 117253906 114.7359 54497509 

0.50 0.0275 108.0861 118398290 109.3410 54508453 

0.55 0.0300 102.3880 121170911 101.2252 55045242 

0.60 0.0325 94.4110 125810846 90.3533 56113207 

0.65 0.0350 84.1505 132729405 76.7455 57757463 

0.70 0.0375 71.5909 142560957 60.4187 60055301 

0.75 0.0400 56.7153 156481910 41.4372 63134970 

0.80 0.0425 39.5033 176556405 19.7876 67214271 

0.85 0.0450 30.3975 190867745 28.4547 66492226 

0.90 0.0475 39.2444 181912241 38.0885 65800291 

0.95 0.0500 48.2521 173705334 47.9154 65496346 

1 0.0525 57.4199 167077194 57.9535 65259864 



62 

 

 

 

2. Nondimensional parameters: 

Table 12. non-dimensional parameters values 

Parameter Definition Value Parameter Definition Value 

𝑟̅" 
𝑟" 𝑏�  73.2 𝑟̅! 

𝑟! 𝑏�  219.7 

𝐾�'! 
𝐾'!𝐼!o𝜔,0 0.022729 𝐶̅'! 

𝐶'!2𝐼!o𝜔, 0.00336475 

𝐾�'" 
𝐾'"𝐼"n𝜔,0 0.421167 𝐶'̅" 

𝐶'"2𝐼"n𝜔, 0.010474 

𝐾�'( 
𝐾'"𝐼(𝜔,0 2.63229 𝐶̅'( 

𝐶'"2𝐼(𝜔, 0.0654639 

𝐾�'#  𝐾'!𝐼#𝜔,0 0.0000757636 𝐶'̅#  𝐶'!2𝐼#𝜔, 0.0000112155 

𝑇�( 
𝑇(𝐼(𝜔,0 0.0170928 𝑇�#  𝑇#𝐼#𝜔,0 4.91971 × 10Or 

𝑇�st 
1

𝑏𝑚st𝜔,0 ¢
𝑇(𝑟"𝑎V£ 0.179107 𝜉 

𝐶(2𝑚st𝜔, 0.0257 

 

Table 13. Fourier series coefficients of GTE and MS for both the forward and the reverse motions  

Forward motion 𝑒̅𝑚𝐹 (𝑡) = 𝑒2𝐹𝑏³
=̅.
𝐹

+V𝑒𝑎4𝐹𝑏́
=*dddd/
𝐹

cos(𝑗𝜔𝑚
𝑆=5

𝑗=1

𝑡) +V𝑒𝑏4𝐹𝑏́
=edddd/
𝐹

sin(𝑗𝜔𝑚
𝑆=5

𝑗=1

𝑡) 
𝑒̅2𝐹 𝑒𝑎uuu6𝐹 𝑒𝑏uuu6𝐹 𝑒𝑎uuu;𝐹 𝑒𝑏uuu;𝐹 𝑒𝑎uuu:𝐹 𝑒𝑏uuu:𝐹 𝑒𝑎uuuO𝐹 𝑒𝑏uuuO𝐹 𝑒𝑎uuu,𝐹 𝑒𝑏uuu,𝐹 

8.013
× 10!& 

−3.413
× 10!&	

1.436
× 10!&	

−1.924
× 10!"	

6.107
× 10!"	

1.852
× 10!"	

2.550
× 10!"	

1.695
× 10!"	

5.212
× 10!#	

9.095
× 10!#	

−4.632
× 10!#	

Reverse motion 𝑒̅𝑚7 (𝑡) = 𝑒27𝑏³
=.̅
0

+V𝑒𝑎47𝑏́
=*dddd/

0

cos(𝑗𝜔𝑚
𝑆=5

𝑗=1

𝑡) +V𝑒𝑏47𝑏́
=edddd/

0

sin(𝑗𝜔𝑚
𝑆=5

𝑗=1

𝑡) 
𝑒̅27 𝑒𝑎uuu67 𝑒𝑏uuu67 𝑒𝑎uuu;7 𝑒𝑏uuu;7 𝑒𝑎uuu:7 𝑒𝑏uuu:7 𝑒𝑎uuuO7 𝑒𝑏uuuO7 𝑒𝑎uuu,7 𝑒𝑏uuu,7 

7.908
× 10!&	

−3.689
× 10!&	

2.249
× 10!&	

1.090
× 10!"	

7.205
× 10!"	

3.939
× 10!"	

1.464
× 10!"	

2.059
× 10!"	

−1.043
× 10!"	

5.000
× 10!'	

−1.490
× 10!"	

Forward motion 𝐾t𝑚𝐹 (𝑡) = 𝑘2𝐹𝑘2𝐹
³fd.𝐹 +V𝑎4𝐹𝑘2𝐹

³*d/𝐹 cos(𝑗𝜔𝑚𝑆=5

𝑗=1

𝑡) +V𝑏4𝐹𝑘2𝐹
³ed/𝐹 sin(𝑗𝜔𝑚𝑆=5

𝑗=1

𝑡) 
𝑘u2𝐹 𝑎u6𝐹 𝑏u6𝐹 𝑎u;𝐹 𝑏u;𝐹 𝑎u:𝐹 𝑏u:𝐹 𝑎uO𝐹 𝑏uO𝐹 𝑎u,𝐹 𝑏u,𝐹 

1	
2.173
× 10!(	

−3.721
× 10!&	

2.277
× 10!&	

−4.032
× 10!&	

−1.166
× 10!&	

−2.675
× 10!&	

−1.425
× 10!&	

−7.900
× 10!"	

−1.063
× 10!&	

1.992
× 10!"	

Reverse motion 𝐾𝑚𝑅 (𝑡) = 𝑘27𝑘2𝐹³
fd.
0

+V𝑎47𝑘2𝐹
³*d/0 cos(𝑗𝜔𝑚𝑆=5

𝑗=1

𝑡) +V𝑏47𝑘2𝐹
³ed/0 sin(𝑗𝜔𝑚𝑆=5

𝑗=1

𝑡) 
𝑘u27 𝑎u67 𝑏u67 𝑎u67 𝑏u67 𝑎u67 𝑏u67 𝑎u67 𝑏u67 𝑎u67 𝑏u67 

4.181
× 10!(	

4.104
× 10!&	

2.144
× 10!"	

−4.970
× 10!#	

−7.286
× 10!"	

−3.221
× 10!"	

−2.033
× 10!"	

−3.184
× 10!"	

4.325
× 10!#	

−7.483
× 10!#	

1.767
× 10!"	
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Appendix C.  

a) TISEAN script: 

The TISEAN package is available on the website, see Ref. [53]. Here, the procedure to install the 

package on Linux- Ubuntu is explained, and the comments to calculate the largest Lyapunov exponent 

and the correlation dimension is written. The default path for installation is home; therefore, at the 

end of installation the main files of package will be at home/bin. To do the calculation, the data on time-

series is required. This point should be mentioned that the data must contain only time-history 

response (y-axis) in one column not the time information as x-axis. The folderPath1 is where the time 

series response is located (in the comments, “TH.dat” is considered as the DAT file that contain the 

time series data), and the folderPath2 is where the output files, contained extracted results, must be 

created. To plot the diagram, “gnuplot” must be installed.  

Installation: 

sudo apt update && sudo apt upgrade 

sudo apt install gcc 

dpkg -L gcc 

gcc --version 

sudo apt-get install gfortran 

mkdir -p HOME/bin 

./configure --prefix=/home 

make 

make install 

 

Maximal Lyapunov exponent: 

Step 1: Obtaining key parameters: delay to use  

./bin/mutual ~/folderPath1/TH.dat -D40 -o ~/folderPath2/delay.dat 

gnuplot 

plot '~/folderPath2/delay.dat' w li 

Step 2: Obtaining key parameters: embedding dimensions 

./bin/false_nearest ~/folderPath1/TH.dat -m1 -M1,10 -d6 -o ~/folderPath2/embedding.dat 

gnuplot 

plot '~/folderPath2/embedding.dat' w li,0.1 

Step 3’: Largest Lyapunov exponent calculation: calculated slop × Sampling Interval 

./bin/lyap_k ~/folderPath1/TH.dat -M5 -m3 -d6 -t0 -s3000 -r.01 -o ~/folderPath2/Lyapunov_k.dat 

gnuplot 

plot '~/folderPath2/Lyapunov_k.dat' 

Correlation dimension: 

Step 3”: Correlation dimension  

./bin/d2 ~/folderPath1/TH.dat -d6 -t0 -o ~/folderPath2/dimension.dat 

./bin/av-d2 ~/folderPath2/dimension.dat.d2 -a2 -o ~/folderPath2/dimension_Smooth.dat 

gnuplot 

set logscale 

plot '~/folderPath2/dimension.dat.c2' 

plot '~/folderPath2/dimension_Smooth.dat'  
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b) MATLAB script: 

To calculate the largest Lyapunov exponent and correlation dimension by MATLAB, it needs to define 

some initial parameters and then thanks to the specific function, the calculations can be done. Below, 

the data of time series are stored in TH.dat file in one column and then due to high numbers of 

samples, a part of data for each period is considered to do the calculations.  

% The parameter that defines how many time series data has to be considered.  

nn=41; 

% Expansion steps 

eRange=3000; 

% Number of samples for Correlation Dimension calculation 

Np = 100; 

% Reading the time series data from Current Folder in MATLAB 

Sig_S=dlmread("TH.dat"); 

% Modified time series data (Sig) for doing the calculations 

Sig=Sig_S(1:nn:length(Sig_S)); 

 % Calculating delay time (Lag) and embedding dimension (Dim) 

[~,Lag,Dim] = phaseSpaceReconstruction(Sig); 

 % Calculating largest Lyapunov exponent 

lyapunovExponent(Sig, nn,Lag,Dim,'ExpansionRange',[0,eRange]); 

[~,~,ldiv] = lyapunovExponent(Sig, nn,Lag,Dim,'ExpansionRange',[0,eRange]); 

 % Calculating the Correlation Dimension 

correlationDimension(Sig,Lag,Dim,'NumPoints',Np); 
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