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From Images to 3D Space:
The Role of Semantic Keypoints for 3D Perception

Abstract

One of the goals of the Computer Vision community is to comprehend hu-
man 3D perception through 2D representations like images and videos. Extract-
ing robust 3D insights from these analyses is a significant challenge. This disser-
tation focuses on the keypoint-based 3D representation, exploring applications
in different real-world scenarios. Unlike traditional pointwise feature descrip-
tors like ORB or SIFT, semantic keypoints establish correlations between spe-
cific 3D points belonging to a rigid or articulated object. Recent advances in
Deep Learning, particularly in 2D keypoints detection, have paved the way for
addressing complex 3Dvision problem. This thesis demonstrates the application
of thesemethods in autonomous driving and video surveillance, showcasing their
robustness and precision in bridging the gap between 2D image planes and the
3D world.

In the automotive context, our investigation centers on the tasks of novel view
synthesis and 3D reconstruction of vehicles within urban scenes. A 3D represen-
tation of a vehicle in a scene can be valuable for traffic analysis and accident pre-
vention. To achieve this, we design a method leveraging a 2D keypoint localiza-
tion network to augment visual features for accurate classification of 3D vehicle
models. Ensuring a robust classification,we studyhow to improve the generation
of synthetic vehicles from unseen novel views through a deep learning pipeline
trained on a collection of single-view images. Additionally, to explore more so-
phisticated techniques for 3D object reconstruction from images, we introduce
a deep learning architecture capable of reconstructing objects acrossmultiple cat-
egories. This approach is trained on a dataset of single-view images and involves
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the deformation of explicit 3D representations.
The second research area is focused on predicting the 3D skeletons of both hu-

mans and robots, observed from an external perspective, such as a video surveil-
lance camera. The keypoints in this context are integrated into the definition of
a skeleton, depicted as a graph of semantic points. Our initial focus is on the
robotics domain, where an intelligent system for predicting 3D skeletons can be
crucial for safety in collaborative environments shared by humans and robots.
Given the challenges of obtaining real datasets in robotics, we emphasize the role
of simulation. Our approach involves collecting a synthetic and real dataset, ad-
dressing the 3D pose estimation task through a double heatmap-based represen-
tation. We explore the domain gap between the synthetic and real data, utiliz-
ing depth maps to enhance accuracy. Introducing temporal cues, our pipeline
embraces the novel Pose Nowcasting paradigm, where predicting future poses
serves as an auxiliary task to refine current pose precision. Shifting to the human
scenario, we propose a pose refinement framework based on depth map analy-
sis. Simultaneously, our investigation extends toHuman-Computer Interaction,
where we present an unsupervisedmethod for detecting and classifying dynamic
hand gestures using data from a motion tracking sensor.

This thesis seeks to make a valuable contribution to the intersection of 3D
ComputerVision andDeepLearning across various domains. Following an over-
view of the existing state-of-the-art in 3D reconstruction and 3Dpose estimation
tasks, we present our proposed methods with a comprehensive technical expla-
nation supported by a detailed experimental investigation conducted on bench-
mark datasets widely acknowledged in the literature.
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Dalle Immagini allo Spazio 3D:
il Ruolo dei Punti Chiave Semantici per la Percezione 3D

Sommario

Uno degli obiettivi della Computer Vision è quello di comprendere la perce-
zione 3Dumana attraverso rappresentazioni 2Dcome immagini e video. Estrarre
informazioni 3D robuste da quest’analisi è una sfida significativa. Questa tesi si
concentra su rappresentazioni 3Dbasate supunti chiave, esplorando applicazioni
in differenti scenari reali. Differentemente dai tradizionali descrittori puntuali
come ORB o SIFT, i punti chiave semantici stabiliscono correlazioni tra speci-
fici punti 3D appartenenti a oggetti rigidi o articolati. I recenti sviluppi in Deep
Learning, in particolar modo nel rilevamento di punti chiave 2D, hanno aperto
la strada per affrontare problemi complessi di visione 3D. Questa tesi dimostra
l’applicazione di questi metodi nella guida autonoma e nella videosorveglianza,
evidenziando la robustezza e la precisione nel ridurre il divario tra il piano im-
magine 2D e il mondo 3D.

Nel conteso automotive, la nostro indagine si concentra sui problemi di sinte-
tizzazione di nuove viste e di ricostruzione 3D di veicoli in ambienti urbani. La
rappresentazione 3D di un veicolo in una scena può essere utile per l’analisi del
traffico e la prevenzione di incidenti. Perciò, progettiamo un metodo che sfrutta
la localizzazione di punti chiave 2D in modo da aumentare le caratteristiche vi-
suali per l’accurata classificazione di modelli 3D di veicoli. Assicurando una clas-
sificazione robusta, studiamo come migliorare la generazione di veicoli sintetici
da punti di vista non visti attraverso un sistema di Deep Learning trainato su
un insieme di immagini da singoli punti di vista. In aggiunta, per esplorare tec-
niche più sofisticate di ricostruzione 3D di oggetti da immagini, introduciamo
un’architettura diDeep Learning capace di ricostruire oggetti di diverse categorie.
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Questo approccio è allenato su un insieme di immagini da singoli punti di vista
e comporta la deformazione di rappresentazioni 3D esplicite.

La seconda area di ricerca si concentra sulla predizione di scheletri 3D di per-
sone e robot osservati da una prospettiva esterna come le camere di videosorve-
glianza. I punti chiave in questo contesto sono integrati nella definizione di sche-
letro rappresentato come un grafo di punti semantici. Il focus iniziale è sul do-
minio robotico dove un sistema intelligente che predice scheletri 3D può essere
cruciale per la sicurezza in ambienti collaborativi condivisi da persone e robot.
Considerando le difficoltà nell’ottenere dataset reali in robotica, enfatizziamo il
ruolo della simulazione. Il nostro approccio comporta la raccolta di un dataset
sintetico e reale, affrontando il problema della stima della posa 3D attraverso una
rappresentazione a due mappe di calore. Esploriamo il divario tra il dominio sin-
tetico e reale utilizzando le mappe di profondità per aumentare l’accuratezza. In-
troducendo informazioni temporali, il nostro sistema sposa il nuovo paradigma
di PoseNowcasting, in cui predire le pose future rappresenta unproblema ausilia-
rio per raffinare la precisione della posa corrente. Passando allo scenario umano,
proponiamo un sistema di raffinamento della posa basato sull’analisi di mappe di
profondità. Contemporaneamente, la nostra indagine si estende all’interazione
uomo-computer, in cui presentiamo un metodo non supervisionato per rilevare
e classificare gesti delle mani dinamici usando dati di un sensore che traccia il
movimento.

Questa tesi punta a dare un valido contributo all’intersezione tra la 3D Com-
puter Vision e il Deep Learning in vari domini. Dopo uno sguardo sullo stato
dell’arte esistente sui problemi di ricostruzione 3D e stima della posa 3D, pre-
sentiamo i nostri metodi con una spiegazione tecnica esaustiva supportata da
indagini dettagliate dei risultati condotte su dataset ampiamente riconosciuti in
letteratura.
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1
Introduction

How can humans perceive the third dimension of the real world? This
is one of the biggest questions thatComputer Vision has always tried
to answer through the analysis of images. Anatomically, humans can

see the 3D realworld primarily throughbinocular vision and the brain’s ability to
process visual information. In particular, the slight separation of the human eyes
produces two overlapped viewpoints of the same scene that the brain integrates
into a single three-dimensional perception. Indeed, our brain can interpret the
slight differences between the two viewpoints, called binocular disparities, that
provide information about the depth and distance of the objects in the scene. In
addition to this information, the brain processes also some monocular cues. For
example, when the objects get far away from the human eye their size and posi-
tion change and the texture’s details become less fine-grained. Moreover, if an
object overlaps another one the obscured one is perceived as more distant. In
complex scenarios, humans tend to disambiguate objects by observing their mo-
tion through time (e.g. temporal cues) or changing the point of view of the scene
moving around the environment. All of this information is processed in real-time
by our brains making us able to navigate the world, judge distances, and interact
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1. INTRODUCTION

with the surroundings exploiting depth, spatial, and temporal relationships.
ComputerVision has always tried to emulate human eyes through the analysis

of visual data captured by camera sensors. With the recent advancements in the
field, the task of 3D perception has gained more and more attention. However,
since most of the visual sensors are monocular, a lot of challenges arise due to
the lack of multi-view correlation. The ideal setup for a precise perception of the
3D space frommonocular sensors is to have a multi-view camera setting and use
triangulation reasoning over the viewpoints. However, acquiring a lot of sensors
can be expensive, and setting up the multi-view system can be time-consuming
because it requires an initial camera calibration step.

Thus, research has started to focus on the more suitable while challenging
scenario of single-view images. Thanks to the success and fast development of
Deep Learning algorithms, extracting visual cues from images has become more
efficient. In particular, Convolutional Neural Networks extract features that
can identify salient cues useful for localizing, segmenting, and classifying objects.
These features or directly the task-related outputs of such architectures serve as
2Dvisual cues for finding semantic correspondences that can be leveraged for 3D
perception.

1.1 Problem statement

In this thesis, we focus on the role of semantic keypoints as visual cues for 3Dper-
ception. Semantic keypoints represent specific landmarks on images that carry a
semantic meaning. Usually, they are associated with particular object parts, play-
ing a crucial role in different Deep Learning tasks like object recognition, pose
estimation, and semantic segmentation. Different from standard Computer Vi-
sion descriptors like SIFT [152] and ORB [208], semantic keypoints are not ar-
bitrary points of interest, but they describe the structure of an object. For exam-
ple, semantic keypoints can describe salient features of a vehicle like mirrors and
lights or joints of a human skeleton like elbows and knees. Semantic keypoints
are a compact representation that enables useful reasoning about the 3D under-
standing of objects for many real-world tasks, such as 3D object reconstruction

2



1

1.1. PROBLEM STATEMENT

or 3D pose estimation. Since they do not require a high computational load,
further analysis involving the temporal evolution of these points can introduce
additional constraints to improve the 3D perception analysis.

The study carried out in this dissertation regards three main problems of 3D
perception described in the following.

3D object reconstruction. The goal of image-based 3D reconstruction is
to infer the 3D geometry and structure of objects and scenes from single or mul-
tiple images. The task can be crucial for many applications such as robot nav-
igation, scene understanding, 3D modeling, and autonomous driving. In this
work, we focus on the reconstruction of objects from single-view images lever-
aging novel view synthesis and differentiable rendering methods. An important
role is playedby semantic keypoints that areused to retrieve the correct pose of the
vehicle with respect to the camera viewpoint. Moreover, we tackle this problem
using only single-view images which requires collections of data with a balanced
camera distribution to guarantee the generalization over all possible viewpoints.

3Dpose estimation. Retrieving a precise 3Dpose of an articulated or rigid ob-
ject is fundamental for augmented or virtual reality applications. In particular, in
the Industry 4.0 scenario in which people and robots share the same workplace,
having an intelligent surveillance system that predicts the 3D skeleton pose of
the agents in the scene enables further analyses to detect potential anomalies or
collisions. In this work, we focus more on the robotic scenario since the litera-
ture lacks datasets and methods for direct 3D pose estimation from images. We
present a synthetic and real robotic dataset and propose a novel double heatmap
representation of a 3D skeleton in which a heatmap consists of the localization
of semantic keypoints of the 3D skeleton.

After a thorough analysis of the robotic scenario, we extend the pose estima-
tion to the human case. We present an improved framework that leverages the
heatmap-based representation adding temporal cues to improve the prediction
of the current pose. The extraction of the past motion information of the 3D
skeleton keypoints introduces additional information to generate a refined and
thus more precise pose.

3
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3D hand gesture recognition. Another crucial task in 3D perception is
enabling computers to interpret and respond to gesturesmade by userswith their
hands. The main goal is to create a natural and intuitive interface to interact
with digital devices or systems analyzing hand movements. For example, in the
automotive scenario, the interaction between the driver and the infotainment
system can cause distraction, leading to potential car accidents. In this work, we
tackle this problem in an into-the-wild scenario and propose an unsupervised
method to detect a gesture using 3D semantic hand keypoints acquired by a hand
tracking camera.

1.2 Organization

After an initial overview of the literature about the use of semantic keypoints in
different scenarios in Chapter 2, we present the studies carried out in the three
topics described in the previous section.

We first focus on the 3D object reconstruction task. InChapter 3, we propose
a Deep Learning pipeline to predict the visual future appearance of an urban
scene. Since generating the whole scene in an end-to-end fashion is still a non-
trivial task, a two-stage approach leverages interpretable information for each ve-
hicle to generate its synthetic textured version to be placed in the scene accord-
ing to its trajectory. Following this work, in Chapter 4, we present a multi-task
framework that aims to improve car model classification by merging visual fea-
tures obtained from an image classification network and local features extracted
from a keypoint localization network. Finally, in Chapter 5, we propose a multi-
category mesh reconstruction architecture that learns to infer the shape and tex-
ture of an object from a collection of single-view images deforming 3D triangle
meshes initialized as spheres.

Moving to the 3D pose estimation domain, in Chapter 6 we present a novel
heatmap-based representation of a 3D skeleton pose, called Semi-Perspective De-
coupled Heatmaps (SPDH), that can be learned by adapting efficient deep net-
works designed for 2DHumanPoseEstimation (HPE). In thiswork, we focus on
the robotic scenario presenting the SimBa dataset that contains synthetic and real
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sequences of a Baxter robot performing pick-n-place actions. Since the literature
lacks datasets and methods for robot pose estimation, a thorough study of this
topic is introduced in Chapter 7. Taking inspiration from the HPE domain and
leveraging the SPDH representation, we tackle the robot pose estimation task in
the Sim2Real scenario exploiting depth data to reduce the domain gap between
the synthetic and real domain. It is worth noting that SPDH is a generic repre-
sentation of semantic keypoints that can be used for any articulated object. In
Chapter 8, we formulate the paradigm of Pose Nowcasting which leverages past
pose information to improve the prediction of the current pose. A thorough ex-
perimental study demonstrates the validity of the approach in both robotic and
human scenarios.

The final contribution of this dissertation is dedicated to the hand gesture
recognition task in Chapter 9. In this work, we propose an unsupervised ap-
proach to detect dynamic hand gestures in a continuous temporal sequence using
a Transformer-based architecture that takes as input the 3D hand joint locations
together with their speed and acceleration.

To wrap up, Chapter 10 presents the conclusions for each topic along with
some comments on potential future works and research directions.
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2
Semantic Keypoints Survey

Discovering a good set of landmarks to describe objects has been in-
vestigated in different contexts in Computer Vision. In this chapter,
we present the role of semantic keypoints in twomainmacro domains

presenting the available datasets in the literature. Following the workflow of this
dissertation, we start with an analysis of the autonomous driving scenario in Sec-
tion 2.1 and then move to human-centric understanding in Section 2.2.

2.1 Autonomous driving

Semantic keypoints play a pivotal role in advancing autonomous driving technol-
ogy by providing a detailed understanding of the 3D environment. These key-
points serve as distinctive landmarks on objects, allowing vehicles to accurately
perceive and interpret their surroundings. In the context of autonomous driving,
precise identification and tracking of semantic keypoints on objects such as cars,
pedestrians, and traffic signs enable robust 3D object understanding. This infor-
mation is essential for tasks like object recognition, localization, and path plan-
ning, contributing to the overall safety and efficiency of autonomous vehicles. By
leveraging semantic keypoints, autonomous driving systems can enhance their
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2. SEMANTIC KEYPOINTS SURVEY

Dataset Image source 3D property Keypoints # Images # Car models

KITTI [64] Self-driving 3D bbox No 7481 16
PASCAL3D+ [54] Natural complete 3D Yes (12) 6704 10
ObjectNet3D [259] Natural complete 3D Yes (14) 7345 10
ApolloCar3D [223] Self-driving industrial 3D Yes (66) 5277 79

Table 2.1: Comparison between existing dataset with 3D car labels for autonomous driving.

ability to navigate complex scenarios, anticipate potential obstacles, and make
informed decisions in real-time, thereby promoting the development of more re-
liable and intelligent autonomous vehicles for the future.

The prevailing technologies for comprehending the 3D properties of objects
primarily dependonhigh-resolutionLiDARsensors insteadof conventional cam-
eras or image sensors. However, there are numerous drawbacks associated with
the use of LiDAR, impeding its broader adoption. The most critical issue is that
the captured 3D LiDAR points provide, at best, a sparse representation of the
scene, particularly in distant and absorbing regions, when viewed from the front.
Given the imperative need for a self-driving car to ensure a safe braking distance,
the exploration of 3D understanding from a regular camera remains a promis-
ing and feasible approach. This approach has gained substantial attention and
research interest from the vision community [73, 202].

One of the big challenges in 3D understanding is the lack of fully annotated
datasets because the acquisition of large-scale training data is laborious and time-
consuming. For example, when it comes to the challenge of comprehending 3D
information about cars for autonomous driving, the datasets accessible for this
task are notably constrained. In particular, 2D and 3D keypoints annotations
can be useful to retrieve the object pose with respect to the camera and also infer
its 3D shape using the keypoints as reference points for the object deformation.

The most popular dataset for self-driving is KITTI [64], but it contains only
200 labeled 3D cars in the form of bounding box only, without any detailed 3D
shape information. To face the need for massive labeled training data, other data-
sets such as Pascal3D+ [54] and ObjectNet3D [259] contain more images, but
the car instances are mostly isolated in controlled lab settings which are not suit-
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(a) Pascal3D+ (b) ApolloCar3D

Figure 2.1: Samples of vehicle keypoints of Pascal3D+ (left, picture taken from [181]) and Apol-
loCar3D (right, picture taken from [223]).

able for generalizing in a real autonomous driving scenario. More recently, Apol-
loCar3D [223] dataset was built upon ApolloScape [93] dataset targeting the
3D car understanding research in self-driving scenarios. Indeed, this dataset con-
tains a sufficient amount of cars on the street, large appearance variations, and
multiple driving cases (e.g. local street, highway, intersections).

InTable 2.1,wepresent a comparisonof the existingdataset in the autonomous
driving setting. In this dissertation, we explore the 3Dvehicle reconstruction task
using the Pascal3D+ dataset for a fair comparisonwith the state-of-the-art. Since
most of the presented architectures leverage vehicle keypoints to infer the 3D
synthetic model, a visualization of the semantic meaning of each keypoint for
Pascal3D+ and ApolloCar3D is depicted in Figure 2.1.

2.2 Human-centric understanding

Semantic keypoints play a crucial role in advancing the fields of human pose
estimation and hand gesture recognition. In human pose estimation, identify-
ing and tracking semantic keypoints on the human body, such as joints and key
anatomical points, is essential for accuratelyunderstanding and representingbody
movements. This information is instrumental in applications ranging from fit-
ness tracking to human-computer interaction. Similarly, in hand gesture recog-
nition, semantic keypoints on the hand provide a detailed representation of ges-
tures, enabling machines to efficiently interpret and respond to human commu-
nication. The precise localization of keypoints on hands facilitates the recogni-
tion of intricate gestures, contributing to applications in sign language interpre-
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Dataset Technology # Keypoints Skeleton

Berkeley-MHAD [177] Marker-basedMoCap 43 3D Joints
Human3.6M [97] Marker-basedMoCap 25 3D Joints
TotalCapture [236] Marker-basedMoCap 21 3D Joints

CMU-Panoptic [102] Markerless MoCap 19 3D Joints
MPI-INF-3DHP [164] Markerless MoCap 28 3D Joints
MuCo-3DHP [165] Markerless MoCap 28 3D Joints

JTA [57] Gaming engine 22 3D Joints
MOTSynth [55] Gaming engine 22 3D Joints

SURREAL [241] Scene compositing 24 SMPL
3DPeople [205] Scene compositing 29 3D Joints
AGORA [190] Scene compositing 66 SMPL[-X]
BEDLAM [23] Scene compositing 66 SMPL[-X]

Table 2.2: Overview of 3DHuman Pose Estimation datasets available in the literature.

tation, virtual reality interactions, and other human-machine interfaces. Overall,
the integration of semantic keypoints significantly enhances the accuracy and
robustness of algorithms in these domains, fostering advancements in human-
centric technologies and interaction modalities.

Human skeleton. In the human pose domain, there are different ways to get
accurate 3D annotations of the human skeleton. An overview of the most used
available datasets in the literature for human pose is presented in Table 2.2.

The first technique is characterized by the use of a marker-based motion cap-
ture system. It relies on the attachment of reflective markers to specific anatom-
ical points on a subject’s body. These markers reflect light, allowing cameras
to track their positions accurately. This method provides precise and detailed
data, making it widely used in controlled environments such as studios. How-
ever, it requires the subject to wear specialized suits with attached markers, lim-
iting its applicability in naturalistic settings. The most used datasets using this
annotation style are Human3.6M [97], Berkeley-MHAD [177], and TotalCap-
ture [236]. Due to the unfeasibility of using this system in realistic scenarios, all
of these datasets are single-person with actors performing a set of predefined ac-
tions.

Toovercome themarkers’ limitations,markerlessmotion capture systemshave
started to leverage Computer Vision algorithms and depth sensors to get the 3D
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Abstract

Deep learning-based 3D human pose estimation per-
forms best when trained on large amounts of labeled data,
making combined learning from many datasets an impor-
tant research direction. One obstacle to this endeavor are
the different skeleton formats provided by different datasets,
i.e., they do not label the same set of anatomical land-
marks. There is little prior research on how to best super-
vise one model with such discrepant labels. We show that
simply using separate output heads for different skeletons
results in inconsistent depth estimates and insufficient infor-
mation sharing across skeletons. As a remedy, we propose a
novel affine-combining autoencoder (ACAE) method to per-
form dimensionality reduction on the number of landmarks.
The discovered latent 3D points capture the redundancy
among skeletons, enabling enhanced information sharing
when used for consistency regularization. Our approach
scales to an extreme multi-dataset regime, where we use 28
3D human pose datasets to supervise one model, which out-
performs prior work on a range of benchmarks, including
the challenging 3D Poses in the Wild (3DPW) dataset. Our
code and models are available for research purposes.1

1. Introduction
Research on 3D human pose estimation has gone

through enormous progress in recent years [12, 17, 37, 39,
43, 46, 57, 69]. While semi-supervised and self-supervised
approaches are on the rise [41, 79], best results are still
achieved when using as much labeled training data as possi-
ble. However, individual 3D pose datasets tend to be rather
small and lacking in diversity, as they are often recorded
in a single studio with few subjects. Therefore, to pro-
vide the best possible models for downstream applications
(e.g., action recognition, sports analysis, medical rehabili-
tation, collaborative robotics), it becomes important to use
many datasets in the training process. Thanks to sustained
efforts by the research community, numerous publicly re-

1https://vision.rwth-aachen.de/wacv23sarandi

CMU-Panoptic

Human3.6M

3DPW (SMPL)

BML MoVi

Berkeley MHAD

Figure 1: Different 3D human pose datasets (e.g., CMU-
Panoptic and Human3.6M) provide annotations for differ-
ent sets of body landmarks (left). To best leverage such
discrepant labels for multi-dataset 3D pose estimation, we
discover a smaller set of latent 3D keypoints (right), from
which the dataset-specific points can be reconstructed. This
allows us to capture the redundancy among the different
skeleton formats and enhance information sharing between
datasets, ultimately leading to improved pose accuracy.

leased, labeled datasets exist. However, as prior published
works only train on at most a handful of them, it remains un-
known what performance could be achieved by combining
more than a decade of dataset collection efforts into a sin-
gle model. Unfortunately, this is not a trivial undertaking,
since different datasets do not use the same skeleton format
for their labels (see Fig. 1), e.g., the hip keypoints are at
different heights, some body parts are only labeled in some
datasets, some provide surface markers while others provide
keypoints inside the body, etc. Prior work has rectified such

2956

Figure 2.2: Different human pose datasets provide annotations for different sets of body land-
marks. Picture taken from [212].

pose annotations. This approach extracts movement information directly from
the subject’s appearance and body structure, enabling more natural and unob-
trusive motion capture. Markerless systems are advantageous for capturing mo-
tion in diverse environments, as they do not require subjects to wear specific gear.
However, markerless motion capture may face challenges in accurately captur-
ing fine details and may be influenced by factors such as occlusions and lighting
conditions. Thanks to the use of Deep Learning techniques for collecting anno-
tations, datasets with multiple subjects can be recorded opening the research to
the multi-person pose estimation task. The most used datasets in this field are
CMU-Panoptic [102], MPI-INF-3DHP [164], andMuCo-3DHP [165].

Thanks to the recent progress in computer graphics rendering and the intro-
duction of the SMPL [149] parametric model as human shape representation,
another automatic way to collect potential infinite datasets with human pose an-
notations is to leverage synthetic data. In particular, some datasets [57, 55] lever-
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a) Camera sensors b) Wearable devices c) Sensory gloves

Figure 2.3: Different modalities of collecting hand gesture information.

age game engines of popular videogames to create realistic scenarios, in which
people are spawned performing different actions. However, the photorealism
of these datasets is strictly bound to the technology used for rendering. On the
other hand, hybrid datasets have been collected with the use of the SMPLmodel
rendered and fitted for each person in real scenarios. Although the first tech-
niques [241, 205] of compositing 3D people and environments lack realism, re-
cent datasets [190, 23] achieve high photorealism thanks to Unreal engine * ren-
dering technology.

Despite the advancement in collecting large-scale datasets, an open problem
in human pose estimation is the lack of standardization of the human skeleton.
Indeed, each dataset has its own skeleton format as depicted in Figure 2.2.

Hand gesture. The fundamental objective in investigating gesture recogni-
tion is to develop a system capable of identifying distinct human gestures for
communication or command and control functionalities. This involves not only
tracking human movements but also interpreting those movements as meaning-
ful commands. Generally, there are two approaches employed to interpret ges-
tures forHuman-Computer Interaction applications. The first approach utilizes
data gloves, either wearable or in direct contact with the user, while the second
approach relies on computer vision, eliminating the necessity for users to wear
any sensors.

As depicted in Figure 2.3, collecting datasets with variousmodalities improves
the capability to capture diverse hand movements and gestures. One common
modality utilizes depth sensors, such as those found in devices like Microsoft

*https://www.unrealengine.com/
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Kinect, Intel RealSense, and LeapMotion cameras. These sensors provide three-
dimensional information about hand positions, enabling the creation of data-
sets that include spatial details crucial for accurate gesture recognition. Another
modality involves recording RGB images using standard cameras, capturing the
visual appearance of hand gestures. Wearable devices, equipped with inertial sen-
sors like accelerometers and gyroscopes, offer a portable solution for collecting da-
tasets on the go, capturing dynamic handmovements. Electromyography sensors
can also be utilized to record muscle activity, providing insights into the subtle
nuances of hand gestures. Moreover, glove-based sensors with embedded tech-
nology can capture detailed finger movements and hand poses. Combining mul-
tiple modalities often results in more comprehensive datasets, contributing to
the development of robust and versatile hand gesture recognition systems. The
choice of modality depends on factors such as the desired level of detail, portabil-
ity, and specific requirements of the gesture recognition application.
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3
Future Urban Scenes Generation

through Vehicles Synthesis

In the near future, smart interconnected cities will become a reality in various
countries worldwide. In this scenario, vehicles – both autonomous and
not – will play a fundamental role thanks to key technologies developed

to connect them (e.g. 5G) and advanced sensors (e.g. lidars, radars) enabling a
deeper understanding of the scene. Explainability is expected to be a mandatory
requirement to ensure the safety of all other actors (including pedestrians, cy-
clists, …). However, the current approach to autonomous driving-related tasks
is still end-to-end, which greatly obscures the learned knowledge. Despite that,
recent works [18, 88] have moved from this framework – where raw inputs are
transformed into the final outputs/decision – to amore interpretable one, where
an intermediate high-level representation is employed. Those representations can
be easily understood by human operators and provide an effective parallelism be-
tween human and autonomous decision making.

This Chapter is related to the publication “A. Simoni et al., Future Urban Scenes Generation
Through Vehicles Synthesis, ICPR 2020” [2]. See the list of Publications on page 151 for more
details.
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Figure 3.1: The difference between a black box end-to-end method and our approach, which
exploits intermediate interpretable information to synthesize each vehicle individually.

In this work, we take a step forward and present a pipeline where the final
output is produced by applying a sequence of operations that mimic those of a
human operator for a specific task related to autonomous driving. In particular,
we focus on generating realistic visual futures for urban scenes where vehicles are
the main actors. In more detail, starting from one or multiple RGB frames, the
final output is a clip of images where all the actors in the scene move following
a plausible path. In doing so, as depicted in Figure 3.1, we rely heavily on the
information a user can easily understand, such as bounding boxes, trajectories,
and keypoints. Moreover, we wish to easily condition the output on that infor-
mation; in particular, given a set of trajectories for the same vehicle (either by a
state-of-the-art trajectory predictor or a user’s input), we would like to generate a
set of realistic visual representation of the vehicle following these trajectories. In
the following, we focus on vehicles only and leave the analysis of other agents as
future work.

It is worth noting how the same task can be tackled as an image-to-image prob-
lem, where a deep neural network transforms past frame/s into future ones, as
depicted in Figure 3.1. While many end-to-end methods [69, 98, 287, 252] can
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be applied to visual scene generation, they all share some intrinsic drawbacks. In
particular: i) because they start from raw inputs (i.e. RGB images), it is not al-
ways clear which is the best way to include user’s or geometric constraints; ii)
despite recent advances in model explanation [225, 216], end-to-end methods
are difficult to investigate either before or after critical faults, which is required
for critical applications; iii) thesemethods do not focus on the actors but instead
transform the entire image, including the static background: this wastes com-
putational time while limiting the maximum resolution that these methods can
handle; and iv) they can hardly leverage any established state-of-the-art method
for additional information, such as vehicle detection or trajectory prediction.

Contrarily, we frame the task as a two-stage pipeline where only vehicles are
individually transformed. First, we extract interpretable information from raw
RGB frames, including bounding boxes and trajectory estimations. Second, we
employ it to produce visual intermediate inputs. Finally, these inputs condition
a deep convolutional neural network [53, 181] to generate the final visual appear-
ance of the vehicle in the future. We argue that this approach is closer to the
human way of thinking and, as such, better suits a human-vehicle interactions
setting. Similarly to what [18, 88] devise for autonomous planning, our method
offers an interpretable intermediate representation a user can naturally under-
stand and interact with. Finally, the input resolution does not represent a limit
in our proposal. In fact, as only individual vehicles are processed in our pipeline,
the input resolution is typically much lower than the full frame one.
To sum up, we:

• provide a novel pipeline that leverages interpretable information to pro-
duce a deterministic visual future grounded on those constraints;

• proves that ourmethod is not limited to a uni-modal output, but allows us
to generate ”alternative futures” by acting on the intermediate constraints;

• shows how this approach outperforms end-to-end image-to-image trans-
lation solutions both visually and quantitatively.
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3.1 Relatedwork

Image-to-ImageTranslation. GenerativeAdversarialNetworks (GANs) [69,
47, 163, 209, 14] have been widely used to perform image transformations with
impressive results. They exploit an adversarial loss to constrain generated im-
ages to be as similar as possible to the real ones. This supervision signal generates
sharper results when comparedwith standardmaximum estimation-based losses,
and allows these methods to be employed for image generation and editing tasks
associated with computer graphics.

Recent works [167, 98, 287] prove that GANs can help solve conditioned im-
age generation, where the network yields an output image conditioned on an
observed input image x and an optional random noise z. This can be applied for
example to transform a segmentation map into an image, or a picture taken in
day time into one acquired at night time as presented by [98].

Wang et al. [252] propose a framework able to synthesize high-resolution im-
ages (pix2pixHD), while Zhu et al. [287] define the concept of cycle consistency
loss to supervise GANs training without the need for coupled data; their goal is
to define a function G, which maps from the first domain to the second, and
a function F, which performs the opposite. The two domains are bound to be
consistent with each other at training time.

Topredictmultiple frames, severalworks [151, 244, 201, 122] extend the image-
to-image approach by including time. Authors of PredNet [151] propose a net-
work based on Long Short Term Memory (LSTM) [86] combined with convo-
lutional operations to extract features from input images. In [244], an LSTM-
based network is trained without any additional information (e.g. optical flow.
segmentationmasks,…)by leveraging the concept of ”network capacitymaximiza-
tion”. Qi et al. [201] decompose the task of video prediction into ego and fore-
ground motion and leverage RGBD input for 3D decomposition. Finally, au-
thors from [122] address the issue of low-quality predictions for the distant fu-
ture by training a network to predict both future and past frames and by enforc-
ing retrospective consistency.

View synthesis. In the last few years, deep generative models have been ap-
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plied also to novel view generation, i.e. synthesizing the aspect of an object from
different points of view. Many works [155, 280] achieve impressive results on
human pose appearance generation. Among them, VUnet [53] is based on a U-
Net architecture [207] which combines a GAN mapping an estimated shape y
to the target image x with a Variational AutoEncoder (VAE) [114] that is condi-
tioned on the appearance z. This network aims to find themaximum a posteriori
p(x|y, z), i.e. the best object synthesis conditioned on both appearance and shape
constraints. Yang et al. [269] propose a recurrent encoder-decoder network to
learn how to generate different views of the same object from different rotations.
The initial object appearance is encoded into a fixed low-dimensional representa-
tion, while sequential transformations act on a separate embedding. Finally, the
decoder combines both vectors and yields the final prediction.

In the automotive field, Tatarchenko et al. [230] train a CNN to estimate the
appearance and the depth map of an object after a viewpoint transformation.
The transformation is encoded as azimuth-elevation-radius and is concatenated
to the appearance embedding after being forwarded through fully connected lay-
ers. By combining multiple predicted depth maps, their approach can generate
reconstructed 3D models from a single RGB image. Again, Zhou et al. [284]
extract appearance flow information to guide pixel locations after an arbitrary
rotation. Their model leverages a spatial transformer [100] to output a grid of
translation coefficients. Contrarily, Warp&Learn [181] first extracts 2D seman-
tic patches from the vehicle input image andwarps them to the output viewpoint
through an affine transformation. Then, an image completion network is em-
ployed to seamlessly merge the warped patches and produce the final result. Park
et al. [184] draw inspiration from [284] to relocate pixels visible both in the input
and target view before using an image completion network based on adversarial
training to refine the intermediate result.

3.2 Proposed method

We present here the two fundamental stages of our approach, as illustrated in
Figure 3.2. In the first one (interpretable information extraction), we focus on ac-
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Figure 3.2: Our model pipeline composed of two stages: (i) interpretable information extraction
for each vehicle (detection & tracking), and (ii) novel view completion process exploiting the 3D
projected rendering of the object (target 3D normals) and its appearance from the cropped image
(source appearance).

quiring high-level interpretable information for each vehicle in the scene. That
information is then exploited by the second stage (novel view completion) to gen-
erate the final appearance of each vehicle individually.

3.2.1 Interpretable information extraction

During this stage, high-level interpretable information is gathered from rawRGB
frames. Vehicles are first detected and their trajectories predicted. However, these
trajectories are bound to the 2Dplane, which is not sufficient to produce realistic
movements (e.g. a car taking a turn). As such,we also detect vehicle 2Dkeypoints
and align them to 3D annotations of Pascal3D+ through a perspective-n-point
algorithm, obtaining a roto-translation matrix. This way, we can lift both the
vehicle and the trajectory from 2D to 3D, and simulate realistic movements.
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Components from this stage are not the focus of this work. Indeed, we are
not interested in advancing the research in any of these tasks here, and we make
use of pre-trained state-of-the-art methods when possible.

Vehicle Detection. We employ the SSD detection network [147] to detect
vehicles in the scene. Starting from the input frame, SSD outputs a set of bound-
ing boxes (one for each detected object) in a single forward pass, along with their
class probabilities. We filter the bounding boxes to keep only those associated
with a vehicle and use them to crop the visual appearance of each of them.

TrajectoryPrediction. We employTrackletNet [247] as a trajectory predic-
tor; it compares each vehicle tracklet – composed of the detected bounding box
and the appearance features – along a timewindowof 64 consecutive frames. Us-
ing a similaritymeasure between tracklets, a graph is createdwhere vertices under
a certain distance threshold represent the same object.

Keypoints Localisation. We adapt a state-of-the-art network for human
pose estimation, namely theStackedHourglass [175], to localize vehicle keypoints.
The network is characterized by a tunable number of encoder-decoder stacks.
The final decoder outputs a set of planes (one per keypoint) where themaximum
value localizes the keypoint location. We changed the final output structure to
produce 12 keypoints: (i) fourwheels, (ii) four lights, and (iii) four front andback
windshield corners.

Pose estimation. We frame vehicle pose estimation as a perspective-n-point
problem, leveraging correspondences between 2D and 3D keypoints. While the
former are the outputs of the previous step, the latter come from annotated 3D
vehicle models. We exploit the 10 annotated models included in Pascal3D+, and
we train aVGG19-based network [221] to predict the correspondingmodel given
the vehicle crop. We argue these 10 CADs cover the vast majority of urban vehi-
cles, as they have been deemed sufficient to annotate all vehicle images in the Pas-
cal3D+ car set by authors from [260]. Then, we adopt a Levenberg-Marquardt
iterative optimization strategy [43] to find the best roto-translation parameters
by minimizing the reprojection error or residual between the 2D original key-
points and the correspondent 3D projections. We follow the stop criteria pre-
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sented in [43]. Once the source roto-translation matrix Vs is known, the pre-
dicted model can follow the 3D lifted trajectory by applying consecutive trans-
formations defined by the vehicle trajectory – i.e. the roto-translation between
consecutive trajectory positions converted from pixel to GPS meter coordinates
through a homography matrix computed between the camera and GoogleMaps
viewpoints of the scene. After each transformation, we obtain the target roto-
translation matrixVt.

3.2.2 Novel view completion

Once we know what to move and where to move it, we require a method to con-
dition a reprojected 3Dmodel with the original 2D appearance from the vehicle
detection module. Theoretically, any view synthesis approach from Section 3.1
can be used. In practice, a vast majority of them [100, 269, 230, 184] is only able
to handle a specific setting known as ”look-at-camera”, where the vehicle is placed
in the origin and the camera z axis points at it. However, in our setting, both Vs

andVt are generic roto-translation matrices. Moreover, some of the methods in-
volve voxel spaces [100], which makes it infeasible to find a correspondence.

Because our focus is on real-world data, we also exclude works that require
direct training supervision and can thus only be trained on synthetic data [269].
In fact, as of today, no real-world vehicle dataset can be exploited for supervised
novel view synthesis training, as they all lack multiple views for the same vehicle
annotated with pose information. This also prevents us from using any method
basedon [252] for this task. In the following,we thus employ twoapproaches [53,
181] that are able to handle generic transformations and can be trained in an un-
supervised fashion on real-world data.

Giving as input the crop depicting the vehicle xs observed by a source camera
viewpointVs, we project the 3Dmodel with the roto-translation outlined byVt.
To enrich the representation, we render a 2.5D sketch with normal information.
The newly produced output is then pasted into a static background, and the pro-
cess is repeated for each moving vehicle.

We rely on foreground suppression to generate a static background for the
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output clip. We also experimented with inpainting networks [174] but found
that results were less realistic by visual inspection due to the presence of several
artifacts. We leave further investigation and the extension to moving cameras as
a future work.

3.3 Experiments

In this section, we present, both visually and quantitatively, the results of our
proposed pipeline and we compare themwith those from various end-to-end ap-
proaches (referred to as baselines in the following). We also introduce the em-
ployed datasets and the metrics of interest, as well as implementation details to
ensure experiments reproducibility.

3.3.1 Dataset

CityFlow[229]. It is amulti-targetmulti-camera tracking and re-identification
vehicle dataset, introduced for the 2019 Nvidia AI City Challenge. It comprises
more than 3 hours of high-resolution traffic camera videos withmore than 200K
bounding boxes and 600 vehicle identities, split between train and test sets. The
dataset also includes homography matrices for bird’s eye visualization. Vehicle
detection and tracking have been annotated automatically using SSD [147] and
TrackletNet [247] as detector and tracker respectively. All baselines have been
trained on the train split of this dataset.

Pascal3D+ [260]. It is composed of 4081 training and 1024 testing images,
preprocessed to guarantee the vehicle is completely visible. Every image is also
classified into one of ten 3D models. Both 3D and 2D keypoints are included.
Because 2D keypoints localization is crucial in our pipeline, we extend the Pascal
training set by including frames from CarFusion [50]. We train models for our
first stage on this dataset to ensure the generalizationof our approachwhen tested
on CityFlow.
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3.3.2 Metrics

We evaluate all methods using both pixel level and perceptual metrics. The for-
mer evaluates the exact spatial correspondence between the predicted and the
ground truth target and is very sensitive to 2D transformations (e.g. translations).
Contrarily, the latter evaluates the matching between the content of the two im-
ages. It is worth noting that we only compare a tight crop around each vehicle for
all methods, instead of the full generated image. We argue this choice leads to a
better understandingof true performancebecause it removes a vast portionof the
image – with only a static background in it – we are not interested in evaluating.

PixelwiseMetrics. We employ the Mean Squared Error (MSE) as a measure
of pixel distance between the target crop xt and the predicted one xp as follows:

MSE(xt, xp) = ∥xt − xp∥22 (3.1)

values are then averaged over to compute the final score.

PerceptualMetrics. Weemploy the Structural Similarity Index (SSIM) [253]
as a measure of the degradation in the image quality due to image data manipu-
lation, defined as:

SSIM(xt, xp) =
(2μxtμxp + c1)(2σxtxp + c2)

(μ2xt + μ2xp + c1)(σ2xt + σ2xp + c2)
(3.2)

As another measure of content similarity, we measure the Fréchet Inception
Distance (FID) [85, 154] computed between activations from the last convolu-
tional layer of an InceptionV3 model pretrained on ImageNet [119]. We com-
pute the FID as follows:

FID = ∥mt −mp∥22 + Tr
(
Ct + Cp − 2

(
CtCp

)1/2) (3.3)

where m, C refer to the mean and covariance and follow the same notation as
above for the target and predicted image.

Finally, we also compute the Inception Score (IS) [209] to measure the gener-
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Figure 3.3: Visual results using the methods (Pix2PixHD, Pix2PixHD-3D, PredNet, VUnet,
Warp&Learn) on two ground truth video sequences (a) and (b) with different vehicles behavior.
Images at time t refer to the ground truth, while images within 1 second in the future represent a
method prediction.

ated image variety as:

IS(G) = exp(
1
N

N∑
i=1

DKL(p(y | x(i)∥p̂(y))) (3.4)

where x is an image, N is the total number of samples and p(ŷ) is an empirical
marginal class distribution.
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3.3.3 Baselines

Pix2Pix. We adapt Pix2PixHD [252] for future frame prediction. Because it
is trained in an end-to-end fashion, we can trivially include any high-level infor-
mation in the input. Still, we need to condition the output to generate a specific
frame (e.g. 0.2 seconds in the future) given the input image. As such, we stack
the input with a set of binary maps along the channel dimension. During train-
ing, a random frame in the future is selected and the correspondent map is set
to 1, while the others are set to 0. It is worth noting that predicting movements
given a single input image is an ill-posed task. For this reason, we also include
another Pix2Pix baseline – referred to as Pix2Pix-3D in the following – which
is time-aware. We provide this baseline with a set of past frames and replace 2D
convolutions in the encoder with 3D ones. As such, this baseline version has ac-
cess to past frames and can therefore exploit temporal information to determine
if and how a vehicle is moving. However, this comes with an increase in memory
footprint.

PredNet. Wealso adaptPredNet [151] as a recurrent-based approach to the task.
Differently from the previous two, this baseline generates frames in the future via
a recurrent structure. However, generated frames have to be forwarded as part of
the input to produce frames further in the future, causing errors to propagate
and performance to degrade in the long run.

3.3.4 Implementation details

All baselines are trained for 150 epochs on frames from the Cityflow train set, re-
sized to 640x352 pixels. Pix2PixHD-based models employ batch size equal to 4
with an initial learning rate of 2e−4 and linear decay as defined in [98]. PredNet is
trained according to the original paper parameters. As for our pipeline, the Key-
points localization network is trained for 100 epochs employing batch size 10 and
a learning rate of 1e−3 halved every 20 epochs, while VUnet and Warp&Learn
models are trained following the policies described respectively in [53, 181]. All
models except those for detection and tracking are trained on Pascal3D+ vehicle
images resized to 256x256 pixels.
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Figure 3.4: Comparison between our approach with two different types of image completion
network (solid lines) and multiple baselines (dash lines) using Mean Squared Error (MSE) (lower
is better), Structural Similarity Index (SSIM) (higher is better), Inception Score (IS) (higher the
better) and Frechet Inception Distance (FID) (lower is better).
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Method +0.2s +0.4s +0.6s +0.8s +1.0s

Pix2PixHD [252] 4854 4919 4950 4966 5007
Pix2Pix-3D 3579 3802 4026 4198 4424
PredNet [151] 2037 2499 2765 2877 2959

Ours (VUnet [53]) 2705 2692 2759 2755 2870
Ours (Warp&Learn [181]) 2996 2987 3058 3055 3153

Table 3.1: Comparison on the test set usingMean Squared Error (MSE). Each column refers to a
future displacement. Lower is better.

Method +0.2s +0.4s +0.6s +0.8s +1.0s

Pix2PixHD [252] 0.18 0.17 0.17 0.18 0.18
Pix2Pix-3D 0.24 0.23 0.22 0.21 0.20
PredNet [151] 0.40 0.37 0.35 0.36 0.36

Ours (VUnet [53]) 0.50 0.50 0.49 0.50 0.50
Ours (Warp&Learn [181]) 0.50 0.50 0.49 0.49 0.49

Table 3.2: Comparison on the test set using Structural Similarity Index (SSIM). Each column
refers to a future displacement. Higher is better.

Code has been developed using the PyTorch [189] framework and the Open3D
library [283] has been employed to manipulate and render the 3D CAD in the
scene. Inference is performed on Cityflow test set videos resized to 1280x720
pixels. The code is publicly available *.

3.3.5 Results

Comparisons of the differentmethods are reported inTables 3.1, 3.2, 3.3, 3.4 and
in Figure 3.4. Our proposed approach outperforms the baselines for all metrics
in the long runwhile scoring second behind PredNet for the first two predictions
according to the MSE.

However, it is worth noting how Prednet is not effectively capturing move-
ments, as shown in Figure 3.3. While the first outputs look realistic, performance
degrades quicklywhenpredictions are employed as inputs for theLSTM.Our ap-
proach proves to be superior for all the metrics that reward the content realism

*https://github.com/alexj94/future_urban_scene_generation
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Method +0.2s +0.4s +0.6s +0.8s +1.0s

Pix2PixHD [252] 2.27 2.29 2.32 2.32 2.24
Pix2Pix-3D 2.72 2.67 2.56 2.37 2.51
PredNet [151] 3.16 3.16 3.16 3.00 3.00

Ours (VUnet [53]) 3.17 3.22 3.21 3.10 3.32
Ours (Warp&Learn [181]) 2.93 2.78 2.87 3.02 2.91

Table 3.3: Comparison on the test set using Inception Score (IS). Each column refers to a future
displacement. Higher is better

Method +0.2s +0.4s +0.6s +0.8s +1.0s

Pix2PixHD [252] 274.2 268.6 265.3 262.3 259.4
Pix2Pix-3D 240.6 241.2 248.6 245.9 249.5
PredNet [151] 197.1 197.2 196.4 193.4 196.3

Our(VUnet [53]) 192.8 187.3 182.0 178.3 177.49
Our(Warp&Learn [181]) 90.4 90.22 91.2 92.6 94.1

Table 3.4: Comparisonon the test set using Frechet InceptionDistance (FID). Each column refers
to a future displacement. Lower is better

(i.e. FID, IS, and SSIM) and suffer less performance degradation for long-time
predictions. This highlights how focusing on individual vehicles is crucial in vi-
sual future scene prediction. Between the twonovel view synthesismethods, [53]
achieves better performance for 2 (IS, MSE) out of 4 metrics, with comparable
results for the SSIM. On the other hand [181] outperforms all other methods by
a consistent margin for the FIDmetric.

Figure 3.3 reports a visual comparison between different methods on two se-
quences. It can be appreciated how our approach produces higher quality re-
sults, both for the static background and the foreground. On the other hand,
baseline methods struggle to produce crisp images, often resulting in extremely
blurry images. As expected, Pix2PixHD fails to predict vehicle movement and
collapses into a static image output. While Pix2Pix-3D partially solves this issue,
it still focuses mostly on the background. Finally, PredNet can guess correctly
the evolution of the scene, but performance degrades in the long run, with vehi-
cles progressively fading away. It is worth noting that for the first sequence, the
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vehicle closer to the camera is not modeled by our method, and thus disappears
immediately. This is due to an SSD miss-detection. Even though our final out-
put depends on many modules we argue this is not a weakness in the long run.
Indeed, it’s trivial to replace a single component with another with better perfor-
mance, while the same consideration does not hold for end-to-end approaches.

3.3.6 Constrained futures generation

Thanks to its two-stage pipeline our methods can be trivially constrained using
high-level interpretable information. Figure 3.5 illustrates an example of this pro-
cess where the constraint is provided in the formof trajectories. Three futures are
generated from the same input frame by providing different trajectories. It can
be appreciated how the vehicle closely follows the designated path, which can be
easily drawn by a non-expert user. Other constraints that can be provided out
of the box include a different CAD model or a different appearance. The same
interaction is not well-defined for end-to-end methods.
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4
Improving Car Model Classification

through Vehicle Keypoint Localization

The classification of vehicles, and specifically car models, is a crucial task
in many real-world applications, especially in the automotive scenario,
where controlling and managing traffic can be quite complex. More-

over, since visual traffic surveillance has an important role in computer vision, car
classification canbe an enabling feature for other tasks like vehicle re-identification
or 3D vehicle reconstruction. Despite these considerations, little effort has been
made in the computer vision community to improve the accuracy of the existing
systems and to propose specialized architectures based on the recent deep learn-
ing paradigm. Indeed, from a general point of view, car model classification is a
challenging task in the computer vision field, due to the large number of different
models produced by many car companies and the large differences in the appear-
ance with unconstrained poses [182]. Therefore, viewpoint-aware analyses and
robust classification algorithms are strongly demanded.

This Chapter is related to the publication “A. Simoni et al., Improving Car Model Classifi-
cation through Vehicle Keypoint Localization, VISAPP 2021” [4]. See the list of Publications on
page 151 for more details.
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Only recently, some works in the literature have faced the classification prob-
lem trying to distinguish between vehicle macro-classes, such as airplanes, cars,
and bicycles. For instance, in [9] amulti-taskCNNarchitecture that performs ve-
hicle classification and viewpoint estimation simultaneously has been proposed.
In [171] a coarse-to-fine hierarchical representation has been presented to per-
formobject detection, estimate the 3Dpose, and predict the sub-category vehicle
class. However, we note that learning to discriminate between macro-classes is
less challenging than categorizing different specific car models. In [71] the task
is addressed through the use of depth images computed from the 3D models.
The proposed method not only estimates the vehicle pose but also performs a
3D model retrieval task. Other works [262, 118] are focused on the vehicle and
object classification task under partial occlusions. The work most closely related
to our system has been proposed by Simoni et al. in [2], where a framework to
predict the visual future appearance of an urban scene is described. In this frame-
work, a specificmodule is committed to classify the carmodel fromRGB images,
in order to select a similar 3Dmodel to be placed into the final generated images.

In this paper, we address the specific task of car model classification, in terms
of vehicle typology (e.g., pick-up, sedan, race car, and so on). Our starting intu-
ition is that the localization of 2Dkeypoints on theRGB images canbe efficiently
exploited to improve the car model classification task. As a training and testing
dataset, we exploit the Pascal3D+ [260], one of the few datasets containing a
great amount of data annotated with 3D vehicle models, 2D keypoints and pose
in terms of 6DoF. In the evaluation procedure, we investigate how the architec-
tures currently available in the literature can deal with the carmodel classification
and the keypoint detection task. Specifically, we investigate the performance of
these models applied to specific tasks. Then, we present how to merge visual in-
formation and the 2D skeleton data, encoded from an RGB image of the car,
proposing a new multi-task framework. We show that exploiting both informa-
tion through a multi-task system leads to an improvement of the classification
task, without degrading the accuracy of the pose detector.
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4.1 Proposed method

In this section, we describe our method that improves the accuracy of the car
model classification by leveraging the side task of 2D keypoint localization. The
architecture is composed of two sub-networks, each tackling a different task as
detailed in the following.

4.1.1 Car model classification

The car model classification task aims to extract visual information from RGB
images of vehicles and to classify them into one of the possible classes, each cor-
responding to a specific 3D vehicle model. Among several classifiers, we choose
the ResNeXt-101 network from [264], which is a slightly modified version of
the ResNet architecture [82]. The network takes as input an RGB vehicle im-
age of dimension 256 × 256 and outputs a probability distribution over n pos-
sible car model classes. The distinctive aspect of this architecture is the introduc-
tion of an aggregated transformation technique that replaces the classical residual
blocks withC parallel embedding transformations, where the parameterC is also
called cardinality. The resulting embeddings can be aggregated with three equiv-
alent operations: i) sum, ii) concatenation or iii) grouped convolutions. This
data transformation has proved to obtain higher-level features than the ones ob-
tained from the residual module of ResNet. This statement is also confirmed by
better performance on our task, as shown later in Section 4.2. We refer to this
section also for a comparison between different visual classifiers.

4.1.2 2D keypoints localization

The second task in hand is the localization of semantic keypoints representative
of the vehicle skeleton. Finding 2D object landmarks and having their corre-
sponding 3D model can be useful to estimate and reproduce the object pose in
the 3D world using well-known correspondence methods and resolving a PnP
problem. Similarly to the classification task, many CNNs can solve the 2D key-
point localization task. We choose the architecture presented by [175] between
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several alternatives, whose comparison is reported in Section 4.2. This network
is called Stacked-Hourglass since it is composed of an encoder-decoder structure,
called hourglass, which is repeated N times composing a stacked architecture.
The network takes as input the RGB vehicle image of dimension 256 × 256
and every hourglass block outputs an intermediate result, which is composed
by k Gaussian heatmaps where the maximum value identifies the keypoint lo-
cation. The presence of multiple outputs through the architecture allows to
finely supervise the training by applying the loss to every intermediate output.
We tested the network with N = [2, 4, 8] and chose to employ an architecture
withN = 4 hourglass blocks which obtains the best trade-off between score and
performance.

4.1.3 Combined approach

Testing the sole ResNeXtmodel as a visual classifier proved that car classification
is a non-trivial task. We propose to improve the car model prediction by leverag-
ing a multi-task technique that embraces the keypoint localization task too. As
depicted in Figure 4.1, we combine pose features extracted by Stacked-Hourglass
and visual features extracted byResNeXt to obtain amore reliable carmodel clas-
sification.

In practice, we leverage the features coming from each hourglass block and an-
alyze them with two convolutional layers with 256 kernels of size 3 × 3, shared
weights, andReLUactivation function. While thefirst layer has stride andpadding
equal to 2, the second one has stride and padding 1. Since the Stacked-Hourglass
architecture hasN = 4 hourglass blocks, 4 pose features are obtained. We thus
combine them with an aggregation function and concatenate them to the visual
features extracted byResNeXt-101. The fused features are passed through 2 fully
connected layers, with 1536 and 768 hidden units and ReLU activation func-
tions. Finally, a linear classifier with n units followed by a softmax layer provides
the probability distribution over the 3D car models.

Two different approaches are taken into account for the aggregation of the
features obtained by Stacked-Hourglass. One approach consists of summing the
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Figure 4.2: Image samples from Pascal3D+ dataset for each car model class.

1D tensors of every encoder and concatenating the summed tensors to the 1D ten-
sor containing the visual features of ResNeXt. Another approach corresponds
to first concatenating the 1D tensors of every encoder and then the one extracted
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Figure 4.3: Images distribution through train and test set for each vehicle sub-category in Pas-
cal3D+ dataset.

by ResNeXt. In both cases, the resulting features are passed through the 3 fully
connected layers that perform the classification task.

To further explain our method, we describe the mathematical formulation of
the performed operations. Our multi-task car classification method can be de-
fined as a function

Φ : R w×h×c → R n (4.1)

that maps an RGB image I to a probability distribution of n possible car model
classes. This function is composed of the two subnetworks presented above and
is defined as follows.

The Stacked-Hourglass architecture is a function

H : R w×h×c → R w×h×k (4.2)

that maps the RGB image I to k heatmaps representing the probability distribu-
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tion of each keypoint. The keypoint location is retrieved computing the maxi-
mum of each heatmap.
The functionH is composed ofN encoder-decoder blocks called hourglass. Each
encoder Ei of the i-th hourglass outputs a set of features vi

enc containing m =

256 channels. A series of two convolutional layers are further applied to the out-
put of the encoder block:

Ψ : R(w/64)×(h/64)×m → Rm (4.3a)

ui
pose = Ψ(vi

enc) (4.3b)

where the resulting features have lost their spatial resolution.

Similarly, the parallel ResNeXt architecture, used as a visual feature extractor,
can be represented as a function

G : R w×h×c → Rl (4.4a)

uvis = G(I) (4.4b)

that extracts l = 2048 visual features from the RGB image I.

The pose features extracted from the hourglass architecture can be aggregated
in two ways, as defined previously. Following the sum approach, the operation is
defined as

u̇pose = u 1
pose + . . . + u N

pose (4.5)

Alternatively, the concatenation approach is defined as

u̇pose = u 1
pose ⊕ . . . ⊕ u N

pose (4.6)

In both cases, N = 4 is the number of hourglass blocks, and ⊕ represents the
concatenation operation.

Then, the pose and visual features are combined and given as input to a series
of two fully connected layers followed by a linear classifier

y = Y(u̇pose ⊕ uvis) (4.7)
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obtaining a probability distribution over the n classes of 3D car models.

4.2 Experiments

In this paragraph, we report details about the dataset, the training procedure, and
the results in terms of severalmetrics, execution time, andmemory consumption.

4.2.1 Dataset

The Pascal3D+ dataset [260] was presented for the 3D object detection and pose
estimation tasks. However, to the best of our knowledge, it is still one of the
few datasets that contains RGB images annotated with both 3D car models and
2D keypoints. The dataset is split into 12 main categories from which we select
the car category. This category is further split into 10 car models (e.g. sedan,
hatchback, pickup, SUV) and contains 12 keypoints, listed in Table 4.5. As can
be seen in Figure 4.2 and 4.3, every image is classified into one of ten 3Dmodels
sub-categories and both 3D and 2D keypoints are included. Filtering the images
of the car class, we obtain a total of 4081 training and 1024 testing images. We
process these images in order to guarantee that each vehicle, with its keypoints, is
completely visible, i.e. contained in the image. All the images are center-cropped
and resized to a dimension of 256× 256 pixels. Following the dataset structure,
we set the number of predicted classes n = 10 and the number of predicted
heatmaps k = 12.

4.2.2 Training

The training of our model can be defined as a two-step procedure. Therefore, to
extract meaningful pose features for vehicle keypoints, we first train the Stacked-
Hourglass model on Pascal3D+ for 100 epochs, using an initial learning rate of
1e−3 and decreasing it by a factor of 10 every 40 epochs. The network is trained
with aMean Squared Error loss computed between the predicted and the ground
truth keypoints heatmaps.
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Method Fusion Accuracy

[2] - 65.91%
ResNeXt-101 - 66.96%

Stacked-HG-4 + [2] sum 67.61%
Stacked-HG-4 + [2] concat 69.07%

Ours sum 68.26%
Ours concat 70.54%

Table 4.1: Average accuracy results on features
fusion classification method.

Network Layers Accuracy

VGG16 [221] last fc 65.18%
VGG16 [221] all fc 65.10%

ResNet-18 [82] last fc 59.01%
ResNet-18 [82] all 58.20%

DenseNet-161 [92] last fc 65.02%

ResNeXt-101 [264] last fc 66.96%

Table 4.2: Average accuracy results over the 10
car model classes. The second column shows
the trained layers while other layers are pre-
trained on ImageNet.

The second step starts by freezing both a ResNeXt model, pre-trained on Im-
ageNet [46], and the Stacked-Hourglass model, trained on Pascal3D+; the aim
is to train the convolutional layers, that modify the hourglass embedding dimen-
sions, and the final fully connected layers, that take as input the concatenated
features, on the classification task. This training lasts for 100 epochs using a fixed
learning rate of 1e−4. In this case, we employ the standard Categorical Cross En-
tropy loss.

Code has been developed using the PyTorch [189] framework and for each
step, we used Adam [113] as optimizer.

4.2.3 Results

Here, we report the results obtained by our multi-task technique and compare
them with a baseline, i.e. the plain ResNeXt-101 finetuned on the car model
classes, and the literature.

As detailed in Section 4.1, the proposed method can combine the pose fea-
tures encoded by the Stacked-Hourglass network with two different approaches,
namely sum and concatenation (concat). As a baseline, we employ the ResNeXt-
101 architecture, finetunedwith theCategoricalCrossEntropy loss for 100 epochs.
To compare with the literature, we report the results obtained by [2], which
employ a VGG-19 architecture for the task of car model classification. More-
over, we adapt our proposed architecture, which combines Stacked-Hourglass
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Figure 4.4: Normalized confusion matrix for features concatenation classification method.

and ResNeXt-101, to integrate Stacked-Hourglass, for the keypoint localization,
with the method proposed in [2], for the model car classification. In Table 4.1,
we show the results in terms of car model classification accuracy. As shown, the
proposed method outperforms the baseline and the competitors. Moreover, the
combination of the keypoint localization task and the car model classification
one steadily improves the results, regardless of the employed classification archi-
tecture. Regarding the different combination approaches, the sum approach im-
proves the classification score of an absolute+1.3% with respect to the baseline
(ResNext-101). The concat approach benefits evenmore the classification results
doubling the accuracy improvement (+3.6%) with respect to the sum approach.

We report in Figure 4.4 the confusion matrix of the proposed method, in the
concatenation setting. As it can be seen, most of the classes are recognized with
high accuracy, i.e. 60% or higher. The sole exceptions are the classes 3, 4, and 6
that are, along with class 7, the less represented classes in both the train and the
test set. In particular, even though the class 7 is one of the less represented classes,
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Figure 4.5: Average accuracy results with regard to vehicle viewpoint orientation.

it has a high classification score because it represents sports cars whose image fea-
tures are more likely to be different from the other classes. It is worth noting
that we are aware of the class imbalance problem of the dataset (as depicted in
Figure 4.3), but, as we observed in some experiments using an inverse weighting
during training (i.e. samples from the most common classes are weighted less
than samples from the uncommon classes), the results do not have any relevant
improvements.

In addition, we show the model accuracy with respect to the azimuth of the
vehicle in Figure 4.5. Among values steadily above the 70%, there is a significant
drop in accuracy for the angles ranging in [0, π6 ] and [π,

7
6π]. This may be caused

by the viewpoint, that may be less informative than the others, by a less repre-
sented azimuth range in the training set, or by amore frequent azimuth range for
rare or complex cars. This behavior will be the subject of future investigation.

4.2.4 Ablation study

This section covers a quantitative ablation study over several classification and
keypoint localization networks, showing the results for both tasks.
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Figure 4.6: Normalized confusion matrix for ResNeXt-101 classification network.

Classification. As shown in Table 4.2, we tested several baselines as visual
classifiers. We trained each network for 150 epochs with a fixed learning rate of
1e−4 and the Adam optimizer. The objective is the Categorical Cross Entropy
loss.

It’s worth noting that the best results are obtained by ResNeXt-101 with an
average accuracy of 66.96%, despite the fact all networks except ResNet-18 are
quite close to eachother. The results also reveal thatnetworkswith a goodamount
of parameters (see Table 4.4) tend to perform better on the Pascal3D+ dataset
than smaller networks like ResNet-18.
Moreover, the good performance of ResNeXt-101 can be clearly observed in Fig-
ure 4.6, where the accuracy score is defined for each class. We noted, compared
to the other networks, thatResNeXt-101 generates a less sparse confusionmatrix,
i.e. the classifier tends to swap fewer classes with one another.

Keypoints localization. Similarly to the classification task, we tested three
architectures, named respectively OpenPose [29], HRNet [248], and Stacked-
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Model PCKh@0.5

[148] 55.7%
[239] 81.3%

OpenPose-ResNet152 [29] 84.87%
OpenPose-DenseNet161 [29] 86.68%

[285] 90.00%

HRNet-W32 [248] 91.63%
HRNet-W48 [248] 92.52%

[193] 93.40%

Stacked-HG-2 [175] 93.41%
Stacked-HG-4 [175] 94.20%
Stacked-HG-8 [175] 93.92%

Table 4.3: Average PCK score (PCKh@0.5
with α = 0.1) for every keypoint localization
baseline (HG =Hourglass).

Model Parameters Inference VRAM
(M) (ms) (GB)

VGG19 139.6 6.843 1.239
ResNet-18 11.2 3.947 0.669
DenseNet-161 26.5 36.382 0.995
ResNeXt-101 86.8 33.924 1.223

Stacked-HG-4 13.0 41.323 0.941
OpenPose 29.0 19.909 0.771
HRNet 63.6 60.893 1.103

Ours 106.8 68.555 1.389

Table 4.4: Performance analysis of the pro-
posed method. We report the number of pa-
rameters, the inference time, and the amount
of video RAM (VRAM) needed to repro-
duce experimental results. We used an NVidia
1080Ti graphic card.

Hourglass [175], to address the keypoints localization. These architectures are
studied as humanpose estimation architectures, butwe adapt them toour vehicle
keypoint estimation task. Each network is trained for 100 epochs using a starting
learning rate of 1e−3 decreased every 40 epochs by a factor of 10 and the Adam
optimizer. To evaluate each networkwe use the PCKmetric presented in [13]. In
detail, we adopt the PCKh@0.5 with α = 0.1, which represents the percentage
of keypoints whose predicted location is not further than a threshold from the
ground truth. The value 0.5 is a threshold applied on the confidence score of
each keypoint heatmap while α is the tunable parameter that controls the area
surrounding the correct location where a keypoints should lie to be considered
correctly localized.

Although recent architectures like OpenPose and HRNet demonstrate im-
pressive results on human joint prediction, the older Stacked-Hourglass over-
comes these competitors in the estimation of the 12 semantic keypoints of the
Pascal3D+ vehicles, as shown in Table 4.3 and Table 4.5. It is worth noting that
its precision is not only superior on the overall PCK score averaged on all key-
points listed in Table 4.3, but also on the single PCK score for each localized
keypoint, as shown in Table 4.5.
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Keypoint (∗) HG-2 HG-4 HG-8 OP-ResNet OP-DenseNet HRNet-W32 HRNet-W48

lb trunk 93.27 94.69 94.18 83.94 86.86 91.72 94.45
lb wheel 92.27 94.17 93.09 81.58 84.85 90.26 91.78
lf light 92.85 93.27 93.22 86.29 86.34 90.87 91.27
lf wheel 94.41 95.49 94.27 86.10 87.70 91.48 89.17
rb trunk 92.59 92.97 92.72 83.19 87.00 91.94 92.25
rb wheel 91.50 91.87 93.33 79.67 84.35 92.00 91.61
rf light 93.01 93.79 93.28 86.47 84.81 89.59 91.54
rf wheel 91.73 92.71 92.54 81.52 82.00 89.12 91.16
ul rearwindow 94.67 95.82 95.18 86.34 88.06 91.08 93.63
ul windshield 96.00 96.51 96.10 89.29 91.37 94.47 95.62
ur rearwindow 93.27 93.52 93.91 85.21 87.45 92.39 92.82
ur windshield 95.47 95.58 95.17 88.80 89.32 94.59 94.91

Table 4.5: PCK scores (%) for each vehicle keypoint (HG =Hourglass, OP = OpenPose).
(∗) lb = left back, lf = left front, rb = right back, rf = right front, ul = upper left, ur = upper right

4.2.5 Performance analysis

We also assess the performance of the tested and the proposed methods in terms
of the number of parameters, inference time on a single GPU, and VRAM oc-
cupancy on the graphic card. In particular, we compare our approach to all the
baselines that perform separately each task. We test them on a workstation with
an Intel Core i7-7700K and aNvidia GeForce GTX 1080Ti. As illustrated in Ta-
ble 4.4, our approach has a large number of parameters, but it can perform both
keypoints localization and car model classification at once. Taking into account
the inference time and the memory consumption, our architecture works largely
in real-time speed with lowmemory requirements while performing two tasks in
an end-to-end fashion obtaining better results than using the single networks.
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5
Multi-Category Mesh Reconstruction

from Image Collections

In recent years, the inference of 3D object shapes from 2D images has shown
astonishing progress in the computer vision community. By addressing the
task as an inverse graphics problem, i.e. considering the 2D image as the

rendering of a 3D model, several methods [105, 67, 238] have shown that deep
models are capable of restoring the shape, pose, and texture of the portrayed ob-
ject. While previous methods rely on direct 3D supervision [39, 66, 250, 263]
or multiple views [230, 77, 240, 143], recent approaches only require segmenta-
tion masks, object keypoints, and coarse camera poses [105, 67, 238]. In the last
couple of years, somemethods have lessened the dependency on keypoints [238]
and even on the camera viewpoint [67]. All these methods share the same un-
derlying approach: a deep model learns a mean 3D shape, calledmeanshape, for
the object category during training; then, instance-specific deformation, texture,
and camera pose are predicted and applied to the learned meanshape to regress

This Chapter is related to the publication “A. Simoni et al., Multi-Category Mesh Recon-
struction from Image Collections, 3DV 2021” [7]. See the list of Publications on page 151 for
more details.
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Our network - Simple
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Figure 5.1: Overviewof the proposed approach. Themethodpredicts realistic 3D textured shapes
of objects of different categories and their 3D pose from a single RGB image.

the 3Dmodel of the object.
A major limitation of existing methods is that they are category-specific: they

must be trained and evaluated on image collections of a single object category.
This choice has been motivated by the need for category-specific priors in or-
der to recover the 3D shape from 2D images, which is indeed an ill-posed prob-
lem unless additional constraints are taken into account. Moreover, most of
the approaches [105, 67, 238] initialize the learnable meanshape with a category-
specific representative 3Dmodel. To the best of our knowledge, there have been
no attempts to extend thesemethods to scenarioswhere image collections ofmul-
tiple categories are available both in training and at inference time.

In this paper, we present a multi-category approach that learns to infer the
3D mesh of an object from a single RGB image. As illustrated in Figure 5.1, the
method learns a series of deformable 3D models and predicts a set of instance-
specific deformation, pose, and texture based on the input image. Differently
from previous approaches, the proposed framework is trained with images of
multiple object categories using only foreground masks and rough camera poses
as supervision. While rough camera poses could depend on the object category,
this is not strictly needed for classes that share semantic keypoints. The method
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learns several 3D models in an unsupervised manner, i.e. without explicit cat-
egory supervision, starting from a set of spheres and automatically selects the
proper one during inference. Moreover, the instance-specific deformation is in-
ferred by a network that independently predicts the displacement of each vertex
of the learned 3Dmesh, given the 3D position of the vertex and conditioned on
the selected shape and the visual features extracted from the input image. The
predicted deformation is naturally smooth and the number of vertices and trian-
gles of the 3D mesh can be dynamically changed during training, with either a
global or a local subdivision.

To showcase the quality of the proposed method, we present a variety of ex-
periments in different settings on two datasets, namely Pascal3D+ [260] and
CUB [246], and run several ablation studies. For instance, we test the method
on multiple object categories related to the automotive environment of the Pas-
cal3D+ dataset (i.e. bicycle, bus, car, and motorbike) and on the entire set of
Pascal3D+ categories. Qualitative and quantitative results confirm the quality of
the proposed approach and show that the model is capable of learning category-
specific shape priors without direct supervision.

To sum up, our main contributions are as follows:

• We present an approach that recovers the 3D shape, pose, and texture of
an object from a 2D image. Themethod is trained using image collections
with foreground masks and coarse camera poses, but no explicit category
nor 3D supervision.

• Ourmulti-category framework learns to distinguish between different ob-
ject categories and producesmeaningfulmeanshapes starting from a set of
3D spheres.

• Our approach predicts single vertex deformations, resulting in smooth 3D
surfaces and enabling the dynamic subdivision of the learned meshes.
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Approach Supervision w/o 3D Multi Dynamic
Keypoint Camera Mask Template category subdiv.

CSDM [107] 6 6 6

CMR [105] 6 6 6

VPL [108] 6 6

CSM [121] 6

A-CSM [120] 6

IMR [238] 6

U-CMR [67] 6

UMR [142] 6 4

Ours 6 6 4 4 4

Table 5.1: Comparisonbetween available approaches basedon training supervision, independence
from offline-computed 3D templates, multi-category and dynamic subdivision support.

5.1 Relatedwork

In the last decade, many methods have been proposed to tackle the task of 3D
reconstruction from a single image. However, the majority of these methods re-
quire supervisory signals which are hard to obtain in the real world and in the
wild, such as 3Dmodels [39, 66, 288, 156, 250, 206, 263, 15, 135] or multi-view
image collections [230, 266, 77, 257, 240, 237, 96, 143].

Recently, thanks to the development of several differentiable renderers [150,
110, 180, 145, 34], a handful of methods [107, 84, 105] have shown that the task
can be addressed as an inverse graphics problem using fewer supervisory signals,
such as 2D segmentation masks and object keypoints. Following methods have
even relaxed these constraints, training without keypoint supervision [34, 109,
108] or known camera poses [238, 67, 142]. However, these methods require
image collections of a single object category and some of themneed ameaningful
initialization of a category-specific shape. Differently, our method is capable of
jointly learning shapes of several object categories using only foreground masks
and coarse camera poses as supervision.

Another group of works that exploit differentiable renderers address the re-
construction task as a canonical surface mapping [121, 120] or a surface estima-
tion task [133]. These methods usually require 3D supervision [133] or category-
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specific shape templates [121, 120]. In this paper, we focus on the 3D mesh re-
construction from single-view images without any category-specific template.

Recently, Li et al. [141] proposed a video-basedmethod and theuse ofmultiple
meanshapes (referred to as “base shapes”) that are combined to produce a single
deformable shape. This is themost similar work to our approach, but it has some
key differences. Firstly, themeanshapes are defined offline and set before training,
thus they are not learned. Then, they are introduced for one single dataset to
exclusively cover the intra-class variation. On the contrary, our meanshapes are
learned during training without category supervision and our approach can deal
with several object categories and their intra- and inter-class variations.

A comparative study of literature methods is proposed in Table 5.1, highlight-
ing the differences in terms of training supervision, independence from offline-
computed 3D templates, multi-category and dynamic subdivision support. As
shown, the proposed method still relies on camera supervision but introduces
some unique features. Indeed, it learns category-specific shape priors in an unsu-
pervised manner and instance-specific deformations from multi-category image
collections. Moreover, the method exploits multiple steps of subdivision during
the training process.

5.2 Proposed method

In this section, we present the components of our method, from the input im-
age to the reconstructed 3D textured mesh. The architecture is illustrated in
Figure 5.2. Moreover, a comparative study of literature methods is proposed in
Table 5.1, highlighting the differences in terms of training supervision, indepen-
dence from offline-computed 3D templates, multi-category and dynamic subdi-
vision support. As shown, the proposedmethod still relies on camera supervision
but introduces some unique features. Indeed, it learns category-specific shape
priors in anunsupervisedmanner and instance-specific deformations frommulti-
category image collections. Moreover, the method exploits multiple steps of sub-
division during the training process.
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5.2.1 Preliminary definitions

Shape. As other approaches in the literature [105, 108, 67, 142], we use the
triangle mesh as 3D shape representation, which is defined by a set of vertices
V = {vj = [x, y, z], j = [1, . . . , k]} and a set of triangle faces F. The faces
determine the connectivity between vertices but are also related to the texture
mapping.

In our approach, we leverage this connectivity property and change dynami-
cally, during training, the number of vertices and faces of the 3D shape aiming
for smoothness and better textures. We refer to this technique as dynamic mesh
subdivision.

Texture. The triangle mesh texture is represented by a texture image Itex and
a color map UV which maps between the 2D coordinate space of Itex and the
3D coordinate space of the mesh surface of a sphere. Thus, the UVmapping is
defined by spherical coordinates.

Pose. We use a weak-perspective camera projection to define the 3D object pose,
as commonly done in the literature. This geometric projection is a simplified ver-
sion of the standard perspective projection. Thus, the object pose is parametrized
by a scale factor s ∈ R, a translation t = (x, y) in image coordinates, and a quater-
nion rotation q obtained by a rotation matrix computed from Euler angles (i.e.
azimuth, elevation, and roll). We define π = (s, t, q) as the weak-perspective
camera projection.

Rendering. In order to render a 3D shapewith its texture, we rely on the differ-
entiable renderer Soft Rasterizer [145]. It takes a triangle mesh, a texture image
Itex and anobject pose π as input andoutputs the rendering of the textured object
as the RGB image Î and the foreground mask Îm.

5.2.2 Multi-category mesh reconstruction

In this paper, we aim to recover the 3D shape of an object from a single image. In
the literature, this task has been often addressed by splitting it into two parts: on
the one hand, the definition or learning of a category-specific base shape, named

55



55555

5. VEHICLE RECONSTRUCTION

meanshape; on the other hand, the prediction of an instance-specific deforma-
tion of the learned shape. Differently from the majority of previous works (see
Table 5.1), we do not need a category-specific initialization of these shapes and
propose the joint and unsupervised training of shapes for multiple object cate-
gories. In the following, we provide the details of our approach.

Feature extraction. Given an RGB image I ∈ R3×w×h as input, the first
step of our framework is the extraction of visual features with a convolutional
encoder (e.g. ResNet-18 [82] in our experiments). These features are defined as
ftex and used to estimate the 3D object texture with a specific decoder. The same
features are flattened and mapped into a compact version fshape, used to recover
the shape and its viewpoint.

Unsupervisedshapeselection. In contrast to current literature approaches,
which are category-specific, we propose an unsupervised technique that automat-
ically learns to distinguish between different object categories. Instead of a single
meanshape, we define a set ofN deformable spheres and use a network to select
the instance-specificmeanshape according to the input image. The features fshape
are passed through a set of fully connected layers and a softmax function. Then,
the resulting scores are used to compute a weighted sum of the mesh vertices and
obtain a singlemesh, approximating the argmax function over theNmeanshapes.
While themeanshapes are initially defined as spheres, they are updated during the
training process and progressively specialize in different object categories. For-
mally, letMi = (Vi, F) be one of theNmeanshapes andw = [w1, . . . ,wN] be
the output of the network. The weighted meanshapeM is computed as:

M = (V, F ) = (

N∑
i=1

wiVi , F ) (5.1)

This meshMwill be deformed according to the object depicted in the input im-
age I, as explained in the following.

Vertex deformation. Inspired by previous works [74, 187], we develop a
lightweight network which deforms the meanshape M taking as input the fea-
tures fshape and the 3D coordinates of a single meanshape vertex vj at a time. We
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further condition the output on the selected meanshape giving the weighting
scoresw produced by the previous module as additional input. In this way, we
enforce the connection between the weighted meanshapeM and the predicted
deformation. Themodule outputs a 3D displacement or deformation Δvj of the
vertex vj in the 3D space. This approach makes the architecture independent
of the number of vertices of the mesh, enabling us to predict the deformation of
meshes of variable sizes. Given a set of deformationsΔV for each vertex of amean-
shapeM, the predicted shape can be defined as M̂ = M+ ΔV = (V+ ΔV, F).

Dynamic mesh subdivision. To improve the smoothness of the predicted
deformed shape, we apply during training a dynamic subdivision of the trian-
gle mesh. In particular, we use a global subdivision that divides each triangle
of a mesh M into 4 equal parts. Other methods that make use of mesh subdi-
vision (e.g. [250, 135]) need architectural changes that drastically increase the re-
quired memory and inference time. On the contrary, our method is not heavily
affected by themesh subdivision operation anddoes not require any architectural
changes, thanks to the per-vertex prediction of the deformation network.

3D pose regression. We further predict the object viewpoint with a super-
vised regression technique using two fully connected layers which take as input
the features fshape and output a 3D weak-perspective pose π̂ = (̂s, t̂, q̂).

Texture prediction. In order to produce a realistic 3D shape, we finally pre-
dict the texture that the differentiable renderer applies to the predicted deformed
mesh M̂. Similar to the work of Goel et al. [67], we use a convolutional decoder
that takes as input the visual features ftex, preserving the spatiality, and directly
outputs an RGB image Îtex. The texture is mapped onto the UV space of the
shape, which is homeomorphic to a sphere so that it can be exploited by the ren-
derer to produce the final image Î.

5.2.3 Losses and priors

The shape prediction is supervised only by two supervisory signals, i.e. the binary
object mask Im and the 3D camera pose π.

We first handle the shape deformation applying a mask loss Lmask = ||Im −
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Îm||22 where Îm is the binary object mask produced by the renderer using the
ground truth pose π. In addition to this loss, we also use some priors tomaintain
a certain smoothness of the object’s surface. The first prior is a laplacian smooth-
ing lossLsmooth = ||LV||2where the Laplace-Beltrami operator [224]minimizes
the mean curvature; we apply this smoothing prior both to the predicted defor-
mations ΔV and the vertices of the deformed shape M̂. The second prior is a
regularization term Ldef = ||ΔV||2 which prevents the network from learning
large deformations and helps to produce more realistic meanshapes. Our final
shape loss is represented by:

Lshape = Lmask + Lsmooth + Ldef (5.2)

For the pose regression module, we use a loss defined as:

Lpose = ||̂s− s||22 + ||̂t− t||22 + (1− |q ∗ (q̂⊙−q̂)|) (5.3)

where the first two terms consist of the mean squared error for scale and trans-
lation and the last term is the geodesic quaternion loss. The operator ∗ is the
Hamilton product and⊙ is the concatenation between the original quaternion
and its version rotated by 360 degrees, representing the same rotation. Moreover,
following the approach proposed by Pavllo et al. [196], we further regularize the
quaternion prediction with the penalty termLpose_reg = w2+ x2+ y2+ z2− 12

that forces the quaternion to have unit length and thus representing a valid rota-
tion. The overall camera loss is set as:

Lcam = Lpose + Lpose_reg (5.4)

To produce realistic colors and details for the object texture, we convert the
rendered RGB image and the masked input image to the LAB color space and
apply the following losses: a color loss Lcolor = ||̂Iab − (I · Im)ab||22 on the AB
channels formore faithful texture details and a style lossLstyle = ||̂IL−(I·Im)L||22
on the L channel for sharper high-frequency details. Moreover, we apply a per-
ceptual loss Lpercept = Fdist(̂I, I · Im) where Fdist is the metric defined by Zhang
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et al. [276] using a VGG16 backbone as feature extractor. The final texture loss
is defined by:

Ltex = Lcolor + Lstyle + Lpercept (5.5)

The overall objective applied during training is a weighted sum of the shape,
camera, and texture losses, obtaining balanced learning of the different network
modules.

5.3 Experiments

In this section, we first present the employed datasets and the experimental set-
ting. Then, we present quantitative and qualitative evaluations of our approach
in comparison with literature methods. Finally, we report an ablation study on
the key elements of the proposed approach.

5.3.1 Experimental setup

Two commondatasets, namely Pascal3D+ [260] andCUB-200-2011 [246], have
been used to evaluate the proposed approach on a diverse set of object categories
and, at the same time, to obtain a comparison with the current state-of-the-art
methods. As done in previousworks [105, 67], 2D image collections, foreground
masks, and coarse camera/object poses – manually or automatically annotated –
are used for training. We do not take advantage of annotated keypoint positions
or coarse 3Dmodel correspondences.

Pascal3D+. The Pascal3D+ dataset [260] contains images of 12 object classes,
fromboth PASCALVOC [54, 79] and ImageNet [46], associatedwith 3Dmod-
els of each category and coarse viewpoints [228, 181]. Manually-annotated fore-
ground masks are available for the PASCAL VOC subset, while an off-the-shelf
segmentation algorithm [81] is used for the other subset, as done in previous
works [105, 67, 238]. We evaluate the system using the same train/test split and
categories, i.e. airplane and car, of the competitors. In addition, we use the seg-
mentation masks obtained by the novel PointRend architecture [115] and evalu-
ate our model on a set of automotive classes, i.e. bicycle, bus, car, motorbike, and
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on the entire set of 12 classes in the ablation study.

CUB. We also use the images of 200 bird species and their foreground masks
provided in CUB-200-2011 [246] and the camera poses computed by Kanazawa
et al. [105], as done in previous works [105, 67, 238]. The dataset also contains
312 binary attribute labels divided into several categories.

Network architecture. Our model is composed of 5 modules: (i) a visual
encoder, defined as a pre-trained ResNet-18, with an additional convolutional
layer, (ii) an unsupervised shape selection module composed of two fully con-
nected layers and a softmax activation function, (iii) a vertex deformation net-
work with four 512-dimensional fully connected layers with random dropout
and a tanh activation function, (iv) a camera pose regressor with two fully con-
nected layers and random dropout, and (v) a texture decoder that follows the
implementation of the SPADE architecture [188] with 6 upsampling steps.

Training procedure. We train our network on both datasets for 500 epochs
with an initial learning rate of 1e−4. The meanshapes are initialized as icospheres
with 162 vertices and 320 faces (corresponding to the subdivision level 3). After
350 epochs, we apply the dynamic subdivision to the 3D shapes (roughly obtain-
ing the subdivision level 4) and reduce the learning rate to 1e−5. Our final 3D
shape has roughly the same number of vertices and faces as the competitor ap-
proaches [105, 67] which use a deformable template with subdivision level fixed
to 4.

All input images are cropped using the object bounding box and resized to
a dimension of 256 × 256 and the model predicts a texture image of the same
size. As data augmentation, we apply standard random jittering on the bound-
ing box size and location and random horizontal image flipping. In addition,
instead of forcing the shape to be symmetric with post-processing steps (as done
in other works, e.g. [105, 67, 142]), we force the network to predict symmetric
shapes with the following approach, similar to what is done in the work ofWu et
al. [258]. During training, the predicted shape (i.e. its pose) is randomly rotated
by 180 degrees around the vertical axis and compared with the flipped versions of
the ground truth image and mask. In this way, the network is forced to predict
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Approach Training Airplane Car Avg

CSDM [107] indep. 0.400 0.600 0.500
DRC [240] indep. 0.420 0.670 0.545
CMR [105] indep. 0.460 0.640 0.550
IMR [238] indep. 0.440 0.660 0.550
U-CMR [67] indep. - 0.646 -
Ours (Nmeanshapes) indep. 0.460 0.684 0.572

Ours (2 meanshapes) joint 0.448 0.686 0.567

Table 5.2: 3D IoU on Pascal3D+ dataset [260]. Our method is trained on airplanes and cars
independently usingNmeanshapes (one for each subclass) or on airplanes and cars jointly with 2
meanshapes.

symmetric shapes (along the vertical axis) and thus to consistently minimize the
losses without computational overhead.

We use a batch size of 16 and Adam [113] as optimizer with a momentum of
0.9. The code is developed using the PyTorch [189] framework.

5.3.2 Results

In this section,weprovide a thorough comparisonbetween theproposedmethod
and the competitors on the two previously presented datasets, Pascal3D+ and
CUB.

Pascal3D+. We show the results of ourmethod compared to the state of the art
on the Pascal3D+ dataset in Table 5.2, using the 3D IoU metric as proposed by
Tulsiani et al. [240]. We present two different versions of our method. Firstly,
we employ the same approach used by competitors: train a different model for
each class of Pascal3D+ (experimentsmarked as “independent training”). In this
case, we set the number of meanshapes equal to the number of subclasses of Pas-
cal3D+, i.e.N = 8 for the airplane class, N = 10 for the car class. As reported
in the second-to-last row of Table 5.2, our method can leverage the use of mul-
tiple meanshapes and the dynamic subdivision obtaining state-of-the-art results
on this dataset. In addition, we jointly train ourmethod onboth the airplane and
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+60° +120° +180° +240° +300°

Figure 5.3: Some of the meanshapes learned during training on Pascal3D+. First group: airplane
class (8meanshapes); second group: car class (10meanshapes); third group: airplane and car classes
(2 meanshapes).

the car classes using 2 meanshapes and letting the network distinguish between
the two classes. Even in this more complex scenario, we obtain comparable or
state-of-the-art scores on both classes (see last row of Table 5.2). The learned
meanshapes for these three experiments, i.e. training on airplanes, on cars, and
on airplanes and cars jointly, are shown in Figure 5.3. We observe that the set
of meanshapes on the single classes contains both recognizable and less explain-
able shapes (Figure 5.3, top andmiddle). On the other hand, the twomeanshapes
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Approach Mask IoU ↑ Texture metrics
Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

CMR [105] 0.706 0.734 0.718 0.063 290.32
DIB-R [34] - 0.757 - - -
U-CMR [67] 0.637 - 0.689 0.077 190.35
Ours (1 meanshape) 0.658 0.721 0.717 0.064 227.24

Ours (14 meanshapes) 0.642 0.723 0.715 0.065 231.95

Table 5.3: Mask IoU and texture metrics on CUB dataset [246]. Our method is trained using 1
or 14 meanshapes.

Training classes Number of 3D IoU ↑ Mask IoU ↑ Texture metrics
meanshapes Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

airplane, car 1 0.532 0.592 0.689 0.736 0.066 365.01
airplane, car 2 0.552 0.671 0.702 0.737 0.062 344.80

bicycle, bus, car, motorbike 1 0.517 0.665 0.751 0.601 0.100 390.41
bicycle, bus, car, motorbike 4 0.543 0.711 0.759 0.607 0.094 380.15

12 Pascal3D+ classes 1 0.409 0.602 0.670 0.660 0.088 357.51
12 Pascal3D+ classes 12 0.425 0.620 0.685 0.665 0.086 345.90

Table 5.4: Ablation study comparing the usage of several meanshapes (our proposal) against a
single meanshape (as a baseline) on Pascal3D+ dataset [260] using segmentation masks obtained
with PointRend [115].

learned in an unsupervisedmanner using images of airplanes and cars correspond
to these two classes (Figure 5.3, bottom). We show qualitative results of the joint
setting on airplanes and cars in Figure 5.6 (second block).

CUB. We also evaluate our method on the CUB dataset. Results in terms of
foreground mask IoU and texture metrics (SSIM [253], L1, and FID [85, 154])
are reported in Table 5.3. Differently from the previous case, the CUB dataset
does not have a clear subdivision in classes and literature approaches have only
been tested on the whole dataset. Thus, we test our method in two different set-
tings. On the one hand, we evaluate the use of a single meanshape (as done by
competitors). On the other hand, we test our method initializingN deformable
meanshapes, as done in previous experiments. We empirically setN = 14, which
is equal to the number of different values of the annotated categorical attribute
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Figure 5.4: Some of the meanshapes learned during training on the CUB dataset using our
method initialized with 14 spherical meanshapes.

“has_shape”. As shown, even if this dataset does contain objects of the same
class “bird”, our method obtains comparable results with respect to literature
approaches, on both shape and texturemetrics. Even if the experiment withmul-
tiple shapes does not seem to increase the overall scores, it produces a set of in-
sightful meanshapes learned in an unsupervised manner, as shown in Figure 5.4.
Qualitative results are reported in Figure 5.6 (first block).

5.3.3 Ablation study

In this section, we investigate the impact of using one or multiple meanshapes.
In addition, we evaluate the influence of the dynamic subdivision approach com-
pared to the static one. In these experiments, we use the Pascal3D+ dataset and
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+60° +120° +180° +240° +300°

Figure 5.5: Meanshapes learned during training on the classes bicycle, bus, car, motorbike of the
Pascal3D+ dataset [260].

extract precise foreground masks with PointRend [115].

Unsupervised shape selection. As our first analysis, we evaluate the im-
pact of the proposed unsupervised shape selection, which enables the training
with multiple meanshapes and classes. We test three different training settings
using the following object categories: (i) airplane, car, (ii) bicycle, bus, car,motor-
bike, (iii) all the 12 Pascal3D+ classes. Each setting has been tested using both a
single meanshape and a set ofNmeanshapes, in order to verify the contribution
of the usage of multiple learnable shapes and their unsupervised selection. The
obtained results are reported in Table 5.4 in terms of 3D IoU, foreground mask
IoU, and texture metrics. Our approach with multiple meanshapes provides the
best results in all the experimental settings. Furthermore, themeanshapes learned
with the four-category setting are depicted in Figure 5.5. Even if the meanshapes
do not exactly correspond to the four classes (e.g., the motorbike is missing), the
meanshapes aremeaningful and represent different object categories. Qualitative
results are shown in Figure 5.6 and Figure 5.7.

Dynamic mesh subdivision. We evaluate the contribution of the dynamic
mesh subdivision during the training process using the four automotive classes.
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Subdivision Mask IoU ↑ Texture metrics
level Pred cam GT cam SSIM ↑ L1 ↓ FID ↓

3 0.701 0.759 0.600 0.096 395.96
4 0.685 0.756 0.593 0.101 385.68

3→ 4 0.711 0.759 0.607 0.094 380.15

Table 5.5: Ablation study comparing different subdivision levels on Pascal3D+ dataset [260].
Model trained on 4 classes (bicycle, bus, car, motorbike) using 4 meanshapes.

We compare three different settings of the 3Dmesh connectivity, in terms of ico-
sphere subdivision level: (i) level set to 3, (ii) level set to 4, and (iii) dynamic sub-
division starting from level 3 and going up to level 4. Results are reported in
Table 5.5. As shown, the method can converge to good results even using a fixed
subdivision level. However, a higher level does not always lead to better scores,
as in the case of fixed subdivision level 4. On the contrary, increasing the sub-
division level during training leads to higher results in terms of both mask IoU
and texture metrics. Indeed, dynamic subdivision allows us to take advantage
of low subdivision levels during the initial training phase – optimizing the shape
smoothness in a faster and easier way – and at the same time leveraging the higher
number of faces of high subdivision levels in the second part of the training – im-
proving the finer details and the quality of the texture.
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Figure 5.6: Qualitative results on different settings: CUB [246] (birds) and Pascal3D+ [260] (air-
plane and car, 4 automotive classes). We show the input image I, the outputMof the unsupervised
shape selection module, the predicted shape M̂ and the predicted textured shape M̂ + Îtex under
several 3D rotations over the vertical axis of the predicted pose π̂.
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Figure 5.7: Qualitative results on all 12 classes ofPascal3D+ [260]. We show the input image I, the
outputM of the unsupervised shape selection module, the predicted shape M̂ and the predicted
textured shape M̂+ Îtex under several 3D rotations over the vertical axis of the predicted pose π̂.
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6
Semi-Perspective Decoupled Heatmaps

for 3D Robot Pose Estimation fromDepthMaps

Collaborative robots, or cobots [198], have entered the automation
market for several years now. They have achieved a rather rapid and
wide diffusion, also in the corporate world, thanks to the newly in-

troduced paradigm of interaction [70] and collaboration [243]. About 20 years
after their introduction, they still have unexplored potential and challenges that
have not yet been fully investigated and solved in the literature.

Among others, the knowledge of the instantaneous pose of robots and hu-
mans is a key element to set up an effective and fruitful collaboration between
them, allowing several applications, ranging from solutions for the safety of the
interaction [40] to the behavior analysis [168].

Despite robots usually provide their encoder status through dedicated com-
munication channels, enabling the estimation of their pose and the interaction
level [65] through forward kinematics, an external method is desirable in certain

This Chapter is related to the publication “A. Simoni et al., Semi-Perspective Decoupled
Heatmaps for 3D Robot Pose Estimation from Depth Maps, RA-L 2022” [6]. See the list of
Publications on page 151 for more details.
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cases. For example, the robot controller could be designed by third parties that
disable or revoke any permission to access the robot encoders. Another use case is
the study of the interaction between collaborative robots and humans, e.g. focus-
ing on the humanprejudice and distrust against robots [191, 183]. In this context,
a portable and autonomous setup that does not require any hardware access to
the internal states of the robots is preferred. In our experience, such a system
has been often accepted by manufacturing companies that are participating in
an ongoing study.

Therefore, in this paper, we propose to use non-intrusive and ready-to-use
sensors, i.e. cameras, to address the 3D Robot Pose Estimation (RPE) task and,
in this way, to monitor the posture of a given robot through the position of its
joints in world coordinates. Different solutions have been explored to this aim,
all of them requiring the unpractical application of specific sensors [80] or mark-
ers [104] on the robot structure. Differently from these, we propose to use depth
cameras [213], which provide light-invariant and precise 3D scene information
at a low cost [271], and deep neural networks to directly and accurately predict
the 3D location of the robotic joints. Since supervised deep networks usually
require a great amount of labeled data, we designed our approach to leverage syn-
thetic data during the training phase and seamlessly work with real cameras and
robots at inference. In this way, our method does not need to acquire data in
the real world and annotate them, which is known to be an expensive and time-
consuming activity.

To this end, we collected and publicly release* a new dataset, namely SimBa,
that contains synthetic data for training and real-world annotated recordings for
evaluation. Regarding the model architecture, we draw knowledge and expertise
from the related field of theHumanPose Estimation (HPE) [173], being aware of
the impressive progress of the computer vision community in that field. Indeed,
we present an approach that consists of a novel and effective pose representation,
here referred to as Semi-Perspective Decoupled Heatmaps (SPDH), that extends
the well-known 2Dheatmaps to the 3D domain. Existing 2DHPE architectures
developed for the RGB domain can be easily adapted to process depth data as

*https://aimagelab.ing.unimore.it/go/rpe
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Figure 6.1: Overview of our 3D Robot Pose Estimation (RPE) system. A depth image is con-
verted into an XYZ image which is given as input to a pose estimation deep model. The network
predicts the proposed Semi-Perspective Decoupled Heatmaps (SPDH) from which the 3D robot
pose is computed.

input and predict the proposed SPDH, leading to accurate 3D joint locations in
world coordinates.

We demonstrate that this approach overcomes alternativemethods in terms of
accuracy, adding negligible computational overhead to existing 2Dmethods. Ex-
perimental results confirm the efficacy of the proposed system, paving theway for
future research in the field of the 3D Robot Pose Estimation from depth maps.

To sum up, our main contributions are:

• We address the problem of the 3D RPE from depth maps, introducing
SPDH, a novel heatmap-based 3Dpose representation that can be applied
to existing2Dhumanpose estimation architectureswithminimal changes,
achieving competitive results.

• We propose an effective and practical training procedure, based on syn-
thetic depth maps, that can be applied to acquire data at scale without
expensive and time-consuming manual annotations. We publicly release
the simulation parameters and the dataset used for the experimental vali-
dation.

6.1 Relatedwork

Robot Pose Estimation (RPE). Only a few works address the RPE task and,
to the best of our knowledge, only a minor subset of them make use of depth
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data. This is the case of the system proposed by Bohg et al. [24], in which, taking
inspiration from [219], a random forest classifier is applied to depth images to
segment the links of the robot arms, fromwhich the skeleton joints are estimated.
In a similarwork [256],Widmaier et al. propose todirectly regress the joint angles
without the need to predict robot arm segmentation. However, these methods
do not estimate the pose in terms of camera-to-robot coordinates.

Instead of depth maps, the large majority of works focus on RGB images.
Labbe et al. [123] proposed amethod that, given a single RGB image of a known
articulated robot, estimates the 6D camera-to-robot pose in terms of rigid trans-
lation and rotation through a render-and-compare approach. A reference point
and an anchor part are needed to perform the estimation, and their choice signif-
icantly affects the performance. In the work by Lee et al. [131], the RGB input
image is fed to a deep encoder-decoder architecture that outputs onemapper key-
point. The final camera-to-robot pose is computed through Perspective-n-Point
(PnP) [138], assuming that the camera intrinsics and joint configuration of the
robot are known. Similarly, in [125] the PnP is used to compute the camera-to-
robot pose using a combination of both synthetic and real data. A double sys-
tem is presented in the work of Tremblay et al. [234]: one network predicts the
object-to-camera pose while another estimates the robot-to-camera pose. Both
networks are trained entirely on synthetic data and the final output is intended
to help the robot grasping system, rather than estimating the whole robot pose.
Differently from the discussed approaches, our method can be adapted to any
heatmap-based 2D pose estimation method to estimate the 3D pose of a robot
from a single depth map.

Human Pose Estimation (HPE). The task of estimating the human pose has
been extensively investigated in the computer vision community. Similar to the
RPE field, the vast majority of works is based on RGB images and outputs only
2D predictions. Recently, several works also addressed the task of 3DHPE from
single monocular intensity images, such as in [194] where a coarse-to-fine predic-
tion scheme based on volumetric predictions is exploited to compute both the
2D and then the 3D pose. However, these volumetric methods [101] are often
characterized by computational inefficiencies, in terms of complexity and mem-
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ory requirement, even though some recent works [56] attempt to address this
issue. These considerations drove our choice to focus onHPE architectures that
predict the 2D joint positions through heatmaps applied on RGB images, ana-
lyzed in the following.

Among the numerous HPEmethods based on 2D heatmaps [281], the archi-
tecture known as StackedHourglass, introduced in byNewell et al. [175], is devel-
oped to process features at different scales and to capture the spatial relationships
of the human body, obtaining high accuracy. Recently, Sun et al. [227] pro-
posed a multi-scale approach called High-Resolution Network, or simply HR-
Net. HRNet maintains high-resolution representations throughout the entire
estimation process. Other works have been proposed to specifically reduce the
computational complexity of the existing methods maintaining a satisfactory ac-
curacy. This is the case of thework described in [162], that proposed the Fast Pose
Machine (FPM) architecture, based on a cascade of detectors with lightweight
and efficient CNN structures. The model can employ different backbones as
feature extractors such as Squeezenet [94] andMobileNet [90]. Differently from
these methods, the simple architecture proposed byMartinez et al. [160] aims to
predict the 3D human pose directly from its 2D version. Despite the simplicity
of the approach, the reported results reveal a good accuracy independently from
the 2D pose detector used during the training phase. Being aware of the high ac-
curacy achieved by these methods, we aim to adapt RGB HPE architectures for
depth data and use them as backbone of our method.

Only a limited number of HPE methods are based on depth maps. In the
pioneering work of Shotton et al. [218], a random forest classifier is used to clas-
sify each pixel of the input depth maps and thus to segment the human body.
Then, the 3D joint candidates are selected through a weighted density estimator.
In [51, 17] authors propose to use a 2D HPE model to predict head position
and human poses in depth images. Schnurer et al. [214] propose to optimize the
Stacked Hourglass [175] architecture reducing its computational load. The pre-
dicted 2D pose is then used in combination with a predicted joint-specific depth
map inorder to obtain the final 3Dcoordinates of skeleton joints. In otherwords,
the authors proposed a system that combines a heatmap-based prediction for the
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Figure 6.2: Visual representation of the proposed Semi-PerspectiveDecoupledHeatmaps (SPDH).
In particular, uv and uz spaces are depicted in relation to the input depth map and the acquired
robot.

2D coordinates and a value regression for the depth value. A Residual Pose Ma-
chines is used by Martinez et al. [161] to detect only the 2D location of human
skeleton joints on the depth images. The depth value of the surface close to a
given skeleton joint can be computed by sampling from the depthmap using the
location of that joint. However, this simple approach is not robust against possi-
ble body occlusions and the sensor noise; both of them can significantly alter the
depth value in the sampled point. Moreover, this approach can only predict the
position on the surface of the robot arm, rather than its center. Finally, we ob-
serve that the 3D pose estimation from depth data is not yet deeply investigated
in the literature, in particular whether deep learning algorithms are used.

6.2 Semi-Perspective DecoupledHeatmaps

Wepropose a novel Semi-PerspectiveDecoupledHeatmaps (SPDH)pose represen-
tation that relies on projections of the 3D space under the assumption of having
a single robot in the image. Each 3D joint location ismapped into two decoupled
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bi-dimensional spaces: the uv space, i.e. the camera image plane, and the uz space,
composed by quantized Z-values and the u dimension, as depicted in Figure 6.2.
The pose estimation algorithmwill be trained to generate two heatmaps for each
joint, one for each space. The corresponding training heatmaps are Gaussian
probability distributions centered on the projections of the joint coordinates.

The uv heatmap takes inspiration from the output representation used by
most of the recent 2D HPE methods [281]. However, differently from them,
eachheatmap is constructedusing aGaussian function that hasperspective aware-
ness of the joint’s distance from the camera.

Formally, given a joint j, the related heatmapHuv
j is defined in the uv space and

computed as follows:

Huv
j (p) = N (p− pj, σj)

=
1

2πσj
e−[(px−pxj )2+(py−pyj )2]/(2σ2j )

σj =
σm · f
Zj

(6.1)

where f is the focal length of the camera, pj is the 2D joint location, p is the pixel
location, Zj is the Z coordinate of the 3D joint location and σm is the desired
standard deviation of the Gaussian distribution in the metric space.

On the other hand, the uz heatmap can be seen as the representation of the
probability of seeing a joint at the image coordinate u if it were at a distance z
from the camera. To generateHuz

j , the following two-step process is applied.
Firstly, we define a restricted depth space Z̄ = {Z̄i ∈ Z; Z̄min ≤ Z̄i ≤ Z̄max}

and we split it into slices of size ΔZ. The number of slices represents the height
of the uz heatmap and can be computed as follows:

z =
Z̄max − Z̄min

ΔZ
(6.2)

In this way, there is a direct connection between the 2D uz space and the depth-
aware Z̄ space. For simplicity, we sample the space Z̄ so that z has the same value
of v, i.e. the dimension of the two heatmaps is the same.
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Secondly, we proceed with the computation of the heatmap. We project each
point pxy of the image into the 3D reference frame according to its (x, y) coordi-
nates. We apply the intrinsic parameters of the camera K, i.e. the focal length f
and the optical center c, and obtain

P(p) =
(
(px − c) · Z̄

y

f
, Z̄y) (6.3)

where Z̄y is the corresponding value in camera coordinates of z sampled in py.
Then, we compute the euclidean distance d(p) = ||P(p) − Pj|| between each
pointP–corresponding to each location pxy on theuz space– and the3Dground-
truth joint location Pj = [Xj,Zj] – excluding the Y axis. We use this distance to
compute the value of the heatmap in each point p as:

Huz
j (p) = N (P(p)− Pj, σm)

=
1

2πσm
e−d(p)/(2σm2)

(6.4)

A visual representation of the relation between the proposed Semi-Perspective
DecoupledHeatmaps and the3Dspace is shown inFigure 6.2; examples of SPHD
are also reported in Figure 6.3, third and fourth row.

6.3 3D Robot Pose Estimation

The proposed approach for the 3DRobot Pose Estimation is based on the afore-
mentioned SPDH representation. Figure 6.1 depicts a visual overview of each
step, detailed in the following subsections, adopted to output the final predic-
tion.

6.3.1 Depth data acquisition

The first step is the data acquisition procedure based on a depth camera, i.e. a
device capable of acquiring depth maps, and a collaborative robot. Despite the
challenges and limitations posed by the usage of depth sensors [199], we observe
that depth data acquired through the same depth device do not usually require
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Figure 6.3: Examples for synthetic (first line) and real (second line) depth data. Then, XYZ image
and the novel SPDH representation, depicted through both the heatmap in uv space and heatmap
in uz space, are reported.

the adoption of challenging domain randomization techniques [231] typically
applied on RGB synthetic images to bridge the gap between real and synthetic
data [131, 233]. Indeed, depth data provide robustness to light changes and varia-
tions inbackground textures [213], helping tomake the transition from synthetic
to real depth data more straightforward and the synthetic data generation easier
and less time-consuming. Moreover, depth cameras provide 3D information of
the scene that the method can leverage to estimate the 3D pose of the robot.

Formally, we define an acquired depthmap as the coupleDM = ⟨D,K⟩, com-
posed by the matrix of distances D = {dij}, dij ∈ [0,R], in which values are
between 0 and the maximum depth range R, and K, i.e. the perspective projec-
tion matrix computed with the intrinsic parameters of the acquisition device. In
particular,dij represents the distance between the optical center and a surface con-
taining the point pij and parallel to the image plane; then,D can be visualized as a
depth image, encoded as one-channel gray-level image ID, as reported in the first
line of Figure 6.3.

6.3.2 Data pre-processing

As mentioned, the collected depth mapDM contains information about the dis-
tance between the camera and the objects’ surfaces of the acquired scene, while
our purpose is to have an input with explicit 3D information. To this end, we
convert the depth image I1×H×W

D into an XYZ image I3×H×W
XYZ , where each pixel
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Figure 6.4: Examples of synthetic (first three columns) and real (last three columns) RGBD
frames acquired from different camera positions.

qij ∈ R3 corresponds to the projection in the 3D space of the original pixel
dij ∈ R1, by applying the inverse of the camera intrinsicmatrixK and thenmulti-
plying by the corresponding depth value. Thus, each pixel of the resulting image
represents the 3D coordinate of that pixel in the depth image: visual samples are
shown in the second row of Figure 6.3. The resulting image is then normalized
independently along the three axes X, Y, Z, before being processed by the net-
work.

6.3.3 Model architecture

Asmentioned above, ourmethod is designed toworkwith a generic deep learning-
based architecture belonging to the 2DHPEfield. Thanks to the adopted SPDH
representation, it is straightforward to adapt the selected architecture for our 3D
RPE task, as detailed in the following. The network takes as input anXYZ image
of size 3 × h × w and outputs a 2n × h × w tensor, where n is the number of
joints. The output represents the uv and uz heatmaps for each keypoint, where
each pixel value determines the likelihood that a keypoint lies in that position. To
compute the predicted joint P̂j = [X̂j, Ŷj, Ẑj], we exploit the maximum values of
the heatmaps; for the uvmap, we get the 2D coordinates p̂j of the Gaussian peak;
for the uzmap, we consider just the z coordinate of the Gaussian peak which is
then converted into a depth metric value as follows:

Ẑj = (z · ΔZ) + Z̄min (6.5)
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Finally, p̂j is projected in the 3D space by applying the inverse of the camera in-
trinsic matrixK and then multiplying by Ẑj, obtaining the final prediction P̂j.

6.4 Experiments

6.4.1 SimBa dataset

To evaluate the proposed approach, we collected a new dataset, namely SimBa,
composed of both synthetic and real images, which are used respectively for train-
ing and testing.

Among several collaborative robots, we choose theRethink Baxter, which has
been widely used in the research community. In the collected dataset, the Baxter
moves respectively to a set of random pick-n-place locations on a table, assuming
realistic poses.

Synthetic data. For the synthetic dataset, we use ROS for interacting with
the synthetic robotmodel, the cameras and the environment, andGazebo for ren-
dering the simulated world. The dataset consists of a set of sequences recorded
from 3 RGB-D cameras (center, left, right) that are randomly moved within a
sphere of 1 meter diameter from their anchor. In particular, we collect two sim-
ulation runs with different initializations. Each run contains 20 recording se-
quences, composed of 10 pick-n-place motions which are equally split between
the left and right robot arm. Each sequence is recorded at the same time by the
three cameras, whose position is randomly changed at the beginning of each se-
quence. The simulation runs at 10 fps and recordsRGB (1920×1080) anddepth
(512 × 424) frames from each camera, the 16 robot joints positions, the pick-n-
place locations, and the camera positions. The synthetic dataset contains a total
of 40 sequences with over 350k annotated RGBD frames.

Realdata. The real dataset was acquired using theROS framework. The time-
of-flight Microsoft Kinect One (second version) was used to record the moving
robot from 3 camera positions (center, left, right). In this case, each camera posi-
tion contains 20 pick-n-place sequences which are split equally between the left
and right arm. The recording runs at 15 fps for the RGB (1920 × 1080) and
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depth (512 × 424) frames and at 40 fps for the 16 robot joints positions. The
real dataset contains over 20k annotated RGBD frames.

After the acquisition of the synthetic and the real dataset, we align each depth
frame to the RGB sensor using the corresponding extrinsic parameters. Some
examples of the frames recorded in both scenarios are depicted in Figure 6.4, in
which different levels of precision and noise are visible.

6.4.2 Experimental setup

We split the dataset into 28 train sequences with over 26k frames, 4 validation
sequences with over 3.5k frames, and 8 test sequences with over 7k frames. For
the training phase, we sampled each synthetic sequence every 10 frames to avoid
pose redundancy. The synthetic test set was used only to check the efficacy of the
method in the initial phase of the project. To evaluate the method and the com-
petitors, we sampled each sequence of the real dataset every 5 frames obtaining a
test set of 4k frames.

Togenerate the ground truthof the joint positionswithSPDHrepresentation,
we sampled a space Z̄ = [500 mm, 3380 mm] with a depth step ΔZ = 15mm.
The values of the Z̄ spacewere selected according to the range of the depth sensor
that is up to 5 m [213]. Both heatmaps are computed with σm = 50mm. Visual
examples are depicted in Figure 6.3.

We use as input a resized depth image ID of resolution 384 × 192 applying a
3D data augmentation during training. We first transform the depth image into
a pointcloud and then apply a random 3D rotation of [−5◦, 5◦] along X or Y
axis and a random translation of [−80mm, 80mm] along X or Z axis. Then, the
pointcloud is converted again into a depth image from which the XYZ image is
computed, as explained in Section 6.3.

We adapt the state-of-the-art 2DHPE architecture calledHRNet-32 architec-
ture [227] as the pose estimation model to predict our SPDH from which the
3D robot pose is computed. The network is trained from scratch for 30 epochs
on our synthetic dataset using the L2 loss between the predicted and the ground-
truth SPDH.
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We used a batch size of 16, Adam [113] as optimizer and 1e−3 as learning rate
with 10 as decay factor after 50% and 75% of the training epochs. At test time,
the network is evaluated on the real dataset, without using any domain adapta-
tion techniques, differently from [131] which is based on RGB images.

6.4.3 Metrics

For the 3D evaluation of the predicted robot poses, we exploit the average dis-
tance metric (ADD) [131, 261], in terms of the average distance of all 3D robot
joints to their ground truth positions. ADDmetric is useful tomerge translation
and rotation errors in a single value. In particular, we compute ADD reporting
L1 and L2 average distances expressed in centimeters with standard deviations
w.r.t. ground truth positions. Here, lower results represent good performance.
In addition, we compute the mean Average Precision (mAP), which expresses
the percentage of 3D keypoints within a certain threshold. In our experimental
validation, we set 4 different thresholds at 40, 60, 80, 100 mm. Here, higher re-
sults are better. We believe this metric shows the performance in a more straight-
forward manner compared to ADD, highlighting the accuracy of the system at
different thresholds.

6.4.4 Competitors

To validate the proposed RPE approach, we compare it with four alternatives,
belonging to theHPE domain, that can be adapted to predict the 3D robot pose:

• “2D to 3D from depth” is a two-step approach. Firstly, a state-of-the-art
HPEmethod [175, 162, 227] predicts the 2D robot pose on depth images.
Then, the Z value is sampled from the depth to obtain the 3D joint coor-
dinates.

• the “3D regression” method corresponds to an architecture that directly
regresses the 3D joint coordinates starting from a depth image. We empir-
ically found that the best performance is obtained using the well-known
ResNet [82] architecture, adapted and trained for regressing the 3D robot
joints.
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Figure 6.5: Comparison onmAP scores between different networks trained giving as input just a
depth image ID or the proposed XYZ image IXYZ (dashed line = input ID, solid line = input IXYZ,
same color = same network configuration).
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Figure 6.6: Real depth images and final predicted 3D robot pose for a random pick-and-place
motion with both arms.

• the “2D to 3D lifting” approach directly converts a set of already predicted
2D joint locations to their 3D counterpart, relative to a root joint. In par-
ticular, we select the network proposed byMartinez et al. [160].

• a “volumetric heatmap” approach that outputs 3D heatmaps. In our ex-
perimental validation,we adopt the state-of-the-artmethodproposed in [194],
which predicts a volume with size d × w × h – with d = 64 – for each
joint and uses its maximum value as the 3D joint location.

6.4.5 Results

As shown in Table 6.1, our method performs better than other competitors in all
themetrics, especially in terms ofmAPwith low distance thresholds. We observe
that the 2D to 3D from depth approach leverages the high precision of 2D pose
estimation models, but is limited by the depth map; indeed, it samples the depth
values at the 2D joint coordinate, resulting in predicting a 3D location on the
robot surface rather than onto the inner joint position. The approach based on
direct 3D regression does not reach satisfactory results, confirming that the task
is not trivial. The 2D to 3D lifting method uses a relative joints’ position with
regard to a specific root joint – the robot base in our case. Thus, this approach is
not directly comparable to our proposal, since it needs a post-processing step in
which the camera pose has to be known or predicted and then applied to the 3D
coordinates in order to get the correct camera-to-robot values. However, we no-
ticed overfitting phenomena on synthetic training data, resulting in low accuracy
when testing on real data.
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mAP (%) ↑
Network Δ Z (mm) 40mm 60mm 80mm 100mm

Stacked HG (2 HG) [175] 7.5 46.83 78.08 89.52 96.07
Stacked HG (2 HG) [175] 15 43.94 81.50 92.39 99.06
Stacked HG (2 HG) [175] 30 44.55 76.04 87.22 99.03

HRNet-32 [227] 7.5 51.80 69.42 79.27 88.24
HRNet-32 [227] 15 53.75 79.75 93.90 98.12
HRNet-32 [227] 30 43.66 69.24 86.38 97.20

Table 6.2: Comparison of results using different values of ΔZ

The approach based on volumetric heatmaps obtains a good level of accuracy,
even if still lower than our method. However, the main issue of this approach is
the high computational load that predicting 3D volumes requires. Indeed, a vol-
umetric heatmap represents a quantized 3D space that quickly grows in size in or-
der to increase the precision of the method. This problem can be noticed during
training when this approach requires almost double the amount of GPU mem-
ory (8.3GB) than our method (4.7GB). To summarize, our approach achieves
the best results in predicting the inner joints of the robot, which is a challenging
task to solve with the alternative approaches.

Finally, some qualitative results of our method are depicted in Figure 6.6, re-
porting the initial depth image and the final 3D robot skeleton.

6.4.6 Ablation study

To further evaluate our approach, we perform an ablation study to investigate
the impact of using different network inputs and of sampling a different Z̄ space
when computing the uz heatmap.

In the first experiment, we adapt three different 2D HPE baselines [175, 162,
227] in order to learn the proposed SPDH output. In particular, they were
trained using two different inputs: a depth image ID and the proposed XYZ
image IXYZ. As can be seen in Figure 6.5, the results confirm that the network
learning process benefits from an input IXYZ with explicit 3D information. In-
deed, using only the depth values from ID makes the network independent from
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the intrinsic parameters of the camera, which are needed to learn a meaningful
3D representation of the world from a 2D space.

With the hypothesis that a smaller value of ΔZ should take to higher mAP
scores, the latter experiment explores different samplings of the Z̄ space. We select
the networks [175, 227] with the best performances and train them with three
different ΔZ values, i.e. 7.5, 15 and 30 mm. We observe that using ΔZ = 30 a
bigger space Z̄ = [0, 5760]mm is sampled, while for ΔZ = 7.5mm we adapt
the input for our system increasing the size of input images to 384× 384 adding
upper-lower padding and maintaining the same Z̄ space as our main experiment
in Section 6.4.2. Experimental results reported inTable 6.2 reveal that the choice
of the parameter ΔZ, which can be potentially non-trivial since it changes the size
of the uz heatmap, does not have a significant impact on the performance of the
whole proposed system, tending to avoid the need to ad hoc decrease or increase
ΔZ value for different application contexts.

6.5 Limitations

Although our experimental section shows promising results, we observe that the
output is limited to a single robot in the acquired scene. In addition, the influ-
ence of other objects in the scene on the final prediction needs to be investigated,
since these objects could change the visual appearance of the scene or produce
occlusions on robot surfaces. The proposed system is one of the first attempts in
this field, and it can be improved inmany terms, e.g. on the temporal smoothness
of the pose.
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7
D-SPDH:

Improving 3D Robot Pose Estimation
in Sim2Real scenario via Depth Data

Vision-basedRobot Pose Estimation (RPE), i.e. the ability to infer the pose of
a robot from an external camera viewpoint, is an enabling technology for many
robotics applications, e.g. object grasping [21], robotmanipulation [22], andmo-
tion planning [128]. In particular, the precise estimation of the 3D world coor-
dinates of robot joints in real time has a significant impact on many real-world
safety applications, especially regarding human-machine interactions, such as col-
lision detection and avoidance [131] with collaborative robots (cobots) [198].

Indeed, in the context of Industry 4.0 [127], experts agree that cooperation
between humans and intelligent agents [254, 255], rather than complete removal
of humans, will be a key enabler for the advancement inmanufacturing [117]. In
this context, safe interaction between humans and cobots is a crucial element to

This Chapter is related to the publication “A. Simoni et al., D-SPDH: Improving 3D Robot
Pose Estimation in Sim2Real scenario via Depth Data, Under Review” [3]. See the list of Publica-
tions on page 151 for more details.
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Figure 7.1: Visualization of the tackled task, i.e. Robot Pose Estimation (RPE) from depth data.
Given as input a depth image, our proposed D-SPDHmethod is able not only to predict the 2D
pose but also to recover the full 3D pose of the robot in order, for instance, to guarantee a safe
human-machine interaction.

be investigated [40]. Moreover, in future generations of manufacturing, robots
and operators will share the workspace and have physical contact, raising new
aspects related to social and physical coordination between coworkers [45, 191]:
topics that are analyzed also through the robot’s pose.

Therefore, in this paper, we focus on the development of D-SPDH, a vision-
based method able to predict the robot joint positions in the 3D world relying
only ondepthmaps as input (see Figure 7.1). In otherwords, wepropose a system
that is completely agnostic about the robot’s internal state, in terms of encoders,
communication interfaces, and other electromechanical components, that out-
puts 3D coordinates.

Specifically, with the term D-SPDH we refer to a double-branch Convolu-
tional Neural Network (CNN) architecture trained only on depth data. We be-
lieve that using depth data only can lead to two main advantages: (i) it provides
information for a more accurate estimation of real-world 3D coordinates [278],
and, (ii) it avoids illumination issues that typically affect systems based, for in-
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stance, on RGB data [271]. Each branch of the model is specialized in one of
the Semi-Perspective Decoupled Heatmaps (SPDH) [6] representation, which
has been proven to be effective in encoding the information to address the robot
pose estimation task.

D-SPDH is developed in the Sim2Real scenario [87], i.e. the model is trained
only on synthetic depth data, easily obtainablewith simulators, and tested on real
sequences. We observe that this scenario limits the difficulties in acquiring a large
amount of varied and labeled depth data usually required to train deep learning-
based systems [46]. Besides, in this manner, the training procedure and then the
method deployment are not tied to a specific acquisition depth device and its
technology, which can introduce artifacts in the depth data [213] limiting gener-
alization capabilities [199]. Furthermore, the use of depth data tends to reduce
the domain gap between synthetic and real data without domain randomization
or similar techniques [233].

Theproposedmethod is evaluatedonan extendedversionof the SimBadataset [6]
that we created called SimBa++. SimBa++ consists of both synthetic sequences
collected throughGazebo simulator [116] and real data acquired through the sec-
ond version of the Microsoft Kinect depth device. This evolution of the dataset
includes new challenging real-world scenes with double-armmovements.

Finally, in this paper, we also seize the opportunity to thoroughly investigate
challenges and future research scenarios of 3DRPE from depth data. We believe
that such an emerging field has important practical and theoretical implications
that have not yet been fully analyzed and explored in the literature.

Summarizing, the contributions of this paper are:

• We propose D-SPDH, a double-branch architecture capable of predicting
reliable 3D world locations of robot joints using only depth data. The
input depth map is converted into a different depth representation (i.e.
XYZ image, see Section 7.2.1), which is fed into a backbone connected to
two branches for the prediction in two different joint spaces through the
SPDH representation (Section 7.2.3). A visual summary of the proposed
system is given in Figure 7.2.
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• We release SimBa++, an extendedversionof theprevious SimBadataset [6],
which is used for training, experimental evaluations and comparisons. As
one of the first datasets in its category featuring both synthetic and real
depth data with 3D annotations, we describe and analyze SimBa++ in de-
tail in Section 7.3.1.

• We provide a thorough description and experimental comparison of sev-
eral approaches to the problem of RPE. We start from 2D RPE, move
to 2D to 3D projection, and finally to the full 3D pose estimation (Sec-
tion 7.3.4). This study enables us to draw some conclusions and outline
challenges and opportunities for future research in the field of 3D RPE
(Section 7.4).

7.1 Relatedwork

Estimating the correct 3D location of an object from the perspective of an exter-
nal camera is a complex problem, so different approaches have been presented in
the last decades, following the new advances in computer vision and deep learn-
ing. We present an overview of the current literature related to robot pose esti-
mation dividing the works into two groups: (i) hand-eye calibration divided into
marker-based and learning-based methods, and (ii) rendering-based approaches,
which use rendering methods to project a 3D synthetic robot model into the
scene and predict the pose. Finally, a section is dedicated to currently available
datasets for robot pose estimation.

Hand-eye calibration. In robotics, the common approach to estimate the
absolute pose of a robot with respect to the camera is the Hand-Eye Calibra-
tion [89, 83]. This approach, for instance, used in [185, 267, 95, 192], consists of
attaching a fiducial marker (e.g. ArUco [63], ARTag [59], AprilTag [179]) to the
end effector that is tracked through multiple frames. These algorithms exploit
forward kinematics and multiple frames to solve an optimization problem us-
ing 3D-to-2D correspondences to get the camera-to-robot transform. However,
these methods require the installation of markers on the manipulator, which is
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not always a feasible operation depending on the working scenario.
Nonetheless, with recent advances inhumanpose estimation [281],manyworks

have been proposed to estimate the camera-to-robot pose using CNNs. We di-
vide these approaches into twogroups, dependingon the input image type: depth-
based and RGB-based. The first group is a minor subset in which depth data is
used to predict the robot’s pose. [24], taking inspiration from [219], apply a ran-
dom forest classifier to the depth images to segment the links of the robot arm
from which the skeleton joints are estimated. Similarly, the method described
in [256] directly regresses the joint angles without the segmentation prior. How-
ever, we observe that these methods retrieve just the joint angles but do not re-
cover the absolute pose with respect to the camera.

On the other hand, RGB-based methods represent the large majority. Lam-
brecht et al. proposes in [124] a method that combines synthetic and real data
to train a keypoint localization network that predicts 2D robot joints. Comput-
ing the 3D joint configuration from the forward kinematics, aPerspective-n-Point
(PnP) [134] [138] algorithm retrieves the 3D robot pose in camera coordinates.
Similarly, Zuo et al. [289] also presents a keypoint detector but trained on syn-
thetic data only. Instead of PnP, they use a non-linear optimization to regress the
camera pose and joint angles of a small low-costmanipulator. Recently, the work
[131] demonstrates that learning-based approaches could replace classic marker-
based calibration also for standardmanipulators (e.g. Rethink Baxter and Franka
Emika Panda). They exploit synthetic data for training, feedingRGB images into
an encoder-decoder network that predicts the 2D pixel coordinates of the robot
joints. Assuming the camera intrinsics and the configuration of the joint an-
gles are known, the camera-to-robot transform is computed via PnP. Moreover,
Tremblay et al. [234] extended the previouswork to retrieve the camera-to-object
transform. Their pipeline consists of two networks, one for the camera-to-robot
pose [131] and one for the camera-to-object pose, with the main goal of improv-
ing the grasping performance of the robot.

In contrast with the discussed works, our D-SPDHmethod directly regresses
the camera-to-robot pose using a heatmap representation of a 3D pose. In this
way, the proposed system can be used with any network predicting heatmaps,
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Dataset Year Robots Synth Real Data type Frames Notes

CRAVES [289] 2019 1 ✓ ✓ RGB 5.5k
DREAM [131] 2020 3 ✓ ✓ RGB 357k

WIM [176] 2022 7 ✓ RGB 140k
CHICO [211] 2022 1 ✓ RGB ≈1M

SimBa [6] 2022 1 ✓ ✓ RGB-D 370k Single-arm only

SimBa++ 2023 1 ✓ ✓ RGB-D 380k Double-arm

Table 7.1: Datasets available in the literature for the Robot Pose Estimation task. Further details
are reported in Section 7.1.

as those developed for 2D human pose estimation. As a result of our direct 3D
regression, we do not use any PnP algorithm making the proposed approach ag-
nostic to the robot state, in terms of joints and angles, which sometimes could be
unknown.

Rendering-based approach. Going beyond learning-basedmethods, recent
works [123, 176] propose approaches based on rendering. With the growing in-
terest in neural rendering techniques [166, 251], the goal is to use synthetic robot
models and optimize the camera-to-robot pose estimation by projecting them
into the scene. Labbe et al. [123] paves the way to this field of research present-
ing the first method for robot pose estimation based on the render&compare
paradigm. This optimization algorithm iteratively refines an initial robot state
defined as the joint angles configuration and the pose of an anchor part with re-
spect to the camera. At test time, the approach could work also with unknown
joint angles, but the drop in performance is significant [123]. Furthermore, in-
spired by [251], the work of [176] proposes a self-supervised method exploiting
both an explicit rough approximation of the robot body and an implicit refine-
ment of it. To compensate for the lack of 3Dpose supervision, the approach uses
multi-view sequences of an articulatedmoving robotwith annotated foreground
masks.

Our D-SPDH is also a supervised learning-based approach, but differently
from the methods described above it works without the knowledge of the robot
state anddoes notneedmultiple views. Moreover,D-SPDHis considerably faster
than methods based on volume rendering (see Section 7.4.2). These elements
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Figure 7.2: Overview of the proposedD-SPDHmethod: an initial depthmap is firstly converted
in the XYZ representation (Section 7.2.1) and then used as input for the HRNet-32 [227] back-
bone that extracts a set of visual features elaborated separately by two branches, i.e. uv-branch and
uz-branch (Section 7.2.3). The output of each branch consists of an SPDH representation that is
finally converted into the 3D robot skeleton.

simplify deployment to real-world scenarios, where information is not always re-
liable and speed is crucial.

Datasets for Robot Pose Estimation. Datasets are essential in computer
vision, especially for training deep learning architectures. Unfortunately, col-
lecting 3D annotated data for robot pose estimation in the real world is costly.
An emerging solution to this problem is the use of simulators to generate syn-
thetic data. As shown in Table 7.1, only four datasets are currently available for
the problem of robot pose estimation and they contain exclusively RGB images:
CRAVES [289], DREAM [131], WIM [176], and CHICO [211].

CRAVES is a synthetic and real dataset for the pose estimation of an OWI-
535 low-cost manipulator. It contains 5k synthetic RGB images generated with
Unreal Engine 4 (UE4) and background domain randomization, and 537 real
RGB images with annotations for 2D keypoints and visibility. DREAM is a
more complex dataset covering three robots, i.e. Franka Emika Panda, Kuka LBR
with Allegro, and Rethink Baxter. The synthetic data are generated with UE4
using domain randomization [231] and consist of 100k RGB images for each
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robotwith 2D/3Dkeypoint locations and robot joint angles as annotations. The
real data covers only the Franka Emika Panda and consists of two sets of images:
Panda-3Cam containing 17k annotated RGB images collected with 3 different
cameras and Panda-Orb that handles a variety of camera poses with 40k anno-
tatedRGB images collected fromaRealSense camera. WIMis a smaller synthetic-
only dataset generated with the python-based renderer NViSII [170] together
with PyBullet [41] for animations. It contains 1k RGB frames of a synchronized
video with 20 viewpoints for 7 different robots. Finally, CHICO is a real dataset
for human-robot collaboration with contact and represents a benchmark for hu-
manpose forecasting and collision. It contains 240RGBHDsequences inwhich
20 human operators work together with a 7-DoF KUKA LBR robot in a shared
workspace.

Our SimBa++ is therefore the only dataset that features bothRGB and depth
data. The dataset contains both synthetic and real sequences of a Rethink Bax-
ter robot, with annotated 3D keypoint locations and camera positions. These
elements make our dataset the first suitable for both RGB and depth-based ap-
proaches, which can use either synthetic or real data and be also compared for
their domain adaptation abilities. SimBa++ contains 350k synthetic images and
30k real images.

7.2 Proposed method

An overview of the pipeline is depicted in Figure 7.2.

7.2.1 Sim2Real working scenario

The proposed system uses depth data only. Indeed, we observe that the use of
depth devices, especially if based on infrared light, represents an effective and
low-priced solution to acquire 3D data robust to light changes and variations in
background textures [60].

Moreover, we work in the Sim2Real scenario: during training, the input is a
synthetic depth map, while in test mode it is acquired by a real depth sensor. A
visual comparison between the synthetic and real depth maps is shown in Fig-
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(a) Synthetic Depth Image (b) Real Depth Image

Figure 7.3: Visual comparison of two depth maps depicting the same scene but acquired in two
differentways: on the left is the synthetic image, obtained through the use of theGazebo simulator,
while on the right is the real depth image, acquired through the second version of the Microsoft
Kinect device. As shown, these two images are visually different, for instance presenting different
levels of noise (black dots) and depth accuracy.

ure 7.3. We aim to work in the challenging Sim2Real scenario in order to avoid
the time-consuming acquisition and annotation procedures and develop a sys-
tem independent of the type of depth sensor. Thus, the quality of depth data
(i.e., depth accuracy, format, resolution) is strongly influenced by the acquisition
device [213] and negatively affects the performance and generalization capabili-
ties of vision-based systems, especially those based on deep learning architectures,
when they are trained and tested on images acquired with different depth devices
or technology [199]. A solution consists of acquiring a great variety of depth data
with a new depth sensor every time and making an additional effort to finetune
a model on the new sequences: this unpractical and time-consuming approach
leads us to investigate the Sim2Real scenario.

7.2.2 Processing of input depth data

From a formal point of view, a depthmap can be defined asDM = ⟨D,K⟩where
D is the measured matrix of distances dij between the acquisition device and the
points in the scene, and K is the perspective projection matrix, obtained as the
intrinsic parameters of the depth camera. It is worth noting that the maximum
acquisition range of a real depthmap relies on the technology used, mainly based
on Structured Light (SL) or Time-of-Flight (ToF) [274], and on the specific sen-
sor quality and resolution. dij is defined in the range [r,R], where r and R are
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Figure 7.4: Visualization of the camera positions exploited during the acquisition procedure of
the SimBa++ dataset with respect to the robot location (here represented through its skeleton).
Different views, front-view (left) and top-view (right), of the acquisition scenes are reported, high-
lighting differences between the synthetic and real collection procedures.

respectively the minimum and the maximummeasurable ranges.
The input depth map is converted into an XYZ image I1×H×W

D −→ I3×H×W
XYZ ,

i.e. a 2D representation formally defined as follows:

IXYZ = π(D · K−1) (7.1)

where π is the projection in the 3D space of every value dij through the inverse
of the projection matrixK. The intuition behind XYZ representation is to have
an input image that limits the above-mentioned differences between synthetic
and real depth data, improving the performance of the adopted model in the
Sim2Real scenario. This consideration is confirmed by the experimental results
reported in Section 7.3.4.

7.2.3 Intermediate pose representation throughD-SPDH

To estimate the 3D pose of the robot, we first regress an intermediate represen-
tation referred to as Semi-Perspective Decoupled Heatmaps (SPDH) [6]. This
representation decomposes the 3D space into two bidimensional spaces where
the robot joint locations, organized as in Figure 7.5, are represented as heatmaps:
(i) the uv space corresponding to the camera image plane, and (ii) the uz space,
containing quantized values of the Z dimension of the 3D real world. The first
space represents the front view of the scene in which the heatmapsHuv are com-
puted with a perspective awareness of the distance of the joints with respect to
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Figure 7.5: Joint locations on the Rethink Baxter robot available in the SimBa++ dataset and
used in the experimental evaluation.

the camera: we obtain smaller Gaussians for the farthest joints to force the net-
work to focus on those locations that are usuallymore difficult to predict. On the
other hand, the latter space is a bird-eye view of the scene in which the heatmaps
Huz are obtained from a quantized portion of the Z plane of size defined as:

z =
Z̄max − Z̄min

ΔZ
(7.2)

where Z̄ = {Z̄i ∈ Z; Z̄min <= Z̄i <= Z̄max}.
The proposed method uses an HRNet-32 [227] backbone, specifically ex-

ploiting the four stages except for the final convolution. In this way, the output
of the backbone consists of a set of visual features that are given as input to the uv
and uz branches. Each branch consists of a residual block with 128-dimensional
convolutional layers, batch normalization andReLU activations, and a final con-
volutional layer that predicts the heatmaps reducing the channel dimension to
16, i.e. the number of robot joints, as shown in Figure 7.5.

The output of each branch is finally processed to compute the 3D robot skele-
ton. For each heatmap Huv in the uv space, we compute the argmax and then
the coordinates X̂Ŷmultiplying the pixel values of the peak and the inverse of the

97



7777777

7. 3D ROBOT POSE ESTIMATION
Sy
nt
he

tic
Re

al

Figure 7.6: Visualization of the joints’ movements in synthetic and real sequences contained in
the SimBa++ dataset with the same camera position. The first two graphs depict each joint lo-
cation through the sequences from the front and top view of the scene; on the right, a Motion
History Image (MHI) [10] of the robot’s movements on the same sequences is presented: in this
representation, brighter colors denote a high level of motion with respect to blue areas.

camera intrinsicsK. On the other hand, for each heatmapHuz in the uz space, we
compute the argmax of the z coordinate and convert it into a continuous value
in metric space defined as Ẑ = (zmax · ΔZ) + Z̄min. Finally, we multiply the X̂Ŷ
coordinates from the uv space and the Ẑ coordinate from the uz space, obtaining
a 3D point P̂ for each robot joint.

7.3 Experiments

In this section, we present the training procedure of the proposed method and
the metrics used for evaluation.
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7.3.1 Dataset

To evaluate the proposed method, we extend the previous version of the SimBa
dataset [6] with new real sequences in which the Rethink Baxter moves both
arms. This new test set represents a challenging scenario since only single-arm
movements are available in the synthetic training set. In the following, we give
a detailed description of the synthetic and real data that are used respectively for
training and testing.

Synthetic data. The synthetic sequences are collected in a virtual environ-
ment using Gazebo for physics simulation and ROS for operating the synthetic
robot model. The simulation consists of two runs with different random initial-
izations containing 20 different camera poses fromwhich the robot is recorded at
10 fps while performing 10 pick-n-place motions. The recordings are taken from
three anchor cameras that are randomly positioned within a sphere of 1m diame-
ter, as depicted in Figure 7.4. Themovements covermost of the working space at
the front of the robot, as illustrated in Figure 7.6 (top). This guarantees enough
variation of the joints’ positions for the training phase. The synthetic data con-
tains a total of 400 sequences and 350k RGB-D frames with annotations for 16
joints, pick-n-place locations, and camera positions.

Real data. The real sequences are acquired with theMicrosoft Kinect OneToF
sensor, using ROS for recording the robot movements. The camera is placed in
three anchor positions (center, left, right), as depicted in Figure 7.4, so that they
are within the space of the synthetic cameras, but not at the same exact location.
As an extension to the original dataset [6], we introduce new sequences and di-
vide the dataset into two groups: (i) single-arm movements and (ii) double-arm
movements. The first test set remains the same as in the original dataset, contain-
ing 20 sequences at 15 fps from each camera position with pick-n-place motions
with either the left or the right arm. The latter is the extension to the original
dataset and consists of 10 additional sequences at 15 fps from each camera posi-
tion with both robot arms moving. Sequences with both robot arms moving are
not available in the synthetic dataset, thus incrementing the challenges in the do-
main shift operation. SimBa++ contains a total of 30k real RGB-D frames with
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Synthetic test set Real test set
PCK (%) ↑ PCK (%) ↑

Input Network Params (M) 2.5px Avg Error (px) ↓ 2.5px 5px 10px Avg Error (px) ↓

R
G
B

FPM (MobileNet) [162] 0.16 88.23 1.71 15.97 55.41 92.17 10.77
FPM (SqueezeNet) [162] 0.36 92.42 1.60 15.36 42.65 81.16 14.17

SH (1 stack) [175] 14.80 99.44 0.67 0.46 10.66 17.56 68.95
SH (2 stacks) [175] 26.80 99.41 0.66 0.13 5.59 10.21 95.65
HRNet-32 [227] 28.50 99.58 0.65 18.69 53.51 71.69 22.48
HRNet-48 [227] 63.60 99.62 0.62 2.67 8.99 17.99 70.87

TransPose-R-A4 [270] 6.08 99.54 0.63 2.13 15.57 25.63 55.10
Uniformer-B [136] 53.50 99.18 0.70 11.32 46.43 84.54 11.08

R
G
B-
D

FPM (MobileNet) [162] 0.16 91.26 1.67 1.39 9.58 17.13 84.53
FPM (SqueezeNet) [162] 0.36 92.17 1.63 10.23 30.88 57.94 37.84

SH (1 stack) [175] 14.80 99.38 0.68 1.01 8.30 16.15 77.75
SH (2 stacks) [175] 26.80 99.52 0.65 0.41 10.49 14.65 82.88
HRNet-32 [227] 28.50 99.44 0.67 5.39 14.66 21.39 103.74
HRNet-48 [227] 63.60 99.66 0.61 2.58 13.09 16.66 118.33

TransPose-R-A4 [270] 6.08 99.59 0.65 2.21 13.59 25.15 58.92
Uniformer-B [136] 53.50 99.29 0.68 5.54 22.22 36.66 58.29

D
EP

T
H

FPM (MobileNet) [162] 0.16 88.43 1.75 33.83 72.32 95.51 6.28
FPM (SqueezeNet) [162] 0.36 91.58 1.62 44.79 87.57 99.59 3.03

SH (1 stack) [175] 14.80 99.41 0.68 43.85 87.94 92.28 7.35
SH (2 stacks) [175] 26.80 99.62 0.64 47.99 93.73 98.44 4.02
HRNet-32 [227] 28.50 99.51 0.67 48.35 88.57 93.31 6.84
HRNet-48 [227] 63.60 99.65 0.61 50.16 95.37 99.12 2.85

TransPose-R-A4 [270] 6.08 99.61 0.66 57.41 96.48 99.15 2.66
Uniformer-B [136] 53.50 99.22 0.70 49.53 94.58 99.73 2.68

X
YZ

FPM (MobileNet) [162] 0.16 88.37 1.71 37.03 70.29 93.61 6.73
FPM (SqueezeNet) [162] 0.36 92.40 1.60 49.67 89.64 99.74 2.87

SH (1 stack) [175] 14.80 99.55 0.66 39.67 91.31 97.15 5.09
SH (2 stacks) [175] 26.80 99.50 0.69 43.32 90.68 96.29 4.69
HRNet-32 [227] 28.50 99.54 0.67 50.29 96.96 99.88 2.66
HRNet-48 [227] 63.60 99.61 0.66 49.42 95.23 99.08 2.83

TransPose-R-A4 [270] 6.08 99.63 0.63 51.89 97.42 99.84 2.59
Uniformer-B [136] 53.50 99.19 0.69 47.93 94.52 99.61 2.94

Table 7.2: 2D Robot Pose Estimation results (see Section 7.3.4) on SimBa++ synthetic and real
sequences with single-armmovements

annotations for 16 joints and 3 camera positions.

7.3.2 Model training

The model is trained for 30 epochs on the SimBa++ synthetic dataset using L2
loss on the heatmaps, batch size 16,Adam [113] optimizer, and learning rate 1e−3

with decay factor 10 at 50% and 75% of training. We follow the same training
split of [6] to enable a direct result comparison.

We apply a 3D data augmentation on the point cloud computed from the
depth map DM. In particular, 3D points are rotated of [−5◦,+5◦] on XY axes
and translated of [−8cm,+8cm] on XZ axes. We further translate the points on
the XZ axes, changing implicitly the camera position. In addition to this geomet-
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ric augmentation, we introduce a pixel-wise pepper noise and a random dropout
of portions of the depth map, simulating respectively the noise of the real sen-
sor and the holes caused by light on reflective surfaces (e.g. metallic objects or
screens) that usually produce invalid depth measurements. The pepper noise is
introduced for 10 − 15% of the pixels and the random dropout consists of rect-
angular areas of different dimensions where pixels are set to 0 value.

7.3.3 Metrics

For the quantitative evaluation of the proposedmethod and the competitors, we
used 2D and 3Dmetrics already introduced in the literature for similar tasks.

For the 2D RPE, we use the Percentage of Correct Keypoints [13] (PCK)
metric, i.e. the percentage of predicted joints that are within a certain distance
threshold with respect to the ground truth. We compute PCKwith a confidence
threshold of 0.5 and a margin error of 2.5 pixels for the synthetic dataset and
{2.5, 5, 10} pixels for the real dataset. Moreover, we compute also the average
pixel error over all robot joints.

For the 3DRPE, we use the average distance metric (ADD) [261, 131], which
is the mean L2 distance expressed in centimeters of all 3D robot joints to their
ground truth positions. This value (the lower the better) is useful to condense
the error related to the translation and rotation in the 3D world. In addition,
a mean average precision (the higher the better) is used as the accuracy on the
ADD using different thresholds of {2, 4, 6, 8, 10} centimeters. In this way, re-
sults can be evaluated at different distances from the ground truth, giving more
interpretability to the actual performance of the methods.

7.3.4 Results

Due to the relative novelty of the 3D Robot Pose Estimation task from depth
data, we seize the opportunity to analyze step-by-step the challenges of this re-
search field in combination with the experimental evaluation of the proposed
D-SPDHmethod.

We start our investigation from the 2D domain, focusing on the possibility
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to use models and techniques introduced in the 2D human pose estimation lit-
erature. Moreover, we assess the challenge of working in a Sim2Real scenario, in
which training data differs from the real ones, testingmethods on both synthetic
and real data. Then, we move our analysis toward the estimation of the 3D pose,
starting from the simple solutionbasedon sampling the depth value directly from
the depth data, to the regression of the full 3D pose in world coordinates.

2D Robot Pose Estimation. In this task, we compare several literature ap-
proaches explicitly developed for the human pose estimation task, ranging from
lightweight models [162] to recent Transformer-based architectures [270, 136].
These methods, originally based on the RGB domain, are tested on different in-
put modalities, i.e. RGB, RGB-D (channel-wise stacked), depth, and XYZ (as
presented in Section 7.2.1) images, belonging to both synthetic and real data.

Experimental results are shown inTable 7.2, in terms of PCKand average pixel
error. As expected, good performances are visible on the synthetic data, while the
difference between each input modality rises when testing on the more challeng-
ing real sequences. In particular, without applying any domain adaptation tech-
nique during training, depth and XYZ inputs overcome the RGB and RGB-D
modalities, probably since RGB data introduces a significant visual gap between
the synthetic and real domains. On the other hand, since the depth and XYZ
image representations contain fewer visual details (in particular no details about
textures), the trainedmodels tend to better generalize to the real domain, proving
that the domain gap on these input types is reduced.

2D to 3DProjection fromDepthData. Once experimentally defined the
depth-based inputs for the 2D estimation in the previous analysis, a simple ap-
proach to obtain a 3D joint prediction would be to take the 2D predicted coor-
dinates and project them into the 3D space using the camera intrinsics and the
corresponding depth value. However, we observe this projection would always
lay on the surface of the robot, and therefore be incorrect, as the goal is to pre-
dict the central location of the robotic joint. Besides, the magnitude of the error
would depend on the robot’s model, shape, and pose (e.g. self-occlusions).

To mitigate this issue, we still sample the Z value from the depth map, but
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Synthetic test set Real test set
mAP (%) ↑ mAP (%) ↑

Network 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓ 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓

D
EP

T
H

FPM (MobileNet) 21.36 62.35 75.99 78.16 80.65 10.29 ±6.18 7.30 24.02 55.07 74.28 81.93 13.49 ±10.93

FPM (SqueezeNet) 23.10 63.38 75.81 78.15 80.49 10.35 ±6.34 6.73 32.98 67.76 81.14 85.16 8.74 ±5.85

SH (1 stack) 32.73 68.35 75.17 77.71 80.01 10.45 ±6.29 8.78 36.44 68.66 77.31 79.80 11.37 ±7.72

SH (2 stacks) 33.48 68.57 75.59 78.18 80.60 9.46 ±5.41 9.62 40.69 72.35 82.42 84.69 8.17 ±5.27

HRNet-32 33.57 68.56 75.64 78.02 80.38 9.83 ±5.68 9.01 37.31 68.41 78.33 80.02 11.88 ±8.85

HRNet-48 33.34 68.79 75.64 78.23 80.50 9.46 ±5.44 9.81 39.36 70.74 83.08 85.99 7.19 ±4.32

TransPose-R-A4 33.17 68.51 75.38 77.96 80.49 9.91 ±5.87 9.27 43.46 75.56 83.44 85.46 7.02 ±4.23

Uniformer-B 33.95 68.36 75.27 77.79 80.27 9.73 ±5.59 9.79 39.42 73.52 82.67 85.60 7.43 ±4.71

X
YZ

FPM (MobileNet) 21.70 62.67 75.49 77.83 80.28 10.86 ±6.57 4.83 24.21 49.39 68.64 78.99 17.32 ±14.15

FPM (SqueezeNet) 23.38 63.50 75.79 78.12 80.49 10.52 ±6.28 7.67 37.89 72.86 83.04 86.96 7.91 ±5.26

SH (1 stack) 33.05 68.48 75.43 77.97 80.30 9.67 ±5.55 8.91 39.34 71.61 80.81 84.42 8.99 ±5.63

SH (2 stacks) 34.05 68.61 75.61 78.13 80.37 9.69 ±5.58 6.79 40.04 72.02 80.42 83.06 8.70 ±5.40

HRNet-32 33.02 68.24 75.55 77.97 80.37 9.53 ±5.38 8.71 39.55 72.55 83.17 86.98 7.03 ±4.50

HRNet-48 33.43 68.78 75.60 78.13 80.38 9.47 ±5.39 9.27 40.84 73.52 82.59 85.13 7.03 ±4.20

TransPose-R-A4 32.59 68.48 75.35 77.88 80.20 9.95 ±5.91 9.02 45.50 76.57 84.62 87.47 7.24 ±5.00

Uniformer-B 32.91 68.03 75.03 77.65 80.22 10.14 ±5.94 8.78 39.38 73.44 83.10 85.91 7.59 ±4.95

Table 7.3: 3D Robot Pose Estimation results (see Section 7.3.4) on SimBa++ synthetic and real
sequences with single-armmovements, exploiting 2D to 3D projection from depth data consider-
ing the surface-to-joint displacement

mAP (%) ↑
Method Network 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓

3D regression ResNet-18 [82] 0.57 9.40 19.99 27.06 44.44 12.20 ±4.12

2D to 3D lifting [160] ∗ 13.70 26.96 37.98 48.40 58.33 10.03 ±3.53

Volumetric heatmaps [194] 3.35 18.15 42.24 61.60 86.15 7.11 ±0.65

SPDH TransPose-R-A4 2.58 ±0.77 43.45 ±3.00 73.56 ±1.95 89.15 ±1.24 93.99 ±0.52 5.89 ±1.69

SPDH Uniformer-B 11.58 ±0.98 40.48 ±1.80 68.90 ±1.97 85.01 ±1.11 91.43 ±0.45 5.61 ±1.79

SPDH HRNet-32 7.31 ±2.48 48.61 ±5.33 79.88 ±8.76 91.65 ±7.97 96.79 ±3.55 4.65 ±1.00

D-SPDH HRNet-32 10.62 ±5.69 53.82 ±9.46 85.43 ±4.36 96.17 ±3.82 98.88 ±1.36 4.14 ±0.77

* relative joint positions

Table 7.4: 3DRobot Pose Estimation results (see Section 7.3.4) on SimBa++ real sequences with
single-armmovements

mAP (%) ↑
Method Network 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓

SPDH TransPose-R-A4 3.88 ±0.94 43.51 ±2.86 72.47 ±0.47 87.33 ±1.23 93.39 ±0.57 5.89 ±1.80

SPDH Uniformer-B 11.58 ±1.03 43.29 ±1.86 71.85 ±1.55 88.00 ±0.84 93.21 ±0.56 5.36 ±1.97

SPDH HRNet-32 6.71 ±1.38 49.54 ±6.84 80.39 ±8.16 91.75 ±7.84 96.73 ±3.73 4.65 ±0.96

D-SPDH HRNet-32 10.26 ±4.97 54.58 ±8.28 85.04 ±4.76 95.69 ±3.77 98.86 ±1.41 4.14 ±0.69

Table 7.5: 3DRobot Pose Estimation results (see Section 7.3.4) on SimBa++ real sequences with
double-armmovements
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Figure 7.7: Example of the influence of self-occlusions on the predicted 3D pose using the 2D
to 3D projection approach. With respect to a frame with all visible robot joints (first row), the
occlusion caused by the left arm (second row) results in a large error for the robot base prediction.

introducing also a fixed displacement (computed through the robot model), to
reduce the distance between the prediction and the ground truth joint location.
In other words, this displacement tries to move the sampled point from the sur-
face to the proper position of the joint inside the robot. In this experiment, we
compare the same networks trained on the 2D pose estimation in terms of mAP
and ADD.

As shown in Table 7.3, the performance in the 3D domain looks satisfying,
but especially at low mAP thresholds, the limitations of this approach arise. In-
deed, since using the sampledZ coordinate from the depth producesADDerrors
higher than 8 centimeters, the mAP scores at low thresholds become unreliable.
In addition, when testing on the real domain, themethod is highly influenced by
the quality and accuracy of the depth sensor since Z is sampled at a specific point.
Another problem is the presence of self-occlusions, which leads to a sampled Z
coordinate that is toodistant from the inner joint of the robot (Figure 7.7). More-
over, we report the results considering only the projected XY coordinates of the
3D space. As shown in Figure 7.8, it is worth noting that both mAP scores and
ADDmetric drop significantly when considering the Z values, proving that the
sampling from the depthmap is not reliable enough for precise 3D joint location.
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Figure 7.8: Evaluation comparisonof the 2D to3Dprojection fromdepthdata (see Section7.3.4)
in terms of mAP (barplot) and ADD (horizontal lines), considering XYZ with displacement or
XY axes only. The trend is computed as an average over all the networks trained for the 2D pose
estimation.

3D Robot Pose Estimation. Given the shortcomings of the 2D to 3D pro-
jection analyzed in the previous section, we now consider the 3D robot pose esti-
mation as a direct prediction from the input images. As shown in Table 7.4, we
compare the proposed D-SPDHmethod with the 3D pose estimation literature.

• Direct 3D regression. One of the most common approaches is to
regress directly the 3D joint coordinates from an image using CNNs. We
empirically select a ResNet-18 [82] backbone that is adapted and trained
on the synthetic data to regress the 3D robot joint positions. However,
as widely demonstrated for the human pose estimation case [281], this ap-
proach does not lead to good results, proving that estimating the 3D abso-
lute pose of an articulated object with respect to the camera is not trivial.

• 2D to 3D lifting. Another widely used approach is predicting the 3D
pose starting from a 2D pose. The main feature of this approach is the
need for a relative joint position with respect to a specific root (e.g. the
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Figure 7.9: Results in terms of ADD metric (mean and std) for each robot joint on the real se-
quences with double-arm movements (l = left, r = right, ll = left-lower, lu = left-upper, rl = right-
lower, ru = right-upper).

robot base), so the absolute 3D pose is computed with a post-processing
fitting of the pose with respect to the camera position. For the compari-
son, we evaluate the method proposed by [160], in which a sequence of
different Multi-Layer Perceptron (MLP) networks are trained to predict
the 3D joints relying on their 2D positions. From the reported results, we
observe that this method is prone to overfitting on the synthetic data ob-
taining low results on the prediction of the relative 3D pose.

• Volumetricheatmaps. The third solution is basedonvolumetric heat-
maps, a specific representation to encode 3D joint locations in a sampled
3D volume. We train the state-of-the-art method of [194] which outputs
a volume of size d × w′ × h′, with d = 64, w′ = w

4 , and h
′ = h

4 . We ob-
serve that this method obtains good results but does not perform as well
as all SPDH-based approaches. Moreover, the main problem with volu-
metric heatmaps is memory usage, especially if the goal is to obtain precise
3D joint locations. Indeed, the memory footprint increases exponentially
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Figure 7.10: Temporal analysis of a real sequence with single-arm movement in terms of ADD
and bones length (blue) with respect to velocity (green) and acceleration (red) of joints (see Sec-
tion 7.4.1).

Method Network Limbs Error (cm)

3D regression ResNet-18 [82] 1.22 ±1.45

2D to 3D lifting [160] 0.67 ±0.96

Volumetric heatmaps [194] 2.04 ±1.94

SPDH TransPose-R-A4 2.15 ±5.44

SPDH Uniformer-B 1.26 ±1.90

SPDH HRNet-32 1.00 ±1.23

D-SPDH HRNet-32 0.84 ±0.73

Table 7.6: Pose plausibility (see Section 7.4.1), i.e. the ability of the system to predict realistic joint
locations, in terms of robot’s limbs mean length error.

with the size of the volumetric heatmap, limiting its resolution and leading
to quantization errors. In our experiments, this approach leads to a heavy
GPUmemory requirement of≈ 16GB, which is considerably higher than
all other methods.

• SPDH vs D-SPDH representation. We take the top three baselines
from the 2Dpose estimation experiments, i.e. HRNet-32, TransPose, and
Uniformer, and adapt them to predict the SPDH. Among the baselines,
HRNet-32 is the best-performing one on themajority of mAP thresholds
and on the ADD metric, so we use it as the backbone for D-SPDH. As
stated by the results in Table 7.4, our approach outperforms SPDH by
leveraging the double branch architecture and data augmentation. More-
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Figure 7.11: Performance comparison (see Section 7.4.2) of different approaches for 3D RPE in
terms of execution time (expressed in milliseconds) and ADD metric (low is better). The circle
size refers to the number of parameters which is specified next to eachmethod. Thus, small circles
close to the plot origin represent the most desirable solution.

over, as shown in Table 7.5, we report the results on the new test set with
double-armmovements. This evaluation proves that our method obtains
good results even though during training only single-arm movements are
seen, outperforming the SPDH approach also in this scenario. Finally, as
depicted in Figure 7.9, we analyze the performance of D-SPDH report-
ing the ADD metric for each robot joint. In this case, it is worth noting
that the average error is similar for all the joints and the standard deviation
(black line) is relatively low.

7.4 Discussion

7.4.1 Movement-error correlation and pose plausibility

To complete the experimental evaluation, we also explore the effect of the robot’s
movements on the accuracy of the final prediction. As depicted in Figure 7.10,
we analyze the trend of the ADDmetric with respect to the joints’ movement in
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terms of acceleration and velocity. We split the graph into three sections consid-
ering the error for (i) all the joints, (ii) the static joints, and (iii) themoving joints.
Indeed, the correlation between movement and error is present in most of the
sequences suggesting that some actions generate a higher joint error. Moreover,
the plots outline that the moving joints contribute the most to the error rate, so
the static joints’ location, i.e. the robot position, is preserved by the network over
time. These elements suggest the possibility of including the temporal informa-
tion in the pipeline to smooth the error caused by the movement of the robot
arm.

As a second analysis of the results, we assess the problem of pose plausibility
in terms of the robot’s physical constraints. In particular, the goal is to prove that
the length of the robot’s limbs is preserved in the pose prediction, maintaining
a realistic robot skeleton. We compute the limbs of the Rethink Baxter robot
from its joints, obtaining a total of 15 limbs, where 4 are static. As shown in Ta-
ble 7.6, D-SPDH obtains competitive results with a low average limb length er-
ror, demonstrating that the physical proportions of the robot are preservedwhile
outperforming the competitors in the absolute 3D pose.

7.4.2 Performance analysis

In the last part of our investigation, we analyze the impact of the proposed D-
SPDH on the computational requirement. Specifically, we compare our sys-
tem and the competitors in terms of execution time (expressed in milliseconds)
against the ADD error, which well summarizes the performance of the system.
For a fair comparison, all experiments are run on the same workstation with an
Intel Core i7-7700K and an Nvidia GeForce GTX 1080 Ti, and performance is
averaged over multiple input samples. Results of the performance analysis are
graphically summarized in Figure 7.11. The two main axes of the figure repre-
sent the ADD and the execution time, and the radius of the circles represents
the number of parameters. Interestingly, our D-SPDH achieves the lowest error
and a very competitive execution time, despite featuring the largest number of
parameters. The execution time of D-SPDH enables real-time operation, i.e. the
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proposed system can achieve ∼ 50 frame per second. Unfortunately, solutions
based on 2D to 3D lifting and 3D regression present faster execution time, but
at the cost of reduced accuracy.

7.5 Takeaways

Several considerations can be made following our experimental evaluation:

• 2D HPE models can be effectively used for the 2D RPE task, not only
using RGB as input but also with different input modalities, e.g. depth
maps as in our case. In other words, there is no need to create new specific
backbones for the RPE task, as confirmed by our adoption of HRNet-32
developed for the human pose estimation scenario.

• The proposed D-SPDH double-branch solution represents a major im-
provement of the SPDH representation, in which each branch is special-
ized in extracting and predicting a specific heatmap. D-SPDH achieves
better accuracy and real-time performance, enabling the development of
possible future collision-avoiding systems in the industrial context.

• The Sim2Real scenario simplifies the acquisition of new and accurate la-
beled data but still represents a challenge for the RPE task. In particular,
the performance gap between the use of synthetic and real depth data in
input is significant: we observe that this research field is not yet fully ex-
plored and needs further investigation. At the time of writing, the possi-
bility (not always practicable) of acquiring and annotating real depth data
for training is still an effective solution to improve accuracy.

• To predict 3D robot pose, the 2D to 3D projection is a straightforward
technique to retrieve the 3D joint location directly using the Z value avail-
able in the depth map. However, this solution is limited in that it always
predicts points on the surface of objects and thus is negatively affected in
the case of body occlusions.
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• The use of a model that directly regresses the 3Dworld coordinates of the
robot joints performs well only on synthetic data, showing that the do-
main shift negatively influences the final performance and that the regres-
sion tends to overfit the training data.
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8
3D Pose Nowcasting:

Forecast the Future to Improve the Present

We are increasingly approaching an era in which humans and robots
will share different spaces and moments of the day, both in social
and working scenarios [198].

Non-invasive camera monitoring combined with specific computer vision al-
gorithms, such as Robot and Human Pose Estimators [281, 131], are key and
enabling technologies for safe interaction between humans and robots [40]. For
instance, in the Industry 4.0 setting [127], in which the same workplace is shared
betweenworkers and cobots [117], the ability to detect poses and avoid collisions
is fundamental for safety. Furthermore, recent investigations [254, 255] con-
firm that – rather than the complete removal of humans – future generations
of manufacturing will support the coexistence of humans and cobots, stressing
the urgency for new investigations related to physical and social coworker coor-
dination [45]. Another possible application setting is represented by home au-

This Chapter is related to the publication “A. Simoni et al., 3D Pose Nowcasting: Forecast
the Future to Improve the Present, Under Review” [5]. See the list of Publications on page 151 for
more details.
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or

3D Pose Estimation

3D Pose Forecasting

Robot

3D Pose 
Nowcasting

Human

Figure 8.1: Estimating current and future poses through 3D Pose Nowcasting, using depth im-
ages as input data, is a fundamental technology for safe interaction between workers and collabo-
rative machines in indoor scenarios, such as the Industry 4.0 setting.

tomation, in which robots can autonomously perform actions but also interact
with humans.

In both cases, technologies based on non-invasive sensors that are agnostic
with respect to the state of the robot’s encoders, are highly desirable. A variety
of collision detection systems, especially for the industrial environment, has been
proposed but, unfortunately, they often require the use of specific sensors [80],
markers [104] or access to the robot’s proprietary software [65], which is not al-
ways possible.

Therefore, in this paper, we propose a vision-based system able to accurately
estimate the 3D poses by learning to forecast the near future as an auxiliary task.
In particular, we show how the knowledge about the future at training time im-
proves the model’s performance in the present.

Given the similarities with the weather forecasting [28], we refer to this novel
paradigm as 3D Pose Nowcasting, characterized by the following elements: i)
the forecasting regards a brief timewindow (around a few seconds); ii) we are not
required to access specific physical models or additional sensors other than the
input data (in our case, depth images); iii) forecasting, in addition to enhancing
present estimation, is important to raise alarms about imminent and unexpected
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events (e.g. collisions, hazards).
Theproposedmethod for 3DPoseNowcasting, outlined inFigure 8.1, is based

on addressing the task from two different research fields, i.e. 3D Pose Estimation
(PE) and 3D Pose Forecasting (PF), jointly learned during training. In particular,
the model is trained end-to-end to estimate the 3D pose at the current timestep
and the 3D poses at the next future timesteps.

Our approach is based on depth data enabling the development of a vision-
based system robust to varying or absent environmental light sources [213], usu-
ally common in indoor scenarios such as workplaces. Besides, depth acquisition
devices nowadays are inexpensive, yet accurate [274]. Moreover, in the Sim2Real
setting [87], the use of depth reduces the domain gap between synthetic and real
scenarios [6], thus enabling the usage of large-scale datasets without the time-
consuming collecting and labeling procedures required with real data.

Fromanarchitectural point of view, PEandPFare tackled through twodouble-
branch CNNs, each specialized in estimating and forecasting joints in 3D world
coordinates. The first branch is composed of a backbone originally developed
for Human Pose Estimation [13] (HPE), while the second one is obtained by ex-
ploiting a motion encoder based on a recurrent neural network, that processes
a sequence of past joint locations. The 3D world-coordinate locations of each
joint are given in output in real-time, leveraging the recent Semi-Perspective De-
coupled Heatmaps (SPDH) [6] as an intermediate representation of poses. To
train the model, a double loss is used to optimize both the current pose and the
future poses. This is justified by the fact that we want the forecasting loss to in-
fluence and improve the estimate at the current timestep.

Summarizing, the main contributions of our paper are:

• We introduce the novel paradigm of 3D Pose Nowcasting, a combination
of 3D Pose Estimation and 3D Pose Forecasting in a joint optimization
framework. By learning to predict the future, ourmodel improves its pose
estimation accuracy in the present.

• We demonstrate the robustness of our approach in the Sim2Real scenario,
enabling effective exploitation of synthetic data at training time, and also
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domain transfer capabilities from synthetic to real.

• We obtain state-of-the-art performance in estimating the current robot’s
pose, also providing reliable future predictions. In addition, we show that
3D Pose Nowcasting can be easily exploited for estimating human body
joints.

8.1 Relatedwork

Robot Pose Estimation from Depth. Only a limited amount of research
addresses the task of pose estimation from depth data. Bohg et al. [24] proposed
to use a random forest classifier to classify and then group depthmaps pixels, ob-
taining skeleton joints. A similar approach is reported in [256], in which joint
angles are directly regressed without any segmentation prior. However, these
methods are unable to infer real-world 3D poses, limiting their estimates to joint
angles. The large majority of literature works for robot pose estimation are devel-
oped for the RGB domain. In general, there are twomain approaches: hand-eye
calibration-based and rendering-based. In the former, methods are based on fidu-
cialmarkers (e.g. ArUco [63]) placed on the robot’s end effector, tracked through
multiple cameras. Then, a 3D-2D correspondence problem is solved by relying
on forward kinematics or thePnP [134] approach. Unfortunately, thesemethods
are invasive since they require the physical application of markers on the robot,
which is not always feasible or practicable. Differently, rendering-based meth-
ods [123, 176] use the render&compare paradigm, where an optimization algo-
rithm iteratively refines the pose projected to the image with respect to the cam-
era.

Human Pose Estimation from Depth. Shotton et al. [219] introduced
a pioneering approach based on a random forest classifier to classify pixels en-
abling the segmentation of the human body. The 3D joint candidates are then
identified through a weighted density estimator. Using similar features, in [273]
the authors proposed to use a regression tree to predict the probability distribu-
tion of the direction of a specific joint. Entering the deep learning-based field,
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some works introduce the use of NNs in combination with a single depth frame.
In [249], a specificmemorymodule referred to as ConvolutionalMemory Block
is introduced, merging the power of CNNs and a memory mechanism used to
handle depth data. More recently, [61] introduced a capsule autoencoder net-
workbasedon fastVariationalBayes capsule routing, focusingon improving view-
point generalization both on intensity and depth data. Other works are based
on point clouds sampled from depth data. In particular, the method described
in [278] is based on a point clouds proposal module followed by a 3D pose re-
gression module. Similarly, the same authors in [279] introduced a sequential
pose estimation module based on a window of different frames, improving the
general performance at the cost of increasing computational complexity. Finally,
some literature works have been developed originally for the hand pose estima-
tion task [169, 265, 76] and then adapted to tackle also the human pose estima-
tion task.

Pose Forecasting. Recently, Sampieri et al. [211] proposed a graph convolu-
tional neural network to jointly model robot arms and human operators from
RGB images. Their goal is to anticipate human-robot collisions. In this work,
we follow this research direction and we leverage a trajectory forecasting archi-
tecture to improve the current 3D robot pose estimate while also providing in-
formation about the future locations of robots and humans. From a general
point of view, a large crop of literature has addressed motion forecasting tasks,
especially in automotive [130, 159, 99, 153] and human behavior understand-
ing [196, 232, 36, 32, 49]. The task can be framed as an encoder-decoder prob-
lem, where past motion is projected into a latent state and then decoded into a
plausible future [130, 11]. Interestingly, most approaches formulate the forecast-
ing task as a multimodal prediction task, due to the intrinsic uncertainty of the
problem [245, 130, 210, 75]. More recently, several works have addressed the task
of forecasting human poses. Compared to the automotive setting, this is a much
more complex scenario, since body joints canmove erratically and the position of
the whole skeletonmust be predicted at every timestep. Here, graph-based repre-
sentations play an important role, since body joints can be naturally represented
as connected nodes [200, 140, 8, 222]. Unlike these methods, Mangalam et al.
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[157] fused 3D skeletons, camera ego-motion and monocular depth estimates
to forecast body poses. In a similar way, we propose a depth-based approach for
pose estimation and forecasting. Differently from [157], we focus on robot poses
and, instead of observing a full sequence of depth and joints, we blend the cur-
rent depth with an encoding of autoregressively generated past joints.

Depth-baseddatasets forPose EstimationandForecasting. We ob-
serve a substantial lack of datasets that can be used for robot pose estimation and
forecasting starting from depth data. Recently, four different datasets have been
introduced in the literature, but totally based onRGBdata. Released in 2019, the
CRAVES [289] dataset consists of synthetic and real acquisitions of a single type
of robotic arm, for a total of about 5k frames. DREAM [131] and WIM [176],
introduced in 2020 and 2022, contain 350k and 140k intensity frames, respec-
tively, depicting different types of robots. One of the most recent datasets is
referred to as CHICO [211]. Expressively introduced for collision detection in
human-robot interaction, it collects more than 1 million frames acquired with
multipleRGBcameras *. Therefore, theonlydataset exploitable to test ourmethod
is the recent SimBa [6], consisting of more than 370k frames depicting the Re-
think Baxter robot performing pick-and-place operations in random locations.
This dataset has been acquired in the Sim2Real [87] scenario, i.e. the training and
testing frames belong to two different domains: synthetic (generated through
ROS and Gazebo [116] simulator) and real (acquired through the time-of-flight
Microsoft Kinect v2 depth device). SimBa is suitable for our task due to the pres-
ence of video sequences, collected at 30 fps.

With regard to the estimationofhumanposes,we adopt the ITOPdataset [78],
which has been used as a benchmark by several prior works [278, 61, 279, 249,
62]. Also in this case, we observe a substantial lack of depth-based datasets in the
literature, suitable for our method, for different motivations. Human3.6M [97]
dataset contains very low-quality depth images, acquired through theMESAImag-
ing SR4000 device. TheNTUdataset [235], originally developed for the human
action recognition task, contains good quality depth data, but unfortunately,

*This dataset presents corrupted 3D joint annotations on images not yet fixed by the authors,
making it impossible for us to adopt it.
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the human pose annotations are automatically provided through themethod de-
scribed in [219], reducing their accuracy. The mRI dataset [12] appears to be an
interesting dataset but depth data have yet to be released, at the time of writing.

8.2 Proposed method

An overview of the proposed framework is depicted in Figure 8.2. It is organized
in an encoder-decoder fashion that is split into two input branches and two out-
put branches. The encoder extracts visual and temporal embeddings, while the
decoder consists of the Pose Nowcasting block, which is made of two SPDH [6]
branches dedicated to pose estimation and pose forecasting.

From a formal point of view, the encoder can be viewed as a single frame 2D
depth input branch Π(·) and a temporal 3D joint recurrent input branch Γ(·).
For a depth image D and a sequence of t = 1, ...,M poses Ptj = [Xt

j,Ytj,Zt
j]

with j = 1, ..., J 3D joints, two same-size feature maps Π(D) and Γ(P) are com-
puted and concatenated. The output branches of the nowcasting decoder then
independently generate current and future pose predictions.

8.2.1 Depth and past pose input processing

As mentioned, the first input branch is responsible for extracting the features
related to the current pose. In this case, the input is represented by a depth image
that is converted into an XYZ image, formally defined as follows:

IXYZ = π(D · K−1) (8.1)

where π is the projection in the 3D space,D is the matrix of distances used to cre-
ate the depth image andK is the projection matrix. This kind of depth represen-
tation has been proved to have better generalization capabilities across different
domains with respect to common depth images [6]. Being aware of the recent
and significant advances in HPE [42], we exploit the well-known HRNet-32 ar-
chitecture [227], specifically the randomly initialized first four stageswithout the
last convolution, as the backbone to extract pose-related features.
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Figure 8.3: Architecture of the Pose Estimation branch. The input is represented by the concate-
nation of features extracted from depth maps and past joints. Each uv/uz sub-branch generates
the heatmap-based SPDH [6] representation of 3D joint locations.

These features are then concatenatedwith theones extracted through theother
branch, described as follows.

The second input branch incorporates temporal information obtained from
previously estimated 3D joint positions: this information becomes available as
soon as a buffer of poses of lengthM is filled by storing the outputs of the pose
estimation block. This branch uses a motion encoder, implemented as a GRU†,
to process higher dimensional embeddings of each pose Ptj . Its output is orga-
nized into a C× H

16 ×
W
16 shaped feature map, which is then processed with two

layers of residual transposed convolutions with BatchNorm. This architecture
is both responsible for processing temporal information stored in previously es-
timated joints and for adapting the 3D representation to a 2D map that can be
fused with the feature map extracted by Π(·) from depth images.

†Potentially any kind of recurrent architecture such as LSTMs or Transformers could be used.
Since our focus is onNowcasting, we adoptGRUs as commonly done in the trajectory forecasting
literature, leaving the investigation of different architectures to future research.
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8.2.2 Pose estimation and forecasting branches

Our framework is completed by the nowcasting block with two output branches
jointly solving pose estimation and forecasting. Both branches exploit the same
SPDH [6] representation, in which the 3D space is decomposed into two bi-
dimensional spaces where skeleton joint locations are expressed through heat-
maps. In particular, the uv space corresponds to the camera image plane (the
front view of the acquired scene), while the uz space contains the quantized val-
ues of the depth dimension, i.e. a sort of birds-eye view of the scene with dis-
cretized information about the distance of the joints.

In the pose estimation branch, the SPDH representation is obtained through
the architecture detailed in Figure 8.3, consisting of two residual transposed con-
volution layers followed by a BatchNorm and ReLU activation function. The
estimated pose is represented by a set of J × 2 heatmaps, one pair for each joint
in the uv and uz spaces.

In the pose forecasting branch, we adopt a lighter architecture to deal with the
multiple SPDHrepresentations that aim tomodel the near-future joint locations.
In particular, we use two 2D convolutional layers, with a size of 32, interspersed
with a BatchNorm and ReLU activation function. The forecasted poses are rep-
resented as T× (J× 2) future heatmaps, where T is the forecasting horizon.

For both output branches, final predictions are obtained as follows: we com-
pute the argmax of the uv heatmaps and we multiply the resulting values (umax,
vmax) with the inverse of the camera intrinsics K−1 to obtain the final 3D coor-
dinates. Differently, with uz heatmaps, we transform the result of the argmax
operation into a continuous value in the metric space multiplying it with the
quantization step (ΔZ) computed in the defined depth range (zmin, zmax).

8.2.3 Losses

To train the model, we directly optimize the uv/uz heatmaps, before they are
converted into 3D coordinates. The system is trained end-to-end optimizing the
Mean SquaredError (MSE) loss functionLbetween generated and ground truth
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mAP (%) ↑
Input Model 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓

Depth ResNet-18 [82] 0.57 9.40 19.99 27.06 44.44 12.20 ±4.12

2D joints Martinez et al. [160] ∗ 13.70 26.96 37.98 48.40 58.33 10.03 ±3.53

Depth Pavlakos et al. [194] 3.35 18.15 42.24 61.60 86.15 7.11 ±0.65

Depth Simoni et al. [6] 6.33 53.75 79.75 93.90 98.12 4.41 ±1.09

Depth Ours w/o forecasting 16.25 57.51 89.81 99.26 99.81 3.77 ±0.98

Depth +M past poses Ours 30.68 66.90 92.69 98.02 98.38 3.52 ±1.30

Table 8.1: Robotpose estimation results onSimBa. Theproposed framework is testedby taking as
input a single depth image (“Ours w/o forecasting”) or a depth image with the previously predicted
3D joints (“Ours”). Method marked with ∗ uses a relative joint representation.

heatmaps:

LPE =
1

|J |
∑
j∈J

||Ht
j − Ĥt

j||2 (8.2)

LPF =
1

|J |
∑
j∈J

1
T

t+T∑
k=1

||Ht+k
j − Ĥt+k

j ||2 (8.3)

L = LPE + LPF (8.4)

where LPE is the pose estimation loss between the estimated pose Ĥt
j and the

ground truth Ht
j at the current timestep t; LPF is the auxiliary pose forecasting

loss between the sequence of k = 1, ...,T generated future posesHt+k
j and their

corresponding ground truths Ĥt+k
j ; and J is the set of skeleton joints in both

the uv and uz views. Note that Ĥt
j is generated by the pose estimation branch

whether Ĥt+k
j are generated by the pose forecasting branch.

8.3 Experiments

8.3.1 Datasets

SimBa [6] is a recent dataset specifically acquired for the robot pose estimation
task fromdepthdata. It presents unique features such as thepresence of synthetic
and real depth data, acquired with Gazebo and the Microsoft Kinect v2 sensor.
Both domains consist of several sequences of random pick-and-place operations,
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mAP (%) ↑
Input Model Horizon 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓

M past poses Linear t 0.31 6.02 15.81 25.78 41.23 16.89 ±5.73

M past poses Linear t+0.5s 0.42 5.54 15.34 25.40 40.58 17.54 ±6.20

M past poses Linear t+1s 0.29 4.78 14.76 23.44 38.08 19.25 ±6.20

M past poses Linear t+1.5s 0.32 4.34 14.11 22.76 36.72 19.75 ±6.17

M past poses Linear t+2s 0.37 3.98 13.72 21.84 35.96 20.04 ±6.10

M past poses Ours t 5.33 22.77 37.42 57.96 78.05 8.38 ±3.88

M past poses Ours t+0.5s 4.77 20.74 37.31 55.63 76.53 8.61 ±4.07

M past poses Ours t+1s 4.41 19.65 35.58 53.16 73.58 9.09 ±4.04

M past poses Ours t+1.5s 4.12 19.34 33.40 51.65 72.08 9.73 ±4.23

M past poses Ours t+2s 4.02 18.81 32.56 50.32 70.21 10.41 ±4.59

Depth +M past poses Ours t 30.68 66.90 92.69 98.02 98.38 3.52 ±1.30

Depth +M past poses Ours t+0.5s 31.32 66.04 91.71 97.66 98.33 3.57 ±1.33

Depth +M past poses Ours t+1s 28.89 59.67 84.39 91.04 92.65 4.50 ±2.25

Depth +M past poses Ours t+1.5s 26.41 55.99 78.14 85.93 87.93 5.71 ±3.48

Depth +M past poses Ours t+2s 25.04 53.43 73.52 81.27 83.39 6.85 ±4.38

Table 8.2: Results on both robot pose estimation and forecasting on SimBa. The proposed
method is compared to a linearmodel and ourmodelwithout the depth-based input branch, while
tested in an autoregressive manner.

acquired through randomly placed cameras (left, right and center). The acquired
depth data leverages theTime-of-Flight technology andhas a spatial resolution of
510× 424. This dataset has challenges due to different domains for training and
testing (Sim2Real scenario) and different positions of the acquisition devices.

ITOP [78] consists of 20 subjects performing 15 different complex actions, for
a total of 50k frames (40k training and 10k testing, as reported in the original
paper). Two Structured Light (SL) depth sensors (Asus Xtion Pro) are used to
acquire data, one placed in front of the subject, and one placed on the top: in this
paper, we focus on the side view, in which human joints are not fully occluded
by the head and shoulders of the subject. Annotations consist of 2D and 3D
joint coordinates, manually refined to lie inside the body to address human pose
estimation from depth data. Unfortunately, not all annotations are valid, thus
limiting the length of temporally consistent sequences. The challenges of this
dataset are related to the limited quality of depth data, in terms of spatial resolu-
tion (320× 240), depth accuracy (SL technology [213]), and action complexity,
with several occlusions produced during movements.
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The proposed system has been trained and tested on the SimBa dataset [6],
specifically created for the estimation of robotic joints from depth images. In
addition, we demonstrate the generalization capabilities of our approach by test-
ing the system on the ITOP [78] dataset, which has characteristics similar to the
context of our interest, albeit applied to human poses.

8.3.2 Metrics

For the 3D pose estimation and forecasting tasks, we exploit standard literature
metrics, i.e. AverageDistancemetric (ADD) andmeanAverage Precision (mAP).
The first, that is the L2 distance expressed in centimeters of all 3D robot joints
to their ground truth positions, conveys the error related to the translation and
rotation in the 3D world (the lower the better). The second metric is defined as:

mAP =
1
|N|

∑
j∈N

(
∥vj − v̂j∥2 < δ

)
(8.5)

where N is the number of skeleton joints, vj is the predicted joint and v̂j is the
ground truth. Thismetric is intended as the accuracy of theADDusing different
thresholds (δ = {2, 4, 6, 8, 10} centimeters in our experiments and it improves
the interpretability of results.

8.3.3 Training

The proposed model is trained for 30 epochs by exploiting the MSE loss for the
heatmaps produced by both the branches for the current and future poses. We
use the Adam optimizer, with an initial learning rate of 10−3, a decay factor of
10−1 at 50% and 75% of the training procedure, and a batch size of 16. In all
experiments, we use the original dataset splits to train and test the model.

During the training on both datasets, we applied data augmentation on the
point clouds computed from the input depth maps. Specifically, 3D points are
randomly translated with a maximum range of [−20cm,+20cm] and [−30cm,

+ 30cm] for XY and Z axes, respectively. Moreover, the points are rotated with a
range of [−5◦,+5◦] for theXZ axes. In terms of visual appearance, we introduce
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Figure 8.4: Comparison on Simba in terms of mAP using ground truth and predicted 3D joints
as input to pose forecasting branch.

a pepper noise on about 15% of the pixels and a random dropout, consisting in
setting with the value 0 several small portions of the input image: in this manner,
we simulate the presence of depth noise, usually found in real-world depth sen-
sors, and the presence of non-reflecting surfaces (on which the depth value is not
valid) in the acquired scene.

8.3.4 Results

We report results on SimBa and ITOP, both with our full pipeline and with a
baseline not leveraging the nowcasting paradigm. In all experiments, when the
model is optimized to forecast the future, past poses are fed at 10Hz for a duration
of 1s. In output instead, we sample poses at 2Hz with a temporal horizon of 2s
maximum.

Results on SimBa. Table 8.1 shows results on the SimBa dataset, reporting
mean Average Precision (mAP) using different thresholds (δ = {2, 4, 6, 8, 10}
cm) as well as ADD.We report results using only the depth image (Ours w/o fore-

126



88888888

8.3. EXPERIMENTS

mAP (%) at 10cm ↑
RF IEF VI RTW CMB REN-9x6x6 A2J V2V∗ DECA-D3 WSM AdaPose Ours

Joint [219] [31] [78] [273] [249] [76] [265] [169] [62] [278] [279] w/o forecasting Ours

Head 63.8 96.2 98.1 97.8 97.7 98.7 98.5 98.3 93.9 98.1 98.4 98.9 98.6
Neck 86.4 85.2 97.5 95.8 98.5 99.4 99.2 99.1 97.9 99.5 98.7 99.0 99.4
Shoulders 83.3 77.2 96.5 94.1 75.9 96.1 96.2 97.2 95.2 94.7 95.4 97.5 97.6
Elbows 73.2 45.4 73.3 77.9 62.7 74.7 78.9 80.4 84.5 82.8 90.7 84.4 84.4
Hands 51.3 30.9 68.7 70.5 84.4 55.2 68.3 67.3 56.5 69.1 82.1 76.8 77.4
Torso 65.0 84.7 85.6 93.8 96.0 98.7 98.5 98.7 99.0 99.7 99.7 98.7 98.8
Hips 50.8 83.5 72.0 80.3 87.9 91.8 90.8 93.2 97.4 95.7 96.4 87.6 90.4
Knees 65.7 81.8 69.0 68.8 84.4 89.0 90.7 91.8 94.6 91.0 94.4 86.8 89.7
Feet 61.3 80.9 60.8 68.4 83.8 81.1 86.9 87.6 92.0 89.9 92.8 75.3 88.0

Upper body 70.7 61.0 84.0 84.8 80.6 - - - 83.0 - - 90.3 90.4
Lower body 59.3 82.1 67.3 72.5 86.5 - - - 95.3 - - 85.5 90.7

Total body 65.8 71.0 77.4 80.5 83.4 84.9 88.0 88.7 88.7 89.6 93.4 88.0 90.6

Table 8.3: Per-joint results on human pose estimation on ITOP side-view test set. The best re-
sult is reported in bold, while the second best is underlined. As shown, the proposed framework
achieves a significant accuracy on the total body, even though not expressively developed for the
HPE task. Method marked with ∗ uses 10 models ensemble.

casting) and with the additional input of past predicted 3D joints (Ours). Fol-
lowing [6], we test the same competitors to predict the 3D poses reporting the
results inTable 8.1. In particular, we train aResNet-18 [82] to directly regress 3D
coordinates from depth maps. We then evaluate the method proposed in [160],
a sequence ofMLPs trained to estimate 3D joint coordinates relying on their 2D
positions. This approach only provides relative joint locations with respect to a
specific root (the robot base). The third competitor, is based on the volumetric
heatmap approach [194], a representation for encoding 3D locations in a sam-
pled 3D volume. This approach, in addition to a limited accuracy, leads to a
significant video memory occupation of about 16GB, considerably higher than
all the othermethods (approximately 9 times higher than ours, see Section 8.3.5).
Finally, [6] uses the SPDH representation with a standard CNN. Even without
the use of the GRU input our approach yields the state of the art on SimBa. In-
terestingly, when exploiting past joints’ locations with a recurrent network and
adding the pose forecasting branch, results are improved further especially at low
spatial thresholds, almost doubling mAP at the 2cmmark.

Then, we show in Figure 8.4 the results for 3D Pose Forecasting by compar-
ing mAP at different future timestamps. As an upper bound, we report results
relying on ground truth past joints’ locations. Interestingly, even when autore-
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mAP (%) ↑
Horizon 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓

t 10.19 38.76 64.32 79.12 86.57 6.49
t+0.5s 1.94 9.61 21.48 33.91 44.75 17.66
t+1s 1.20 6.72 16.39 27.78 38.56 18.94

Table 8.4: Results on human pose estimation and forecasting on ITOP side-view test set. The
model takes as input both depth and past poses.

gressively feeding back estimated joints as input, the performance drop is limited
with a maximum difference of 6% for the 2cm threshold. Finally, as shown in
Table 8.2, it must be noted that at 1sADD is roughly 1cm higher than the ADD
at the current timestep prediction, making the approach suitable for collision de-
tection. Table 8.2 also shows a comparison between a simple baseline made of a
linear regressor trained with SGD and our model with only the encoder-decoder
for the forecasting branch. In the latter, the HRNet backbone extracting infor-
mation from depth images is not used. In both configurations, we obtain much
worse results, indicating the non-triviality of the task. In Figure 8.5 (right) we
show qualitative results for poses predicted by our model with and without the
forecasting branch, highlighting its importance.

Results on ITOP. We show in Table 8.3 our results compared to the state-
of-the-art. Overall results for all methods on ITOP are generally worse than on
SimBa, due to the fact human movements are more erratic and complex with
respect to robot arm motion. Moreover, training is made more challenging by
the presence of invalid joints, i.e. joints without any manual annotation in the
dataset. Nonetheless, on average considering the total body, our approach using
a single depth frame is onparwithmost competingmethods. Adding the supervi-
sion on future timesteps we rank above all methods except for AdaPose [279], an
approach expressively developed for the HPE task (differently from ours) which
obtains a slightly higher mAPmetric.

Furthermore, it is interesting to notice which joints benefit the most from
nowcasting, i.e. adding the forecasting branch. In general, the lower body regis-
ters a considerable improvement between the two variants of our approach. Hips
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ITOP

Ours w/o forecasting OursDepth

SimBa

Ours w/o forecasting OursDepth

Figure 8.5: Qualitative examples for both ITOP and SimBa datasets where it can be appreciated
the improvement in the pose estimation using the proposed approach. Green joints represent the
ground truthpose, whereas red and violet represent respectively the poses estimatedbyourmethod
without future and our full method. Blue regions connect ground truth skeletons and predictions,
highlighting errors.

and knees report a gain of approximately +3% mAP, whereas feet even +13%
mAP. Given that feet demonstrate greater dynamism in comparison to other
body joints, they manifest behavior that is comparatively less erratic than, for in-
stance, hands, wherein the advantageous outcome is less apparent.

In Table 8.4 we show the performance of the framework addressing the fore-
casting task, which is more challenging in the presence of wide movements per-
formed by humans. These results can be a useful baseline reference for future
works that address the forecasting task on ITOP. In Figure 8.5 (left) we show
qualitative results on ITOP, comparing the model with the present-only base-
line.
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8.3.5 Performance Analysis

Ourmodel must be deployable in a work environment, thusmust be efficient for
safety applications, e.g. avoiding collisions and hazards. We measured inference
time on an Intel i7 (2.90 GHz) CPU and Nvidia Titan XP GPU. The pose esti-
mation branch alone runs at 20 FPS. Adding the forecasting branch, observing
autoregressively generated poses and estimating future ones, the overall inference
time is around 11 FPS with a video memory occupation of about 1.8GB. Since
we feed to the architecture 1 second of 3D poses sampled at 10Hz and estimated
by the model itself, we can run the whole framework in real-time without delays.
The reaction time after observing the present framebefore estimating the current
and future poses is 90ms.
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9
Unsupervised Detection

of Dynamic Hand Gestures from LeapMotion Data

Nowadays, Natural User Interfaces (NUIs) [146], i.e. interfaces in
which the interaction relies on free movements of the user body in-
stead of the adoption of mechanical tools (such as mouse and key-

board), represent a powerful solution in theHumanComputer Interaction (HCI)
field to build intuitive and user-friendly applications. Dynamic hand gestures are
one of themost-used ways to interact [197], along with voice commands [27, 16]
and gaze [126, 112]. In this context, the growing interest in dynamic hand ges-
tures has been supported by the recent introduction of affordable devices that are
capable of acquiring both 2D and 3D data. Moreover, some devices can also pro-
vide additional semantic information, such as hand keypoints [220] or skeleton
joints of the human body [218], with high accuracy and real-time performance.
In this work, we assume to acquire information on the user’s hand using theLeap

This Chapter is related to the publication “D. D’Eusanio et al., Unsupervised Detection of
Dynamic Hand Gestures from Leap Motion Data, ICIAP 2021” [1]. See the list of Publications
on page 151 for more details.
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Motion Controller device *, an infrared stereo camera capable of estimating the
3Dpositions of the hand joints in real time through its proprietary software tools.

Unfortunately,NUIs are still limited in real-world applications, due to the lack
of effective and robust methods that correctly and quickly detect and classify the
gestures. In addition, most of the existing methods, especially the deep learning-
based ones, require a large amount of labeled training data, inwhich the class and
the temporal boundaries of each gesture have to be annotated. However, the
annotation of the temporal segmentation of each gesture is a time-consuming
and error-prone procedure, particularly in the case of long sequences. Moreover,
the use of specific datasets collected for a given use case or application requires
the user to label new data if the method is applied in a different scenario or if a
new gesture is added.

To address these issues, in this paper, we propose a Transformer-based [242]
model and a specific training approach that, in an unsupervised manner, allows
the network to learn to detect the presence of dynamic hand gestures within an
input sequence. Indeed, during the training phase, we assume to have access to
a large set of single dynamic gestures (i.e. a set of sequences, each containing
only one gesture) and their gesture class. In this scenario, we propose to exploit
theConnectionist Temporal Classification (CTC) loss [72]: using this objective, a
neural network can learn to temporally segment (i.e. detect) an element without
explicit segmentation labels, while requiring only sequences of multiple gestures
and the associated list of gesture classes. Thus, we apply this loss to “synthetic”
gesture sequences, generated by combining several single gestures, and we show
that this training approach leads to a learnedmodel that is capable of successfully
segmenting and classifying dynamic hand gestures. Moreover, during the testing
procedure, we assume to have a continuous data stream that can contain none,
one, or multiple dynamic gestures. We show that, even in this challenging case,
the network trained with “synthetic” sequences successfully segments and classi-
fies the gestures.

*https://www.ultraleap.com/product/leap-motion-controller
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9.1 Relatedwork

In the literature, several approaches have been proposed to tackle the detection of
hand gestures. Low-level motion parameters such as acceleration, velocity, and
trajectory curvature [106] or, in general, body activity [103] can be used to de-
tect the gesture boundaries. In addition, methods based on Continuous-time Dy-
namic Programming (CDP) [178],Dynamic TimeWarping (DTW) [44],Hid-
denMarkovModels (HMMs) [226, 33] andConditional Random Fields (CRF)
[203] have been presented. Predicted likelihood scores are comparedwith a given
threshold to detect the gesture boundaries even though, in terms of generaliza-
tion capabilities, defining a fixed threshold is hard. Indeed, some methods [129,
268] propose to compute an adaptive threshold at inference.

A great variety of methods tackles the classification of detected hand gestures,
either static or dynamic. The task is commonly addressed through the use of ma-
chine learning-based methods, such as HOG and SVMs [204, 58], HMMs [25,
129], and neural networks. The latter can be split, based on the used model,
in recurrent networks, such as RNNs [91, 132], LSTMs [30, 275], and CNNs
(2D [35, 52] or 3D [286, 158]). Moreover, recent works propose the combina-
tion of multiple features extracted by CNNs [144] or GNNs [277]. Recently,
Vaswani et al. [242] proposed the Transformer model, an effective self-attention
mechanism that has rapidly replaced recurrentmethods inmanynatural language
processing and computer vision tasks, including gesture classification [48].

As mentioned, the input of the framework is represented by the 3D hand
joints provided by the Leap Motion Controller. In order to improve the usabil-
ity of application scenarios, many efforts have been conducted by researchers in
order to accurately detect 3D hand joints [137] even from single RGB [26] and
infrared images [186] and depth maps [272].
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9.2 Proposed method

In this section, we present the architectural details of our method and the pro-
posed training procedure that solves the detection and classification tasks in an
unsupervised and supervised manner, respectively.

9.2.1 Network architecture

The proposed gesture detection and classification architecture is defined by a
Transformer-based model [242] which enables the temporal analysis of the in-
put data. A schematic overview is shown in Figure 9.1.

The input consists of a series ofM feature vectors vj representing the dynamic
hand gesture at time j. The first module of the framework is represented by a
fully connected layer with a ReLu activation function that remaps each input
vector into a 128-d feature. These features are then subdivided along the time
dimension into a set of N temporal windows Wi = {vj | (i − 1)MN < j ≤
iMN } and passed through an average pooling layer that extracts an embedding e of
aggregated features. This preliminary featuremapping operations can be defined
as:

e = AvgPool(FC(v)) (9.1)

The temporal analysis of the embedding e is then performed by a Transformer-
based networkwhich is composed of 6 consecutive encoder blocksE. Each block
E contains a set of 8 self-attention blocks followed by two fully connected layers,
one with a ReLu activation function and the other one with a normalization
layer. An encoder is defined by:

Ei(e) = Norm(e+MultiHead(e)) (9.2)

where MultiHead represents a multi-head attention block with 8 self-attention
blocks. In details, a single self-attention operator is represented as:

Att(e) = softmax
(
QK√
dk

)
V (9.3)
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whereQ,K, andV are linear projections of e into a 32-dimensional feature space,
dk = 32 is the scaling factor corresponding to the size of K. The multi-head
attention module is a combination of multiple attention operators:

MultiHead = (Att1 ⊕ . . .⊕ Att8)WO (9.4)

where ⊕ is the concatenation operator andWO is a linear projection from and
to a 128-d feature space.

The final part of our network is composed of a linear classifier that predicts
N + 1 classes (corresponding to N different hand gestures and a “no gesture”
label). The output features are then passed through a log-softmax that generates
the final scores π.

9.2.2 Proposed training procedure

Our training procedure is built around theConnectionist Temporal Classification
(CTC) loss function [72] and the generation of synthetic gesture sequences dur-
ing training.

Synthetic sequence generation. The CTC loss can be used to learn an
additional “None” class in an unsupervised manner. However, it requires se-
quences of multiple gestures split by a “no gesture” action, but obtaining this
kind of data is hard. Indeed, these sequences are more complex to collect com-
pared to single-gesture clips and the gestures must not always be performed in
the same order. In addition, their annotation is more expensive, due to the need
for a temporal segmentation of each gesture. To address these issues, we propose
an alternative approach to construct synthetic gesture sequences from single ges-
tures and show that they canbe successfully used for training theproposedmodel.
In detail, we randomly combine single-gesture annotated sequences in longer se-
quences composed of multiple gestures and create a ground truth vector as a list
of annotations of the single gestures. Then, without the need for any temporal
annotation other than the ordered list of gesture classes, we train our network
with the CTC loss.

ConnectionistTemporalClassification. Weemploy theCTCloss func-
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tion [72] to optimize the neural model during the training procedure. In partic-
ular, we adopt this loss for learning to segment and label gesture sequences from
unsegmented data streams. In detail, the model is forced by the CTC loss to pre-
dict one of the ground truth gesture classes or an additional label “no gesture”
for each input window Wi. The result is a 1-d vector or path π, which maps
the input to a sequence of class labels. Moreover, a function β(π) = y removes
the “no gesture” labels and collapses the sequentially-repeated class labels in sin-
gle instances. For example, giving an input sequence of 7 frames and an output
path such as π = [−, 3, 3,−,−, 2,−, 2] (where− is the “no gesture” class), the
decoded output is y = [3, 2, 2].

Gesture detection and classification. Given the predicted path π, we
consider each switch from a “no gesture” label to any other gesture class as a de-
tection of a new gesture. Similarly, the switch from a gesture class to another
gesture label or the “no gesture” one is used to identify the end of the current
gesture. That is, we use the class change in the prediction from/to the “no ges-
ture” status or from/to another gesture as the beginning and the end of a gesture.
Given that the model predicts a gesture class for each temporal windowWi, the
gesture classification is simply given by this prediction. It is worth noting that, in
this way, both the detection and the classification of the gestures are computed
by the same model in a single pass.

9.3 Experiments

In this section, we present the experimental setting in terms of exploited data and
model results. Finally, we analyze the performance of the proposed approach.

9.3.1 Experimental setup

As input of the proposed model, we chose to use high-level 3D data, giving the
extractionof this information as granted. Indeed,many sensor SDKs and existing
neural networks are capable of computing high-level hand features in real time.
In detail, we use the location and rotation of the 3D hand joints retrieved by the
Leap Motion SDK. In addition, we compute the speed and the acceleration of
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Detection metrics
Model Jaccard Index FPR Δ Start Δ End

(%) (%) (s) (s)

LSTM [86] 22.93 64.44 0.42± 0.47 0.08± 0.43
GRU [37] 42.30 45.50 0.51± 0.80 0.29± 0.77
Ours 53.42 39.25 0.40 ± 0.72 -0.06 ± 0.69

Table 9.1: Experimental results for the hand gesture detection task, obtained on the Briareo
dataset [158].

each joint using the joint locations in the previous time steps. An input gesture
vj can be defined as multiple hand joint features gi:

gi =
(
[x, y, z], [α, β, γ], [sx, sy, sz], [ax,ay,az]

)
(9.5)

where [x, y, z] are the 3D coordinates of the hand joint i, [α, β, γ] are its rotation
as Euler angles, [sx, sy, sz] and [ax,ay,az] are respectively the speed and acceler-
ation vectors computed with regard to the previous two frames. Since the Leap
Motion device collects 16 hand joints, each joint information gi is concatenated
to the others obtaining a 192-d feature vector vj.

During training, we optimize the network parameters using the Adam [113]
optimizer with learning rate 10−4, weight decay 10−4 and dropout with proba-
bility p = 10−1 within the Transformer block. Themodel is developed using the
PyTorch [189] framework. The code will be published online†.

Given thatwe are not bound to predefinedmultiple-gesture sequences, we test
using different numbers of gestures within the synthetic sequences. Similarly, we
test multiple values ofN by fixing the number of time steps within each window
Wi. Thanks to the designed architecture, we do not have to set a fixed number
of time stepsM per each gesture sequence. In other words, we directly give the
gesture sequence to the network regardless of its length. We report the results of
our experiments in Section 9.3.3.

†https://aimagelab.ing.unimore.it/go/unsupervised-gesture-segmentation
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9.3.2 Dataset

We train and evaluate our method on a publicly released dataset, namely Bri-
areo, following official train and test splits. Briareo [158] is a hand gesture dataset
recorded in a realistic car simulator usingmultiple devices including theLeapMo-
tion sensor, placed in the tunnel console looking upwards. Briareowas conceived
for the automotive context, in which the infrared capabilities of the acquisition
devices can be used to develop light-invariant vision-based solutions. Gestures
from 12 classes are performed by 40 different subjects (33 males and 7 females).
Each gesture is performed by each subject 3 times and the dataset contains an
additional recording containing all the gestures in sequence. While the single-
gesture sequences are used for training, the all-gesture sequence is used for testing.
To evaluate the performance of the proposed approach, we create a small valida-
tion set sampling from the training data and manually annotate the all-gesture
sequences.

9.3.3 Results

To evaluate our method, we select a set of metrics for both the detection and
the classification task. In particular, we use the Jaccard Index as the main met-
ric for the detection, expressed as the intersection over union (IoU) between the
predicted path π and the ground truth path πGT. This metric rewards a correct
detection if there is at least one overlapping frame between the predicted and the
ground truth gesture. All frames that are detected as gestures but do not have a
correspondence in the ground truth are considered False Positives. In addition,
we assess the temporal delay of the predictions as two time intervals Δ, one at
the start and one at the end of the gesture, between the predicted and the target
gesture. To evaluate the classification task, we use the F1 score, the classification
accuracy, and the recall metric.

We report the results on Briareo both for the detection (Table 9.1) and the
classification (Table 9.2) tasks. We compare the proposed Transformer-based
method with two methods, based on LSTM [86] and GRU [37], and literature
competitors. As shown in the left part of the tables, our method, trained on syn-
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Classification metrics
Model F1 Score Accuracy Recall

(%) (%) (%)

Manganaro et al. [158] - 94.40 -
LSTM [86] 89.87 98.98 82.29
GRU [37] 92.36 99.13 86.46
Ours 95.99 99.52 92.71

Table 9.2: Experimental results, split between detection and classification metrics, obtained on
the Briareo dataset [158].

thetic gesture sequences, obtains promising results on the detection metrics and
outperforms the recurrent-based approaches. In the classification task, all the
networks reach similar results, but our method is still able to outperform other
approaches. Indeed, the transformer module can elaborate long sequences with-
out recurrent structures, which is beneficial for the overall performance.

9.3.4 Ablation Study

In this section, we assess the performance of our method using different hyper-
parameter values.

In Figure 9.2 (left), we evaluate how the number of gestures that compose the
training sequence impacts the classification accuracy during the test phase (when
the number is fixed to 12). The experiment shows that the network achieves the
best classificationmetrics when using 7 or more gestures and that results are very
similar for higher values.

Similarly, we evaluate how the temporal pooling affects the model and report
the results in the right part of Figure 9.2. While there is a huge gap between the
smallest pooling sizes (i.e. 1, 4) and the highest ones (i.e. 8, 12, 16), there is not a
substantial difference within the highest group, showing that the pooling opera-
tion is beneficial to the classification accuracy.
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Figure 9.2: F1 score, accuracy, and recall changing the number of gestures in the synthetic train-
ing sequences (left) and varying the number of time steps (which are average pooled) within each
windowWi (right).

Model Parameters GPU CPU VRAM
(M) (ms) (ms) (GB)

LSTM 0.9 1.67 ± 0.23 7.12± 0.64 0.60
GRU 0.7 1.75± 0.31 6.58± 0.66 0.60
Ours 1.0 4.65± 0.39 4.72 ± 1.13 0.59

Table 9.3: Performance on GPU and CPU. Results are averaged on 100 different runs.

9.3.5 Performance Analysis

We test the computational load of our architecture in terms of the number of
parameters and the requiredGPUVRAMin the testing phase. The performance
analysis is conducted on a workstation equipped with a Intel Core i7-7700K and
aNVidiaGeForce GTX 1080Ti. Results are reported inTable 9.3. As shown, our
method obtains comparable results on both GPU and CPU during inference.

9.3.6 Limitations

In this section,we analyze thedifficulties encounteredusing the framework. First,
we note that the training procedure based on the CTC loss function is unstable:
the loss value has high variance – from low to high values and vice versa – even
within consecutive training steps. Second, due to the unsupervised nature of the
proposedmethod, we obtain a relatively high false positive rate during the testing
phase, as shown in Table 9.1: that may require a post-processing phase. Finally,
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as reported in Table 9.3, the VRAM required at inference is low, while a great
amount may be required for the training of the framework, depending on the
length of the sequences and the pooling sizeWi (see Section 9.2.1).
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10
Conclusions

This dissertation seeks to make a valuable contribution to the 3D Com-
puter Vision research domain by leveraging semantic keypoints for dif-
ferent tasks. This final chapter provides a summary of the contribu-

tions made in each study, offering insights into potential future research direc-
tions. To wrap up this thesis, we present final remarks and list the activities car-
ried out throughout the Ph.D. program.

10.1 Summary of contributions

Novel view sythesis. In Chapter 3, we presented a novel pipeline for pre-
dicting the visual future appearance of an urban scene. We propose a novel ap-
proach as an alternative to end-to-end solutions, where human interpretable in-
formation is included in the loop and every actor is modeled independently. Ex-
isting state-of-the-art methods or the user can both be sources for that informa-
tion. Furthermore, the final visual output is conditioned onto that by design.
We demonstrate the performance superiority of our pipeline with respect to tra-
ditional end-to-end baselines through an extensive experimental section. More-
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over, we visually illustrate how our method can generate diverse realistic futures
starting from the same input by varying the provided interpretable information.
With reliable trajectory predictions, our method can be used as a synthetic data
augmentation of datasets for object detection or tracking.

Vehicleclassification. InChapter 4, we showhowvisual and pose features
can be merged in the same framework in order to improve the car model classifi-
cation task. Specifically, we leverage the ResNext-101 architecture, for the visual
part, and Stacked-Hourglass, for the car keypoint localization, to design a com-
bined architecture. Experimental results confirm the accuracy and the feasibility
of the presentedmethod for real-world applications. Moreover, the performance
analysis confirms the limited inference time and the low amount of video mem-
ory required to run the system.

Vehicle reconstruction. In Chapter 5, we show how the 3D mesh recon-
struction of objects can be learned jointly on multiple classes using only fore-
ground masks and coarse camera poses as supervision. The proposed approach
discerns between different object categories and learns meaningful category-level
meanshapes, whichwere initialized as spheres, in an unsupervisedmanner. In ad-
dition, a novel approach to predict the instance-specific deformation at the vertex
level is presented. The network produces smooth deformations and is indepen-
dent of the number of mesh vertices, allowing the dynamic subdivision of the
mesh during training. Quantitative and qualitative results on two public data-
sets show the effectiveness of the proposed method.

3Dposeestimationthroughheatmaps. InChapter 6, wepresent a depth-
based 3DRobot Pose Estimation approach that can be trained on fully synthetic
data and evaluated on real data with promising results. Leveraging from a novel
heatmap-based output representation, namely Semi-Perspective Decoupled Heat-
maps (SPDH), the proposedmethod takes anXYZ image obtained from a depth
map as input and predicts two bi-dimensional heatmaps that are then converted
to 3D joint locations. We also present and publicly release the SimBa dataset,
that we use to evaluate the proposed system in both synthetic and real environ-
ments. A thorough experimental section compares the proposed method to al-
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ternative approaches derived from the HPE domain, confirming its promising
performance.

3D robot pose estimation. In Chapter 7, we have proposed the D-SPDH
architecture to estimate the 3D pose of a robot, investigating the challenging
Sim2Real scenario, i.e. relying only on synthetic depth data as input during the
training while testing the method on real sequences. We also have introduced
SimBa++, an extended version of the SimBa dataset including new challenging
and real sequences with double-armmovements, on which the proposed system
is tested and comparedwith literature competitors. The experimental evaluation
confirms the suitability of the presented approach, in terms of both accuracy and
real-time performance.

3D pose nowcasting. In Chapter 8, we introduced the paradigm of 3D Pose
Nowcasting, using depth data. The proposed framework jointly optimizes pose
estimation and forecasting, exploiting two branches and the SPDH intermediate
representation. We obtain state-of-the-art results in predicting current and near-
future robot poses. The framework is also able to work with humans, achieving
performance comparable with the current literature competitors on ITOP.

Hand gesture recognition. In Chapter 9, we propose a method to detect
and classify dynamic hand gestures. The model, based on the Transformer archi-
tecture, is trained in an unsupervisedmanner for the temporal segmentation task
and in a traditional supervised setting for the classification one. The CTC loss
is exploited to learn the temporal segmentation without explicit labels. Experi-
mental results, obtained on the Briareo dataset, reveal that the proposedmethod
achieves satisfying accuracy scores with limited computational load.

10.2 Future directions

3D vehicle reconstruction. Given the remarkable achievements demon-
strated by neural radiance fields (NeRFs) [166, 19, 172, 20, 111] in 3D reconstruc-
tion, the future of 3D object reconstruction involves leveraging this approach to
generate authentic synthetic representations of vehicles. This differs from the
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studies conducted in this thesis, as it introduces additional challenges, including
accommodating multiple viewpoints of the scene and achieving precise camera
pose estimation.

In future work, we aim to explore the application of NeRF-based methodolo-
gies to obtain more photorealistic 3D models of vehicles within real-world sce-
narios. Notably, this goal involves addressing the complexities associated with
capturing various perspectives of the scene and accurately estimating the cam-
era poses. Additionally, we propose utilizing semantic keypoints specific to vehi-
cles to enhance the initial camera pose estimation typically computed by conven-
tional structure-from-motion algorithms [215]. These semantic keypoints pro-
vide consistent visual information across multiple viewpoints, serving as a global
constraint to refine and improve the accuracy of the camera poses.

Within the automotive context, a notable challenge arises from handling light
reflections on surfaces, such as car windows and bodies. To tackle this issue, we
propose enhancing NeRF’s capability by making it aware of the material com-
position of each component of a vehicle. In this way, NeRF can treat each part
differently based on the radiance field interacting with a particular material. By
incorporating thismaterial-awareness aspect, we aim for amore realistic represen-
tation of vehicles, especially in scenarioswhere reflections andmaterial properties
play a crucial role in the visual fidelity of the reconstructed 3Dmodel.

3Dposeestimation. In the roboticsworld,we remarkon theneed for adataset
featuring 3D annotations of both human and robot skeletons engaged in collabo-
rative activities within the same environment. Acknowledging the impracticality
of acquiring real-world data to cover all the potential scenarios, the adoption of
a high-fidelity simulator with robust physics emerges as a viable solution. This
approach facilitates the gathering of extensive data for training a pose estimation
algorithm, aligning with the methodology proposed in this thesis.

For human-centric scenarios, our focus is on leveraging a diffusion-based tech-
nique that has recently demonstrated state-of-the-art performance in single-per-
son contexts. Current literature [68, 217, 38] addresses this challenge through
the utilization of 2D-to-3D lifting methods [195, 282, 139], treating them as de-
noiser networks. These networks take a noisy sequence of 3Dposes, conditioned
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by a sequence of corresponding 2Dposes, and output a denoised 3Dpose for the
central frame. The objective is to extend this methodology to scenarios involving
multiple individuals within a scene, introducing complexities such as substantial
occlusions and tracking.

To enhance the robustness of the approach, we propose incorporating visual
context features into the diffusionmodel. These features are typically overlooked
by 2D-to-3D lifting approaches that solely consider the predicted 2Dpose. Addi-
tionally, alongside context features, our strategy involves extracting social embed-
dings for each person present in the scene. This incorporation aims to enhance
the awareness of potential occlusions between individuals while they are interact-
ing with each other or with the environment.

10.3 Final remarks

Some of the works presented in this thesis have been successfully published in
international conferences and journals. In particular, the work on 3D vehicle re-
construction in Chapter 5 has been published in the International Conference
on 3DVision, while the paper on the heatmap-based representation for 3D pose
estimation has been published in IEEE Robotics and Automation Letters and
presented at IEEE/RJS International Conference on Intelligent Robots and Sys-
tems (IROS 2022). Following the studies presented in this dissertation, we hope
that the 3D Computer Vision community will find them useful for their future
research.

10.4 Ph.D. Activities

This final section presents a list of themain activities carried out by the candidate
during the Ph.D. program in Information and Communication Technologies.

10.4.1 Teaching Activities

2021: LaboratoryLecturer of “3DComputerVision” for “School inAI:Deep
Learning, Vision and Language for Industry”;
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10.4.2 Conference Attendances

10 - 15 January 2021: IAPR25th InternationalConferenceonPatternRecog-
nition (ICPR), 2020,Milan, Italy (Remote);

8 February - 10 February 2021: International Joint Conference on Com-
puterVision, Imaging andComputerGraphicsTheory andApplications (VISI-
GRAPP), 2021,Vienna, Austria (Remote);

1 - 3 December 2021: International Conference on 3D Vision (3DV), 2021,
London, UK (Remote).

23 - 27 May 2022: International Conference on Image Analysis and Process-
ing (ICIAP), 2022, Lecce, Italy.

23 - 27 October 2022: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022,Kyoto, Japan.

2 - 6 October 2023: IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 2023, Paris, France.

10.4.3 Seminars andWorkshops

November 2020: Attendance at “Deep Scene Perception without Labeled
Data” seminar, speaker: Prof. Luigi Di Stefano;

February 2021: Attendance at “The Machine Learning of Time: Past and
Future” seminar, speaker: Prof. Efstratios Gavves;

March 2021: Attendance at “There will be Artificial Emotional Intelligence”
seminar, speaker: Prof. Björn Schuller;

March 2021: Attendance at “Towards Robust End-to-EndDriving” seminar,
speaker: Prof. Andreas Geiger;

June 2021: Attendance at “Research in videogames: use of deep learning for
saliency estimation and cheating prevention” seminar, speaker: Dr. Iuri Fro-
sio;
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October 2021: Attendance at “Safe, Interaction-AwareDecisionMaking and
Control for Robot Autonomy” seminar, speaker: Prof. Marco Pavone;

October 2021: Attendance at “Brain Inspired Computing Workshop: from
Neuroscience to Artificial Intelligence”;

April 2022: Attendance at “Research challenges in Leonardo Labs: applied
Deep Learning in the Industry” seminar, speaker: Prof. Alessandro Nicolosi;

April 2022: Attendance at “Domain Adaptation&Generalization” seminar,
speakers: Prof. Vittorio Murino and Dott. Pietro Morerio;

November 2022: Attendance at “Digital Humanities and Artificial Intelli-
gence for humans in today society” seminar, speakers: Prof. Rita Cucchiara;

November 2022: Attendance at “GraphSignalProcessing forMachineLearn-
ing: Challenges and Use cases” seminar, speakers: Prof. Laura Toni;

December 2022: Attendance at “From Handcrafted to End-to-End Learn-
ing, and Back: a Journey far Multi-Object Tracking” seminar, speakers: Prof.
Laura Leal-Taixé;

December 2022: Attendance at “3DComputer Vision for animals” seminar,
speakers: Prof. Silvia Zuffi;

10.4.4 Schools

19 - 23 July 2021: Attendance and completion of the “4th Advanced Course
on Data Science andMachine Learning - ACDL 2021” summer school.

9 - 15 July 2022: Attendance and completionof the “InternationalComputer
Vision Summer School - ICVSS 2022” summer school.

18 - 22 September 2023: Attendance and completion of the “ELLIS Sum-
mer School on Large-Scal AI forResearch and Industry 2023” summer school.
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10.4.5 Reviewing Service

Conferences.

IEEE International Conference on Robotics and Automation (ICRA);

IEEE/CVFWinter Conference on Applications of Computer Vision
(WACV);

IEEE International Conference on Pattern Recognition (ICPR);

Journals.

IEEE Robotics and Automation Letters (RA-L);

Pattern Recognition;

Workshops.

Towards a Complete Analysis of People: From Face and Body to Clothes
(T-CAP);

International Workshop and Challenge on People Analysis (WCPA);
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